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Abstract
A family of sets is intersecting if no two of its members are disjoint, and has the Erdős–Ko–Rado property
(or is EKR) if each of its largest intersecting subfamilies has non-empty intersection.

Denote byHk(n, p) the random family in which each k-subset of {1, . . . , n} is present with probability
p, independent of other choices. A question first studied by Balogh, Bohman and Mubayi asks:

For what p= p(n, k) isHk(n, p) likely to be EKR?

Here, for fixed c< 1/4, and k<
√
cn log n we give a precise answer to this question, characterizing those

sequences p= p(n, k) for which

P(Hk(n, p) is EKR)→ 1 as n→ ∞.

2010 MSC Codes: Primary 05D40; Secondary 05D05, 05C65

1. Introduction
One of the most interesting combinatorial trends of the last couple of decades has been the inves-
tigation of ‘sparse random’ versions of some of the classical theorems of the subject – that is, of the
extent to which these theorems hold in a random setting. This issue has been the subject of some
spectacular successes, particularly those related to the theorems of Ramsey [19], Turán [24] and
Szemerédi [23]; see [2, 11, 17, 20] for origins and, for example, [5, 7, 22] (or the survey [21]) for a
few of the most recent developments.

Here we are interested in what can be said in this vein for the Erdős–Ko–Rado theorem [9],
another cornerstone of extremal combinatorics. This natural question has already been considered
by Balogh, Bohman and Mubayi [3], and we first quickly recall a few notions from that paper.

In what follows, k and n are always positive integers with n> 2k. As usual we write [n] for
{1, . . . , n} and (V

k
)
for the collection of k-subsets of the setV . A k-graph (or k-uniform hypergraph)

on V is a subset (or multisubset), H, of
(V
k
)
. Members of V and H are called vertices and edges

respectively. Here we will always take V = [n] and write K for
(V
k
)
. For a k-graph H on V and

x ∈V we use dH(x) for the degree of x inH (the number of edges ofH containing x) and�H for
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the maximum of these degrees. We also writeHx for the set of edges containing x, called the star
of x inH.

A collection of sets is intersecting, or a clique, if no two of its members are disjoint. The Erdős–
Ko–Rado theorem says that for any n and k as above, the maximum size of an intersecting k-graph
on V is

(n−1
k−1

)
and, moreover, this bound is achieved only by the stars.

Following [3], we say thatH⊆K satisfies (strong) EKR if every largest clique ofH is a star; thus
the Erdős–Ko–Rado theorem says K itself satisfies EKR. (In [3]H is also said to satisfy weak EKR
if some largest clique is a star, but this slightly weaker condition will not concern us here.)

In what follows we use H=Hk(n, p) for the random k-graph on V in which members of
K are present independently, each with probability p. As suggested above, we are interested in
understanding when EKR holds forH, which we state a little more formally as follows.

Question 1.1. For what p0 = p0(n, k) is it true thatH satisfies EKR a.s. provided p> p0?

As usual, an event – really a sequence of events parametrized by n (say) – holds almost surely
(a.s.) if its probability tends to 1 as n→ ∞. Note that here we are thinking of k as a function of n
(see the paragraph following Theorem 1.2).

Notice that EKR is not an increasing property (i.e. it is not preserved by addition of edges) and
that, for given n and k,

fn,k(p) := P(Hk(n, p) satisfies EKR) (1.1)

is not increasing in p. For instance, for sufficiently tiny p (depending on n and k) it will usually be
the case that every clique is contained in a star. In view of this non-monotonicity, it is natural to
define a threshold for the property EKR to be the least p0 = p0(n, k) satisfying

fn,k(p)�
1
2

for all p� p0. (1.2)

This follows the usage in [16] (for example), which takes the ‘threshold’ for an increasing property
Q to be the unique p for which the ‘p-measure’ of Q is 1/2.

For the most part we will not review the contents of [3]. The focus there is mainly on small
k; roughly speaking, the authors give fairly complete results for k= o(n1/3) and more limited
information for k up to n1/2−ε with ε > 0 fixed.

The nature of the problem changes around k= n1/2, since for k smaller than this, two random
k-sets are typically disjoint, while the opposite is true for larger k. Heuristically we may say that
the problem becomes more interesting/challenging as k grows and the potential violations of EKR
proliferate (though increasing k does narrow the range of p for which we expect EKR to hold). At
any rate, [3] had (as noted there) little to say about k larger than

√
n (or, indeed, k> n1/2−ε). Here

(in Theorem 1.3) we precisely settle the problem for k up to and even a little beyond
√
n. (In line

with the above heuristic, it is in the region beyond
√
n that our task is most delicate.)

As in [3], we will usually find it convenient to work, not directly with p, but with

ϕ := p
(
n− 1
k− 1

)
,

the expected degree of a vertex (called ρ in [3]); this seems more natural as we are most interested
in situations where p is tiny while the value of ϕ is more reasonable. Throughout the paper we
take

m=E|H| = ϕn
k
,

�=�H (the maximum degree inH) and

q= P(A∩ B 	= ∅), (1.3)
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where A and B are chosen uniformly and independently from K. The next assertion is our main
result, though a little further work will be needed for the aforementioned characterization given
in Theorem 1.3.

Theorem 1.2. For any fixed c< 1/4, if

k<
√
cn log n (1.4)

and ϕ is such that (
m
�

)
q(

�
2) = o(1) a.s., (1.5)

thenH satisfies EKR a.s.

(We use log= ln and, as usual,
(a
b
) = (a)b/b! := a(a− 1) · · · (a− b+ 1)/b! for a ∈R and

b ∈N.) Note that (here and usually in what follows) n is a ‘hidden parameter’; thus in Theorem 1.2,
k and ϕ are functions of n and, for example, both ‘o(1)’ and ‘a.s.’ in (1.5) refer to n→ ∞. (Note
also that what is random in (1.5) is�.)

Some clarification of and motivation for (1.5) are perhaps in order. Given ϕ = ϕ(n), set, for
t ∈N,

�(t)=�ϕ(t)=
(
m
t

)
q(

t
2). (1.6)

Then (1.5) says there exists
ε= ε(n)= o(1) such that P(�(�)< ε)→ 1 as n→ ∞.

Its meaning – the reason it is a natural assumption in Theorem 1.2 – is as follows. We think
of q(

t
2) as the ideal value of the probability that random (independent) k-sets A1, . . . ,At form a

clique (it would be the actual value if the events {Ai ∩Aj 	= ∅} were independent). Thus, since |H|
is usually close to m, the left side of (1.5) may be thought of as the expected number of ‘generic’
�-cliques inH, and we should perhaps not expect EKR to hold if this number is not small.

At least for k as in (1.4), this intuition turns out to be correct; that is, (1.5) is essentially necessary
for the conclusion of Theorem 1.2. Here we should be a little careful: since all cliques of size at most
2 are trivial (i.e. contained in stars), failure of (1.5) with �� 2 does not suggest failure of EKR.
We accordingly define (again, given ϕ)

�′(t)=�′
ϕ(t)=

{
0 if t� 2,
�(t) otherwise.

Theorem 1.3. For c and k as in Theorem 1.2 and any ϕ (= ϕ(n)),
H satisfies EKR a.s. if and only if�′(�)< o(1) a.s. (1.7)

That Theorem 1.2 implies sufficiency of the condition in (1.7) is easy but not quite tautological
and will be discussed in Section 10.

It is not hard to read off threshold information from Theorem 1.3 (with ‘threshold’ as in (1.2),
here translated to the corresponding ϕ0); for example, for k= √

ζn� √
n (satisfying (1.4)), we

have ϕ0 ∼ eζ log n. Other special cases include the main positive results on EKR given in [3], those
in parts (i), (ii) and (iv) of their Theorem 1.1. (We do use some of these in Section 9, but this could
easily be avoided.)

Recent work in [4] provides results for k up to n/4 but with nothing like the present accuracy.
(For k as in (1.4) their upper bound on ϕ0 is of the form eO(k) log n.)
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We believe Theorem 1.2 is true with ‘c< 1/4’ replaced by ‘c< 1/2’. It is not true above
this, roughly because: for k= √

cn log n, with c> 1/2, (1.5) first occurs at ϕ ≈ log n/ log(1/q)∼
nc log n, where (typically) all degrees are close to ϕ and for each vertex x the number of edges of
H \Hx meeting all edges ofHx is about ϕ(n/k)qϕ ≈ nc+1/2−1 = n�(1), meaning stars are unlikely
even to be maximal cliques.

This is, of course, reminiscent of the Hilton–Milner theorem [14], which says that the
largest non-trivial cliques in K are those of the form {A} ∪ {B ∈Kx : B∩A 	= ∅} (with A ∈K and
x ∈V \A). It seems not impossible that ‘generic’ and ‘HM’ cliques are the main obstructions to
EKR in general; a precise, if optimistic, statement to this effect is as follows.

Conjecture 1.4. If k and ϕ are such that (1.5) holds and

H a.s. does not contain a Hilton–Milner family of size�, (1.8)

thenH a.s. satisfies EKR.

Getting from this to the asymptotics of p0 is routine. Essentially – not quite literally – excluding
HM families of size � is promising that stars are maximal cliques, and a slight weakening of
Conjecture 1.4, resulting in an unnoticeable change in the corresponding p0, would replace (1.8)
with the assumption that this is true a.s.

In a companion paper [12], using methods completely different from those employed here, we
jump to the other end of the spectrum, taking k to be as large as possible.

Theorem 1.5. There is a fixed ε > 0 such that if n= 2k+ 1 and p> 1− ε, thenH satisfies EKR a.s.

This was prompted by Question 1.4 of [3].

Question 1.6. Is it true that for k ∈ (n/2− √
n, n/2) and p= 0.99, EKR (or weak EKR) holds a.s.

forH?

Conjecture 1.4 would say that Theorem 1.5 remains true for p at least about 3/4. (Theorem 1.5
could presumably be extended to the full range of k covered by Question 1.6, but this appears to
be far short of the truth if n� 2k+ 2, so seems of less interest.)

The rest of this paper is organized as follows. The problem is most interesting when

k> n1/2−o(1). (1.9)

The bulk of our discussion of Theorem 1.2 (Sections 2 and 5–8) will deal exclusively with this
range, while Section 9 handles smaller k. (Section 3 reviews a few standard tools and Section 4
gives some generalities that will apply to both regimes.)

In proving Theorem 1.2 for k as in (1.9) we will find it better to deal first with ϕ not too far
above the ‘threshold’ – this will account for most of our work – and then treat larger ϕ mostly
by a reduction to what we have established for smaller ϕ. We thus begin in Section 2 with an
outline of the argument for small ϕ, in particular deriving Theorem 1.2 in this range from three
main assertions, Lemmas 2.1–2.3. These are proved in Sections 5–7 following the preparations of
Sections 3 and 4. Section 8 then gives the extension to large ϕ and, as noted above, Section 9 deals
with small k. Section 10 deals mainly with necessity of the condition in (1.7). This turns out to be
interesting and considerably trickier than one might expect; still, the paper being already too long,
we will give the argument somewhat sketchily and only for k as in (1.9). (The problem gets easier
as k shrinks.) A glossary of parameters, etc., can be found after Section 10.
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Usage. As already mentioned, we take V = [n], K = ([n]
k
)
and H=Hk(n, p). In addition, we set

M = (n−1
k−1

)
(so ϕ =Mp) and m= |H| (a random variable with mean m). We use v,w, x, y, z for

members of V . For a hypergraph G, we let Gx = G \ Gx (recall Gx = {A ∈ G : x ∈A}).
We use dG(x) for the degree of x in G, and similarly for dG(x, y), and, where not otherwise

specified, take d(·) to mean dH(·). (As already stated, we use� for�H.)
We write B(	, α) for a random variable with the binomial distribution Bin(	, α), log for ln and( a

�b
)
for

∑
i�b

(a
i
)
. We use standard asymptotic notation (‘big Oh’, etc.), but will also sometimes

use a� b for a=�(b) and a� b for a= o(b). We assume throughout that n is large enough
to support our arguments and, following a standard abuse, usually pretend large numbers are
integers.

2. Main points
From now until the end of Section 8 we fix c= 1/4− ε in Theorem 1.2. Also, as noted above, the
present section assumes that k satisfies (1.9) (as well as (1.4); thus n1/2−o(1) < k<

√
cn log n).

As stated earlier, most of our work will deal with ϕ fairly near the ‘threshold’. Although the
problem should become easier as ϕ grows, some parts of the main argument below break down
for larger ϕ; this could perhaps be remedied, but we have found it easier to first deal directly with
smaller ϕ and then use what we have learned to handle larger values. (A disadvantage of this
approach is that it necessarily gives much weaker bounds on the probability that EKR fails than
one might hope to establish using a more direct argument.)

We thus begin in this section with an outline of where we are headed in the ‘small ϕ’ regime.
As we will see, the ‘threshold’ ϕ0 ( :=Mp0) is around log n/ log(1/q), and as a cut-off for ‘small’
we set (not a delicate choice)

ϕ∗ = log3 n
log(1/q)

. (2.1)

We assume in this section, and again in parts of Section 4 and all of Sections 5–7, that ϕ � ϕ∗ –
a restriction which could be relaxed considerably without invalidating the present argument. Thus
we want to show that

for ϕ � ϕ∗ satisfying (1.5),H satisfies EKR a.s. (2.2)

(It is true that in this regime the problem is most delicate when ϕ is more or less at the ‘threshold’.
In particular, it is only here (see the proof of Lemma 2.3) that we must make precise use of (1.5).)

Call a clique trivial if it is contained in a star. We will show below that there are integers
α = α(n, ϕ)� β = β(n, ϕ) satisfying, inter alia,

� ∈ [α, β] a.s. (2.3)

and

�(α)= o(1). (2.4)

Thus (2.2) would follow if we could show that H a.s. does not contain a non-trivial clique of
size α, but this is not quite true; for example, if d(x)=� is significantly larger than α – say closer
to β than α – then an A ∈H \Hx typically misses fewer than �− α edges of Hx, in which case
{A} ∪ {B ∈Hx : B∩A 	= ∅} is a non-trivial clique of size greater than α.

A natural way to address this is to compare each clique possessing a sufficiently high degree
vertex, say x, directly with the starHx. This idea is implemented in the first of the following three
lemmas; these assertions will easily yield (2.2) and will also do most of the work when we come to
larger ϕ. (To be clear, the lemmas will depend on further properties of α and β to be established
below.)
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Set

γ =min
{
α,
ϕ∗

3

}
, (2.5)

τ = (1− ε)γ , and (2.6)

λ=max
{ √

log n
log (1/q)

, 2

√
log n

log (1/q)

}
. (2.7)

The actual values are not needed in this section.
In reading Lemmas 2.1–2.3 (about whose meaning we will say a little more in a moment), one

should keep the following in mind: (i) Lemmas 2.1 and 2.3 are the main points, with Lemma 2.2
just making our lives a little easier when we come to Lemma 2.3; (ii) for the present purposes
– i.e. derivation of (2.2) – the statements could be slightly simplified, dropping the alternative
‘|Cx|� 2/ε’ in Lemma 2.1 and replacing γ with α in Lemma 2.3 (the stated versions will be used
in dealing with larger ϕ in Section 8).

Lemma 2.1. A.s. there do not exist (in H) a non-trivial clique C and vertex x such that |C|� d(x),
dC(x)� τ , and either |C|� α or |Cx|� 2/ε.

Lemma 2.2. A.s.H does not contain a clique with two vertices of degree at least λ.

Lemma 2.3. A.s.H does not contain a clique of size γ with at most one vertex of degree greater than
λ and maximum degree less than τ .

Onemay think of Lemmas 2.1 and 2.3 as addressing the dichotomy that informs Conjecture 1.4,
viz. that the things we mainly need to worry about are (non-trivial) cliques that are either close to
stars or somehow ‘generic’.

Lemma 2.1 deals with the first possibility. As observed following (2.4), we cannot depend on
there being some a priori value which is a.s. both a lower bound on� and an upper bound on the
size of a largest non-trivial clique. But we do expect that any clique C causing trouble here is close
to some starHx; that is, C consists mostly of Cx, but also contains enough edges off x to make up
for the edges ofHx that it misses. Thus Lemma 2.1 deals in such direct comparisons C versusHx.
(Note that (2.3) allows us to restrict to |C|� α. The interested reader might also check [12] for an
unrelated, far trickier treatment of such comparisons.)

Lemma 2.3 (with the auxiliary Lemma 2.2) then handles the ‘generic’ case of cliques with-
out very high degrees. Of course the lemma’s mild degree restrictions are far from what might
be considered ‘generic’ but, somewhat supporting our dichotomous intuition, it is really when
degrees become more typical that the problem becomes most challenging. As mentioned ear-
lier – and as one might expect, given the condition’s rationale – it is only here that we need to
fully exploit (1.5). (That this must be the case follows from the discussion of Section 10, where
failure of (1.5) is shown to imply an �(1) probability of violating EKR with some clique as in
Lemma 2.3.)

Proof of (2.2). Since P(�<α)= o(1) (see (2.3)), it is enough to show thatH a.s. does not contain
a non-trivial clique C with |C|��� α. But if �� α and H does contain such a C, then at least
one of the following occurs.

(a) There is an x with dC(x)� τ (and |C|���max{α, d(x)}), so x, C are as in Lemma 2.1.
(b) There are two vertices with degree at least λ in C.
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(c) There is at most one vertex x with dC(x)� λ and none with dC(x)� τ , so (since α � γ ) C
is as in Lemma 2.3.

But according to Lemmas 2.1–2.3, each of (a)–(c) occurs with probability o(1), so we have
(2.2).

We now pause to fill in some preliminaries.

3. Negative association and large deviations
Some parts of the analysis below seem most conveniently handled using the notion of negative
association, regarding which we just recall what little we need, in particular confining ourselves to
{0, 1}-valued random variables; see e.g. [8, 18] for further background.

Recall that events A, B in a probability space are negatively correlated (denoted A ↓ B) if
P(AB)� P(A) P(B). Given a set S, set �=�S = {0, 1}S and recall that A⊆� is increasing if
x� y ∈A ⇒ x ∈A (where ‘�’ is product order on �). Say i ∈ S affects A⊆� if there are η ∈A
and ν ∈� \A with ηj = νj for all j 	= i, and writeA⊥ B if no i ∈ S affects bothA and B.

Now suppose (Xi : i ∈ S) is drawn from some probability distribution on �. The Xi are said to
be negatively associated (NA) if A ↓ B whenever A, B are increasing and A⊥ B. If Qi are events
whose indicators are NA then we also say that the Qi themselves are NA.

The following observation is surely not news, but as we do not know of a reference we give the
easy proof.

Proposition 3.1. Suppose that for some V1, . . . ,Vs ⊆V and 	1, . . . , 	s, A1, . . . ,As are chosen inde-
pendently with Aj uniform from

(Vj
	j

)
. Then the random variables Xvj = 1{v∈Aj} (v ∈V, j ∈ [s]) are

negatively associated.

Proof. (See [8, Proposition 12].) For each j the vector (Xvj : v ∈V) is chosen uniformly from the
strings of weight 	j in {0, 1}Vj , implying that the random variables Xvj (v ∈V) are NA. (This is
standard and easy, though we could not find it in writing. A stronger and far more interesting
statement is the main result of [25].) We may thus apply [8, Proposition 8], which says that if
the collections {Xvj : v ∈V} (j ∈ [s]) are mutually independent and each is NA, then the entire
collection {Xvj} is also NA.

We will use Proposition 3.1 in conjunction with the following trivial observations.

Proposition 3.2. If the random variables X1, . . . , Xm are NA, I1, . . . , Ir are disjoint subsets of [m],
and Qj is an increasing event determined by {Xi : i ∈ Ij}, then Q1, . . . ,Qr are NA.

Proposition 3.3. If the events Qi are NA, then P(∩Qi)�
∏

P(Qi).

One virtue of negative association lies in the fact that ‘Chernoff-type’ large deviation bounds for
random variables X = ∑

Xi, where X1, . . . are independent Bernoulli random variables, remain
valid under the (weaker) assumption that the Xi are negatively associated. As far as we know, this
was first observed byDubhashi and Ranjan [8, Proposition 7]; it is obtained via the usual argument
(Markov’s inequality applied to exp [tX]; see e.g. [15, pp. 26–28]), with the identityEetX = ∏

EetXi

replaced with the inequality EetX �
∏

EetXi . In particular this gives the following bounds (see e.g.
[15, Theorem 2.1 and Corollary 2.4]).

Theorem 3.4. Suppose X1, . . . , Xm are negatively associated Ber(p) random variables, X = ∑
Xi

and μ=EX. Then, for any λ� 0,

https://doi.org/10.1017/S0963548319000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000117


888 A. Hamm and J. Kahn

P(X>μ+ λ)< exp
[
− λ2

2(μ+ λ/3)

]
, (3.1)

P(X<μ− λ)< exp
[
− λ2

2μ

]
,

and for any K > 1,

P(X>Kμ)< [eK−1K−K]μ. (3.2)

Corollary 3.5. The inequality (3.2) still holds if instead of EX =μ (in Theorem 3.4) we assume
only ρ :=EX�μ.

Proof. We have (using (3.2) for the inequality)

P(X>Kμ)= P

(
X>

(
Kμ
ρ

)
ρ

)
<

[
eKμ/ρ−1

(
Kμ
ρ

)−Kμ/ρ]ρ
= eKμ−ρK−Kμ

(
μ

ρ

)−Kμ
.

The last expression is equal to the bound in (3.2) when μ= ρ and is easily seen to be decreasing
in μ� ρ (provided K � 1).

4. Generics
This section establishes basic properties of some of the parameters we will be dealing with, in
particular showing thatH a.s. satisfies a few general properties whose failure can then be more or
less ignored in what follows.

To begin, we should say something about the intersection probability q (defined in (1.3)). We
have q= 1− ϑ with

ϑ = (n− k)k
(n)k

∼ e−k2/n, (4.1)

where, as usual, (b)a = b(b− 1) · · · (b− a+ 1). (The ‘∼’ is valid provided k= o(n2/3).) This gives
the asymptotics of q for k=�(

√
n). In particular, for k� √

n we have

log
(
1
q

)
∼ e−k2/n. (4.2)

For k� √
n we instead have

q∼ k2

n
, (4.3)

since, with Xv = 1{v∈A∩B},

k2

n
=

∑
EXv � q�

∑
EXv −

∑
EXvXw >

k2

n
−

(
n
2

)(
k
n

)4
.

Note that in any case we have

ϕ∗ < n1/4−ε+o(1). (4.4)

We will usually be dealing with situations in which q is slightly perturbed by information on
how relevant k-sets meet some small subset of V . This negligible effect is handled by the next
observation.
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Proposition 4.1. Fix W ⊆V of size at most w� n/ log n and B ∈ (V
k
)
, and let A be uniform from(V

k
)
. Then, conditioned on any value of A∩W,

P(A∩ (B \W) 	= ∅)<
(
1+ 2k2w

qn2

)
q.

Proof. The probability is largest when |W| =w and B∩W =A∩W = ∅, in which case its value
is q= 1− ς , with

ς = (n−w− k)k
(n−w)k

.

We have

ϑ

ς
= (n− k)k(n−w)k

(n)k(n−w− k)k
=

k−1∏
i=0

(
1+ kw

(n− i)(n−w− k− i)

)
= 1+ (1+ o(1))

k2w
n2

,

that is, ϑ/ς − 1∼ k2w/n2 (= o(1) because of the bound on w). Thus
q
q

− 1= ϑ − ς

1− ϑ
= 1

1− ϑ

(
ϑ

ς
− 1

)
ς ∼ k2wς

(1− ϑ)n2
∼ k2w

(1− ϑ)n2
e−k2/n.

The lemma follows.

In all that follows we assume ϕ satisfies (1.5). At some (indicated) points in this section, and
again throughout Sections 5–7, we will also stipulate that ϕ � ϕ∗ (defined in (2.1)).

We also assume from now on thatm=ω(1), since cases withm=O(1) are trivial: ifm= o(1)
then (1.5) fails (the left-hand side is a.s. 1; actually in this case H is a.s. empty and does satisfy
EKR), while if m=�(1) then with probability �(1) we have �= |H| = 1 and the left-hand side
of (1.5) is m (so (1.5) does not hold). Recall that m= |H|. Let ψ =ψ(n) be some slowly growing
function of n (sayψ = log n). Theorem 3.4 (for independent Bernoulli random variables) says that
a.s.

m ∈ (m−ψ
√
m,m+ψ

√
m). (4.5)

We henceforth writem0 form+ψ
√
m.

It will often be convenient to replace H with A1, . . . ,Am chosen independently from K – a
change that makes little difference whenm is small.

Proposition 4.2. If m0 � √|K| then for any propertyA and any c, if
max

m|=(4.5)
|P(A1, . . . ,Am |=A)− c| = o(1)

(where the Ai are chosen uniformly and independently from K), then
P(H |=A)= c+ o(1).

We will eventually need something more careful in a similar vein; see the paragraph preceding
Lemma 7.1.

Proof. For any l the law of {A1, . . . ,Al}, given that the Ai are distinct, is the same as that of H
given m= l. We may thus couple H and {A1, . . . ,Am} so that they coincide whenever the Ai are
distinct. But the probability that they are not distinct is at most

P(m 	|= (4.5))+ P(A1, . . . ,Am0 are not distinct)< o(1)+m2
0/|K| = o(1)

and the proposition follows.
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From now until the ‘coda’ at the end of this section we assume that

ϕ > n−o(1). (4.6)

As we will see in the coda, this is implied by (1.5) if we assume (1.9). (Note that here we do not
assume (1.9), since we will also need parts of what follows in Section 9, where (1.9) does not hold.)

We next need to say something about the behaviour of ϕ and �. Recall that our default for
degrees isH; thus, in addition to�=�H, we take dx = d(x)= dH(x) and d(x, y)= dH(x, y). The
properties we need will be given in Proposition 4.3 once we have introduced the parameters α and
β mentioned earlier (see (2.3), (2.4)).

Let α1 and β , respectively, be the largest integer with P(dv � α1)�ψ/n and the smallest integer
with P(dv >β)< 1/(nψ) (for any v).

Notice that �(0)= 1 and (since �(t)/�(t − 1)= ((m− t + 1)/t)qt−1 is decreasing in t) there
is some t0 such that�(t) is increasing up to t0 and decreasing thereafter. Thus (1.5) says that there
are ς = ς(n) and υ = υ(n), both o(1), such thatP(�(�)>ς)<υ. Set α2 :=min{t :�(t)� ς} and
α =max{α1, α2}.

The promised Proposition 4.3 now collects properties of these parameters that we will use
repeatedly in what follows.

Proposition 4.3. For α, β as above:

α � β , (4.7)
�(α)= o(1), (4.8)

�� β a.s., if ϕ � ϕ∗ then�� α a.s., (4.9)
β/ϕ < no(1), (4.10)

α > (1− o(1))
log n

log(1/q)
, (4.11)

if ϕ � ϕ∗ then β < (1+ o(1))ϕ∗ (< n1/4−ε+o(1)). (4.12)

It is not hard to see that in fact α ∼ β in all cases and β ∼ ϕ if and only if ϕ� log n. What we
actually use for the second part of (4.9) is α1k/n� 1.

For the rest of the paper we set

P = {m satisfies (4.5)} ∧ {�� β},
noting that (4.9) and our earlier observation that (4.5) holds a.s. give

P(P)= 1− o(1). (4.13)

Proof of Proposition 4.3. The first assertion in (4.9) is immediate from the definition of β . From
the definition of α2 we have�(α2)= o(1) (namely�(α2)� ς) and�� α2 a.s. (since P(�<α2)=
P(�(�)>ς)<υ), implying α2 � β . This gives (4.7) (since α1 � β is trivial) and (4.8).

Let β∗ = �ϕ + η�, with η the positive root of x= √
2(ϕ + x/3)(log n+ logψ). Then

Theorem 3.4 gives (for any v)

P(dv >β∗)< exp
[
− η2

2(ϕ + η/3)

]
= (nψ)−1, (4.14)

whence β � β∗. (The bound is very crude for smaller values of ϕ, but we have lots of room in such
cases.) In particular, since η=O( max{√ϕ log n, log n}), (4.6) now implies both (4.10) and (4.12)
(and β ∼ ϕ if ϕ� log n, but we do not need this).
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For (4.11) we have

�(α2)> exp
[
α2

(
log

(
m
α2

)
− α2 − 1

2
log

(
1
q

))]

> exp
[
α2
2

(
(1− o(1)) log n− α2 log

(
1
q

))]
(since log (m/α2)> (1/2− o(1)) log n, as follows from m= ϕn/k, α2 � β and (4.10)), and com-
bining this with (4.8) gives α2 > (1− o(1)) log n/ log(1/q).

Finally, the second assertion in (4.9) is given by the following more general statement, which
we will need again in Section 9.

Proposition 4.4. For any n, k, ϕ (=Mp) and θ ∈N satisfying p= o(1) and θ = o(M), if
P(dv � θ)=ω(1/n) and θk/n= o(1) then�� θ a.s.

The assumption θ = o(M) is a little silly: for k� 3 it follows from θk/n= o(1). For (4.9) –
note we already know �� α2 a.s. – the hypothesis α1k/n= o(1) follows from ϕk/n< n−1/4

and α1/ϕ � β/ϕ < no(1); see (4.4) and (4.10). For k< n1/2−�(1) and a fixed θ , Proposition 4.4
is [3, Lemma 3.6].

Proof of Proposition 4.4. Let Xv = 1{dv�θ} and X = ∑
Xv. We are assuming EX =ω(1), so to

finish via the second moment method we just need

EXvXw ∼E
2Xv (4.15)

(for v 	=w). Letting Z = d(v,w), we have

EXvXw <
∑
l�0

P(Z = l) P2(dv � θ − l). (4.16)

For equality we would replace dv with d(v,w) := |Hv \Hw|.
Now, Z is binomial with EZ<ϕk/n, so

P(Z = l) (� P(Z� l))<
(
ϕk
n

)l
. (4.17)

On the other hand, since dv ∼ Bin(M, p), we have, for each t� θ ,
P(dv = t − 1)
P(dv = t)

= t(1− p)
(M − t + 1)p

∼ t
ϕ
, (4.18)

implying P(dv � t − 1)< (1+ θ/ϕ) P(dv � t). Thus (since θk/n= o(1)) the sum in (4.16) is
asymptotic to its zeroth term, and we have (4.15).

We pickily add – to make sure that ϕk/n= o(1) – that we may assume θ � ϕ: there is nothing
to prove if θ = 0, and�� ϕ is easy if ϕ � 1 (and k= o(n), which follows from θ > 0 and θk/n=
o(1)).

We will also eventually (in Section 7) need the easy: if ϕ � ϕ∗ then(
m0
α

)
∼

(
m
α

)
. (4.19)

The ratio of the left- and right-hand sides is
(m0)α
(m)α

<

(
m0 − α + 1
m− α + 1

)α
< exp

[
O

(
ψα√
m

)]

and ψα/
√
m�ψβ/

√
m< n−ε+o(1) (usingm= ϕn/k, (4.6) and (4.12)).
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For x ∈V , letWx = {y : d(x, y)� 2} (a random set determined byHx). LetR be the intersection
of P and the events {�� α},

{d(x, y)� 8 for all x, y} (4.20)
and {

|Wx|<max
{
ϕ2k2

n
, 6 log n

}
for all x

}
. (4.21)

Although defined here in general,R is only of interest when ϕ is small.

Proposition 4.5. If ϕ � ϕ∗, then P(R)= 1− o(1).

Proof. We have already seen (in (4.13) and (4.9)) that P and {�� α} hold a.s. That (4.20) does
as well follows (via the union bound) from the fact, already noted in (4.17), that P(d(x, y)� l)�
n−l/4. To deal with (4.21), it is, according to Proposition 4.2, enough to show the following.

Claim. If m satisfies (4.5) and A1, . . . ,Am are chosen independently (and uniformly) from K,
then (4.21) holds a.s.

Here of course d in the definition ofWx now refers to {A1, . . . ,Am} rather thanH.

Proof of Claim. For a given x we have, for each y 	= x,

P(y ∈Wx)<
(
m
2

)(
k
n

)4
<

(
1
2

+ o(1)
)(

ϕk
n

)2

(using m∼m= ϕn/k), implying E|Wx|< (1+ o(1))ϕ2k2/(2n). On the other hand, the events
{y ∈Wx} are NA (by Propositions 3.1 and 3.2), and a little calculation, with Corollary 3.5, bounds
the probability that a particular x violates (4.21) by o(1/n). In more detail: if μ := ϕ2k2/(2n)�
3 log n, then (3.1) bounds the probability by exp [−(9/8) log n]; otherwiseK := 6 log n/μ> 2, and
(3.2) bounds the probability by (eK−1K−K)μ = (e1−1/KK−1)Kμ � (

√
e/2)6 log n = o(1/n).

Coda. Finally, we say why the combination of (1.5) and (1.9) implies (4.6). Suppose instead that
the first two conditions hold but ϕ < n−�(1). Then�<O(1) a.s. But if�=O(1), then q> n−o(1)

(see (4.3)) implies�(�)=�(m�)n−o(1), so that (1.5) impliesm< no(1) (note�� 1 a.s. since we
assumem=ω(1)). But then (sincem= ϕn/k and we assume (1.9)) ϕ < n−1/2+o(1), implying that
in fact�� 2 a.s.

Now suppose �(2)= o(1). Then k� √
n (otherwise q=�(1) and m= o(1), contrary to

assumption), and �(2)� (ϕn/k)2(k2/n)= ϕ2n, implying ϕ� n−1/2 and �= 1 a.s. But �(1)=
m, so we contradict (1.5) .

5. Proof of Lemma 2.1
We recall the lemma.

Lemma 2.1. A.s. there do not exist (in H) a non-trivial clique C and vertex x such that |C|� d(x),
dC(x)� τ , and either |C|� α or |Cx|� 2/ε.

Although the proof of this requires some care, the basic idea is simple enough: the event in
question requires that for some very largeA⊆Hx (below this will be {Ai : i ∈ I}), every B ∈ C \Hx
meets every A ∈A, and we just try to show that such ‘cross-intersection’ is unlikely (sacrificing the
clique requirement within C \Hx). In outline this goes as follows. We think of choosing:
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(i) Hx, which by Proposition 4.5 wemay assume respects the genericity conditionsR (or those
parts involvingHx, calledRx below);

(ii) Hx, some r := |Cx|� 1 edges of which must meet every edge of some specifiedA as above.

UnderRx the probability that a uniform B from Kx meets all members of a givenA is close to its
natural value (see Corollary 5.2), which, unless r is quite small, already gives a good bound on the
probability of seeing x, C as in the lemma; see (5.10).

For smaller r the bounds in (5.10) are not quite adequate; here we are saved by the requirement
that |C| be at least α (the technical |Cx|� 2/ε plays no role at this stage), which limits possibilities
for x since d(x)� α − r is unlikely when r is small.

We now turn to the actual argument. Here and in Section 6 we take

w=max
{
ϕ2k2

n
, 6 log n

}
(5.1)

and

q=
(
1+ 2k2w

qn2

)
q; (5.2)

thus w is the bound on the |Wx| in (4.21) and q is the probability bound in Proposition 4.1. We
will need to say that q is close to q; here and in Section 6 we could get by with, for example,
log(1/q)∼ log(1/q), but for the more delicate situation in Section 7 we will need

q(
α
2) ∼ q(

α
2). (5.3)

That is, k2wα2/(qn2)= o(1); in fact, k2wα2/(qn2)< n−4ε+o(1) since α < n1/4−ε+o(1) (see (4.12)),
w< n1/2−2ε+o(1) (see (4.4)) and k2/(qn)< log n.

We will use part (a) of the following observation in the present section and the variant (b) in
Section 6.

Proposition 5.1.
(a) SupposeA= {A1, . . . ,Ad} ⊆Kx satisfies

dA(z)� 8 for all z ∈V \ {x} and |{z ∈V \ {x} : dA(z)� 2}|<w. (5.4)
Then, for B uniform from Kx,

P(B∩Ai 	= ∅ for all i ∈ [d])< (1+ o(1))qd.
(b) The same conclusion holds if A⊆ {A ∈Kx : y 	∈A} satisfies (5.4) and B is uniform from

{A ∈Ky : x 	∈A}.

Of course, the ‘8’ in (5.4) is just the value we happen to have below.

Proof. The proofs of (a) and (b) are essentially identical and we just give the former. Set
W = {z ∈V \ {x} : dA(z)� 2}. Since the events {z ∈ B} (z ∈V \ {x}) are negatively associated (see
Proposition 3.1), Proposition 3.3 and the second condition in (5.4) give

P(|B∩W| = s)�
(
w
s

)(
k
n

)s
<

(
wk
n

)s
< n−(2ε−o(1))s. (5.5)

On the other hand we assert that, withQ= {B∩Ai 	= ∅ for all i ∈ [d]}, we have
P(Q | |B∩W| = s)< qd−8s. (5.6)

To see this, condition on the value, Z, of B∩W (with |Z| = s), and let
I = {i ∈ [d] : B∩Ai ∩W = ∅}.
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Then |I|� d − 8s (by the first condition in (5.4)) and B must meet the members of {Ai : i ∈ I} in
V \W, where they are pairwise disjoint. By Proposition 4.1,

P(B∩ (Ai \W) 	= ∅ | B∩W = Z)< q for each i.

But, given RZ := {B∩W = Z}, B \ Z is a uniformly chosen (k− s)-subset of V \W, so by
Propositions 3.1 and 3.2 the events Qi = {B∩ (Ai \W) 	= ∅} are conditionally NA givenRZ (with
Q= ∩i∈IQi); thus Proposition 3.3 gives

P(Q |RZ)< q|I| � qd−8s,

which implies (5.6).
Finally, combining (5.5) and (5.6), we have

P(Q)=
∑
s�0

P(|B∩W| = s) P(Q | |B∩W| = s)

<
∑
s�0

n−(2ε−o(1))sqd−8s

= qd
∑
s�0

(n−(2ε−o(1))q−8)s ∼ qd

Corollary 5.2. Suppose either A is as in Proposition 5.1(a) and B is chosen uniformly from the
b-subsets of Kx, or A is as in Proposition 5.1(b) and B is chosen uniformly from the b-subsets of
{A ∈K : y ∈A, x 	∈A}. Then

P(B∩Ai 	= ∅ for all B ∈ B, i ∈ [d])< (1+ o(1))bqdb.

Proof. Again we just discuss the first case. We may take B = {B1, . . . , Bb} with Bi uniform from
Kx \ {B1, . . . , Bi−1}. Then, withQi = {Bi ∩Aj 	= ∅ for all j ∈ [d]}, we have

P(∩Qi)�
∏

P(Qi)< (1+ o(1))bqdb,

with the second inequality given by Proposition 5.1. (The first is obvious: since the Bi are drawn
without replacement, the probability that all are drawn from those members of Kx that meet all
Aj is less than it would be if they were drawn independently.)

Terminology. Recall that A, B (two families of sets) are cross-intersecting if A∩ B 	= ∅ for all
A ∈A, B ∈ B.

Proof of Lemma 2.1. Let Q(x, r) be the event that there is some C as in the lemma, with |Cx|
(= |C| − dC(x)) = r, and letQ(x)= ∪r�1Q(x, r). By Proposition 4.5 it is enough to show that (for
any x)

P(Q(x)∧R)= o
(
1
n

)
. (5.7)

(Recall thatR was defined in the paragraph containing (4.20) and (4.21).) Let

Rx = {m�m0; d(x)� β ; d(x, z)� 8 for all z ∈V \ {x}; |Wx|�w}.
ThenRx ⊇R, so for (5.7) it will be enough to bound

P(Q(x)∧Rx)�
∑
r�1

P(Q(x, r)∧Rx).
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Set

S(x, r)=
{

{d(x)� τ } if r� 2/ε,
{d(x)� α − r} if r< 2/ε,

and notice that S(x, r)⊇Q(x, r). (For r� 2/ε this is contained in the definition ofQ(x, r) (which
promises dC(x)� τ ), and for smaller r it is given by d(x)� dC(x)= |C| − r� α − r.) Thus we have

P(Q(x, r)∧Rx)= P(Q(x, r)∧ S(x, r)∧Rx)� P(S(x, r)) P(Q(x, r) |Rx ∧ S(x, r)). (5.8)

For all but quite small r, a bound on the second factor in (5.8) will suffice for our purposes. To
bound this factor, we condition on valuesHx = {A1, . . . ,Ad} and |Hx| = t satisfying S(x, r)∧Rx
(in particular d� β and t�m0); thusHx is a uniform t-subset, say {B1, . . . , Bt}, of Kx. If Q(x, r)
holds under this conditioning, then there are I ⊆ [d] of size at least τ and J ⊆ [t] of size r such that
the families {Ai : i ∈ I} and {Bj : j ∈ J} are cross-intersecting (namely each of the r members of Cx
meets each of the dC(x)� τ members of Cx).

The probability that this happens for a fixed I and J as above (note the remaining random-
ization is in the choice of Bj) is, by Corollary 5.2, less than (1+ o(1))rqτ r , and it follows that the
probability ofQ(x, r) under the present conditioning – so also under conditioning on S(x, r)∧Rx
– is less than (

d
� r

)(
m0
r

)
(1+ o(1))rqτ r < [(1+ o(1))βm0n−(1−ε)]r < n−(ε−o(1))r . (5.9)

Here the first factor on the left bounds the number of possibilities for the d − dC(x)� r
members of [d] \ I; the first inequality uses d� β and (4.11), and the second uses βm0 < (1+
o(1))(ϕ∗)2n/k< n1−2ε+o(1) (see (4.12), (4.4)).

Thus, as suggested above, the second factor on the right-hand side of (5.8) is enough for us
unless r is very small, namely∑

r>2/ε
P(Q(x, r) |Rx ∧ S(x, r))= o

(
1
n

)
. (5.10)

For smaller r we must use the factor P(S(x, r)) from (5.8) (together with (5.9)). Here (4.18)
gives P(dv = t)/P(dv = t + 1)< no(1) for t ∈ [α − r, α], which, since r<O(1), implies

P(S(x, r))< no(1)P(dx � α + 1)< n−1+o(1).

(Recall from the definitions preceding Proposition 4.3 that P(dx � α + 1)� P(dx � α1 + 1)<
ψ/n.) Finally, recalling (5.9), we find that (for r� 2/ε) the right-hand side of (5.8) is less than
n−1+o(1)n−(ε−o(1))r = n−(1+rε−o(1)), yielding

�2/ε�∑
r=1

P(Q(x, r)∧Rx)<
∑
r�1

n−(1+rε−o(1)) = o
(
1
n

)
,

and combining this with (5.10) gives (5.7).

6. Proof of Lemma 2.2
We recall the statement.

Lemma 2.2. A.s.H does not contain a clique with two vertices of degree at least λ.

We prove the following equivalent form.
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Lemma 6.1. A.s. there do not exist x, y ∈V and F ⊆Hx, G ⊆Hy with |F | = |G| = λ and F , G
cross-intersecting.

Proof. LetQ(x, y) be the event described in Lemma 6.1 andQ= ∪Q(x, y). We want P(Q)= o(1),
for which it is enough to show that (for any x, y)

P(Q(x, y)∧R)< o(n−2). (6.1)

For the proof of (6.1) we condition on values of m satisfying (4.5) (so we may think of H as
{Ai : i ∈ [m]}),

Ix := {i ∈ [m] : x ∈Ai}, Iy := {i ∈ [m] : y ∈Ai},
with |Ix|, |Iy|� β and |Ix ∩ Iy|� 8 (see (4.9), (4.20)), and a value of (Ai : i ∈ Ix) for which

|{z ∈V \ {x} : |{i : v ∈Ai}|� 2}|<w
(see (4.21)). If Q(x, y) holds (under this conditioning), then there are Jx ⊆ Ix \ Iy and Jy ⊆ Iy \ Ix,
each of size λ− 8, with the families {Ai : i ∈ Jx} and {Aj : j ∈ Jy} cross-intersecting.

The probability that this happens for a given Jx, (Ai : i ∈ Jx) and Jy is, by Corollary 5.2, at most

[(1+ o(1))qλ−8]λ−8 = q(1−o(1))λ2 ,

whence

P(Q(x, y)∧R)<
(
β

λ

)2
q(1−o(1))λ2

< exp
[
λ

(
2 log

(
eβ
λ

)
− (1− o(1))λ log

(
1
q

))]

< exp
[
(1− o(1))λ2 log

(
1
q

)]
< o(n−3), (6.2)

where the third inequality uses β < (1+ o(1))ϕ∗ and λ�
√
log n/ log(1/q) (the first of these from

(4.12)) to say log(eβ/λ)=O(log log n), and the last uses λ� 2
√
log n/ log(1/q).

7. Proof of Lemma 2.3
We again recall the statement (and that γ , τ , λ were defined in (2.5)–(2.7)).

Lemma 2.3. A.s.H does not contain a clique of size γ with at most one vertex of degree greater than
λ and maximum degree less than τ .

Of the lemmas of Section 2 this is the one requiring the most work. We will try to say a little
about its proof after some minor reformulating.

We again condition on a value of m satisfying (4.5) (so H is chosen uniformly from the
m-subsets of K), and then, rather than dealing directly with H, find it easier to work with sets
chosen independently fromK, which makes essentially no difference sincem is so small compared
to |K|. Precisely, if m satisfies (4.5), B1, . . . , Bm is a uniform m-subset of K, A1, . . . ,Am are cho-
sen uniformly and independently from K, and we set D = {A1, . . . ,Am are distinct}, then for any
event B we have

P(A1, . . . ,Am |= B)� P(D) P(A1, . . . ,Am |= B |D)
= P(D) P(B1, . . . , Bm |= B),
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whence

P(B1, . . . , Bm |= B)� P(A1, . . . ,Am |= B)/P(D)

�
[
1−m2

/(
n
k

)]−1
P(A1, . . . ,Am |= B)

= (1+ o(1)) P(A1, . . . ,Am |= B).

It is thus enough to prove the following statement.

Lemma 7.1. Suppose A1, . . . ,Aγ are drawn uniformly and independently fromK, and letQ be the
event that {A1, . . . ,Aγ } is a clique with at most one vertex of degree greater than λ and none of
degree greater than τ . Then

P(Q)= o
((

m
γ

)−1)
.

Sketch. The basic idea here is not so bad, but implementation is delicate and, as promised, we
now try to say a little about what is involved (for which, as suggested in Section 2, one should
think of γ = α).

We regard the Ai as chosen sequentially, so we are interested in the probability that Ai meets
each of A1, . . . ,Ai−1. Each of these events occurs with probability q, so if they were independent
then

P(Ai ∩Aj for all i, j)= q(
γ
2) = o

((
m
γ

)−1)
(7.1)

would follow from (4.8). (As noted earlier, this is the source of (1.5); note also that, by (4.19),
passage from m to m does not affect (7.1). The calculation would still be suitable even without
independence if each Ai were required to meet the earlier edges in distinct points; this can be seen
using Proposition 4.1.)

The problem is that Ai may contain vertices lying in more than one of A1, . . . ,Ai−1, thus los-
ing some of the factors q in (7.1). What saves us here is that in the present regime – this is where
our argument runs into trouble for slightly larger k – such ‘heavy’ vertices are typically rare, so
containing them also imposes a cost. Thus, roughly speaking, the proof of Lemma 2.3 is a matter
of understanding the trade-off between probabilities of containing heavy vertices and the corre-
sponding decrease in the number of (distinct) vertices eachAi must contain tomeet its intersection
obligations. This is implemented in Lemma 7.3, which owes some of its length to the need to sep-
arate the possibilities that there is or is not a vertex lying in at least λ of the Ai. (As noted earlier it
is here – see (7.20) – that we need the full power of (1.5).)

Given A= (A1, . . . ,Aγ ) ∈Kγ we define several related quantities. Write di(v) for the degree
of v in the multiset {A1, . . . ,Ai} and set dv = dγ (v). (We no longer default to dv = dH(v), sinceH
plays no further role in this section.) Note that we regard A as given and sometimes (not always)
suppress it in our notation; for example di(v) could also be written (say) dA,i(v).

We will need to distinguish two possibilities, depending on whether there is or is not an x
with dA(x)>λ. We treat these in parallel, the analysis in the second case eventually being more
or less contained in that for the first. To this end we let V ′ =V \ {x} if we have specified such a
high-degree x and V ′ =V otherwise.

Set

Wi = {v ∈V ′ : di(v)= 2}, Zi = {v ∈V ′ : di(v)� 3}, Ui =Wi ∪ Zi,
W =Wγ , Z = Zγ and U =Uγ (=W ∪ Z).
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In addition – now, for reasons which will appear below (see (7.10)–(7.13)), retaining A in the
notation – set

si(A)= |Ai ∩Wi−1|, ri(A)= |Ai ∩ Zi−1| for i ∈ [γ ]
(withW0 = Z0 = ∅),

σ (A)= (s1(A), . . . , sγ (A)), ρ(A)= (r1(A), . . . , rγ (A)),

s(A)=
∑

si(A) and r(A)=
∑

ri(A).

Notice that
s(A)= |Z| and r(A)=

∑
v∈Z

(dv − 3). (7.2)

Finally, set

� =
∑
v∈Z

[(
dv
2

)
− 1

]
(7.3)

and notice that

� = 2|Z| +
∑
v∈Z

[(
dv
2

)
− 3

]
= 2|Z| + 1

2
∑
v∈Z

(dv − 3)(dv + 2).

We will only use this when dv � λ for all v ∈V ′, in which case, in view of (7.2), we have
� � 2s(A)+ (λ+ 2)r(A)/2. (7.4)

From this point we take A= (A1, . . . ,Aγ ) with the Ai as in Lemma 7.1 (so chosen uni-
formly and independently from K); thus the quantities defined above (di(v) to �) become
random variables determined by A. We retain q= (1+ 2k2w/(qn2))q from (5.2) and, recycling,
set w=max{ϕ2k2/n, log6 n}. (This slightly modifies the w of (5.1); its role here is similar to that
of the earlier one.)

Proposition 7.2. With probability 1− o
((m
γ

)−1),
(a) |U|<w and
(b) |Z|< γ/ε=: z.

Proof. Notice first that(
m
γ

)
< exp

[
γ log

(
em
γ

)]
< exp

[(
1
2

+ o(1)
)
γ log n

]
, (7.5)

sincem/γ � 3m/ϕ ∼ 3n/k< n1/2+o(1).
Since each dv has the binomial distribution Bin(γ , k/n), we have (for all v, 	) P(dv � 	)<

(kγ /n)	/	!, whence E|U|< k2γ 2/(2n) and E|Z|< (kγ )3/(6n2)< n−(2ε−o(1))γ (see (4.12)).
On the other hand, by Propositions 3.1 and 3.2, the events {dv � 	} are negatively associated

for any 	; so the probabilities in question may be bounded using Corollary 3.5. For (b), we have

P(|Z|> z)< n−(2ε−o(1))γ /ε < n−γ = o
((

m
γ

)−1)
. (7.6)

The calculations for (a) are more annoying. Here we set k= √
ζn and μ= k2γ 2/(2n)= ζγ 2/2

(our upper bound on E|U|). The desired inequality is

P(|U|�w)= o
((

m
γ

)−1)
.
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We first observe that this is true provided

γ > 3 log n/ζ , (7.7)

since then (using (3.1) with λ=μ) we have (see (7.5))

P(|U|�w)� P(|U|� 2μ)< exp
[
−3μ

8

]
= exp

[
−3ζγ 2

16

]
< exp

[
− 9
16
γ log n

]
.

In particular, (7.7) holds if (for example) ζ � 2, since then (according to (4.11)) we have

γ > (1− o(1))
log n

− log (1− e−ζ )
> 3 log n/ζ .

So we may assume

γ � 3 log n/ζ and ζ � 2.

We then have log6 n> 2μ, since log6 n� 2μ= ζγ 2 � 9 log2 n/ζ implies ζ < o(1), yield-
ing log(1/q)=ω(1) and 2μ= ζγ 2 = o((ϕ∗)2)= o(log6 n), a contradiction. Thus, again using
Corollary 3.5, we have

P(|U|>w)� P(|U|> log6 n)< exp [−�(log6 n)]< o
((

m
γ

)−1)

(the last inequality holding since ζ � 2 implies γ (<ϕ∗) =O(log3 n); see (2.5)).

Set

S = {|W|�w, |Z|� z}.
By Proposition 7.2, Lemma 7.1 will follow from

P(Q∧ S)= o
((

m
γ

)−1)
. (7.8)

For the proof of (7.8) we will bound the probabilities of various events whose union contains
Q∧ S . Set θ = �(nε log(1/q))−1� and

A= {{A1, . . . ,Aγ } is a clique}.
Note that θ need not be large – e.g. it will be zero for k less than about

√
εn log n – so for once

we do need the floor symbols. The parts of the following argument involving θ could be avoided
when θ is small, but there seems no point in treating this separately.

For

x ∈V , d ∈ (λ, τ ] and σ , ρ ∈N
γ , (7.9)

let

A(x, d, ρ, σ ))=A∧ {dx = d; dv � λ for all v 	= x; ρ(A)= ρ; σ (A)= σ }, (7.10)
A(x, d, ρ))=A∧ {dx = d; dv � λ for all v 	= x; ρ(A)= ρ; s(A)� θ}, (7.11)
A(ρ, σ ))=A∧ {dv � λ for all v; ρ(A)= ρ; σ (A)= σ }, and (7.12)

A(ρ)=A∧ {dv � λ for all v; ρ(A)= ρ; s(A)� θ}. (7.13)

For r, s ∈N, let X(r, s)= (λ+ 2)r/2+ 2s (the value in (7.4)), and, for ρ = (ρ1, . . . , ργ ), set
|ρ| = ∑

ρi.
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Lemma 7.3. For any x, d, ρ, σ as in (7.9) with |ρ| = r and |σ | = s,

P(A(x, d, ρ, σ )∧ S)<
(
γ

d

)(
k
n

)d(zk
n

)r(wk
n

)s
q
(
γ
2
)
−
(d
2
)
−X(r,s) (7.14)

and

P(A(ρ, σ )∧ S)<
(
zk
n

)r(wk
n

)s
q
(
γ
2
)
−X(r,s). (7.15)

For any x, d, ρ as above with |ρ| = r,

P(A(x, d, ρ)∧ S)<
(
γ

d

)(
k
n

)d(zk
n

)r
q
(
γ
2
)
−
(d
2
)
−X(r,θ) (7.16)

and

P(A(ρ)∧ S)<
(
zk
n

)r
q
(
γ
2
)
−X(r,θ). (7.17)

We will only use (7.14) and (7.15) with s> θ .
Before proving Lemma 7.3 we show that it implies (7.8). Notice that Q is the (disjoint) union

of the events
A(x, d, ρ, σ ), A(x, d, ρ), A(ρ, σ ) and A(ρ), (7.18)

where x ∈V , d ∈ (λ, τ ], ρ ∈N
γ and σ ∈ {(s1, . . . , sγ ) ∈N

γ :
∑

si > θ}. Thus
P(Q∧ S)�

∑
P(E ∧ S), (7.19)

where E ranges over the events in (7.18).
It is now convenient to separate the contributions involving x, ρ and σ . Set

f (d)= n
(
γ

d

)(
k
n

)d
q−(d2),

g(r)=
(
γ + r − 1

r

)(
zk
n

)r
q−(λ+2)r/2,

h(s)=
(
γ + s− 1

s

)(
wk
n

)s
q−2s, and

h∗ = q−2θ .

Then, noting that (for example) |{ρ ∈N
γ : |ρ| = r}| = (

γ+r−1
r

)
and using (7.14)–(7.17), we find

that P(Q∧ S) (or the right-hand side of (7.19)) is less than

q(
γ
2)

[∑
d,r,s

f (d)g(r)h(s)+ h∗ ∑
d,r

f (d)g(r)+
∑
r,s

g(r)h(s)+ h∗ ∑
r

g(r)
]
,

where d, r and s range over (λ, τ ], N and (θ ,∞) respectively. Thus, since

q(
γ
2) = o

((
m
γ

)−1)
(7.20)

(by (4.8), (4.19) and (5.3) if γ = α, and with plenty of room if γ = ϕ∗/3 ), it is enough to show
that each of ∑

r�0
g(r),

∑
s>θ

h(s) and h∗

is O(1) and that, with F = ∑
d∈(λ,τ ] f (d),
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q(
γ
2)F

(
m
γ

)
(=�(γ )F) = o(1). (7.21)

These are all easy calculations, as follows.
First,

g(r)�
[
eγ

(
zk
n

)
no(1)

]r
< [γ 2n−1/2+o(1)]r < n−(2ε−o(1))r ,

where the first inequality uses

k> n1/2−o(1) ⇒ q> n−o(1) ⇒ log
(
1
q

)
= o(log n)⇒ λ log

(
1
q

)
= o(log n)

and the third uses γ � α � β and (4.12). This implies
∑

r�0 g(r)= 1+ o(1).
Second, since (

γ + s− 1
s

)1/s
<

e(γ + s)
s

<
e(γ + θ)

θ
< nε+o(1)

(for s> θ), wk/n< n−2ε+o(1) and q= n−o(1), we have∑
s>θ

h(s)<
∑
s>θ

n−(ε−o(1))s = o(1).

Third, h∗ = 1+ o(1) is immediate from our choice of θ .
The calculation for (7.21) requires a little more care. Notice first that

f (d)< n
((

eγ
d

)(
k
n

))d
q−(d2) < n · n−(1/2−o(1))dq−(d2) < n · [n−(1−o(1))q−d]d/2 (7.22)

(where the second inequality uses γ /d< (1+ o(1))ϕ∗/λ < no(1); again see (4.12)). Here we may
confine ourselves to

d> (1− o(1))
log n

log(1/q)
, (7.23)

since for smaller d the expression in square brackets in (7.22) is less than n−�(1) (and the exponent
d/2 is at least λ/2=ω(1)), so that the contribution of such d to F is o(1).

For d as in (7.23) the bound in (7.22) is (rapidly) increasing in d (passing from d to d + 1
multiplies it by roughly n−1/2q−d, so at least about

√
n); so the contribution of such d to�(γ )F is

dominated by that of d = τ . For this term we have

γ = (1− ε)−1τ = (1− ε)−1d> (1+ ε)
log n

log(1/q)
(= �̃(n1/4−ε)), (7.24)

whence

�(γ )f (τ )< n−(1/2−o(1))τ+γ /2q(γ−τ )(γ+τ−1)/2

< n[ε/2−(1+ε)ε(1−ε/2)+o(1)]γ

= n−(ε/2+ε2/2−ε3/2−o(1))γ .

In more detail: in the first line the q term combines the q−(d2) of (7.22) and the q(
γ
2) from �(γ ),

while (7.24) andm< n3/4−ε+o(1) (implied by (4.12)) bound the
(m
γ

)
of�(γ ) by n(1+o(1))γ ; and the

second line uses τ = (1− ε)γ and qγ < n(1+ε) (again from (7.24)). Thus we have (7.21).

For the proof of Lemma 7.3, we need the following easy observation.
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Proposition 7.4. Let Y1, . . . , Y	 be random variables (not necessarily real-valued) and write yi for
a possible value of Yi. Let Z be a set of (‘bad’) prefixes (y1, . . . , yi) closed under extension (i.e. i< 	
and (y1, . . . , yi) ∈Z imply (y1, . . . , yi, yi+1) ∈Z for every choice of yi+1). Set

P((Y1, . . . , Yi) ∈Z | y1, . . . , yi−1)= 1− ξ (y1, . . . , yi−1),
where the conditioning has the obvious meaning and when i= 1 the left-hand side is P((Y1) ∈Z).
Then

P((Y1, . . . , Y	) 	∈Z)� max
(y1,...,y	)	∈Z

	∏
i=1

ξ (y1, . . . , yi−1)=: ξ .

Proof. Define an auxiliary sequence (X0, . . . , X	) with X0 ≡ 1 and, for i ∈ [	],

Xi =
{
0 if (Y1, . . . , Yi) ∈Z ,
ξ (Y1, . . . , Yi−1)−1Xi−1 otherwise.

Then EX	 = X0 = 1 (since (X0, . . . , X	) is a martingale), while X	 � ξ−1 whenever
(Y1, . . . , Y	) 	∈Z (using the fact that Z is closed under extensions). The conclusion follows.

We now turn to the proof of Lemma 7.3, beginning with the simpler (7.15) and (7.17); the
arguments for (7.14) and (7.16) are similar, and when we come to these we will mainly just point
out the necessary modifications.

For both (7.15) and (7.17) we will apply Proposition 7.4 to the sequence (Y1, . . . , Y2γ ), where
Y2j−1 =Aj ∩Uj−1 and Y2j =Aj \Uj−1. (7.25)

We first prove (7.15) and then discuss the changes needed for (7.17).

Proof of (7.15). Here we say (Y1, . . . , Yi) ∈Z (recall this is the set of ‘bad’ prefixes) if the
associated Aj (or parts of Aj) satisfy at least one of:

{A1, . . . ,A�i/2�} is not a clique, (7.26)
for some j� �i/2�, |Aj ∩ Zj−1| 	= rj or |Aj ∩Wj−1| 	= sj, (7.27)
|Z�i/2�|> z, |W�i/2�|>w or d�i/2�(v)>λ for some v. (7.28)

ThenA(ρ, σ )∧ S = {(Y1, . . . , Y2γ ) 	∈Z}.
We next need to say something about the quantities

ξ (y1, . . . , yi−1)= P(Y1, . . . , Yi 	∈Z | y1, . . . , yi−1)
appearing in Proposition 7.4, where (we may assume) (y1, . . . , yi−1) 	∈Z .

If i= 2j− 1 then
ξ (y1, . . . , yi−1)� P(|Aj ∩ Zj−1|� rj, |Aj ∩Wj−1|� sj | y1, . . . , yi−1)

�
(
z
rj

)(
w
sj

)(
k
n

)rj( k
n

)sj
(7.29)

�
(
zk
n

)rj(wk
n

)sj
.

Here (7.29) is a rather trivial use of Propositions 3.1–3.3, which give negative correlation of the
events {|Aj ∩ Zj−1|� rj} and {|Aj ∩Wj−1|� sj} (and we use |Zj−1|� z and |Wj−1|�w, as implied
by (y1, . . . , yi−1) 	∈Z).

The case i= 2j is more interesting. Here, conditioning on the event
{(Y1, . . . , Yi−1)= (y1, . . . , yi−1)},
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we set

βj =
∑

{dj−1(v) : v ∈Aj ∩Uj−1}. (7.30)

(Notice that this is determined by (y1, . . . , yi−1), which includes specification of Y2j−1 =Aj ∩
Uj−1.) We will show

ξ (y1, . . . , yi−1)� qj−1−βj . (7.31)

Here we only consider (7.26); that is, we ignore the requirements in (7.28) (those in (7.27) are
not affected byYi) and show that (given our conditioning) the right-hand side of (7.31) bounds the
probability that Aj meets all of A1, . . . ,Aj−1. Now Aj meets at most βj members of {A1, . . . ,Aj−1}
in Uj−1, so to avoid (7.26) must meet the j− 1− βj or more remaining members – say those
indexed by I – in V \Uj−1, where they are pairwise disjoint. This gives (7.31) since the events
Qh = {Aj ∩ (Ah \Uj−1) 	= ∅} (h ∈ I) satisfyP(Qh)< q (by Proposition 4.1; note q here is as in (5.2))
and are NA (by Propositions 3.1 and 3.2), so by Proposition 3.3 we have

P(∩h∈I Qh)�
∏
h∈I

P(Qh)< qj−1−βj .

The last thing to notice here is that provided dγ (v)� λ for all v – which in particular is true
whenever (Y1, . . . , Y2γ ) 	∈Z ; see (7.28)) – we have∑

βj =� � X(r, s) (7.32)

(see (7.3) for � and (7.4) for the inequality). Finally, combining (7.29), (7.31) and (7.32) (and∑
j∈[γ ] (j− 1)= (

γ
2
)
) and applying Proposition 7.4 gives (7.15).

Proof of (7.17). We now take (Y1, . . . , Yi) ∈Z if the associated Aj satisfy at least one of:

{A1, . . . ,A�i/2�} is not a clique, (7.33)∑
j��i/2� sj(A)> θ , or for some j� �i/2�, |Aj ∩ Zj−1| 	= rj, (7.34)
|Z�i/2�|> z, |W�i/2�|>w or d�i/2�(v)>λ for some v. (7.35)

ThenA(ρ)∧ S ⊆ {(Y1, . . . , Y2γ ) 	∈Z}.
The arguments bounding the quantities

ξ (y1, . . . , yi−1)= P(Y1, . . . , Yi 	∈Z | y1, . . . , yi−1)

(again, for (y1, . . . , yi−1) 	∈Z) are essentially identical to those above. For i= 2j− 1 the bound

ξ (y1, . . . , yi−1)� P(|Ai ∩ Zi−1|� ri | y1, . . . , yi−1)�
(
zk
n

)ri
(7.36)

is justified in the same way as (7.29). For i= 2j we again define βj as in (7.30), and (7.31) follows
as before. (Note that our only reason for retaining the constraint on |W�i/2�| in (7.35) is to enforce
P(Aj ∩ (Ah \Uj−1) 	= ∅)< q in the proof of (7.31).)

Finally, (7.32) again holds provided (Y1, . . . , Y2γ ) 	∈Z (this is where we use the first condition
in (7.34)), and combining this with (7.36) and (7.31) we obtain (7.17) via Proposition 7.4.

We now turn to the parts of Lemma 7.3 involving x. For D ∈ ([γ ]
d

)
let

A(x,D, ρ, σ )=A∧ {x ∈Ai ⇔ i ∈D; dv � λ for all v 	= x; ρ(A)= ρ; σ (A)= σ },
A(x,D, ρ)=A∧ {x ∈Ai ⇔ i ∈D; dv � λ for all v 	= x; ρ(A)= ρ; s(A)� θ}.
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Since P(A(x, d, ρ, σ ) is the sum of the P(A(x,D, ρ, σ )) (and similarly for P(A(x, d, ρ)), (7.14)
and (7.16) will follow from (respectively)

P(A(x,D, ρ, σ ))<
(
k
n

)d(zk
n

)r(wk
n

)s
q
(t
2
)
−
(d
2
)
−X(r,s) (7.37)

and

P(A(x,D, ρ))<
(
k
n

)d(zk
n

)r
q
(t
2
)
−
(d
2
)
−X(r,θ). (7.38)

As the proofs of these closely track those of (7.15) and (7.17) (respectively), with exactly the
same modifications, we confine ourselves to indicating what changes to the proof of (7.15) are
needed for (7.37).

We again apply Proposition 7.4, in this case to the sequence (Y1, . . . , Y2γ ) given by

Y2j−1 =Aj ∩ (Uj−1 ∪ {x}) and Y2j =Aj \ (Uj−1 ∪ {x})
(which differs from (7.25) in the addition of {x} to the Uj−1). We say (Y1, . . . , Yi) ∈Z if the
associated Aj satisfy at least one of (7.26), (7.27),

|Z�i/2� > z, |W�i/2�|>w or d�i/2�(v)>λ for some v 	= x (7.39)

(which differs from (7.28) in the stipulation v 	= x) and

for some j� �i/2�, either j ∈D and x 	∈Aj or j 	∈D and x ∈Aj. (7.40)

ThenA(x,D, ρ, σ )∧ S = {(Y1, . . . , Y2γ ) 	∈Z}.
The bounds on the quantities

ξ (y1, . . . , yi−1)= P(Y1, . . . , Yi 	∈Z | y1, . . . , yi−1)

(again, for (y1, . . . , yi−1) 	∈Z) are modified as follows. For i= 2j− 1 we use

ξ (y1, . . . , yi−1)�

⎧⎪⎪⎨
⎪⎪⎩

(
k
n

)(
zk
n

)ri(wk
n

)si
if j ∈D,(

zk
n

)ri(wk
n

)si
otherwise.

(7.41)

This is justified (via Propositions 3.1 and 3.3) in the same way as (7.29).
For i= 2j we define βj as before (βj = ∑{dj−1(v) : v ∈Aj ∩Uj−1}) and set cj = [j− 1] \D

(again, a function of (y1, . . . , yi−1)). We then have

ξ (y1, . . . , yi−1)�
{
qcj−βj if j ∈D,
qj−1−βj otherwise.

(7.42)

The proof is essentially the same as that for (7.31), the only difference being that when j ∈D, there
is no requirement that Aj meet those earlier Al for which l ∈D. (On the other hand, the second
bound in (7.42) uses the fact that x 	∈Aj (for j 	∈D), which follows from (y1, . . . , yi−1) 	∈Z ; see
(7.40).)

Finally, applying Proposition 7.4 with the combination of (7.41), (7.42) and
∑
βj =� � X(r, s)

(noted earlier in (7.32)) gives (7.37), once we observe that
∑
j	∈D

(j− 1)+
∑
j∈D

cj =
∑
j

(j− 1)−
∑
j∈D

|[j− 1]∩D| =
(
γ

2

)
−

(
d
2

)
.
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8. Large ϕ

Here we complete the proof of Theorem 1.2 for k as in (1.9) by showing
for ϕ > ϕ∗,H satisfies EKR a.s. (8.1)

As already mentioned, this is mostly a matter of reducing to ϕ∗ and applying Lemmas 2.1–2.3.
(While there ought to be other ways to handle this, our main argument runs into difficulties when
ϕ is large, since the setsWx,W, Z used in the proofs of Lemmas 2.1–2.3 are no longer small.)

From now on we assume ϕ > ϕ∗ (> log2 n). We use the following natural reduction (coupling).
Setting ρ = ϕ∗/ϕ, we take H=Hk(n, p) as usual and let G be the random sub-hypergraph of
H obtained by retaining edges independently, each with probability ρ; thus G ∼Hk(n, p∗), with
p∗ = ϕ∗/M.

We would like to say that if EKR fails forH, say at the non-trivial clique C, then there is a decent
chance that the clique D := C ∩ G fits one of the unlikely scenarios described in Lemmas 2.1–2.3;
but this is not always true, since if C is too close to trivial thenD is likely to actually be trivial. This
special situation is handled by the perhaps not uninteresting Lemma 8.1, and in other cases the
desired reduction is given by the routine Proposition 8.2.

Set r0 = ξϕ with ξ = log(1/q)/(2 log n) (as elsewhere, just a convenient value).

Lemma 8.1. A.s. there do not exist (in H) a non-trivial clique C and vertex x such that |C|�
max{ϕ/2, d(x)} and |Cx|� r0.

Proposition 8.2. Suppose C is a non-trivial clique of H with |C|��� ϕ/2 and �C � |C| − r0,
and let x be a maximum degree vertex of C. Then, with probability at least 1/2− o(1), D := C ∩ G
satisfies:

(a) |D|�max{dG(x), γ },
(b) |Dx|> 2/ε,
(c) either�D < τ or dD(x)>λ.

Recall that γ , τ and λwere defined in (2.5)–(2.7), and note that in the present situation we have
γ = ϕ∗/3.

Before proving these assertions we show that they (with Lemmas 2.1–2.3) give (8.1). Since
�� ϕ/2 a.s. (really, dv � ϕ/2 for all v a.s. by Theorem 3.4), Lemma 8.1 says it is enough to show
that H is unlikely to contain a non-trivial clique C with |C|��� ϕ/2 and �C < |C| − r0. So we
suppose this does happen. Let x be some maximum degree vertex of C, and observe that D and
x are then fairly likely (i.e. with probability at least 1/2− o(1)) to exhibit one of the improbable
behaviours described in Lemmas 2.1–2.3. Namely, this is true if the conclusions of Proposition 8.2
hold:

(i) if D has at least two vertices of degree at least λ, then Lemma 2.2 applies; otherwise,
(ii) if�D < τ then we are in the situation of Lemma 2.3 (since Proposition 8.2(a) gives |D|� γ

and we assume D has at most one vertex of degree at least λ);
(iii) if�D � τ then in fact dD(x)� τ (by (c), since we assumeD has atmost one vertex of degree

at least λ (< τ )), so in view of (a) and (b) we are in the situation described in Lemma 2.1.

Proof of Lemma 8.1. We need one preliminary observation. For given x and B ⊆Kx, let g(B) be
the probability that A chosen uniformly from Kx meets all members of B.

Suppose that, for some s, B is a uniform s-subset ofKx andA is uniform fromKx (these choices
made independently). Then
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Eg(B)= P(A∩ B 	= ∅ for all B ∈ B)< qs, (8.2)
the inequality holding because (i) P(A∩ B 	= ∅)< q for A and B uniform fromKx andKx respec-
tively, and (ii) the probability in (8.2) is (obviously) no more than it would be if the members of B
were chosen independently. Markov’s inequality thus gives (for any a� s)

P(g(B)> qa)< qs−a. (8.3)
Now let S =P ∧ {d(x)� ϕ/2 for all x} (recall P was defined in the paragraph containing

(4.13)), noting that (by (4.13) and Theorem 3.4) P(S)= o(1). Let
Q(x)= {∃B ⊆Hx : |B| = d(x)− r0 and g(B)> qϕ/4}

and Q= ∪Q(x). Then, using ϕ/2� d(x)� β for all x, as follows from P , and applying (8.3) with
s= d(x)− r0 and a= ϕ/4,

P(Q∧ S)< n
(
β

r0

)
qϕ/4−r0 < n exp

[
r0 log

(
eβ
r0

)
−

(
ϕ

4
− r0

)
log

(
1
q

)]
. (8.4)

Recalling that ϕ ∼ β (see following Proposition 4.3), we have

r0 log
(
eβ
r0

)
∼ ξϕ log

(
1
ξ

)
<

(
1
8

)
ϕ log

(
1
q

)

(since log(1/q)> n−1/4+�(1) implies log(1/ξ )< (1/4) log n); so, noting that q> n−o(1) implies
r0 = o(ϕ) and recalling that ϕ > ϕ∗, we find that the right-hand side of (8.4) is o(1).

Thus, with T the event in Lemma 8.1, the lemma will follow from
P(T ∧Q∧ S)= o(1). (8.5)

We show that

P(T ∧Q∧ S)� n
r0∑
r=1

(βm0qϕ/4)r (8.6)

(and then observe that the right-hand side is small).

Proof of (8.6) and (8.5). We consider occurrence of T at a given x, writing T (x) for this event.
Since

P(T ∧Q∧ S)� P(T |Q∧ {d(x)� β , m�m0})
(the conditioning event containsQ∧ S), it is enough to show that

P
∗(T (x))< (βm0qϕ/4)r ,

where P∗ denotes probability under conditioning on some Hx of size at most β satisfying Q(x),
together with a valuem�m0 of |H|.

If, under this conditioning, T (x) occurs at C with |C \Hx| = r (∈ [1, r0]), then, since dC(x)=
|C| − r� ϕ/2− r and |Hx \ C|� r, there are B ⊆Hx and D ⊆Hx (namely B = Cx, D = Cx) with

|B| = |C| − r�max
{
d(x)− r,

ϕ

2
− r

}
,

|D| = r, B andD cross-intersecting, and g(B)� qϕ/4 (the last property implied byQ(x); of course
if |B|� d(x)− r and g(B)> qϕ/4, then g(B′)> qϕ/4 for any (d(x)− r0)-subset B′ of B). But the
probability that this occurs givenHx andm as above is at most(

d(x)
� r

)(
m− d(x)

r

)
qϕr/4 < (βm0 qϕ/4)r ,

which gives (8.6).
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Finally (now for (8.5)), we have βm0qϕ/4 <ϕ2n1/2+o(1)qϕ/4 = o(1/n), where the first inequality
uses β ∼ ϕ and m0 ∼ ϕn/k, and the second holds because ϕ2qϕ/4 is decreasing in ϕ > ϕ∗ and is
n−ω(1) when ϕ = ϕ∗.

Proof of Proposition 8.2. Of course, P(|D|� dG(x))� 1/2, so it is enough to show that each
of the other requirements (namely |D|� γ and those in (b) and (c)) holds a.s. These are
all routine applications of Theorem 3.4 (or Corollary 3.5). First, |D| is binomial with mean
|C|ρ � (ϕ/2)ρ = ϕ∗/2= 3γ /2, implying P(|D|< γ )< exp [−�(γ )]. Second, E|Dx|� r0ρ =
ξϕ∗ =ω(1), so P(|Dx|< 2/ε)< exp [−ω(1)]. Third, since τ � λwe have either�Cρ (=EdD(x))
> 2λ, implying P(dD(x)<λ)= o(1), or �Cρ < τ/2, implying P(�D � τ )< n exp [−�(τ )]=
o(1); thus (c) also holds a.s.

9. Small k
Finally, we turn to the proof of Theorem 1.2 for k< n1/2−�(1), say

k� n1/2−ε (9.1)

with ε > 0 fixed (note that this is not the ε of Sections 2–8). As noted earlier, this is easier than
what we have already done, one reason being the absence of the issue discussed following (2.4):
there will now always be an α such that�� α a.s. and there is a.s. no non-trivial clique of size at
least α. This will mean that here we only need Proposition 4.4 (which for k as in (9.1) and fixed
α was proved in [3]) and a simplified Lemma 2.3. Since most of this consists of easier versions of
earlier arguments, parts of the discussion will be a bit sketchy.

It will be helpful to think of three regimes: (i) ϕ < n−�(1), (ii) n−o(1) <ϕ� 1 and (iii) ϕ =�(1).
The last of these is treated in [3, Theorem 1.1(iv)], so we may concentrate on the first two.

We first need to specify α. If we are in regime (ii) then we take α as in Section 4 (recall that this
assumed ϕ > n−o(1) but not (1.9)), noting that, in addition to �� α a.s. (see (4.9)) and �(α)=
o(1) (see (4.8)), we have α =ω(1). (Note that here α = α1.)

In regime (i) we may assume (possibly passing to a subsequence of n) that there is a (positive)
integer c such that n−1/c � ϕ =O(n−1/(c+1)); we then take α = c, but will sometimes use c to
remind ourselves that the value is a constant. Here again we have �� α a.s. (by Proposition 4.4
since P(dv � α)� ϕα), as well as �(α)= o(1), which is given by (1.5) once we observe that, by
Harris’s inequality [13],

P(�� α)= P(dv � α for all v)�
∏
v

P(dv � α)=
(
1−O

(
1
n

))n
=�(1). (9.2)

(Of course, if ϕ� n−1/(α+1), then �= α a.s., and it is not hard to see that if ϕ � n−1/(α+1),
then� ∈ {α, α + 1} a.s. and each possibility occurs with probability�(1).) Note also that we may
assume c (= α) � 3, since if c� 2 then ϕ2n��(2)= o(1) gives ϕ� n−1/2 and �H � 1 a.s. (We
may also note that if c= 3 then �(3)= o(1) implies k� n1/3; it is shown in [3] that for such k
EKR holds a.s. for any ϕ.)

In either regime we just need to show thatH is unlikely to contain a non-trivial α-clique. The
arguments for the two regimes are similar and we treat them in parallel. In each case we will avoid
some complications by first disposing of cliques with very large degrees (see Lemma 2.1).

If H contains a non-trivial clique of maximum degree at least d then it contains a ‘Hilton–
Milner’ family of size d + 1; that is, B0, . . . , Bd such that ∩d

i=1Bi \ B0 	= ∅ and Bi ∩ B0 	= 0 for
all i ∈ [d]. The probability that this occurs is, by Proposition 4.2, within o(1) of the probability
that it occurs for A1, . . . ,Am chosen independently from K (with m chosen as usual). The latter
probability is less than
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P(m 	|= (4.5))+
(

m0
d + 1

)
(d + 1)n

(
k
n

)d
qd < o(1)+ ϕd+1k2d−1n−(d−2). (9.3)

Here the factor n on the left-hand side is for a choice of x ∈ ∩d
i=1Bi \ B0 and the inequality uses

m0 ∼m= ϕn/k (with ‘∼’ holding since, as already noted, we may assume ϕ =�(n−1/2) and
thereforem> n�(1)). We then need to show that the right-hand side of (9.3) is o(1) for suitable d.

For regime (i) we take d = c− 1. We have

�(c)�
(
ϕn
k

)c(k2

n

)(c2) = [ϕkc−2n−(c−3)/2]c,

so �(c)= o(1) implies kc−2 � n(c−3)/2/ϕ. Thus (for typographical reasons considering the
(c− 2)nd power of the right-hand side of (9.3)),

[ϕck2c−3n−(c−3)]c−2 � ϕc(c−2)n(2c−3)(c−3)/2

n(c−2)(c−3)ϕ2c−3

= [ϕc−1n1/2]c−3

=O(n−(c−1)/(c+1)+1/2)c−3

=O(n−(c−3)2/(2(c+1)))
= o(1),

where we used ϕ =O(n−1/(c+1)) in the third step and c� 3 in the fourth. Thus the right-hand side
of (9.3) is o(1).

For regime (ii) we take d = �α/2� (say) and find that, since k< n1/2−ε , the right-hand side of
(9.3) is less than n−�(α).

So (in either case) we just need to show that H is unlikely to contain a non-trivial α-clique
with maximum degree at most d − 1 (d as above). The reduction to independent Ai preceding
Lemma 7.1 of course remains valid here, so the following analogue of Lemma 2.3 completes the
argument.

Lemma 9.1. Let α be as above, suppose A1, . . . ,Aα are drawn uniformly and independently fromK,
and let Q be the event that the multiset C := {A1, . . . ,Aα} is a non-trivial clique with �C � d − 1.
Then

P(Q)= o
((

m0
α

)−1)
.

Proof. This is a (much) simpler version of the proof of Lemma 7.3. We retain the definitions of
di(v) and dv from that argument, but now setWi = {v : di(v)� 2},W =Wα , si(A)= |Ai ∩Wi−1|,
σ (A)= (s1(A), . . . , sα(A)),

s(A)=
∑

si(A)=
∑
v∈W

(dv − 2)

and

� =
∑
v∈W

[(
dv
2

)
− 1

]
= 1

2
∑
v∈W

(dv + 1)(dv − 2),

noting that if all dv are at most d then

� � (d + 1)s(A)/2. (9.4)
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For a counterpart of Proposition 7.2, withw= (α/ε) (ε as in (9.1)) and S = {|W|�w}, we have
P(S)= o(m−α

0 )

(since E|W|< (ϕk)2/n< n−2ε implies P(|W|�w)< n−2εw = n−2α �m−α
0 ). So we need

P(Q∧ S)= o
((

m0
α

)−1)
.

We again letA= {C is a clique} and for σ = (s1, . . . , sα) ∈N
α set

A(σ )=A∧ {�C � d − 1} ∧ S ∧ {σ (A)= σ }.
We haveQ∧ S = ∪σA(σ ) so, finally, just need to show

∑
σ

P(A(σ ))< o
((

m0
α

)−1)
. (9.5)

With q as in (5.2) (with the present w), this will follow from the next result.

Lemma 9.2. For any σ as above with
∑

si = s,

P(A(σ ))�min
{(

wk
n

)s
q(

α
2)−(d+1)s/2,

(
wk
n

)s}
. (9.6)

Before sketching the proof of this, we show that it implies (9.5), beginning with regime (i) (so
α = c, d = c− 2 and

(m0
α

) �mc). We use the first bound in (9.6) for s := |σ |< c and the second for
s� c. For the latter we find that the contribution tomc ∑

|σ |�c P(A(σ )) is at most

∑
s�c

(
s+ c− 1
c− 1

)(
ϕn
k

)c(wk
n

)s
<

∑
s�c

((s+ c)ϕw)c
(
wk
n

)s−c
= o(1).

For the former, the product ofmc and the first bound in (9.6) is
(
ϕn
k

)c(wk
n

)s
q(c−1)(c−s)/2 ∼

(
ϕn
k

)c(wk
n

)s(k2

n

)(c−1)(c−s)/2

= ϕcws
[(

n
k

)(
k2

n

)(c−1)/2]c−s
.

If the expression in brackets is at most 1, then we have

mc
∑
|σ |<c

P(A(σ ))=O(ϕc) (9.7)

(since w and
(s+c−1

c−1
)
are O(1), as is the number of terms in the sum), and otherwise the sum in

(9.7) is on the order of

ϕc
[(

n
k

)(
k2

n

)(c−1)/2]c
��(c)= o(1)

(see (4.8)).
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For regime (ii), we use the second bound in (9.6) for s� 3α/2, yielding(
m0
α

) ∑
|σ |�3α/2

P(A(σ ))<
∑

s�3α/2

(
s+ α − 1
α − 1

)(
ϕn
k

)α(wk
n

)s

<
∑

s�3α/2
((s+ α)ϕw)α

(
wk
n

)s−α
= o(1)

(using w=O(α) and α � (1+ o(1))ϕ∗ < no(1); see (4.12), (2.1)). On the other hand, the first
bound in (9.6) gives(

m0
α

) ∑
|σ |<3α/2

P(A(σ ))<
(
m0
α

) ∑
s<3α/2

(
s+ α− 1
α − 1

)(
wk
n

)s
q(

α
2)−(d+1)s/2 = o(1)

(as each of
(m0
α

)
,
(s+α−1
α−1

)
is at most exp [O(α log n)], the q-term is less than exp[−�(α2 log n)],

since q< n−�(1), and, as noted above, α =ω(1)).

Proof of Lemma 9.2. This is similar to the proof of Lemma 7.3 and we just indicate the little
changes. For the first bound in (9.6) we follow the proof of (7.15) (beginning with the paragraph
containing (7.25)), with changes: replace the γ with c and the U withW; in (7.27) and (7.28) omit
the condition involving Z and replace λ with d − 1 in (7.28); omit the first factor in (7.29) (the
proof does not change); and replace X(r, s) in (7.32) with (d + 1)s(A)/2 (see (9.4)).

For the second bound we use the same modifications and simply sacrifice the contributions of
the terms with i= 2j (so for these we can just say ξ (y1, . . . , yi−1)� 1; thus the clique condition
(7.26) could be omitted here).

10. Necessity
Our main job in this section is to sketch the proof that the condition

�′(�)< o(1) a.s. (10.1)

in (1.7) is necessary for EKR to hold a.s., but before doing so we say why Theorem 1.2 implies that
it is sufficient. SinceH is a.s. EKR if either (1.5) holds or �� 2 a.s. (the first by Theorem 1.2, the
second since in this case the probability of a triangle is trivially o(1)), we only need to consider what
happens when neither of these alternatives holds but (10.1) does. This means that each of {�� 2}
and {�� 3, �(�)< o(1)} occurs with probability �(1) and their union occurs a.s., implying
ϕ � n−1/3 and �(3)< o(1). But then �(3)� (ϕn/k)3q3 implies q= o(1), so k� √

n, q∼ k2/n
and�(3)� k3/n. Thus k� n1/3 (again using�(3)→ 0), in which case EKR holds a.s. regardless
of ϕ (as mentioned in Section 9, this was shown in [3]; of course it can also be extracted from the
discussion in that section).

We now turn to necessity. We believe this actually holds for general k (i.e. without assum-
ing (1.4)), but our proof does not give this. Of course, in view of the discussion preceding
Conjecture 1.4, the assertion seems less interesting for k above about

√
(1/2)n log n.

The proof of necessity becomes easier (still not immediate) if we retreat to, say, k=O(
√
n).

Here we give only a sketch of the argument, restricting to k as in (1.9) to avoid some annoyances,
with details – such as they are – mostly restricted to the more interesting points. (Some instances
of failure of EKR for smaller k are given in [3].)

Note first of all that failure of (10.1) means that there is some fixed δ > 0 such that, for infinitely
many n, P(�′(�)> δ)> δ, whence also

P(�(�)> δ)> δ; (10.2)
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so it is enough to show that (10.2) implies that EKR fails with probability at least some ηδ > 0. (In
what follows we just use�(1).)

Set α =max{t ∈N :�(t)> δ} andA= {�� α}; thus (10.2) is
P(A)> δ, (10.3)

which we assume henceforth.
It is easy to see (cf. (4.11)) that

α ∼ log n
log (1/q)

, (10.4)

and we observe that (for any v)

P(dv >α)=O
(
1
n

)
, (10.5)

since otherwise Proposition 4.4 gives�>α a.s., contradicting (10.3).
Here we do (finally) need some concrete notion of a ‘generic’ clique: taking z= α/ε (with

ε= 1/4− c as in Sections 2–8), say a clique – possibly with repeated edges – is generic if it has
maximum degree at most 3 and at most z vertices with degree equal to 3. Then with

B = {H contains a generic clique of size α},
we will be done if we show

P(AB)=�(1). (10.6)
The negative results of [3] are achieved by showing (probable) existence of�-cliques of maximum
degree 2.

Here again Proposition 4.2 allows us to work with independentAi; namely it implies that (10.6)
will follow from the next result.

Lemma 10.1. For any m satisfying (4.5) andH= {A1, . . . ,Am}, with the Ai chosen uniformly and
independently from K,

P(AB)=�(1). (10.7)

So we are using ‘P’ for probabilities in this model. Note thatHmay now – in principle, though
in reality essentially never – have repeated edges.

We first assert that
P(A)=�(1). (10.8)

This actually requires a little argument, but we just point out the difficulty. That (10.5) implies the
corresponding P(dv >α)=O(1/n) is easy, the change in the distribution of dv from Bin(M, p)
to Bin(m, k/n) having almost no effect. But getting from this to (10.8) – an implication which
for Hk(n, p) is given by Harris’s inequality; see (9.2) – is no longer immediate, since negative
association now works against us.

One way to handle this is to compare the present H with H′ =Hk(n, p′), with p′ > p chosen
so that, writing P′ for the corresponding probabilities, we have P′(dv >α)=O(1/n) and |H′|�m
a.s. (We can then couple so that H′ ⊃H a.s. – note that H a.s. avoids repeats – yielding P(��
α)> P

′(�� α)− o(1)=�(1). Of course one must show there is such a p′, but we omit this easy
arithmetic.)

For the proof of (10.7) we use the second moment method. Set N = [m] and S = (N
α

)
. We now

use G for the set of generic α-cliques (again, with repeated edges allowed). For S⊆N write AS
for the multiset {Ai : i ∈ S} and�S for�AS (so�=�N). In addition, set BS = {AS ∈ G}, XS = 1BS
(these are only of interest if S ∈ S) and X = ∑

S∈S XS.
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We actually need estimates for the quantities EXS and EXSXT (for S, T ∈ S) conditioned onA,
but will get these by first dealing with the unconditional versions and then showing – the most
interesting point – that the conditioning has little effect. Thus we show (for any S, T ∈ S)

EXS ∼ q(
α
2), (10.9)

EXSXT < (1+ o(1))q2(
α
2)−(|S∩T|

2 ), (10.10)
E[XS |A]∼EXS and E[XSXT |A]∼EXSXT . (10.11)

We will say a little about the proofs of these main points below. Once they are established we
have, setting Ẽ[ · ]=E[· |A],

μ := ẼX ∼
(
m
α

)
q
(
α
2
)
∼�(α)=�(1)

(using (4.19) for ‘∼’) and an easy calculation gives

ẼX2 =
∑
S

∑
T

ẼXSXT < (1+ o(1))
(
m
α

)
q2

(
α
2
) α∑

i=0

(
α

i

)(
m− α

α − i

)
q−

( i
2
)
∼μ2 +μ,

whence

P(X 	= 0)� μ2

ẼX2
=�(1),

which is what we want.
The proofs of (10.10) and EXS < (1+ o(1))q(

α
2) (for (10.9)) are similar to (easier than) that

of Lemma 7.1 and we will not pursue them here. The proof of the reverse inequality in (10.9) is
also similar in spirit, but less so in details. We again think of choosing A1, . . . ,Aα in order and
use di for degrees in {A1, . . . ,Ai}. Set Zi = {v : di(v)� 3}, Qi = {|Zi|� z}, Ri = {Ai ∩ Zi−1 = ∅},
Ti = {Ai ∩Aj 	= ∅ for all j ∈ [i− 1]} and

Bi = {{A1, . . . ,Ai} is a generic clique}.
Then Bi = Bi−1RiTiQi and

P(Bi)� P(Bi−1) P(RiTi | Bi−1)− P(Qi). (10.12)
We show by induction on i (with i= 1 trivial)

P(Bi)� (1− δi)q(
i
2), (10.13)

for some δi < in−1/4+o(1). (This suffices because of (10.4), since (log(1/q))−1 < (1+ o(1))nc; see
(4.2).)

The relevant probabilities are bounded as follows. First, the proof of Proposition 7.2(b) (see
(7.6)) gives

P(Qi)<η (10.14)
for some η < n−(2−o(1))α . Second, trivially,

P(Ri | Bi−1)� 1− zk
n

(10.15)

(this just uses Bi−1 ⊆Qi−1).
Third,

P(Ti |RiBi−1)� (1− θ)qi−1, (10.16)
where θ < n−1/4+o(1). This one is less trivial than the first two. We need the following general
observation.
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Proposition 10.2. If C1, . . . , Cs,D1, . . . ,Ds are subsets of V with |Ci| = |Di| for all i and the Di
pairwise disjoint, and A is uniform from

(V
k
)
, then

P(A∩ Ci 	= ∅ for all i)� P(A∩Di 	= ∅ for all i). (10.17)

This follows via induction from the fact – an easy coupling argument – that (10.17) holds when
x ∈ Ci ∩ Cj (i 	= j), Di = Ci \ {x} ∪ {y} for some y ∈V \ ∪C	, and D	 = C	 for 	 	= i.

By Proposition 10.2, the left-hand side of (10.16) is at least

P(A∩Aj 	= ∅ for all j ∈ [i− 1]),

where A1, . . . ,Ai−1 are (fixed) disjoint (k− z)-subsets of U ∈ ( V
n−z

)
and A is uniform from

(U
k
)
.

Say Y ⊆U is good if Y ∩Aj 	= ∅ for all j ∈ [i− 1]; so we want

P(A is good)� (1− θ)qi−1. (10.18)

One way – there ought to be an easier one – to show this goes as follows. Let X ⊆U be random
with eachmember ofU contained in X with probability ρ = (k− 2

√
k ln n)/n, these choices made

independently. Then

P(A is good)� P(X is good)− P(|X|> k)> P(X is good)− n−2,

where the first inequality holds because we can couple so that A⊇ X whenever |X|� k, and the
second is given by Theorem 3.4. Thus, since qi−1 > qα > n−1−o(1), (10.18) will follow from

P(X is good)� (1− n−1/4+o(1))qi−1. (10.19)

For verification of (10.19), set 	= k− z. Since P(X is good)= [1− (1− ρ)	]i−1 and i<α, it is
enough to show that

[(1− (1− ρ)	)/q]α > 1− n−1/4+o(1). (10.20)

As before (see Section 4), set

ϑ = 1− q= (n− k)k
(n)k

∼ e−k2/n

and define γ by (1− ρ)	 = (1+ γ )ϑ . Then (1− (1− ρ)	)/q= 1− (γϑ/(1− ϑ)), so for (10.20)
we need αγϑ/(1− ϑ)< n−1/4+o(1). But it is easy to see that we always have αϑ <O(log n) (using
(10.4)) and 1− ϑ (= q)> n−o(1) (since we assume (1.9)); so we really just need

γ < n−1/4+o(1). (10.21)

Here we may expand

1+ γ = (1− ρ)	

ϑ
= (n− k)k

(n− k)k
(n)k
nk

(
1− k

n

)−z (
1− ρ

1− k/n

)	
.

The last two factors are at most 1+ kz/n+O(k2z2/n2)< 1+ n−1/4−ε+o(1) and

1+O(n−1k3/2
√
log n)< 1+ n−1/4+o(1)

(respectively), while a little rearranging shows the product of the first two to be
k−1∏
j=0

(
1+ jk

n(n− k− j)

)
< 1+ k3

n2
< 1+ n−1/2+o(1).

This proves (10.21) and finally establishes (10.16).
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By (10.14)–(10.16) and (10.13) for i− 1, the right-hand side of (10.12) is at least

(1− δi−1)q(
i−1
2 )

[(
1− zk

n

)
(1− θ)− η′

]
qi−1 > (1− δi−1)

[
1−

{
zk
n

+ θ + η′
}]
q(

i
2),

where we set η′ = η[(1− δi−1)q(
i
2)]−1. This gives (10.13) since the expression in the { } is less than

n−1/4+o(1).

Finally we turn to (10.11), for which we need the following observation.

Proposition 10.3. Let s ∈ [m] and t =m− s. Suppose S ∈ (N
s
)
and D is an s-multisubset of K with

�D � C. If P(B(t, k/n)� α − C)= ρ/n then

|P(�� α |AS =D)− P(�� α)|� skρ
n

+ n
(
sk
n

)C+1
. (10.22)

Proof. Let BS = {Bi : i ∈ S}, where the Bi are chosen uniformly and independently (of each other
and the Aj) fromK, and write�∗ for the maximum degree of AT ∪ BS. Set V(X)= {v : dX(v)> 0}
(for X a multisubset of K). On {AS =D} we have

{�∗ � α} \ {�� α} ⊆ {∃v ∈V(D) dT(v)>α − C} (10.23)
and

{�� α} \ {�∗ � α} ⊆ {�BS > C} ∪ {∃v ∈V(BS) dT(v)>α − C} (10.24)
The probabilities of the event on the right-hand side of (10.23) and the second event on the right-
hand side of (10.24) are at most skρ/n, and the probability of the first event on the right-hand side
of (10.24) is less than n(sk/n)C+1 (since EdBS(v)= sk/n). The proposition follows.

The arguments for the two statements in (10.11) are nearly the same and we speakmainly of the
first. This is equivalent to P(A | BS)∼ P(A) or, in view of (10.8), P(A | BS)= P(A)± o(1), which
will follow if we show that, for any generic α-clique D,

P(A |AS =D)= P(A)± o(1).
This is, of course, an instance of Proposition 10.3, for which we just have to make sure that, with
s= α and C = 3, each part of the bound in (10.22) is o(1). For the second part this is given by
αk/n< n−1/4−ε+o(1). For the first, with ξ = B(t, k/n), we have P(ξ > α)� P(B(m, k/n)>α)=
O(1/n) (see (10.5)) and, for u∼ α,

P(ξ = u− 1)
P(ξ = u)

= u(1− k/n)
(t − u+ 1)k/n

∼ u
tk/n

∼ α

ϕ
< no(1)

(with the inequality given by (4.10)), whence ρ < no(1) (and skρ/n< n−1/4+o(1)).
For the second part of (10.11) we would have s ∈ [α, 2α] and C = 6.

Glossary

K =
(
V
k

)
, page 881

Hx = {E ∈H : x ∈ E}, page 882

ϕ = p
(
n− 1
k− 1

)
, page 882

m=E|H| = ϕn
k
, page 882
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q= P(A∩ B 	= ∅), see (1.3) on page 882

�(t) =
(
m
t

)
q(

t
2), see (1.6) on page 883

�′(t) = 0 if t� 2; =�(t) otherwise, page 883

Gx = G \ Gx, page 885

ϕ∗ = log3 n
log (1/q)

, see (2.1) on page 885

α, β : defined before (2.3) (for key properties see (2.3), (2.4), and the paragraphs
leading up to Proposition 4.3); page 885

γ =min
{
α,
ϕ∗

3

}
, see (2.5) on page 886

τ = (1− ε)γ , see (2.6) on page 886

λ=max
{ √

log n
log (1/q)

, 2

√
log n

log (1/q)

}
, see (2.7) on page 886

NA : negatively associated, page 887

ψ : a slowly growing function of n (say ψ = log n), page 889

m0 =m+ψ
√
m, page 889

P = {m satisfies (4.5)} ∧ {�� β}, page 890
R : the intersection of P , {�� α}, and the events in (4.20), (4.21), page 892

w=max
{
ϕ2k2

n
, 6 log n

}
, see (5.1) on page 893

q =
(
1+ 2k2w

qn2

)
q, see (5.2) on page 893

� = ∑
v∈Z

[(
dv
2

)
− 1

]
, see (7.3) on page 898

z= γ

ε
, see Proposition 7.2 (b) on page 898

X(r, s) = (λ+ 2)r
2

+ 2s (for r and s see (7.2)), page 899
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Bolyai Society Mathematical Studies, János Bolyai Mathematical Society, pp. 535–583.
[22] Schacht, M. (2016) Extremal results for random discrete structures. Ann. of Math. 184 333–365.
[23] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 199–245.
[24] Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie.Mat. Fiz Lapook 48 436–452.
[25] van den Berg, J. and Jonasson, J. (2012) A BK inequality for randomly drawn subsets of fixed size. Probab. Theory Related

Fields 154 835–844.
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