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In a recent paper, Belot argues that Bayesians are epistemologically flawed because they
believe with probability 1 that they will learn the truth about observational propositions in
the limit. While Belot’s considerations suggest that this result should be interpreted with
some care, the concerns he raises can largely be defused by putting convergence to the
truth in the context of learning from an arbitrarily large but finite number of observations.

1. Introduction. In probability theory one often deals with the infinite, as
in throwing a coin infinitely often. This raises interpretive challenges for the
resulting set of elementary events or “possible worlds.” Elementary events
like an infinite sequence of coin flips are logically possible, but in empirical
investigations their metaphysical status has to be balanced with epistemo-
logical concerns. We do not observe infinitely many coin flips. Only finite
sequences are observationally accessible for us. This is not to say that there
is no place for infinite sequences in probabilistic reasoning. In situations
with no principled upper bound on the number of observations, they serve
as idealizations that approximate large finite sequences.
These considerations are important for answering some criticisms of

Bayesianism that were recently put forward by Gordon Belot ð2013Þ. Re-
ferring to convergence-to-the-truth results in probability theory, Belot draws
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a bleak conclusion: “Bayesian convergence-to-the-truth theorems tell us
that Bayesian agents are forbidden to think that there is any chance that
they will be fooled in the long run, even when they know that their cre-
dence function is defined on a space that includes many hypotheses that
would frustrate their desire to reach the truth” ð500Þ. Bayesians, we are
told, cannot help but be epistemically arrogant. Convergence to the truth is
bought at the price of sweeping those scenarios under the carpet in which
one does not converge to the truth, regardless of how many of those there
are.
This stands in stark contrast to how convergence-to-the-truth theorems

are usually viewed. As, for instance, Joyce ð2010Þ notes for a setting similar
to the one discussed by Belot, convergence to the truth is not too surprising
“because the data is so incredibly informative in the limit that the subject’s
prior beliefs are irrelevant to her final view as a matter of logic” ð446Þ. At
the limit, we would know the truth-value of any proposition about obser-
vations—on judgment day all observations will have been made. On this
view, convergence to the truth for propositions about observations seems to
be a minimal desideratum for learning from experience rather than a mark
of epistemic immodesty.
Belot raises several important issues that merit a more extensive dis-

cussion. In sections 4 and 5 I consider two: the notion of open-minded
priors and the relationship between topology and probability theory. Both
cases point to certain weaknesses in Belot’s argument, but the latter also
leads to a reexamination of the convergence-to-the-truth theorem and to a
new positive proposal of how to understand it ðsecs. 6 and 7Þ. This pro-
posal makes use of the measure algebra approach that was put forward by
Kolmogorov for dealing with elementary events ðKolmogorov 1948Þ.1 The
measure algebra is a metaphysically modest mathematical structure because
instead of elementary events it takes finitely discriminable outcome prop-
ositions as basic ðelementary events can be recovered only by nonconstruc-
tive meansÞ. I argue that in this setting Belot’s treatment loses its bite. To
set the stage, we briefly review the convergence-to-the-truth theorem and
Belot’s argument in the first two sections.

2. Martingales. Convergence to the truth is a consequence of the mar-
tingale convergence theorem. A martingale is an infinite sequence of ran-
dom variables in which, for each n, the conditional expectation of the nth
random variable given the n 2 1 previous random variables is equal to the
value of the ðn2 1Þst random variable. A martingale can be thought of as a
sequence of fair gambles. If the value of the nth random variable represents

1. Other notable mathematicians who favored the latter approach are Halmos ð1944Þ
and Carathéodory ð1956Þ. For more information, see Skyrms ð1995Þ.
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the total funds of a gambler at time n, then the gambler does not expect to
win or lose. The martingale convergence theorem says, roughly speaking,
that a martingale which meets some technical requirements converges with
probability 1 ðfor details see, e.g., Ash 2000Þ.
We follow Belot in specializing learning situations to the set of all infinite

binary sequences. You can think of an experiment in which a coin is flipped
infinitely often but also of any other kind of learning situation in which we
observe whether an event is present. In order to fix ideas, we will usually
refer to coin flips.
The set of all infinite binary sequences can be equipped with the topology

of pointwise convergence ði.e., Cantor spaceÞ. Now, consider some prior P
over Cantor space. The conditional probability PnðAÞ for a measurable set A
given the first n observed digits is a random variable ði.e., a measurable
function from Cantor space to the realsÞ. It is well known that the infinite
sequence of conditional probabilities P1ðAÞ, P2ðAÞ, . . . is a martingale. The
sequence therefore converges with prior probability 1. Moreover, the limit
is with probability 1 equal to the indicator of A, that is, the random variable
that takes the value 1 on infinite sequences that are in A and the value 0
otherwise.2 The indicator of A can be thought of as its truth-value.
Note that the limit is equal to the indicator only with probability 1—this is

the point of departure for Belot’s argument. In general there is a nonempty
“exceptional” set of infinite sequences in which the conditional probabili-
ties for A do not converge to the indicator. Let us call the set of infinite
binary sequences on which the sequence of conditional probabilities con-
verges to the indicator of A the success set and its complement the failure
set. Then the result above implies that the failure set is assigned probability
0 by P while the success set is assigned probability 1.3

The martingale convergence theorem assumes that the prior probability
measure is countably additive. There is a martingale convergence theorem
for certain kinds of finitely additive probability measures due to Purves and
Sudderth ð1976Þ that is relevant for convergence to the truth ðsee Zabell
2002Þ, although the martingale convergence theorem does not hold in
general for probability measures that are only finitely additive.4 Moreover, it

2. The latter fact depends on A being a measurable subset of Cantor space and conditional
probabilities Pn being taken relative to the first n digits of the sequence. Otherwise,
conditional probabilities would converge almost surely but not necessarily to the indicator
function ðand thus not to the truthÞ. For more information, see the discussion of the
martingale convergence theorem and its history in Schervish and Seidenfeld ð1990Þ.
3. Consider the two sequences P1ðAÞ, P2ðAÞ, . . . and P1ðBÞ, P2ðBÞ, . . . of conditional
probabilities for two distinct events A and B. Then the success set and the failure set for
A and B need not be the same.

4. An extreme case of this is a result by Elga which says that a merely finitely additive
prior can believe that it will not converge to the truth with probability 1 ðElga 2015Þ.
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should be emphasized that the convergence-to-the-truth theorem is only true
under the special circumstances set out above. For instance, if the truth-
value of a proposition is not determined by observations ðnot even by in-
finitely manyÞ, then convergence to the truth is not guaranteed; while the
martingale convergence theorem guarantees that conditional probabilities
converge, they need not converge to 0 or 1 in this case. Thus, Bayesians by
no means think that they will always converge to the truth.

3. Immodest Bayesians? Bayesians do tend to think of the martingale
convergence theorem as reassuring. It shows that evidence triumphs over
prior opinions under the appropriate circumstances.5 Belot, however, invites
us to view it as an Achilles heel of the Bayesian approach. His argument
starts with the observation that the failure set for any A usually is nonempty.
Belot rightly points out that some sequences are in the failure set because
the agent has a “closed mind.” An agent may simply assign probability 0 to
particular open sets of binary sequences. This kind of closed-mindedness
may or may not be justifiable, depending on whether the agent has strong
evidence for thinking that the true sequence is not in some open set. But
Bayesians as well as anyone else can reject this kind of closed-mindedness
whenever it is unjustified.
The kind of closed-mindedness Belot is after is of a different type, how-

ever. What he means to show is that there are failure sets that bear witness to
a deep and unavoidable type of closed-mindedness that applies to a Bayesian
even if she thinks of herself as having an open-minded prior.
In order to make this precise, we have to be clear about the meaning of an

open-minded prior. One kind of open-minded prior assigns positive prob-
ability to any finite initial segment of binary sequences. An agent with such
a prior does not rule out any finite sequence of evidence that she might
observe. This type of open-mindedness is consistent with what may seem
fairly closed-minded priors. For example, think of the set of all sequences
that eventually become constantly zero. This set is countable and dense in
Cantor space. If a prior assigns positive probability to each of its members
and probability 0 to its complement, then every open set of Cantor space has
positive probability, while the prior is closed-minded with respect to the
possibility of observing infinitely many ones.
For this reason Belot ð2013, 496Þ introduces another type of open-minded

prior. This new concept of open-mindedness refers to a measurable set R of
infinite binary sequences. A prior is open-minded with respect to R if for all
data sets ðfinite initial segment of observationsÞ there is an extension such
that the conditional probability of R given the data set plus the extension is

5. The merging-of-opinions theorem by Blackwell and Dubins ð1962Þ is a deeper
expression of this idea.
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less than 1/2 and another extension such that the conditional probability of
R given the data set plus that extension is greater than 1/2. Such a prior ex-
ists whenever R is a countable dense subset of Cantor space. An agent who
is open-minded with respect to R never fully makes up her mind as to the
question whether an infinite sequence is in R.
Suppose now that R is a countable dense subset of Cantor space, and

consider an open-minded prior with respect to R. Belot ð2013, 497–99Þ
develops a clever argument which shows that the failure set of an open-
minded prior is residual in the space of infinite binary sequences. Its
complement—the success set—is thus meagre. ðThe notions of meagre and
residual sets are used in topology. A set is meagre if it is the countable union
of nowhere dense sets. The complement of a meagre set is residual. Ele-
ments of a meagre set are atypical from a topological point of view.Þ Thus,
relative to the topology of Cantor space, the failure set is topologically
significant and the success set topologically negligible. But, despite this, the
prior probability of the former is 0 and that of the latter is 1 ðsince this result
holds regardless of the priorÞ.
So here we have the case of a failure set that should for topological

reasons not be ignored but which is essentially ignored by a Bayesian agent.
Our Bayesian ignores a topologically large part of the space of sequences
where she fails and focuses on the small part where she succeeds. But what
is even worse, our agent is forced to have such beliefs by the formal ap-
paratus of probability theory; even if she wanted to she cannot have a con-
sistent prior in which the failure set has positive probability. Belot con-
cludes that Bayesianism is epistemically flawed.
In the following sections I consider this argument and its presuppositions

in three steps. In the first place, the argument rests on Belot’s notion of
open-mindedness. Taking a closer look at this notion does not lead to a
decisive blow against Belot’s conclusion, but there are reasons to doubt
whether this kind of open-mindedness is something generally desirable.
Second, one of the presuppositions of Belot’s argument is that probability
measures should be constrained by the topology of the underlying space.
There is some truth in this but plausibly not enough so as to make the
argument work. Finally, and most importantly, I am going to say more about
convergence to the truth with arbitrarily large but finite information.

4. Open-Minded Priors. One important aspect of Belot’s argument is the
assumption of having an open-minded prior with respect to a measurable set
R. It should be observed that this concept of open-mindedness is not as open-
minded as it might appear on first inspection. The relativization—being open-
minded with respect to a measurable set R—is actually important. For there
cannot be a probability measure that is open-minded with respect to any
measurable subset of Cantor space. Such a prior would need to assign positive
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probability to each measurable set, in particular each singleton ðset containing
one infinite sequenceÞ; otherwise, there are sets of prior probability 0, and
since the posterior probability of such a set will remain 0 forever, the prior
cannot be open-minded with respect to those sets. However, a prior that
assigns positive probability to each singleton does not exist. This follows from
a well-known result which says that in any probability space there are at most
countably many singletons with positive probability and because Cantor
space is uncountable. Thus, Belot’s relative notion of open-mindedness does
not extend to open-mindedness tout court. One has to choose salient mea-
surable sets with respect to which one wishes to be open-minded.
This is important for two reasons: ðiÞ because of the role open-mindedness

plays in Belot’s argument but also ðiiÞ because of the broader question
when open-mindedness is a reasonable assumption. As to i, much of the
effect of Belot’s argument rests on the idea that one should be open-minded
with respect to some set R in at least some situations. Indeed, because of a
result that is due to Adam Elga, one might think this to be generally
desirable ðsee Elga 2015Þ. Elga shows that if a prior is not open-minded
with respect to R, then there is some finite binary sequence such that, upon
observing it, the posterior of R will be equal to 0 or 1, meaning that the
agent becomes certain of whether R is true on the basis of a finite batch of
evidence only. As we have seen, there always are sets with respect to which
a prior is not going to be open-minded. Hence, there always are sets con-
cerning which a Bayesian irrevocably makes up her mind after finitely
many observations.
This may sound devastating at first: How can one rationally be certain after

having made only finitely many observations that, for instance, the full se-
quence will not be constant from some point onward? Surely we have to
observe the full sequence in order to make up our minds concerning this
question. However, there are many situations in which it is perfectly rea-
sonable to make up one’s mind on the basis of finite observations with regard
to hypotheses such as sequences eventually going constant. Consider a se-
quence of independent and identically distributed coin tosses with unknown
bias p. Suppose that my prior assigns 0 probability to irrational values p and
positive probability to each rational p. This prior is not open-minded with
respect to the hypothesis that the sequence is eventually constant. To see this,
note first that my prior assigns positive probability to p5 1 ðthe coin is two-
headedÞ and p 5 0 ðthe coin is two-tailedÞ. The infinite sequences corre-
sponding to these biases are the only ones that are constant; in fact, whenever
0 < p < 1 the observed sequence will not be eventually constant with prob-
ability 1. Thus, I initially think that I might observe a constant sequence, but
after observing at least one 0 and at least one 1 my posterior probability that
the sequence is constant will be equal to 0. So I am not open-minded with
respect to the hypothesis that the sequence is eventually going constant. But
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there is nothing wrong with this unless there is something wrong with my
prior, and my prior seems to be perfectly respectable.6

These considerations point to the broader issue of when we should be
open-minded. A plausible response here is that we should be open-minded
whenever we cannot rule out any possibilities ði.e., whenever we know
nothing about the process that generates the sequenceÞ. But if we really
know nothing about the process, then why should we think that finite
batches of evidence are relevant for the probability of R as is required by
open-mindedness relative to R? In fact, why should one have a definite prior
at all and not move to imprecise probabilities in order to be as noncommittal
as possible?
This is certainly not the place to try to answer all of these questions. What

I hope to have demonstrated is that Belot’s concept of open-mindedness is
more nuanced than one might think. The open-mindedness of a prior with
respect to a set is not a maximally open state of mind that does not rule out
any possibilities; it rather represents a state of mind that is committed to
some possibilities at the expense of others. Open-mindedness with respect
to one set implies closed-mindedness with respect to others. Often, this kind
of closed-mindedness is reasonable. A Bayesian agent is closed-minded
with respect to the failure set ðit has probability 0Þ, but closed-mindedness
with respect to the failure set is not unavoidably unreasonable or irrational.

5. Topology and Measure. Even if you grant this point, there are two
reasons for why you might still feel disturbed by Belot’s result. First, the
failure set is topologically large, so there appears to be an independent
reason not to ignore it. Second, a Bayesian must be closed-minded relative
to the failure set. I discuss these two objections in turn, starting with the first
one in this section.
While a failure set can be topologically large, a Bayesian might insist that

probability theory is not topology. Belot himself refers to various results
that show how topological notions and measure-theoretic notions can come
apart ðBelot 2013, sec. 3Þ. Meagre sets can have probability 1. Residual sets
can have probability 0. The epistemic freedom of an agent even allows her
to assign probability 1 to a denumerable set or a finite set or a singleton. The
only constraint is that degrees of belief be consistent.
Furthermore, the mathematical structure of measure theory is very dif-

ferent from the mathematical structure of topology. Topological notions are
invariant under homeomorphisms ða homeomorphism is a continuous map
from one topological space into anotherÞ. But measure-theoretic notions do
not in general exhibit this invariance. Taking all of this together suggests

6. Thanks to Jim Joyce for the example and for raising several of the points mentioned
in the following paragraphs.

BAYESIAN CONVERGENCE TO THE TRUTH 593

https://doi.org/10.1086/682941 Published online by Cambridge University Press

https://doi.org/10.1086/682941


that topological and probabilistic concepts are fairly independent of each
other and that results about the topology of a space do not prescribe specific
probability distributions for that space. From a Bayesian perspective, this
makes a lot of sense. Topology is a mathematical theory of concepts like
closeness and limit point, whereas probability is a mathematical theory of
rational degrees of belief. The two theories have very different domains, and
so there is no reason to suppose that there are any general principles con-
necting the two in the way required by Belot’s argument, which appears to
be something along the lines of “if a set is residual in the topology, then it
should have positive probability.”
Although this response seems to be correct, it will probably not convert

any doubter. There is more to say, though. The role of topology points to a
deeper presupposition of Belot’s argument—its reliance on the infinite. If
we restricted ourselves to finite sequences of data, convergence to the truth
for propositions about those data would be completely uncontroversial; in
the finite realm you know the truth-value of every proposition about ob-
servations after having made all the observations. The martingale conver-
gence theorem shows that this carries over, in a certain sense, to the case of
infinite sequences. But in this case ðunlike the finite oneÞ we have to deal
with the problem of nonempty failure sets that no Bayesian agent can avoid.
In the next two sections I show how we can deal with this problem by
applying one plausible way of finitist thinking.

6. Modest Metaphysics. Belot clearly thinks of infinite binary sequences
as genuine epistemic possibilities. For example, in the context of conver-
gence to the truth he states that “there is a rich infinite family of sequences
the agent could be shown that would prevent convergence to the truth” ðBelot
2013, 484Þ.
But are infinite sequences something that can be learned? This question is

important if we take seriously some very general epistemic constraints, such
as our own epistemic finitude. Consider the paradigm examples of inductive
learning Belot mentions ðBelot 2013, 493Þ: tossing coins, measuring the
successive bits of the binary expansion of a constant of nature, or deter-
mining whether there is more gold in India or in China, minute by minute.
In the context of learning from experience, those sequences of observations
can be certainly thought of as, possibly very large, finite binary sequences.
If there is no upper bound to observations, it is convenient to work with
infinite binary sequences in order to approximate arbitrarily large finite
sequences. But it is essential to interpret limiting results very carefully when
agents do not actually have access to infinite observations. Our motivation
for treating infinite binary sequences as idealized objects is thus empirical:
infinite sequences make distinctions between events that cannot be made by
finite observations or measurements, regardless of how precise they are.
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This perspective calls for a metaphysics that is more modest than the
metaphysics of standard probability theory. The mathematical superstruc-
ture of standard probability theory allows degrees of belief to refer to all
kinds of infinitary objects. Within that superstructure, infinite sequences are
indeed epistemic possibilities—that is, something one might coherently
suppose ðin the indicative modeÞ. An agent might suppose, just as Belot
suggests, that she is shown a sequence from the failure set. According to the
martingale convergence theorem this is a probability 0 event, yet it is an
epistemic possibility. Such an epistemic possibility does not need to be
something that one can learn, however. The question now is which parts of
the mathematical superstructure are relevant for learning.7

Let us start by taking a closer look at the success set and the failure set. So
far we have only seen that the failure set may be residual and the success set
meagre. But it is also important to observe how the two sets relate to each
other in the topology. Because the failure set in Belot’s example is residual,
it is uncountable and dense in the space of infinite binary sequences. Belot
also shows that the failure set is dense for any prior over Cantor space. It
follows that every sequence in the success set can be approximated arbi-
trarily closely by a sequence in the failure set: if x is a sequence in the
success set, then for any n there exists a sequence y in the failure set that
agrees with x in the first n elements. In other words, any open set containing
x also contains a sequence that is in the failure set.
Under very plausible assumptions, the success set is also dense in the

space of infinite binary sequences. We only need to assume that the prior is
open-minded in the sense of assigning positive probability to any open set.8

Suppose that the success set is not dense. Then there exists an open set B
such that all sequences in B are in the failure set. But because of the
martingale convergence theorem B must have prior probability 0. This
contradicts the assumption that all open sets have positive prior probability.
Hence, the success set is dense.
We get the following important result:

Empirical indistinguishability. The success set and the failure set of an
open-minded prior are both dense in Cantor space. Thus, any sequence in
the failure set can be approximated arbitrarily closely by a sequence in the

7. Of course, I do not mean to imply that the standard framework should be aban-
doned. Apart from its mathematical fruitfulness, standard probability theory might also
be useful for many epistemic questions. What I wish to point out is that there are ep-
istemic constraints on the superstructure once we put it in the context of learning from
experience.

8. The prior constructed in Belot ð2013Þ, n. 37, is an example of a prior that is open-
minded both in this and in Belot’s sense. The result reported here could be reformulated
appropriately for any prior.
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success set and vice versa. Sequences cannot be identified as belonging to
the success set or the failure set by arbitrarily precise finite observations.

The success set and the failure set cannot be distinguished observationally
if we only have an arbitrary finite number of observations. This indicates
that the existence of a failure set may not be a significant threat to Bayesian
convergence to the truth with increasing but finite batches of evidence. For
any finite time, each sequence in the failure set can be associated with
at least one sequence in the success set. There is convergence to the truth
for any proposition whose truth-value depends only on a finite number of
observations for the success set. These propositions approximate all other
events. So, in a sense, the Bayesian converges to the truth in terms of
having degrees of beliefs that get closer to the indicator without necessarily
ever reaching it, since the number of observations is finite.
There is no failure set on this view. The failure set ceases to be relevant

once we stop making distinctions that can only be made by being infinitely
precise. In the next section I outline how this informal idea can be made
precise.

7. Measure Algebras. Despite using classical mathematics in his famous
ð1933Þ monograph, Kolmogorov is a champion of the finite. Later work by
Kolmogorov can be used to turn the idea of a modest metaphysics discussed
in the previous section into a substantial theory ð1948; trans. in Kolmo-
gorov 1995Þ. For Kolmogorov, one of the drawbacks of his 1933 theory
of probability is that “the notion of an elementary event is an artificial
superstructure imposed on the concrete notion of an event. In reality, events
are not composed of elementary events, but elementary events originate in
the dismemberment of composite events” ð1995, 61Þ. Elementary events
are possible worlds, for example, the infinite binary sequences of Cantor
space. What Kolmogorov is suggesting is to take outcome propositions
ðsuch as “the first three digits are 110”Þ as basic and view possible worlds as
artifacts deriving from outcome propositions. He then goes on to show that
this idea is captured mathematically by metric Boolean algebras.
Mathematical structures like Cantor space make more discriminations than

we should ascribe to reality. Consider, for instance, the open set of all infinite
sequences starting with 110, and suppose that we remove from it the sequence
11000000 . . . ð110 followed by zeroesÞ. The alleged difference between this
set and the original one is smaller than any finite discrimination ðany number
of zeroes you observe after the third trial is compatible with both prop-
ositionsÞ. The outcome described by both sets really expresses something
about the first three observations. The additional distinctions that are being
made are irrelevant to this outcome. A metric Boolean algebra takes the
elementary events out of Cantor space by identifying these two sets, and
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similar ones, with each other. It does this by factoring out sets of probability
0 for prior probability measures that assign ðiÞ positive probability to every
open set and ðiiÞ 0 probability to each particular infinite sequence. Such
a prior can be thought of as an open-minded, antimetaphysical prior—it is
antimetaphysical since assumption ii expresses the belief that no individual
infinite sequence is the true one.9

For such a prior, two measurable sets are said to be of the same metric
type if their symmetric difference has probability 0. ðThe symmetric dif-
ference of two sets A and B is the set of sequences that are in A but not in B
or vice versa.Þ Being of the same metric type is an equivalence relation, so
we may identify all measurable sets that have the same metric type.10 By
identifying all sets of the same metric type, we cast out infinite sequences
since each of them is of the same metric type as the empty set. Metric types
are the basic elements Kolmogorov wanted to have—composite events that
do not depend on the concept of an elementary event.
The quotient construction through metric types yields a Boolean algebra

by transferring the Boolean operations from the original space to the new
class of sets in the natural way. The original probability can likewise be used
for the quotient algebra by requiring that the probability of a metric type is
equal to the probability of an event of that metric type. The resulting struc-
ture is a metric Boolean algebra, that is, a Boolean algebra with a ðin gen-
eral only finitely additiveÞ probability measure that assigns 0 probability
only to the null element of the Boolean algebra and probability 1 only to its
unit element. ðThe null element corresponds to the empty set and all sets of
probability 0 in the original space, and the unit element to all sets of prob-
ability 1.Þ
Taking the distance between two metric types to be the probability of their

symmetric difference defines a metric. Since the probability measure in our
original space was assumed to be countably additive, the Boolean metric
space is in fact a complete metric space ðKolmogorov 1995, 60Þ. The com-
plete metric space is a Boolean j-algebra for which countable additivity holds
automatically ðsince convergence for metric types is defined as the symmetric
difference going to 0; see Kolmogorov 1995, 62–63Þ. If we do not have
countable additivity at the outset, it can easily be introduced by completing the
metric Boolean algebra. The Boolean j-algebra together with its probability
measure is called a ‘measure algebra’ ðHalmos 1944Þ.
In the metric Boolean algebra there are only outcomes and no possible

worlds ðinfinite sequencesÞ. For anymetric Boolean algebra, possibleworlds
can be recovered through the representation theorem of Stone. According to

9. For the underlying metaphysics, cf. Skyrms ð1993Þ.
10. That is, we are forming a quotient algebra by taking the j-algebra modulo the j-
ideal of sets of probability 0.
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the isomorphism between Boolean algebras and fields of sets given in Stone
ð1936Þ, an outcome corresponds to the set of possible worlds where the
outcome occurs. Possible worlds are maximally specific outcomes ðthey
are the prime ideals of the Boolean algebra; see Łoś 1955Þ. Since Stone’s
theorem uses the axiom of choice, possible worlds are cognitively remote,
highly idealized entities.11

Our measure algebra is thus a fairly satisfying representation of that part of
a probability space that is accessible to finite observations. Now, returning to
our original question, what does convergence of conditional probabilities
mean in the new framework? The short answer is that in Cantor space the
failure set has probability 0; hence, it is associated with the null element of the
corresponding metric Boolean j-algebra. The success set, however, corre-
sponds to the unit element of the metric Boolean j-algebra because its prob-
ability is 1. Thus, convergence to the truth holds without exceptions.
Let us look at this in a bit more detail. The conditional probability PnðAÞ is

a random variable. Recall that a random variable is a measurable function
that assigns a real number to each possible world. That it is measurable
means that its inverse maps each Borel set B to a set in the j-algebra. The
Borel sets are countable unions and intersections of open intervals of the
real line. Thus, a measurable function does not exceed the standard con-
ceptual resources of the real numbers.
Since there are no possible worlds in the measure algebra but only out-

comes, random variables cannot be defined in the measure algebra. Instead,
random variables are associated with j-homomorphisms ðŁoś 1955Þ. The
idea is simple: every random variable X from Cantor space to the reals
generates a map from Borel sets to the measurable subsets of Cantor space
by mapping each Borel set B to the set of elementary events that Xmaps into
B. The map associated with a random variable can be used in measure
algebras. A j-homomorphism is a map from the Borel sets to the Boolean
j-algebra that preserves countable unions and complementation. Two ran-
dom variables induce the same j-homomorphism from the Borel sets to the
Boolean j-algebra if they agree almost surely. This makes it possible to
define the integral of a j-homomorphism over the measure space as the
integral of an inducing random variable over the probability space ðsee
Sikorski ½1949� for detailsÞ. Thus, from a probabilistic perspective, random
variables and induced j-homomorphisms are essentially the same.
Each PnðAÞ induces a j-homomorphism fn in the following way: the

function fn maps each Borel set B to the metric type of the set of all infi-

11. The analogue of the Stone theorem can fail for Boolean j-algebras. However, for
every Boolean j-algebra B there is a j-field of sets F and a j-ideal I such that B is
isomorphic to the quotient algebra F/I. This is the representation theorem of Loomis
ð1947Þ and Sikorski ð1948Þ.
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nite sequences to which PnðAÞ assigns a value in B. This means that for
each value between 0 and 1 fn identifies those outcomes in the Boolean j-
algebra where conditional probabilities after n observations take on that
value ðmodulo observationally irrelevant distinctionsÞ. Then the sequence of
j-homomorphisms f1, f2, . . . converges to the j-homomorphism f that is
induced by the indicator of A ðSikorski 1949Þ. Since the indicator of A is equal
to 0 or 1, fðf0, 1gÞ is the unit element of the Boolean j-algebra. Moreover,
since f preserves Boolean operations, the unit element of the Boolean j-
algebra is the union of the outcome fðf1gÞwhere the metric type of A is true
and the outcome fðf0gÞ where the metric type of A is false. This is the sense
in which we have convergence to the truth in the measure algebra.
It should be noted that fðf1gÞ and fðf0gÞ may themselves be idealized

elements of the Boolean j-algebra if A is an infinitary event ðe.g., the lim-
iting relative frequency of 1s is one-halfÞ. If we only allow outcome prop-
ositions that correspond to finite binary sequences, we would have a metric
Boolean algebra instead of a metric Boolean j-algebra. In the metric Bool-
ean algebra there are outcomes that are arbitrarily close to the convergence-
to-the-truth outcomes. By completing this metric Boolean algebra with re-
spect to the metric, we get a Boolean j-algebra in which sets such as those in
question arise as limiting elements, while the elements of the metric Boolean
algebra are dense in the metric Boolean j-algebra.
As noted above, a consequence of these considerations is that the failure set

gets absorbed into the null element of the metric Boolean j-algebra. This may
seem pretty ad hoc. Looking only at this conclusion might suggest that we
did nothing more than sweep the failure set deeper under the carpet. How-
ever, eliminating the failure set is the result of the main idea of Kolmogorov’s
approach—to identify events that cannot be finitely discriminated. This is
the reason why the failure set is not part of the measure algebra. Far from
being ad hoc, our main conclusion is firmly grounded on a plausible epistemic
constraint.
Let us now reconsider Belot’s example in the context of an antimeta-

physical open-minded prior. If R is a countable dense subset of Cantor space,
then R has probability 0 according to our prior. Thus, the null element of
the measure algebra is its metric type, and it gets a probability of 0 through-
out the process of learning from experience. This reflects our choice of prior.
Some may find this prior to be too radical, especially because it excludes
many priors that are open-minded in Belot’s sense. What if one wants to
assign positive probability to especially salient countable dense sets such as
the binary expansions of rationals or computable reals? Here one can also
apply the measure algebra framework. Suppose that our prior assigns positive
probability to each element of a countable dense subsetR of Cantor space. The
prior is metaphysical since it thinks that each element of R can be true with
positive probability. For simplicity, we assume again that the prior is also
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open-minded in the sense of assigning positive probability to each open set.
ðThe prior is thus open-minded with respect to R.Þ By the same reasoning as
above, convergence to the truth holds without any qualification by a failure
set. Even though the prior is metaphysical, it factors out many differences that
cannot be discriminated by finite means. As a result, we again have conver-
gence to the truth without qualification by a failure set.
The main difference between a metaphysical prior and an antimetaphysical

prior is that their measure algebras include different outcomes. The elements
of a measure algebra depend on the prior since different priors can have
different sets of measure 0. Thus, the difference in opinion between agents
becomes amplified when we move from the standard framework to the
measure algebra. At the same time, two agents may hold the same beliefs in
the measure algebra but have slightly different beliefs when we look at the
more fine-grained level of the standard framework. For these reasons one
might think that the measure algebra framework is not a good substitute for
the standard measure-theoretic framework. I do not suggest to always use
measure algebras instead of the standard approach, but I think that each
approach has its virtues and vices. For convergence to the truth using the
measure algebra is particularly apt since it allows one to analyze increasingly
large but finite sequences of observations. This does not mean that the
measure algebra is the correct framework for all questions regarding degrees
of belief or that the classical measure-theoretic framework is mathematically
flawed.

8. Conclusion. I have shown that infinite sequences are not necessary for
Bayesian learning from experience and that they can be viewed as artifacts of
an idealization. This result defuses Belot’s main argument. However, I agree
with Belot and others that the value of convergence-to-the-truth theorems and
merging-of-opinions results should not be overstated. They make substantive
assumptions about a learning situation. What they do show is that in certain
learning situations the influence of individual priors vanishes and that pos-
terior probabilities correctly reflect increasing information.
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