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Numerical simulations of the linear and nonlinear two-dimensional Navier–Stokes
equations, and linear stability theory are used to parametrically investigate hypersonic
boundary layers over ultrasonic absorptive coatings. The porous coatings consist of
a uniform array of rectangular pores (slots) with a range of porosities and pore
aspect ratios. For the numerical simulations, temporally (rather than spatially) evolving
boundary layers are considered and we provide evidence that this approximation
is appropriate for slowly growing second-mode instabilities. We consider coatings
operating in the typical regime where the pores are relatively deep and acoustic
waves and second-mode instabilities are attenuated by viscous effects inside the
pores, as well as regimes with phase cancellation or reinforcement associated with
reflection of acoustic waves from the bottom of the pores. These conditions are
defined as attenuative and cancellation/reinforcement regimes, respectively. The focus
of the present study is on the cases which have not been systematically studied in
the past, namely the reinforcement regime (which represents a worst-case scenario,
i.e. minimal second-mode damping) and the cancellation regime (which corresponds
to the configuration with the most potential improvement). For all but one of the
cases considered, the linear simulations show good agreement with the results of linear
instability theory that employs an approximate porous-wall boundary condition, and
confirm that the porous coating stabilizing performance is directly related to their
acoustic scattering performance. A particular case with relatively shallow pores and
very high porosity showed the existence of a shorter-wavelength instability that was
not initially predicted by theory. Our analysis shows that this new mode is associated
with acoustic resonances in the pores and can be more unstable than the second mode.
Modifications to the theoretical model are suggested to account for the new mode
and to provide estimates of the porous coating parameters that avoid this detrimental
instability. Finally, nonlinear simulations confirm the conclusions of the linear analysis;
in particular, we did not observe any tripping of the boundary layer by small-scale
disturbances associated with individual pores.
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Second-mode attenuation and cancellation by porous coatings 313

1. Introduction
Delay of laminar–turbulent transition on hypersonic vehicles would enable a

significant reduction of the weight and complexity of its thermal protection system
by reducing the heat transfer rate to the surface. State-of-the-art active and reactive
laminar flow control techniques seem to be impractical under the severe conditions of
hypersonic flight (e.g. Kimmel 2003), but passive techniques that can be integrated
with a thermal protection system, such as porous coatings, have been shown to
significantly increase laminar run in wind-tunnel experiments (Rasheed et al. 2002).
Fedorov (2011) provides a review of stability and laminar–turbulent transition in high-
speed boundary-layer flows. At high Mach numbers and low wall temperature ratios
on the vehicle surface, the second mode, or Mack (1969) mode, of instability in the
boundary layer suffers a higher growth rate than the Tollmien–Schlichting wave (first
mode). Second-mode instability has been observed and measured in many wind-tunnel
experiments (e.g. Kendall 1975; Stetson et al. 1983; Stetson & Kimmel 1992). The
mode involves high-frequency (ultrasonic) acoustic waves trapped in the boundary
layer (Malmuth et al. 1998). So-called ultrasonic absorptive coatings (UAC), are
micro-structured surfaces designed with porosity, pore spacing, and pore depth tuned
to absorb these instability waves and thus suppress second-mode growth.

Several experimental and theoretical studies (e.g. Fedorov et al. 2001, 2003a,b;
Bountin et al. 2004; Maslov et al. 2006) have confirmed the UAC stabilization concept.
More recently, direct numerical simulations (DNS) of both two-dimensional surfaces
with regular spanwise slots (Brès, Colonius & Fedorov 2008b; Wartemann, Lüdeke &
Sandham 2009; Hader & Fasel 2011), and three-dimensional surfaces with streamwise
slots, and rectangular pores with various shapes (Sandham & Lüdeke 2009; De Tullio
& Sandham 2010) have investigated aspects of linear and nonlinear instability and
transition of UAC.

Structural and fabrication constraints aside, the absorptivity of the UAC, over a
range of frequencies, is typically maximized by having high-porosity surfaces with
narrow, deep, regular pores. Following our previous studies (see Brès, Colonius &
Fedorov 2008a, 2010), the starting hypothesis of the present work is that the efficacy
of the surface in absorbing second-mode instability waves may be largely inferred
from the normal-incidence reflection coefficient of plane acoustic waves with the UAC.
Figure 1(c) shows a nominally two-dimensional UAC surface consisting of regular,
spanwise slots. The relevant parameters characterizing the reflection coefficient R are
the acoustic frequency f H/aw, and the porosity φ, cavity aspect ratio AR, and acoustic
Reynolds number Re defined as

φ = 2b/s, AR= 2b/H, Re= ρwawb/µw, (1.1)

where the values of density ρ, sound speed a, and viscosity µ are taken at the
wall, as denoted by the subscript w. In figure 2, the normal-incidence acoustic
reflectivity is plotted for various values of φ and AR, over a range of frequencies
relevant to UAC design. The minimum reflectance on this plot yields a maximally
absorptive surface and is associated either with the attenuative effect of viscosity
on the acoustic wave within the pore, which yields the decaying reflectance with
increasing frequency, or, in the case of the peaks and troughs in reflectivity, with
phase cancellation or reinforcement associated with reflection from the bottom of the
cavities (see Brès et al. 2009). In what follows, we refer to these as the attenuative
and cancellation/reinforcement regimes, respectively. Designs which have been tested
to date have been in the attenuative regime associated with deep pores. However,
if the UAC surface could be accurately tuned to the local frequency of the second-
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FIGURE 1. Schematic diagram for DNS of UAC (not to scale): (a) the spatial problem with
many wavelengths of the spatially growing instability wave; (b) the temporal problem with a
single wavelength of the temporally growing instability wave; (c) schematic of the reflection
of an acoustic wave from equally spaced two-dimensional cavities.
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FIGURE 2. Comparison of the reflection coefficient amplitude at normal incidence from the
present DNS (solid lines) and the theoretical model (dashed lines) by Kozlov, Fedorov &
Malmuth (2005) at acoustic Reynolds number Re = 100, for coatings of porosity φ = 0.2
(�), φ = 0.48 (©), and φ = 0.8 (O). (a) Cavity aspect ratio AR = 0.06; (b) AR = 0.12;
(c) AR= 0.3.

mode instability wave (for example by having slowly varying depth with streamwise
distance), then good absorptivity could be achieved in the cancellation regime with
much shallower pores over a range of porosities.

In this study, we use DNS and linear stability theory (LST) to investigate the linear
(and, to a more limited extent, nonlinear) stability of the second mode over a wide
range of parameters associated with both the attenuative and cancellation regimes. Our
objective is twofold: first, to confirm (and potentially improve) the robustness and
accuracy of existing models for the evaluation of UAC designs. Second, to confirm the
absorptivity that would be implied by figure 2, especially in the cancellation regime
which has not been systematically studied in past experiments or simulations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.206


Second-mode attenuation and cancellation by porous coatings 315

In order to perform DNS of the UAC, some tradeoffs are required to deduce a
set of computationally tractable model problems, since a realistic surface would have
as many as 20 pores per wavelength of the most unstable wave. In our previous
work, a simplified configuration that considers a temporally evolving boundary layer
on an infinite porous plate is shown to retain enough of the relevant flow physics
in order to meet the overall modelling objectives (Brès et al. 2008a). A schematic
of this configuration is shown in figure 1. Moreover, at least for the linear stability
calculations, we show below that the growth rate of the second mode is sufficiently
small that the Gaster (1962) transformation can be used to accurately obtain spatial
growth rates and phase speeds from the temporal analysis. The temporally evolving
boundary layer neglects its spatial growth, and instead diffuses slowly with time. Over
short time scales associated with acoustic energy attenuation in UAC, the laminar
boundary layer is essentially frozen, consistent with either a spatial or temporal
description of the mean flow field, and consistent with parallel flow approximations
that are typically made in instability calculations. The same temporal approximation
has been invoked in latter DNS studies by other authors (Sandham & Lüdeke 2009;
Wartemann et al. 2009; De Tullio & Sandham 2010; Hader & Fasel 2011).

A limitation of our study is that, to enable calculations over a broad range of
parameters, we restrict our attention to two-dimensional, spanwise-slot geometries and
two-dimensional flows (zero spanwise wavenumber). In terms of the absorption of the
second mode, this assumption is quite reasonable because the most unstable second
mode is two-dimensional, and a detailed comparison of two- and three-dimensional
pore geometries by Sandham & Lüdeke (2009) led to similar growth rates for
two- and three-dimensional surfaces for the same hydraulic diameter of the pores.
De Tullio & Sandham (2010) investigated the nonlinear stage of laminar–turbulent
transition in a Mach 6 adiabatic flat-plate boundary layer over a porous surface
comprising equally spaced cavities of rectangular cross-section. The computational
domain included four pores in the streamwise and spanwise directions, giving a total
of 16 pores. The porous surface was confirmed to attenuate both primary second-mode
instability and secondary instabilities (through reduced amplitude of second-mode
saturation), but an oblique first-mode wave is the most amplified mode in this porous
surface configuration, consistent with the linear theory and experiment (Fedorov et al.
2003a,b) at the adiabatic wall temperature. This wave is slightly destabilized by the
pores. With the oblique first mode excited, the flow becomes turbulent due to the
nonlinear interactions without the need for secondary instabilities. The linear theory
suggests, however, that at the lower wall temperatures used in this study, the oblique
first-mode waves are stable.

The remainder of the paper is organized as follows. The DNS and LST
methodology, as well as the theoretical modelling of the acoustic properties of the
coating, are discussed in §§ 2 and 3, respectively. In § 4, the properties of the
second-mode instability for a hypersonic boundary layer are considered for a range
of UAC porosities and aspect ratios using linearized DNS, LST, and nonlinear DNS.
The analysis confirms that the cancellation regime is viable for damping second-
mode instability, but, at sufficiently high porosities, reveals the presence of a resonant
acoustic mode of the UAC that is more unstable than the second mode, with important
implications for the practical design of UAC. The physical mechanism giving rise to
this mode is discussed in § 5 and the theoretical model is modified to account for
cavity mouth effects in order to bring the predicted growth rate of the resonant mode
into agreement with the computed results. A summary of the main conclusions is
presented in § 6.
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2. Methodology
2.1. Direct numerical simulations

In the present work, direct numerical simulations are performed for both the nonlinear
(DNS) and linearized (LDNS) two-dimensional Navier–Stokes equations. The fully
compressible momentum, continuity and energy equations are solved on a block-
structured mesh, using a sixth-order compact finite-difference scheme for spatial
discretization in the x- and y-direction (Lele 1992) and a fourth-order Runge–Kutta
algorithm for time-marching. Details on the code algorithm, implementation and
validations are reported by Brès & Colonius (2008).

For the temporal stability problem, periodic boundary conditions are applied in
the streamwise direction, and the nominally laminar boundary layer spreads in time
rather than streamwise position. The computational domain extends up to 5H in the
y-direction above the wall. The boundary conditions are non-reflective at the top
boundary (Thompson 1990; Poinsot & Lele 1992), with a buffer zone implemented to
avoid spurious reflections (Colonius, Lele & Moin 1993; Freund 1997). In preliminary
studies, larger heights of the simulation domain were tested, up to 18H, as used in
our previous work on the acoustic properties of porous coatings (Brès et al. 2010).
The current dimensions were chosen to reduce computational cost and the position
and treatment of the outer boundary were verified not to have detrimental effects on
the results. All the numerical simulations are performed on similar stretched Cartesian
grids, with clustering of points near the walls. For the configuration with the porous
wall, all the cavities are explicitly included in the computational domain, and the mesh
contains about half a million grid points, with 100 points per cavity depth, and 12–60
points across each cavity length, depending on the pore aspect ratio.

The equations are solved for an ideal gas, with constant specific heat capacity,
γ = 1.4 and constant Prandtl number Pr = 0.7. The Mach number is M∞ = U∞/a∞ =
6, and the wall temperature Tw/T∞ = 1.4 is assumed to be uniform and constant.
The subscript ∞ denotes the free-stream value of the property. Here, the choice
of a relatively low wall temperature was made in order to reinforce the second-
mode instability and demonstrate that this instability is effectively damped by the
porous coating. Previous theoretical and experimental studies (e.g. Fedorov et al.
2001) have shown that the porous-wall stabilization technique remains effective for
higher wall temperature, up to adiabatic wall temperature. Furthermore, according
to an assumption of radiative equilibrium, the chosen value of Tw/T∞ = 1.4 would
approximately correspond to T∞ = 800 K for a laminar boundary layer of thickness
5 mm, which are reasonable values for practical applications.

The dynamic viscosity µ and thermal conductivity k are modelled as following
a power-law temperature-dependence, µ/µ∞ = k/k∞ = (T/T∞)n, with n = 1. For
predictions of UAC performance in practical cases, more realistic temperature
dependence of viscosity should be used. Nevertheless, the temperature–viscosity law
does not affect the basic mechanism leading to the second-mode stabilization on
the porous coating. The previous theoretical studies, which were performed with the
power law (Fedorov et al. 2001) with n = 0.75, and with the Sutherland law (Fedorov
et al. 2003a,b; Brès et al. 2008b; Fedorov 2010) showed the same qualitative effect.
Therefore, the basic trends and conclusions in the present paper are expected to
hold for other dependences. The computations are initialized with an error-function
profile for the streamwise velocity (i.e. the correct self-similar solution as M∞→ 0),
uniform pressure and using the Crocco–Busemann relation to compute the initial
temperature profile for the chosen wall temperature ratio (Schlichting & Gersten 2000).
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The nonlinear simulations are advanced in time until the boundary-layer thickness δ/H
reaches the desired value.

The resulting boundary layer profile is then frozen and used as the base flow in
linear simulations. An initial perturbation in the form of a small, Gaussian pressure
pulse is added to the flow and the long-time response is recorded. To quantify
nonlinear effects, the same acoustic perturbation is also added to the nonlinear
simulations discussed in § 4.4, but in these cases, the boundary layer continues to
grow in time during the simulation.

The streamwise extent of the domain Lx is chosen to match the predicted wavelength
of the most unstable second mode as closely as possible while containing an integer
number of pores, Npore. While the typical number of pores per wavelength of the
instability is suggested to be ∼10–20 (see Fedorov et al. 2001), its value varies from
3 to 66 in the present simulations (see table 1 in § 4.2). In particular, cases with
smaller numbers of pores are of interest to determine whether detrimental effects such
as roughness/cavity-induced transition mechanisms are present.

The least-damped (or most unstable) eigenmode and the corresponding eigenvalue
are determined by assuming (and verifying a posteriori) that the eigenvalues are well
separated and fitting the long-time linear response to an exponentially damped or
growing sinusoid.

2.2. Linear stability analysis

The LDNS results are compared to linear stability analysis, which is described
by Fedorov (2010) and briefly reviewed here. We assume that the flow field
q = [u, v,w, p,T]T can be decomposed into q = q̄ + q′, where q̄ is a base flow and
the perturbation field q′ satisfies q′ � q̄. Here, the velocity components (u, v,w), the
pressure p and temperature T are referenced to U∞, ρ∞U2

∞ and T∞, respectively.
The Navier–Stokes equations are then linearized about q̄ by neglecting higher-order
terms in q′ to give a first-order approximation. The parallel base flow is characterized
by q̄(y) taken from the DNS solution for the solid surface (i.e. steady disturbances
induced by the cavities are neglected). The three-dimensional perturbation field q′ is
expressed in the travelling form

q′(x, y, z, t)= Re
(
q̂(y) exp[i(α̃x+ β̃z−Ωt)]

)
, (2.1)

where α̃ and β̃ are the wavenumbers, and Ω is the angular frequency. For spatial
stability, Ω is taken to be a real and prescribed frequency ωS.

The system of stability equations for q̂(y) is solved with the boundary conditions
(û, v̂, ŵ, p̂, T̂)→ 0 for y→∞, and

û(0)= ŵ(0)= T̂(0)= 0, v̂(0)= Ap̂(0), (2.2)

where A is the porous-layer admittance. On the solid wall (without cavities), the
admittance is 0, and v̂(0)= 0. On the porous wall, an approximate boundary condition
is used, in which the admittance is expressed as

A= φ

Z0
tanh(mH). (2.3)

Recall that φ is the porosity and H is the cavity depth. The terms Z0 and m are the
characteristic impedance and propagation constant, which are expressed in terms of the
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complex dynamic density ρ̃ and complex compressibility C̃ as

Z0 = 1
ρ∞U∞

√
ρ̃

C̃
, m= iωS

√
ρ̃C̃. (2.4)

The parameters ρ̃ and C̃ are calculated using the solutions of Kozlov et al. (2005) for
harmonic disturbances in a deep cavity. Their analytical expressions are

ρ̃ = ρwΛ

Λ− tanΛ
, C̃ = 1

γ pw

[
1+ (γ − 1)

tan Λ̃

Λ̃

]
, (2.5)

where Λ =√iωSρwb2/µw characterizes the ratio of the cavity width to the Stokes
layer thickness and Λ̃ = √PrΛ. Recall that b is the cavity half-width and that the
subscript w denotes a quantity at the wall y= 0.

The stability equations are integrated from the outer boundary-layer edge to the wall
using a fourth-order Runge–Kutta scheme and a Gram–Schmidt orthonormalization
procedure. From known boundary conditions in the free stream, the eigenvalues
are found using a shooting/Newton–Raphson procedure in order to satisfy the wall
boundary conditions in (2.2). At convergence, the eigenvalues are related through the
numerically obtained dispersion relation D(α̃, β̃, ωS)= 0.

In what follows, the linear stability analysis focuses on the second mode, which
is the dominant instability in two-dimensional and quasi-two-dimensional boundary
layers at hypersonic speed. Therefore, the parameter β̃ is set to 0. The LST results
for three-dimensional (oblique) waves confirm that the maximal instability is observed
for β̃ = 0.

3. Acoustic properties of porous coatings
While viscous dissipation and heat conductivity inside individual cavities are

accounted for in the LST model, end effects associated with scattering of incoming
acoustic waves by the cavity mouth and small-scale disturbances generated near the
UAC surface are not considered. Also, there is no coupling between disturbances in
neighbouring cavities, which may not be true for closely spaced cavities.

In previous work by Brès et al. (2010), DNS were performed to clarify these
effects and validate the robustness of the theoretical model by Kozlov et al. (2005)
used in the approximate porous-wall boundary condition of the LST. For various
acoustic Reynolds numbers Re relevant to hypersonic flight, the reflection coefficient
was computed as a function of the incident acoustic wave frequency and angle of
incidence θ , for coatings of different porosities φ and constant length-to-depth ratio
AR = 0.12, matching the aspect ratio of the cylindrical cavities used in the experiment
by Rasheed et al. (2002). To further investigate the effect of the cavity depth and
porosity, additional simulations and comparisons are performed in the present work.
Typically, coatings with very deep pores (AR < 0.05) or very high porosity (φ > 0.8)
are not of interest for practical applications. Therefore, nine different coatings are
considered here, for aspect ratio AR = 0.06, 0.12, 0.3, and porosity φ = 0.2, 0.48, 0.8.
These parameters span the range of typical coating designs used in most experimental
and theoretical studies on UAC.

The reflection coefficient obtained from DNS is compared with the theoretical
modelling in figure 2, for the nine different designs, at Re = 100. For typical UAC
parameters, the range of frequencies 0.1 6 f H/aw 6 1.5 contains the frequency of the
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most amplified second-mode waves. Much like in the previous study by Brès et al.
(2010), the comparisons show good agreement between the two methods, especially
for low aspect ratio and low frequency. Note that the theoretical model assumes that
the cavity half-width b, depth H and spacing s satisfy the conditions b ∼ s� λacs,
and H ∼ λacs, where λacs is the wavelength of an incident acoustic wave. Here,
the discrepancies at AR = 0.3 are probably due to the limitations of the theoretical
assumptions.

Overall, the DNS results demonstrate that the theoretical model is an efficient
and reliable method to provide estimates of the acoustic properties of the porous
coatings. The analysis also shows that there is a critical acoustic Reynolds number
Recrit for the presence of the cancellation/reinforcement regime, above which acoustic
disturbances are not completely absorbed inside the pores. In that case, interference
between incoming and outgoing (reflected from the cavity bottom) waves leads to
a significant decrease of the reflection coefficient at some specific frequencies. As
expected, Recrit is related to viscous and thermal absorption inside the pores and is
only a function of the aspect ratio AR. From the theoretical modelling, the dependence
of the critical Reynolds number on the aspect ratio is estimated as Recrit ≈ 2/AR. As
a result, for the aspect ratios considered in figure 2, Re = 100 > Recrit, and all the
coatings exhibit local minima of the reflection coefficient. The results also confirm that
the corresponding frequency of these local minima is largely independent of AR, φ,
and Re.

From figure 2, it is clear that the most efficient attenuative coating is obtained for
AR = 0.06, φ = 0.8 (i.e. curve with O symbols in figure 2a), which requires many
deep pores. Such high porosity can be difficult to achieve in practical applications
because of structural constraints. Also, the stabilizing effect may not be required
for such a wide range of frequency. By restricting our attention to a smaller range
of acoustic wave frequencies around the dominant second-mode frequency, similar
or even better acoustic absorptive properties could be obtained with fewer and
larger pores (e.g. curve with © symbols in figure 2(b) around f H/aw = 0.7). The
stability of hypersonic boundary layers over UAC operating approximately in a local
cancellation/reinforcement regime is investigated in the next section.

4. Boundary-layer stability calculations
4.1. Spatial versus temporal stability

To explore the validity of the temporal approach, the existing spatially evolving LST
for a hypersonic boundary layer is reformulated to enable comparison with the present
temporally evolving instability results.

The starting point is (2.1) with β̃ = 0. For spatial stability, Ω is taken to be
a real and prescribed frequency ωS, and the eigenvalue problem is solved for the
complex eigenvalue α̃. If Im(α̃) < 0, then the flow is unstable with spatial growth rate
σS =−Im(α̃) and streamwise wavenumber αS = Re(α̃).

In our case, we are interested in the temporal stability: α̃ is a real and prescribed
streamwise wavenumber αT , and Ω is the complex eigenvalue. If Im(Ω) > 0, then the
flow is unstable with temporal growth rate σT = Im(Ω) and frequency ωT = Re(Ω).
Eventually, the determination of the least-damped (or most-unstable) modes for a given
wavelength αT amounts to finding the eigenvalue Ω and corresponding eigenvector q̂
by integrating the governing equations directly in the time domain.

To a first approximation (valid for weakly unstable modes), the spatial and
temporal formulation can be related using the Gaster (1962) transformation. In this
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FIGURE 3. Comparison of the temporal and spatial linear stability analysis for the DNS
boundary-layer profiles over a flat plate at M∞ = 6, Tw/T∞ = 1.4, for Reδ = 24000 (©,
temporal; ——–, spatial) and Reδ = 31300 (�, temporal; – – – –, spatial): (a) growth rate;
(b) streamwise wavenumber. To enable comparison, the Gaster transformation has been
applied to the temporal growth rate in (a).

approximation, Ω is assumed to be an analytic function of α̃, and the following
equations are obtained by integration of the Cauchy–Riemann relations, and neglecting
higher-order terms:

αT = αS = α, ωT = ωS = ω, σT = σSCg = σ, (4.1)

where Cg = ∂ωT/∂αT is the group velocity. The transformation requires that the
(numerical) data for the eigenvalues be differentiated.

To validate the temporal growth approximation, a comparison is made between the
results of LST for spatially and temporally growing instabilities. These calculations
can be conducted for any locally parallel profile. Here, both spatial and temporal
analyses are performed using the base flow compressible DNS solutions calculated for
a flat plate at Mach M∞ = 6 and isothermal wall temperature Tw/T∞ = 1.4. The linear
stability results are computed here for Reδ = ρ∞U∞δ/µ∞ = 24 000 and Reδ = 31 300,
where δ is the boundary-layer thickness defined as U(y= δ)= 0.99U∞.

The comparisons, in non-dimensional form, between spatial and temporal growth
rate, and between spatial and temporal streamwise wavenumber are shown in figures
3(a) and 3(b), respectively, as a function of frequency ωδ/U∞. To enable the
comparison, the Gaster transformation has been applied to the temporal results.

Both spectra show good agreement over the range of unstable frequencies,
demonstrating that the development of the second-mode instability proceeds in a
similar fashion for both spatial and temporal boundary layers. Therefore, we conclude
that the temporal formulation can be used to study UAC performance, and that results
relevant to practical applications with spatially developing boundary layers can be
obtained by applying the Gaster transformation to the temporal DNS results.

4.2. The reinforcement regime

We first consider the reinforcement regime by choosing parameters associated with the
peaks in reflectance shown in figure 2. The parameters are summarized in table 1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.206


Second-mode attenuation and cancellation by porous coatings 321

–1

0

1

2

3

–1

0

1

2

3

0 1 2 3 4 0 1 2 3 4

(a) (b)

FIGURE 4. Base flow field from DNS for the hypersonic boundary layer at M∞ = 6 over
a coating of porosity φ = 0.2, cavity aspect ratio AR = 0.3: (a) v, with zoom-in view
near a pore; (b) T . Solid and dashed lines denote positive and negative velocity contours,
respectively.

Flat plate UAC AR= 0.06 UAC AR= 0.12 UAC AR= 0.3

Tw/T∞ 1.4 1.4 1.4 1.4
M∞ 6 6 6 6
δ/H — 2 2 2
Reδ 24000 24000 24000 24000
Re — 36 72 181
Recrit — 33 17 7
φ — 0.2 0.48 0.8 0.2 0.48 0.8 0.2 0.48 0.8
Lx/δ 2.5 2.4 2.5 2.475 2.4 2.5 2.475 2.25 2.5 2.4375
Npore — 16 40 66 8 20 33 3 8 13

TABLE 1. Parameters for the DNS of a temporally evolving boundary layer over a flat
plate and over nine different coatings of varying porosity φ and cavity aspect ratio AR in
the reinforcement regime (— denotes not applicable).

All the linear stability calculations in this section are performed at Reynolds number
Reδ = 24000, which is related to the acoustic Reynolds number Re= ρwawb/µw by

Re= Reδ
AR

2M∞

H

δ

(
T∞
Tw

)n+1/2

, (4.2)

with n = 1 to take into account the temperature dependence of viscosity modelled in
the current study.

Contours of normal velocity and temperature are shown in figure 4 for a coating
of porosity φ = 0.2, cavity aspect ratio AR = 0.3. Recall that these results are from
nonlinear DNS, and are used as base flow in the linear simulations of this coating.
While the boundary-layer profile over the flat plate is a function of only the normal
direction, the flow field with UAC is two-dimensional. The negative and positive
normal velocities at the downstream and upstream cavity edges, respectively, indicate
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FIGURE 5. Second-mode instability for a hypersonic boundary layer over a flat plate at
M∞ = 6, Reδ = 24000 (——–, LST; N, LDNS), and Reδ = 31300 (– – – –, LST; �, LDNS):
(a) growth rate; (b) frequency.

weak recirculation within the pores. In contrast, the temperature is essentially uniform
inside the pores, equal to the wall temperature. Because the pores are small compared
to the boundary-layer thickness, the recirculating flow near the top of the cavity
is essentially steady, and there is no Rossiter-type feedback mechanism nor global
instabilities observed in the simulations.

The LST predictions for the frequency response of the boundary layer are
obtained by applying the stability calculations from Fedorov et al. (2001) to two-
dimensional second-mode waves at Reδ = 24000. These calculations are conducted
for the boundary-layer profile extracted from the corresponding DNS of the flow
over a flat plate. For the UAC configurations, the approximate porous-wall boundary
condition discussed in § 2.2 is used to account for the presence of the pores. The
growth/decay rate and frequency of the least-damped (or most-unstable) mode are
computed as a function of the streamwise wavelength λ/δ.

The LST results for the hypersonic boundary layer over a flat plate (i.e. no cavities)
at Reδ = 24000 are presented in figure 5. The second-mode has a positive growth
rate for streamwise wavelengths 2.03 6 λ/δ 6 2.81, with the most unstable mode
at λ/δ = 2.42. This motivated the choice of Lx/δ ≈ 2.5 as the streamwise extent
of the computational domain. The predicted linear growth rate for the second-mode
instability at λ/δ = 2.5 is σδ/U∞ = 2.52 × 10−2, and the LDNS results match the
linear calculation. The typical second-mode structures are shown in figures 6(a) and
6(b) for normal velocity v′ and temperature T ′, respectively. Here, the prime denotes
the deviation from the frozen base flow. Similarly to the results in Sandham & Lüdeke
(2009), the maximum perturbation is near the wall for the temperature, and near
y= 0.35 for the normal velocity. This maximum of the velocity perturbation falls near
the critical layer of the base flow at y = 0.3, as expected from linear theory (Mack
1969, 1984).

The acoustic reflectance properties of the different UAC considered here are plotted
in figure 7. The range of unstable frequencies (shaded grey) and the most unstable
second mode (vertical solid line) for the hypersonic boundary layer over the flat plate
at Reδ = 24000 are also shown in the figure. Here, the frequency of the dominant
second mode is ωδ/U∞ = 2.36, which can be expressed as a function of the acoustic
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FIGURE 6. Perturbation field for a hypersonic boundary layer over a flat plate at M∞ = 6,
Reδ = 24000 (from LDNS), showing the structures of the second-mode instability: (a) v′;
(b) T ′.
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FIGURE 7. Reflection coefficient amplitude at normal incidence (θ = 0) from theory, for the
coatings of porosity φ = 0.2 (– – – –), φ = 0.48 (· · · · ·), and φ = 0.8 (– · –) in the reinforcement
regime in table 1: (a) cavity aspect ratio AR = 0.06; (b) AR = 0.12; (c) AR = 0.3. The grey
shaded area corresponds to the frequencies of the unstable modes from figure 5(b), and the
vertical thick line is the frequency of the most unstable mode.

frequency f H/aw using

f H

aw
= 1

2π
ωδ

U∞
M∞

√
T∞
Tw

H

δ
. (4.3)

As shown in figure 7, the second-mode frequency corresponds approximately to the
acoustic frequency of a maximum of the reflection coefficient for all the configurations.
These conditions were chosen to quantify the different UAC performance in the
reinforcement regime (i.e. the ‘worst-case scenario’). Since the operating conditions
of a uniform UAC are expected to depend on the streamwise position and alternate
between local minima and maxima of the coating acoustic absorption, it is important
to make sure that the stabilizing effect is obtained even for unfavourable conditions.

The LST predictions for the growth rate are compared to the LDNS results in
figures 8(a), 8(b) and 8(c) for the UAC of aspect ratio AR = 0.06, AR = 0.12 and
AR = 0.3, respectively. A similar comparison is presented for the frequencies in
figure 9. There is again good agreement between the two methods, with less than
5 % error on the growth rate and less than 1 % difference in the frequencies for all
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FIGURE 8. Linear growth rate σ of the most unstable mode for a hypersonic boundary layer
at M∞ = 6 and Reδ = 24000 over a flat plate (——–, LST; N, LDNS) and over coatings of
porosity φ = 0.2 (– – – –, LST; ©, LDNS), φ = 0.48 (· · · · ·, LST; �, LDNS), and φ = 0.8
(– · –, LST; O, LDNS): (a) cavity aspect ratio AR= 0.06; (b) AR= 0.12; (c) AR= 0.3.

0.5

1.0

1.5

2.0

2.5

3.0

2.0 3.02.5 2.0 3.02.5 2.0 3.02.5

(a)

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0(b) (c)

FIGURE 9. Frequency ω of the most unstable mode for a hypersonic boundary layer at
M∞ = 6 and Reδ = 24000 over a flat plate (——–, LST; N, LDNS) and over coatings of
porosity φ = 0.2 (– – – –, LST; ©, LDNS), φ = 0.48 (· · · · ·, LST; �, LDNS), and φ = 0.8
(– · –, LST; O, LDNS): (a) cavity aspect ratio AR= 0.06; (b) AR= 0.12; (c) AR= 0.3.

cases, with the notable exception of φ = 0.8 (O), which is further discussed below. In
contrast to the growth rate, the presence of the porous coatings of different porosity
and cavity aspect ratio has little effect on the frequency. As previously discussed, the
second-mode frequency is related to the boundary-layer thickness, which is the same
for the different simulations.

Even in this configuration corresponding to a minimum of the coating acoustic
absorption, almost all the UAC geometries successfully stabilize the second mode,
demonstrating the robustness of such coatings. The exception is the case of a coating
of large pores (AR = 0.3) and low porosity (φ = 0.2) which still exhibits a small
positive growth rate in figure 8(c), for both the LST (– – – –) and LDNS (©). As
expected, the very low number of pores per wavelength of instability (Npore = 3) and
the poor acoustic scattering performance (|R| > 0.9 at the second-mode frequency
in figure 7c) of this particular design lead to a less efficient coating. The velocity
and temperature perturbation fields for the AR = 0.3, φ = 0.2 geometry are shown in
figure 10. The second-mode structures for the boundary layer over this geometry are
still visible, reminiscent of the results for the flat plate in figure 6. Besides the large-
scale structure relevant to the second mode, the perturbation field also exhibits smaller-
scale structures associated with the interaction of the boundary-layer disturbance with
the cavities, and with acoustic waves emanating from the cavity openings.

Finally, in the case of high porosity φ = 0.8 (O), the higher grow rate and very low
frequency suggest a different instability altogether. Here, the LDNS results highlight
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FIGURE 10. Perturbation field for a hypersonic boundary layer over a coating of porosity
φ = 0.2 and cavity aspect ratio AR = 0.3, at M∞ = 6, Reδ = 24000 (from LDNS): (a) v′;
(b) T ′.

Flat plate UAC AR= 0.12

Tw/T∞ 1.4 1.4
M∞ 6 6
δ/H — 2.6
Reδ 31 300 31300
Re — 94
Recrit — 17
φ — 0.2 0.48 0.8
Lx/δ 2.6 2.54 2.60 2.60
Npore — 11 27 45

TABLE 2. Parameters for the DNS of a temporally evolving boundary layer over a flat
plate and over three different coatings of porosity φ and cavity aspect ratio AR in the
cancellation regime (— denotes not applicable).

the presence of an acoustic slow mode which destabilizes the flow and causes it
to differ substantially from the theoretical second-mode value. This leads to outright
instability for the UAC geometry AR = 0.3, φ = 0.8 in figure 8(c). This new mode is
discussed in § 5.

4.3. The cancellation regime
To model the optimum cancellation regime, the nonlinear simulations are continued
until the boundary-layer thickness reaches δ/H = 2.6, so that the linear stability
calculations can be performed at Reynolds number Reδ = 31300. The parameters are
summarized in table 2. The LST results for the hypersonic boundary layer over the flat
plate are compared to those for Reδ = 24000 in figure 5. The change in wavelength of
the most unstable mode between the two cases is not significant. This is because the
reference length scale for the data is chosen to be the boundary-layer thickness δ and
for the second mode of maximal growth, λ/δ is almost constant. Likewise, because the
second-mode frequency can be well predicted using the inviscid theory, the changes in
frequency are minimal. In contrast, the growth rate is affected by viscosity, and the
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FIGURE 11. Performance improvement for the coatings in the cancellation regime in table 2:
M∞ = 6, Reδ = 31, 300, cavity aspect ratio AR = 0.12 and porosity φ = 0.2 (– – – –; ©),
φ = 0.48 (· · · · ·; �) and φ = 0.8 (– · –; O). (a) Reflection coefficient amplitude from theory.
The grey shaded area corresponds to the frequencies of the unstable modes from figure 5(b),
and the vertical thick line is the frequency of the most unstable mode. (b) Linear growth rate
from LST (lines) and LDNS (symbols), for the UAC and the flat plate (——–; �).

maximum value increased slightly. For Reδ = 31300, the second mode has a positive
growth rate for wavelengths 1.946 λ/δ 6 2.78. The most-unstable mode has frequency
ωδ/U∞ = 2.40 and occurs at λ/δ = 2.37.

Unlike the stability results, the acoustic Reynolds number and the acoustic
scattering properties of the coating are independent of the boundary-layer thickness
and unchanged. Using (4.3), the frequency of the most unstable second mode
now approximately corresponds to a local minimum of the reflection coefficient at
normal incidence (θ = 0), as shown in figure 11(a). These conditions correspond to
a cancellation regime (i.e. best-case scenario), where the UAC operates at a local
maximum of acoustic absorption. The corresponding linear growth rates are presented
in figure 11(b). As anticipated, a significant stabilizing effect is obtained for this
configuration, over a large range of wavelength, compared to the results in figure 8(b).
Note that in the case of high porosity φ = 0.8, the new acoustic slow mode is still
present.

4.4. Nonlinear simulations
Nonlinear numerical simulations including the outer flow are performed for the UAC
configurations in the reinforcement regime, to confirm the linear results and investigate
potential detrimental effects of the coating. Following the same procedure as for the
linear simulations, the same pressure-pulse perturbation is added to the flow and the
long-time response is recorded. For each of the cases considered in table 1, the
nonlinear simulations agreed fully with the results of linear analysis. That is, except
for the particular case of φ = 0.8 and AR = 0.3 discussed in the next section, the
nonlinear simulations all resulted in damped second-mode response and the boundary
layer remained laminar. For the coating of aspect ratio AR= 0.3 and porosity φ = 0.8,
where a new unstable mode is observed in the linear response of the perturbed
boundary layer, the same instability growth is present in the nonlinear simulation,
with similar frequency and growth rate as the LDNS results. Here, the nonlinear
simulations confirm that this configuration exhibits a dominant instability of growth
rate larger than that of the most unstable second mode. The current DNS would need
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φ AR Reδ αδ σδ/U∞ ωδ/U∞ Ci/U∞ Cr/U∞ f H/aw

0.8 0.12 24000 2.54 3.15× 10−3 0.614 1.24× 10−3 0.242 0.248
0.8 0.3 24000 2.58 4.65× 10−2 0.669 1.80× 10−2 0.259 0.270

TABLE 3. Simulation parameters and characteristics of the new unstable mode R predicted
by LDNS for coatings of porosity φ = 0.8 and cavity aspect ratio AR = 0.12 and 0.3. The
corresponding acoustic frequency f H/aw is computed using (4.3).

to be extended to longer times to investigate whether the mode eventually reaches an
asymptotic state, limit cycle or continues to evolve into more complicated fluctuations.

It should be mentioned that the present study of the nonlinear effects of the porous
coating has several limiting assumptions. First, only strictly two-dimensional, planar
cavities are considered. Second, the periodic domain was fixed to approximately one
wavelength of the dominant second mode. Thus, any first-mode instability would
not be captured, even if they were unstable, since their wavelength is longer than
permitted in the computational domain. With these limitations in mind, the nonlinear
DNS results did not show differences with the linearized simulations, and there was
no evidence of strong interactions between the cavity flow and the second mode (aside
from the stabilizing effects already discussed), nor roughness/cavity-induced transition
mechanisms (even for small numbers of pores per wavelength of instability, as low as
3). Here, it is important to recall that the pores are relatively deep and narrow, and
small compared to the boundary-layer thickness: the flow physics inside the cavities
is dominated by viscosity, and feedback mechanisms or global instabilities are not
present.

5. Analysis of the high-porosity unstable mode
As noted above, numerical simulations of high-porosity UAC geometries (φ = 0.8)

revealed an unexpected unstable mode. For this instability, the growth rate σδ/U∞, the
frequency ωδ/U∞ and complex phase speed C/U∞ obtained from LDNS are presented
in table 3, where C = Cr + iCi = (ω + iσ)/α, and α = 2π/λ is the wavenumber. As
discussed in § 4.2, the frequency is much smaller than that of a Mack second mode. A
comparison of the structure of this instability obtained from LDNS in figure 12 to that
of the second mode (e.g. figure 10) also indicates that the instability wave structures
are distinct.

5.1. Theory
To clarify the properties of the new resonant mode, referred hereafter as mode R, we
compare LST results of the disturbance spectrum for the solid-wall case to the porous-
wall case of porosity φ = 0.8 and cavity aspect ratio AR= 0.3. For the solid-wall case
in figure 13, the spectra ω(α) and σ(α) are typical for a hypersonic boundary layer
(e.g. Fedorov & Khokhlov 2001; Fedorov & Tumin 2011). At small wavenumbers
the fast mode F (solid thick line) coalesces with fast acoustic waves of phase speed
c = 1 + 1/M∞, while the slow mode S (dashed line) coalesces with slow acoustic
waves of c = 1 − 1/M∞. Owing to the synchronization of these modes in the vicinity
of αδ ≈ 2.4, the branching of the dispersion relation leads to destabilization of mode
F and stabilization of mode S. Here the unstable mode F corresponds to the Mack
second mode.
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FIGURE 12. Structure of the new mode instability R for the hypersonic boundary layer over a
coating of porosity φ = 0.8 and cavity aspect ratio AR = 0.3, at M∞ = 6, Reδ = 24000 (from
LDNS): (a) v′; (b) P′.
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FIGURE 13. Disturbance spectrum σ(α) and ω(α) for the solid wall at Reδ = 24000: modes
F (——–) and S (– – – –).

For the porous-wall case of φ = 0.8 and AR= 0.3 in figure 14, the situation changes
dramatically. Besides the previous dispersion lines, which relate to modes F and S on
the solid wall for αδ > 2 , there are new modes, in particular mode R shown by the
thick black line. As in the solid-wall case, branching of the dispersion relation near
the synchronization points leads to destabilization of one mode and stabilization of the
other. Namely, the synchronization between modes F1 and S1 leads to the instability of
mode S1 at relatively small α. This instability is not observed in the solid-wall case.
Furthermore, the new mode R is unstable in a wide wavenumber range and has growth
rate larger than that of mode F in the solid-wall case. The spectral line ω(α) of mode
F1 (line with circles) is overlapped by the spectral line of mode R (thick black line)
in figure 14(b), while their growth rates remain essentially different in figure 14(a).
This behaviour of the spectrum becomes clearer when the spectral lines are plotted in
the complex-phase-speed plane shown in figure 15. As α increases, the phase speed
of mode F1 departs from the fast acoustic branch, crosses the vorticity/entropy branch
and approaches the slow acoustic branch. As soon as mode F1 coalesces with the
lower side of the slow acoustic branch, mode R departs from the upper side of this
branch.
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FIGURE 14. Disturbance spectrum σ(α) and ω(α) for the porous wall of porosity φ = 0.8
and cavity aspect ratio AR = 0.3 at Reδ = 24000: modes F (——–), S (– – – –), F1 (–©–), S1
(– · –) and new mode R (——–).
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FIGURE 15. LST Spectral lines of mode F1 (–©–) and mode R (——–) and LDNS
results (•) for the porous wall of porosity φ = 0.8 and cavity aspect ratio AR = 0.3 at
Reδ = 24 000, in the complex-phase-speed plane (Cr,Ci). The thick grey lines show the
branches of slow acoustic waves (Cr/U∞ < 1 − 1/M∞,Ci/U∞ = 0), fast acoustic waves
(Cr/U∞ > 1 + 1/M∞,Ci/U∞ = 0) and vorticity/entropy waves (Cr/U∞ = 1,Ci/U∞ 6 0) in
the inviscid approximation.

The pressure perturbation field in figure 12(b) indicates that in each cavity the
pressure antinode is at the cavity bottom and the pressure node is at the cavity top,
consistent with resonant forcing within the cavity. The first resonance of an isolated,
deep cavity (b� H) occurs at the acoustic frequency f H/aw = 1/4. In this case,
each cavity works as an acoustic resonator that is excited at the lowest frequency
corresponding to a wavelength of 4H. The acoustic frequency f corresponding to the
frequency ω of the new mode R can be computed using (4.3). As shown in table 3,
this frequency is close to the first acoustic resonance.
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FIGURE 16. The growth rate of mode R for coatings of different porosity φ at Reδ = 24000
and cavity aspect ratio AR = 0.3: (a) at lateral wavenumber β̃ = 0; (b) at streamwise
wavenumber αδ = 2.58.

Therefore, it is natural to assume that the new instability is associated with resonant
interactions in the cavities. To shed light on the physics of such a system of coupled
resonating cavities, we consider the simple case of a two-dimensional inviscid wave
propagating over a porous surface without external flow. For such a system, the phase
speed can be shown (see the Appendix for details) to be

Cr

aw
= 1√

1+ φ2tan2(2πf H/aw)
. (5.1)

Thus, an increase in the porosity of the coating leads to a decrease of the disturbance
phase speed. As f approaches the resonance condition, the phase speed tends to
zero. Thus, the disturbance fields near the cavity mouths are coupled such that
the near-surface wave can propagate at much slower speeds than acoustic waves in
an unbounded medium. Under such resonance conditions, the UAC impedance is
small, and the porous structure may support a surface wave with small phase speed,
consistent with the observed new mode R. For long-wave disturbances with frequency
significantly smaller than the first-resonance frequency, cavities do not resonate, and
the wave is stable.

As shown in figure 16(a), mode R is stabilized as porosity decreases. Presumably
this is due to the fact that the vertical velocity amplitude averaged over the porous
surface decreases proportionally to the porosity φ. The LST results for three-
dimensional (oblique) waves related to the mode R are shown in figure 16(b) for
αδ = 2.58 corresponding to the conditions in table 3. As expected for acoustic
instability of a hypersonic boundary layer, the maximal growth rate is observed for
two-dimensional waves having the lateral wavenumber β̃ = 0.

Figure 17 illustrates the cavity depth effect, where the frequency ω and the growth
rate σ of mode R are shown as functions of the cavity aspect ratio AR. These
calculations were carried out at the wavenumber αδ = 2.58, porosity φ = 0.8 and the
acoustic Reynolds number Re = 181 related to the conditions in table 3. Deep cavities
(AR< 0.125) and shallow cavities (AR> 0.475) do not resonate, and mode R is stable.
The maximum instability is observed for cavities of moderate aspect ratio AR ≈ 0.3
favourable for the resonance mechanism. The results show that the unstable region
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FIGURE 17. The distributions σ(AR) and ω(AR) for mode R at porosity φ = 0.8, streamwise
wavenumber αδ = 2.58, and acoustic Reynolds number Re= 181.
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FIGURE 18. Comparison of pressure perturbation field from LST (black lines) and LDNS
(grey contours) for coatings of porosity φ = 0.8 at Reδ = 24000: (a) cavity aspect ratio
AR= 0.3 and streamwise wavenumber αδ = 2.58; (b) AR= 0.12 and αδ = 2.54.

is formed in the vicinity of the resonance point Hres, with the maximum growth rate
located at H/Hres ≈ 1.1.

5.2. Comparison to LDNS
As shown in figure 18, the instantaneous pressure disturbance field predicted by LST
(black lines) closely matches the structure of the disturbance field obtained through
LDNS (flooded contours) for the case φ = 0.8, with cavity aspect ratios AR = 0.3
and AR = 0.12, respectively. Figure 19 shows that the LDNS frequency values closely
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FIGURE 19. Growth rate σ(α) and frequency ω(α) of mode R for coatings of porosity
φ = 0.8, cavity aspect ratio AR = 0.12 (a,b), and AR = 0.3 (c,d). No-slip boundary condition
u(0)= 0 (solid lines); boundary condition in (5.5) (dashed line); LDNS results (•).

match the theoretically predicted values, but the growth rates are substantially lower
(compare the curves marked K = 0 with the symbols). It appears that some effect not
accounted for in the theory is retarding the growth of this mode.

We propose that the discrepancy is due a slip velocity associated with the influence
of the cavity mouth on the coupling between disturbances in neighbouring cavities,
as the presence of such flow structures is clear in figure 4(a). The presence of a
non-zero streamwise velocity disturbance u 6= 0 at y = 0 may affect the growth rate of
the new mode R. To check this hypothesis, we consider the linearized equation for the
x-momentum with an inviscid approximation

ρ

(
∂u

∂t
+ U

∂u

∂x
+ v ∂U

∂y

)
=−∂p

∂x
. (5.2)

In the derivation of (5.2) we utilize the fact that in the mean flow, U = U(y) and
V = 0. Substituting in a disturbance of the form q = q̂(y) exp(iαx − iωt) and setting
ρ = 1/T , we obtain

1
T
(−iωû+ iαUû+ v̂U′)=−iαp̂ (5.3)

where prime denotes the derivative d/dy.
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On those portions of y = 0 outside the cavities, û(0) = 0, while along the cavity
mouths the momentum equation gives free slip,

û(0)= −iU′(0)v̂(0)+ αT(0)p̂(0)
ω

. (5.4)

In order to account for this in the LST, we modify the boundary condition by merging
these two expressions for û(0) with the porosity, obtaining

û(0)= Kφ

ω

(−iU′(0)v̂(0)+ αT(0)p̂(0)
)
, (5.5)

where K is a tunable parameter that we use to account for viscous effects that will
further reduce the slip velocity, but which are difficult to model from first principles
owing to the complex near-cavity flow field. As the reduction in velocity û(0) should
increase as the cavity width decreases, we expect K to decrease with AR.

Parametric calculations made using this model show that, for the coating of porosity
φ = 0.8 and cavity aspect ratio AR = 0.12, LST results with K = 0.3 agree well with
the DNS results (figure 19a,b). For the case φ = 0.8, AR = 0.3, the cavity is wider
by a factor of 2.5, and the theory with K = 0.9 agrees well with DNS (figure 19c,d).
Thus the variation of the K parameter follows the expected behaviour, increasing as
the cavity aspect ratio increases. It should be noted that (5.5) and the accompanying
calculations are offered as an explanatory analysis rather than a predictive one; further
refinements would be required to predict the appropriate value of K as a function of
AR.

6. Conclusions
In this work, the stabilizing effect of ultrasonic absorptive coatings on hypersonic

boundary-layer instabilities has been investigated with linear and nonlinear solutions
of the two-dimensional Navier–Stokes equations, and linear stability theory. Our
previous work on acoustic scattering properties of two-dimensional porous coatings
and previous LST results motivate a consideration of UAC designs which have not
been systematically studied in the past.

The coatings considered consist of a uniform array of two-dimensional rectangular
pores (slots) of aspect ratios AR = 0.06, 0.12, 0.3, and porosity φ = 0.2, 0.48, and
0.8. The conservative way to design coatings is to have the UAC operated in an
attenuative regime where the pores are relatively deep and acoustic waves (and
second-mode instabilities) are attenuated by viscous effects inside the pores. Here,
alternative designs are also considered, where the pores are relatively shallow and the
coating operates in the alternating cancellation/reinforcement regime, which is related
to reflections of acoustic waves from the bottom of the cavities, and dependent on the
frequency of the acoustic waves.

For the numerical simulations of the boundary layer at Mach number M∞ = 6,
a computationally tractable and efficient temporal method is used to account for
the detailed flow physics associated with micro-cavities that attenuate second-mode
instabilities in hypersonic boundary layers. Here, temporally (rather than spatially)
evolving boundary layers are considered. This greatly reduces computational expense,
since it allows the computational domain to include a single wavelength of the
instability (which still may require ∼20 micro-cavities in the simulation). We provide
evidence that this approximation is appropriate for slowly growing second-mode
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instabilities and that spatial instability results can be accurately recovered from the
temporal ones via the Gaster transformation.

With the exception of one case discussed below, the linear DNS confirm the
results of LST that employs an approximate porous-wall boundary condition. Both
methods show that the UAC stabilizing performances are directly related to their
acoustic scattering performances. At Reynolds numbers Reδ = 24000, most of these
UAC configurations correspond to the reinforcement regime where the second-mode
frequency matches a frequency of minimum absorptive properties of the coating
(i.e. ‘worst-case scenario’). It is important to consider these cases to ensure that
the UAC stabilizing effect is obtained even in unfavourable conditions. To model the
optimum cancellation regime where the UAC operates at a local maximum of acoustic
absorption (i.e. ‘best-case scenario’), the LDNS and LST are performed at Reynolds
numbers Reδ = 31 300. As expected, a significant stabilizing effect is obtained for
these configurations over a large range of wavelength.

While coatings currently used in applications are typically uniform, and in the
attenuative regime, this analysis suggests that the theoretical acoustic modelling could
be used to optimize the pore depth as a function of the streamwise direction. The
dependence arises from the fact that the second-mode properties depend on the
streamwise location, that is, at each x-station, there are several unstable waves of
slightly different frequencies, as pointed out by Fedorov et al. (2001). By enforcing an
optimum streamwise-dependent depth, the coating could potentially always operate at
the maximum absorption of the frequency of the local most-unstable second mode.

As mentioned, the LDNS uncovered a new unstable mode on the wall with coatings
of sufficiently high porosity. This mode propagates downstream with low phase speed
and has a growth rate which can be larger than that of the most unstable second
mode. The new instability was also captured by the LST with the impedance boundary
conditions on the porous surface. The baseline theoretical model, which assumes zero
fluctuations of the longitudinal velocity on the porous surface, predicts the basic trends
of the new instability and helps to explain its physical mechanism. Namely, this theory
shows that the new resonant mode, referred to as mode R, is associated with acoustic
resonances in the cavities. Disturbance fields near the mouths of resonating cavities are
coupled such that the boundary-layer disturbance is decelerated and becomes unstable.
Parametric studies indicate that the new instability occurs on coatings having closely
spaced cavities of moderate aspect ratio. To avoid this detrimental effect, which can
reduce the UAC laminar-flow-control performance, the coating should have sufficiently
small porosity and/or narrow pores of sufficiently small aspect ratio. Restrictions on
these parameters can be estimated using the baseline theoretical model. However, these
estimates may be too conservative, because the theory overpredicts the mode R growth
rate. It was shown that this overshoot is associated with non-zero fluctuations of
the longitudinal velocity on the porous surface. To get more accurate restrictions on
the UAC parameters, one should perform direct numerical simulations or develop a
theoretical model accounting for this slip effect.

Note that previous theoretical, numerical and experimental studies of the UAC
stabilization effect have been focused on the low-porosity and/or narrow-pore
configurations, which do not provide favourable conditions for the foregoing instability
mechanism. Moreover, actual porous coatings have low porosities because of the
structural constraints and chances to face the new instability are small. Nevertheless,
optimal UAC (providing maximal damping of the Mack second mode) have high
porosity and relatively shallow cavities. Seeking this optimum, one should check that
the coating does not sustain the new instability.
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Finally, nonlinear simulations of the same cases were performed and led to the same
conclusions as the linear analysis. The porous coatings damp second-mode instability
and the boundary layer remains laminar. Additionally, the nonlinear results did not
exhibit any ‘tripping’ of the boundary layer by small-scale disturbances associated
with individual pores.
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Appendix.
Consider a two-dimensional inviscid wave propagating over a porous surface without

external flow, with the +y direction corresponding to the outgoing normal to the
surface. Over the wall, the pressure disturbance p = p̂(x, y) exp(−iωt) is governed by
the Helmholtz equation

1p̂+
(
ω

aw

)2

p̂= 0, (A 1)

which has the general solution

p̂(x, y)= p̂+ exp(iαx+ κy)+ p̂− exp(iαx− κy), (A 2)

κ2 = α2 − ω
2

a2
w

= α2

(
1− C2

a2
w

)
, Re(κ) > 0. (A 3)

For a wave propagating with the phase speed Cr < aw, we have

κ = α
√

1− C2
r

a2
w

(A 4)

for α > 0. Since the near-wall wave decays as y→∞, we obtain

p̂(x, y)= p̂− exp(iαx− κy). (A 5)

Substituting the solution into the linearized y-momentum equation

∂v

∂t
+ 1
ρw

∂p

∂y
= 0 (A 6)

leads to

−iωv̂− − κ

ρw
p̂− = 0, (A 7)

which can be written as

ω = iκ
ρw

Z(ω), (A 8)

where Z(ω) = p̂−/v̂− is the porous-wall impedance. Using the boundary condition at
the cavity bottom v(y = −H) = 0 and neglecting viscous effects inside the cavities,
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Z is given by

Z(ω)=−i
ρwaw

φ
cot(ωH/aw). (A 9)

Substituting the expression for Z in (A 9) and the definition for κ in (A 4) into the
dispersion relation in (A 8), the wave phase speed is given by

Cr

aw
= 1√

1+ φ2tan2(ωH/aw)
. (A 10)
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BRÈS, G. A., COLONIUS, T. & FEDOROV, A. V. 2010 Acoustic properties of porous coatings for
hypersonic boundary-layer control. AIAA J. 48 (2), 267–274.
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