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Let [n]r be the complete r-partite hypergraph with vertex classes of size n. It is an

easy exercise to show that every set of more than (k − 1)nr−1 edges in [n]r contains a

matching of size k. We conjecture the following rainbow version of this observation: if

F1, F2, . . . , Fk ⊆ [n]r are of size larger than (k − 1)nr−1 then there exists a rainbow matching,

that is, a choice of disjoint edges fi ∈ Fi. We prove this conjecture for r = 2 and r = 3.

2010 Mathematics subject classification: Primary 05D05

1. Motivation

1.1. An r-partite version of the Erdős–Ko–Rado theorem

A matching is a collection of disjoint sets. As is customary, we write [n] for the generic

set of size n, {1, 2, . . . , n}. The largest size of a matching in a hypergraph H is denoted by

ν(H).

An r-uniform hypergraph H is called r-partite if V (H) is partitioned into sets V1, . . . , Vr ,

called the vertex classes of H , and each edge meets every Vi in precisely one vertex. If

all vertex classes are of the same size n, H is called n-balanced. The complete n-balanced

r-partite hypergraph can clearly be identified with [n][r], the set of all functions from [r]

to [n], and in accordance we denote it by [n]r .

Observation 1.1. If F is a set of edges in an n-balanced r-partite hypergraph and |F | >
(k − 1)nr−1, then ν(F) � k.
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Proof. The complete n-balanced r-partite hypergraph [n]r can be decomposed into nr−1

perfect matchings Mi, each of size n. Writing F =
⋃

i�nr−1 (F ∩ Mi) shows that at least one

of the matchings F ∩ Mi has size k or more.

This observation can be viewed as an r-partite version of the celebrated Erdős–Ko–

Rado problem, on the number of edges in the complete r-uniform hypergraph on n

vertices needed to guarantee a matching of size k. The Erdős–Ko–Rado theorem settles

this problem for k = 2.

The topic of this paper is a possible extension of Observation 1.1 to rainbow matchings.

Definition 1.2. Let F = (Fi | 1 � i � k) be a collection of hypergraphs. A choice of

disjoint edges, one from each Fi, is called a rainbow matching for F .

Conjecture 1.3. If F = (F1, F2, . . . , Fk) is a list of sets of edges in an n-balanced r-partite

hypergraph and |Fi| > (k − 1)nr−1 for all i � k, then F has a rainbow matching.

The case k = 2 is not hard: see [1]. The case r = 2 is also not hard, and although it

will be subsumed by later results, we give a short proof here.

Theorem 1.4. If F = (F1, F2, . . . , Fk) is a list of sets of edges in an n-balanced bipartite

graph and |Fi| > (k − 1)n for all i � k, then F has a rainbow matching.

Proof. Denote the vertex classes of the bipartite graph by M and W . Since∑
v∈M degF1

(v) = |F1| > (k − 1)n, there exists a vertex v1 ∈ M such that degF1
(v1) � k.

Let F ′
2 = F2 − v1 (namely the set of edges in F2 not containing v1). Since degF2

(v1) � n, we

have |F ′
2| > (k − 2)n, and hence there exists a vertex v2 �= v1 such that degF2

(v2) � k − 1.

Continuing in this way we obtain a sequence v1, . . . , vk of distinct vertices in M, satisfying

degFi
(vi) > k − i. Since degFk

(vk) > 0, there exists an edge ek ∈ Fk containing vk . Since

degFk−1
(vk−1) > 1, there exists an edge ek−1 ∈ Fk−1 containing vk−1 and missing ek . Since

degFk−2
(vk−2) > 2, there exists an edge ek−2 ∈ Fk−2 containing vk−2 and missing ek and ek−1.

Continuing in this way, we construct a rainbow matching e1, . . . , ek for F .

Our main result is as follows.

Theorem 1.5. Conjecture 1.3 is true for r = 3.

2. Shifting

The proof in [4] uses an operation called ‘shifting’, which has since become a main tool

in the area. It is an operation on a hypergraph H , defined with respect to a specific linear

ordering ‘<’ on its vertices. For x < y in V (H) define sxy(e) = e ∪ x \ {y} if x �∈ e and y ∈ e,

provided e ∪ x \ {y} �∈ H; otherwise let sxy(e) = e. We also write sxy(H) = {sxy(e) | e ∈ H}.
If sxy(H) = H for every pair x < y, then H is said to be shifted.
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Given an r-partite hypergraph G and a linear order on each vertex class, an r-partite

shifting is a shifting sxy where x and y belong to the same vertex class. G is said to be

r-partitely shifted if sxy(H) = H for all pairs x < y that belong to the same vertex class.

Given a collection H = (Hi, i ∈ I) of hypergraphs, we write sxy(H) for (sxy(Hi), i ∈ I).

Remark. Define a partial order on pairs of vertices by (vi, vj) � (vk, v�) if i � k and j � �.

Write (vi, vj) < (vk, v�) if (vi, vj) � (vk, v�) and (vi, vj) �= (vk, v�). A set F being shifted is

equivalent to its being closed downward in this order, which in turn is equivalent to its

complement being closed upward.

As observed in [3] (see also [2]), shifting does not increase the matching number of a

hypergraph. This can be generalized to rainbow matchings.

Lemma 2.1. Let F = (Fi | i ∈ I) be a collection of hypergraphs, sharing the same linearly

ordered ground set V , and let x < y be elements of V . If sxy(F) has a rainbow matching,

then so does F .

Proof. Let sxy(ei), i ∈ I , be a rainbow matching for sxy(F). There is at most one i such

that x ∈ ei, say ei = a ∪ {x} (where a is a set).

If there is no edge es containing y, then replacing ei with a ∪ {y} as a representative

of Fi, leaving all other es as they are, results in a rainbow matching for F . If there is an

edge es containing y, say es = b ∪ {y}, then there exists an edge b ∪ {x} ∈ Fs (otherwise

the edge es would have been shifted to b ∪ {x}). Replacing ei with a ∪ {y} and es with

b ∪ {x} results in a rainbow matching for F .

3. A Hall-type size condition for rainbow matchings in bipartite graphs

In this section we prove a result on the existence of rainbow matchings for a collection

of bipartite graphs, all sharing the same vertex set and bipartition, that will be used later

for the proof of Theorem 1.5. This condition is not formulated in terms of the sizes of

the individual graphs, but (somewhat reminiscent of the condition in Hall’s theorem) in

terms of the sizes of subsets of the collection of graphs.

Theorem 3.1. Let Fi, i � k be subsets of E(Kn,n). If∑
i∈I

|Fi| > n|I |(|I | − 1) for every I ⊆ [k], (3.1)

then the system F = (F1, . . . , Fk) has a rainbow matching.

Sharpness of this bound is shown by the example of k sets Fi, each consisting of all

edges incident with a set of k − 1 vertices in one side of the bipartite graph. The analogous

result for r = 1 can be proved directly, or by using Hall’s theorem. For r � 3 the analogous

result, suggested by the same example, is that if
∑

i∈I |Fi| > n2|I |(|I | − 1) for all I then the

system (F1, . . . , Fn) has a rainbow matching. But this is false, as shown by the pair F1, F2
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in which F1 consists of a single edge and F2 the set of all edges meeting this edge. Then

|F2| = n3 − (n − 1)2, |F1| + |F2| = 3n2 − 3n, which for n > 3 is larger than 2n2, and there

is no rainbow matching. It is not clear what is the right condition for general r.

3.1. An algorithm

The proof of Theorem 3.1 is algorithmic. As before, we assume that each side of the

bipartite graph is linearly ordered, say M = (m1 < m2 < · · · < mn) and W = (w1 < w2 <

· · · < wn).

Definition 3.2. Two edges e, f are said to be parallel if the order between their M vertices

is the same as the order between their W vertices. If in this case the vertices of e precede

those of f, we write e < f. Non-parallel edges are said to be crossing.

By Lemma 2.1, we may assume that all Fi are bipartitely shifted with respect to the

given orders.

Order the sets Fi by their sizes:

|F1| � |F2| � · · · � |Fk|. (3.2)

We choose inductively edges ei ∈ Fi. As e1 we choose a longest edge (mc(1), wd(1)) in F1,

where the length of an edge (mp, wq) in this case is |q − p|. By the shiftedness of F1, either

c(1) = 1 or d(1) = 1.

Suppose that e1 ∈ F1, e2 ∈ F2, . . . , et−1 ∈ Ft−1 have been chosen. Let Zt =
⋃

j<t ej . Let at
be the first index such that mat �∈ Zt, and let bt be the first index such that wbt �∈ Zt. Let

Rt = {m1, . . . , mat−1} ∪ {w1, . . . , wbt−1} (R1 is the empty set).

Let F̃t = Ft[V \ Zt] (the set of edges in Ft not meeting Zt). Define the length of an edge

(mp, wq) ∈ Ft as |(q − bt) − (p − at)| (this is the same as the above definition of ‘length’,

once the consecutive used vertices are removed). Assuming that F̃t �= ∅, choose et to be a

longest edge in F̃t. Since Ft is shifted, et must contain either mat or wbt .

The fact that et ∈ F̃t implies inductively that the edges ei, i � t, form a matching. The

proof will be complete if we show that F̃t �= ∅ for all t � k.

The following example illustrates the way the algorithm proceeds. In it the inequalities

of (3.1) are violated, and indeed the algorithm fails, although in fact there is a rainbow

matching.

Example 3.3. Let q < n. Let F1 = {mcwd | c, d � q}, and let

F2 = F3 = · · · = Fq+1 = {mcwd | c � q, d � n} ∪ {mcw1 | c � n}.

Here |Fi| = (q + 1)n − q for all 1 < i � q + 1, and hence
∑

i�q+1 |Fi| = q2 + q[(q + 1)n −
q] = q(q + 1)n, so in this case (3.1) is violated, with equality replacing strict inequality.

Indeed, as we shall see, the algorithm fails. Yet, there exists a rainbow matching: F1 is

represented by m1wq , F2 is represented by mnw1, and Fi is represented by mi−1wn−i+2 for

i > 2.
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Here is how the algorithm goes (we are assuming below that q � 3):

R1 = ∅, e1 = mqw1, R2 = {w1}, e2 = m1wn, R3 = {m1, w1}, e3 = m2wn−1, . . . ,

eq = mq−1wn−q+2, Rq+1 = {w1} ∪ {mc | c � q}.

After the choice of eq there is no possible choice for eq+1 and the algorithm halts. Note

that in the first step it was also legitimate to choose m1wq , which would lead to a rainbow

matching.

Let us now return to the proof. Suppose, for contradiction, that F̃m = ∅ for some m � n.

We shall show that this entails a violation of (3.1), for I = [m].

For each i < m let c(i), d(i) be such that ei = (mc(i), wd(i)). As already noted, by shiftedness

either c(i) = ai or d(i) = bi. We direct ei, calling one of its endpoints ‘tail’ and the other

‘head’, as follows. If c(i) = ai we call mai the tail of ei, and wd(i) its head. Otherwise, we call

wd(i) the tail, and mc(i) the head. We write tail(ei) for the tail, and head(ei) for the head.

We clearly have the following.

Observation 3.4. If i < j then tail(ei) ∈ Rj . �

3.2. Short edges

We call the edges ei contained in Rm short and an edge not contained in Rm long. Let

eij , j < p, be the short edges, where i1 < i2 < · · · < ip−1 (so, there are p − 1 short edges).

Define i0 = 0 and ip = m. To understand the significance of short edges, note that if there

are no short edges then |Rm| = m − 1. Since F̃m = ∅, the set Rm is a cover for Fm, and

hence |Fm| � (m − 1)n. By (3.2) this implies that
∑

i�m |Fi| � m(m − 1)n, contradicting the

assumption of the theorem.

Example 3.5. In Example 3.3 there is only one short edge, e1.

For j < p let �Wj be the length of the longest edge in F̃ij containing maij
and let �Mj be

the length of the longest edge in F̃ij containing wbij
. Let

SKIPM
j = {maij

, maij +1, . . . , maij +�Mj
}, SKIPW

j = {wbij
, wbij +1, . . . , wbij +�Wj

}.

We let TM
j (resp. TW

j ) denote the longest contiguous stretch of vertices in Zij ∩ M

(resp. Zij ∩ W ) starting right after SKIPM
j (resp. SKIPW

j ), and let tMj = |TM
j |, tWj = |TW

j |.
See Figures 1 and 2.

4. Bounding
∑

|Fi | from above

4.1. A toy case: one short edge

Our aim is now to delve into calculations showing that under the negation assumption∑
i�m |Fi| < nm(m − 1). To demonstrate the type of arguments involved in the general

proof, let us consider separately the case in which there is only one short edge, say ei.

It may be worth following the arguments in Example 3.3, in which as mentioned above

there is only one short edge.
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Figure 1. SKIPM
j , TM

j and eij .

Figure 2. SKIPW
j and TW

j . Here e′
ij

is the longest edge in F̃ij starting at ai.

Recall that either c(i) = ai or d(i) = bi, and without loss of generality assume the latter,

implying that d(i) = min{j | wj �∈ Ri}.
Write � for �M1 , namely the length of ei (to understand the subscript 1 in �M1 remember

that i1 = i). The edge ei skips � vertices in Rm, each being matched by some edge ej ,

i < j < m, and hence � � m − i.

Clearly, |Rm| = m, and since Rm is a cover for Fm it follows that |Fm| � mn. But in this

calculation each of the � edges (mc(i), wj) for j = bi, bi + 1, . . . , bi + � − 1, being contained

in Rm, is counted twice, from the direction of mc(i) and from the direction of wj . Thus we

know the following:

|Fm| � mn − �.

Since no edge eq , q < i, satisfies eq < ei, we have |Ri| = i − 1, and the number of edges

in Fi incident with Ri is thus at most (i − 1)n, and by the definition of � we have

|Fi| � (i − 1)n + �2. Hence∑
q�m

|Fq| � i|Fi| + (m − i)|Fm| � i((i − 1)n + �2) + (m − i)(mn − �),

and hence

m(m − 1)n −
∑
q�m

|Fq| � m(m − 1)n − [i((i − 1)n + �2) + (m − i)(mn − �)]

= (i − 1)(m − i)n + (m − i)� − i�2

= [(i − 1)(m − i)n − (i − 1)�2] + [(m − i)� − �2].
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Since � � m − i and � � n both bracketed terms are non-negative, so m(m − 1)n −∑
q�m |Fq| � 0, reaching the desired contradiction.

4.2. Using the short edges as landmarks and a first point of reference

Let us now turn to the proof of the general case. For 1 � j � p − 1 write sj = ij − ij−1

and let Sj = {ij−1 + 1, ij−1 + 2, . . . , ij}, so that |Sj | = sj .

By (3.2) |Fk| � |Fij | for every k ∈ Sj , and hence

∑
k�m

|Fk| �
∑
j�p

sj |Fij |. (4.1)

The vertices in Rij are of degree at most n, and hence the number of edges in Fij incident

with Rij is at most n|Rij |. We use n|Rij | as a baseline estimate on |Fij |. In this estimate we

are ignoring the edges of Fij not incident with Rij , and also the double counting of edges.

If there are no short edges then |Rm| = m − 1, and hence |Fm| � n|Rm| = (m − 1)n. Since

|Fi| � |Fm| for all i � m, we have
∑

i�m |Fi| � m(m − 1)n, a contradiction. We shall use this

calculation as a first point of reference, and to get the real quantities we shall measure

the deviations from the estimate |Fi| = (m − 1)n.

The existence of short edges affects the estimate of
∑

j�p sj |Fij | in two ways: adding

something to it, and deducting something. The first we call ‘loss’, since it takes us further

away from the desired contradiction, and the second is called ‘gain’. We shall associate

a gain Gj and a loss Lj with each short edge eij , and we shall show that Gj � Lj for

every j � p. Note that our calculation is not uniquely determined, since adding the same

number to Gj and to Lj does not change the total balance.

Clearly, |Rij | is ij − 1, plus the number of short edges contained in Rij . Compared with

the estimate |Rij | = m − 1 above, the estimate |Rij | = ij − 1 gives a gain of m − ij on |Rij |,
yielding a gain of n(m − ij) on the estimate n|Rij | of |Fij |, which yields a total gain of

sj(m − ij)n

in (4.1). In order to obtain an estimate serving as a second point of reference, we assume

that eij ⊆ Rik for all k > j. This entails a loss of skn in (4.1) for each such k, so altogether

there is a loss of

n(sj+1 + sj+2 + · · · + sp) = n(m − ij).

So, the net gain with respect to the baseline estimate is so far

sj(m − ij)n − n(m − ij) = (sj − 1)(m − ij)n.

Writing

GBASIC
j = (sj − 1)(m − ij)n, (4.2)

we can use GBASIC
j as a baseline gain.

4.3. The loss on edges outside Rij

In the above calculation there is an over-optimistic assumption: that all edges in Fij are

incident with Rij . In fact this is false for all j < p. By shiftedness and the definition of �Mj ,
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�Wj , TM
j and TW

j there can be at most (�Mj + tMj )(�Wj + tWj ) edges that are not incident

with Rij .

Remembering that |Fij | is multiplied by sj in (4.1), this entails a possible loss of

Lj := sj(�
M
j + tMj )(�Wj + tWj ). (4.3)

This is the only loss we encounter, besides the loss incurred by short edges being

contained in sets Rij , which has already been subsumed in GBASIC
j .

4.4. Two types of regains

We shall use two types of regains, related to two ways in which |Fij | was over-estimated.

(1) Gains on procrastination. If k < j we were assuming above that eik ⊆ Rij . When this

does not happen we say that j procrastinates with respect to k (meaning that Rij is

late to capture the edge eik ), and then |Rij | was over-estimated by 1, giving rise to a

gain of n in |Fij |, and to a gain of sjn in the total sum.

(2) Gains on double counting. In the basic estimate n|Rij | of the number of edges incident

with Rij there is an over-estimate of 1 on each pair (u, v) of vertices in Rij , where

u ∈ M and v ∈ W . This entitles us to a gain of sj in the total sum.

4.5. A first gain on double counting, and a first offset with Lj

Without loss of generality we may (and will) assume that �Mj � �Wj , and that tail(eij ) ∈ W .

Then

Lj � sj[�
M
j (�Wj + tMj + tWj ) + tMj tWj ]. (4.4)

Here we turn to our first gain on double counting. Let Ej = {ei | i < ij} be the partial

rainbow matching chosen so far. Let T̄M
j = Ej[T

W
j ] (namely the set of vertices in M

matched by Ej to TW
j ), and let T̄W

j = Ej[T
M
j ]. The edges of T̄M

j × T̄W
j were counted

twice in the estimate nRij of the number of edges incident with Rij . This entitles us to

a gain of tMj tWj in the calculation of |Fij |, which results in a regain of sjt
M
j tWj in (4.1).

Offsetting this with part of Lj as appearing in (4.4), and writing

λj := �Wj + tMj + tWj , (4.5)

this leaves us with a loss of at most

Lr
j := sj�

M
j λj . (4.6)

The superscript r stands for ‘remaining’. This loss should be offset by GBASIC
j and by

other gains.

Observation 4.1. λj < n.

Proof. This follows from the fact that W \ Rij contains two disjoint sets: SKIPj , which

is of size �Wj , and TW
j , which is of size tWj ; and W ∩ Rij contains T̄W

j , which is of size tMj .

Thus λj = �Wj + tMj + tWj � |W | = n. We may assume strict inequality, since otherwise W

is completely matched by Ej .
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5. Gains associated with vertices in SKIPM
j

5.1. Six types of vertices in SKIPM
j and the regains associated with them

Notation 5.1. For v ∈ Rm let i(v) be the index i for which v ∈ ei, and let k(v) be the index

k < p such that i(v) ∈ Sk .

Notation 5.2. Let Σj be the set of short edges contained in Rij , and let |Σj | = σj . Also let

Mj = M ∩ Rij and μj = |Mj |.

Notation 5.3. Let ω = ω(j) = min(k : Rik ⊇ eij ).

Lemma 5.4. If k < j and head(eik ) ∈ SKIPM
j then λk < μj + �Mj .

Proof. This follows from the fact that

Ek[T
W
k ] ∪ SKIPM

k ∪ TM
k � (Rij ∩ M) ∪ SKIPM

j

and on both sides the terms of the union are disjoint. The reason for the strict containment

is that head(eij ) belongs to the right-hand side and not to the left. In fact, the strict

inequality in the lemma will not be used, it is only mentioned for clarification.

Lemma 5.5. λj � μj + �Mj + tWj .

This follows from the fact that �Wj � �Mj and tMj � μj . �

Lemma 5.6. Riω ⊇ TM
j

Proof. By the definition of TM
j the vertex head(eij ) is adjacent to its first element, so

the initial segment of head(eij ) in M, together with TM
j , is an interval contained in Zij .

Applying the definition of Riω yields the lemma.

We write Lr
j as a sum,

Lr
j = La

j + Lb
j ,

where

La
j = �Mj (sj − 1)λj , Lb

j = �Mj λj . (5.1)

The expression (4.2) for GBASIC
j explains why this splitting will be useful: GBASIC

j will

count towards offsetting La
j .

We shall have two ‘baskets’ of gains for each j, which we shall call Ga
j (intended to

compensate for La
j ) and Gb

j (intended to compensate for Lb
j ). To compensate for Lb

j , we

need to assign to each of the �Mj vertices in SKIPM
j a gain of at least λj , which is given

to Gb
j .

For the purpose of bookkeeping, we gather the vertices of SKIPM
j into six types,

according to the conditions they satisfy. Vertices of types (2b) and (3) below will give
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Figure 3. Case (1).

rise to regains on double counting, while all other types will give rise to regains on

procrastination. In all these cases a gain is given to Gb
h, where h is the smaller of j and k,

namely if j < k = k(v) at least λj is given to Gb
j , and if k = k(v) < j at least λk is given to

Gb
k .

In two of the cases, namely (2ai) and (1), the gain will be split between the two indices.

The part given to the larger index will go to Ga of that index.

Here are the explicit classification and the rules by which gains are shared. The regain

of λj for each vertex v ∈ SKIPM
j will be apparent in each of the cases, while the regains

accumulating to Ga
j will be collected at the end.

(1) k(v) < j, implying that v = head(eik ) (see Figure 3). In this case j procrastinates with

respect to k, entitling us to a gain of n on |Fij |, and sjn in total. This gain we split

between Gb
j , G

a
k and Gb

k , as follows: Ga
k gets (sj − 1)(μj + �Mj ), Ga

j gets (sj − 1)(n − μj −
�Mj ) and Gb

j gets n.

Let Aj denote the set of vertices of type (1), and let αj = |Aj |. The accumulating regain

in Ga
j in this way is

(sj − 1)(n − μj − �Mj )αj . (5.2)

Gb
j gets nαj , and since λj < n this means that it gets more than λj for each vertex of

this type, as promised.

(2) j < k(v). This we divide into the following subcases.

(a) e(v) is long and k = k(v) < ω and eij �⊆ Rik , or i(v) = ik (see Notation 5.1 for the

definition of i(v)). The latter means that e(v) = eik .

In this case k procrastinates with respect to j, which entitles us to a regain of skn.

Note that there are at most sk − 1 vertices v ∈ SKIPM
j that are tails of long edges,

and satisfy k(v) = k. So, distributing this gain among the vertices v ∈ SKIPM
j

that are tails of long edges, and satisfy k(v) = k, each gets at least a gain of n.

Remembering that λj < n, we are fulfilling the requirement of ‘λj gain in Gb
j for

every vertex in SKIPM
j ’.

The splitting of the gain between Gj and Gk is done in this case according to a

still finer classification into subcases.

(i) eij and eik cross (see Definition 3.2). Here we do not distinguish between the

cases tail(eik ) ∈ M and tail(eik ) ∈ W : see Figure 4 for the two possibilities. We
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Figure 4. Case (2ai): two types of crossing.

give a gain of n − 1 to Gb
j , saving 1 for a fine point below (see remark after

case (3)). By Observation 4.1 we are giving Gb
j at least λj , as required.

(ii) eij and eik are parallel. Here k is procrastinating with respect to j, and thus

we are entitled to a gain of skn. This is the same as case (1), with the roles of

j and k reversed. This regain (which is shared between stages j and k) was

considered in (1) for stage ik , and hence we do not distribute regains for this

case. But recall that Gb
j gets in stage ik its share of (sk − 1)(μk + λk) (keep in

mind that the roles of the indices j and k are reversed). By Lemma 5.4 this

quantity is at least λj for each such vertex.

(b) eij ⊆ Rik . Then necessarily k = ω (see Figure 5).

With such vertices we associate a regain on double counting in the estimate n|Rik |
towards calculating |Fik |, of all edges in (Mj ∪ SKIPM

j ∪ TM
j ) × {tail(eij )}. The

number of these edges is μj + �Mj + tMj . We give Gb
j the amount of h(j)λj , where

h(j) is the number of vertices in SKIPM
j having k(v) = ω(j).

Note that no regain of this type is counted more than once. To see this it is best

to view the regain associated with each vertex v of this type as a regain on the

calculation of |Fi(v)| itself, rather than using the inequality |Fi(v)| � |Fik(v)|. Viewed

this way, the sets of edges (which are actually stars) on which there is double

counting in |Fi(v)| are disjoint for different v. Note also that by Lemma 5.5 for

each vertex of the present type we are adding at least λj to Gb
j , as required.

(3) k(v) = j, meaning that v = head(eij ).

On this vertex we have the same regain as on vertices of type (2b), with a gain of

μj + �Mj + TM
j given to Gb

j .

We have to be careful in this calculation, since in this case there is a danger of

considering the double counting of an edge twice. Here it may happen that for

distinct j1 and j2 the vertices head(eij1 ) and head(eij2 ) both represent the same set of

edges, namely |Fiω |. Since one side in each edge considered is tail(eij ), this can happen

only in one case: when ω(j1) = ω(j2) for indices j1 �= j2, and that tail(eij1 ) and tail(eij2 )

are on different sides. In this case the double counting on the edge (tail(eij1 ), tail(eij2 ))

is taken into account twice, while it should have been taken only once. In this case

we can compensate for this double-double counting in the following way. Without
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Figure 5. Case (2b).

loss of generality assume that j1 < j2. Since ω(j1) = ω(j2), the index j2 procrastinates

with respect to j1, which means that we are entitled to a gain of n in the calculation

of |Fij2
|, hence a gain of sj2n in the total sum. We only used sj2λj1 , and since sj2 � 1

and λj1 < n (see Observation 4.1), we have the desired compensation.

Note that the regains given above to Gb
j cover all of Lb

j .

5.2. Another regain on double counting

We are entitled to another type of regain, on edges containing Aj vertices. In the calculation

of |Fij | all edges between Ej[Aj] and M ∩ Rij are counted twice, so we are entitled to a

regain of μjαj on |Fij |, and thus of sjμjαj in total. In order to avoid considering this double

counting more than once we do not take into account vertices contained in j-short edges:

see case (2b) above. Thus the regain is sj(μj − σj)αj , which for ease of later calculations

we shall replace with the possibly smaller

(sj − 1)(μj − σj)αj . (5.3)

Example 5.7. To see why giving gains to the earlier indices is necessary, consider again

Example 3.3. There L1 = q2, which is regained by a double counting argument for i2
(the second short edge). In the baseline argument |Fi2 |, and with it |Fk|, k ∈ S2, k > 2 are

estimated as |Ri2 |n. In this calculation all q edges mcw1 in Ri2 are double-counted, so there

is a gain of q in the calculation of |Fi2 |, resulting in a gain of s2q = q2 in the baseline

calculation – precisely L1.

6. Collecting the Ga
j gains

Lemma 6.1. m − ij � �Mj − αj .

Proof. This follows from the fact that every vertex in SKIPM
j \Aj is matched by some

edge ei, i � ij .

By the lemma and the definition of GBASIC
j (see (4.2)), we have

GBASIC
j � (sj − 1)(�Mj − αj)n. (6.1)
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Lemma 6.2. n � �Wj + tMj + σj + tWj + αj .

This follows from the fact that that αj , t
M
j , tWj , �Wj and σj are sizes of disjoint subsets of

W , namely Aj, SKIPW
j , Ej[T

M
j ], TW

j and
⋃

Σj ∩ W . �
The regain in (5.2), (sj − 1)(n − μj − �Mj )αj , together with the regain of (5.3), (sj −

1)αj(μj − σj), and GBASIC
j sum up to

(sj − 1)(�Mj − αj)n + (sj − 1)(n − μj − �Mj )αj + (sj − 1)αj(μj − σj),

and we need to show that this sum, which is a lower bound for Ga
j , is at least La

j . Namely,

we have to show that

(sj − 1)(�Mj − αj)n + (sj − 1)(n − μj − �Mj )αj + (sj − 1)αj(μj − σj) � (sj − 1)�Mj λj .

Cancelling out the term sj − 1 and additive terms, we need to prove the following:

�Mj (n − αj) − σjαj � �Mj λj .

By Lemma 6.2, λj � n − αj − σj . Thus it is enough to show that

�Mj (n − αj) − σjαj � �Mj (n − αj − σj),

which follows from the fact that αj � �Mj (Aj being contained in SKIPM
j ).

This shows that Ga
j � La

j , thereby completing the proof of Theorem 3.1.

7. Proof of Theorem 1.5

Let F be a collection of hypergraphs satisfying the condition of the theorem. Order the

vertices of the first vertex class V1 as v1, . . . , vn. By Lemma 2.1 we may assume that all

Fi are shifted with respect to this order. Let i1 be such that Fi1 has maximal degree at

v1 among all Fi. Then we choose i2 �= i1 for which Fi2 has maximal degree at v2 among

all Fi, i �= i1, and so forth. To save indices, reorder the Fi so that ij = j for all j. Let Hj

be the set of 2-edges incident with vj in Fj . It clearly suffices to show that the collection

H = (Hj : j � k) of subgraphs of Kn,n has a rainbow matching, so it suffices to show that

H satisfies the conditions of Theorem 3.1. Assuming it does not, since the sizes |Hj | are

descending, ∑
k−t<j�k

|Hj | =
∑

k−t<j�k

degFj
(vj) � t(t − 1)n for some t < k.

We shall reach a contradiction to the assumption that |Fk| > (k − 1)n2.

Write m for |Hk|. Clearly ∑
j�k−t

degFk
(vj) � (k − t)n2,

and, by the order by which Fj were chosen,∑
k−t<j�k

degFk
(vj) �

∑
k−t<j�k

degFj
(vj) � t(t − 1)n.

Since
∑

k−t<j�k degFk
(vj) � mt, this implies that m � n(t − 1).
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By the shifting property,∑
k<j�n

degFk
(vj) � m(n − k) � n(t − 1)(n − k),

so ∑
j>k−t

degFk
(vj) � t(t − 1)n + (t − 1)n(n − k) = n(t − 1)(t + n − k) � (t − 1)n2.

Hence

|Fk| =
∑
j�k

degFk
(vj) � (k − t)n2 + (t − 1)n2 = (k − 1)n2,

which is the desired contradiction.

8. A remark and further conjectures

Not surprisingly, Conjecture 1.3 is easy for large n.

Remark. For every r and k there exists n0 = n0(r, k) such that Conjecture 1.3 is true for

all n > n0.

Proof. By Lemma 2.1 we may assume that all Fi are shifted. Let Ai consist of the first

k − 1 vertices in Vi (i � r), and let A =
⋃

i�r Ai. Since the number of edges meeting A

in two points or more is O(nr−2), for sufficiently large n for each i there exist at least

k − 1 points x in A such that e ∩ A = {x} for some e ∈ Fi. Hence we can choose edges

ei ∈ Fi and distinct points xi ∈ A (i � k − 1) such that ei ∩ A = {xi}. Since the number of

edges going through x1, . . . , xk−1 is no larger than (k − 1)nr−1, there exists an edge ek in

Fk missing x1, . . . , xk−1. Using the shifting property, we can replace inductively each edge

ei, i � k − 1, with an edge e′
i ∈ Fi contained in A, missing ek and missing all e′

j , j < i. This

yields a rainbow matching for F1, . . . , Fk .

Theorem 1.4 may also be true under the more general condition of degrees bounded

by n.

Conjecture 8.1. Let d > 1, and let F1, . . . , Fk be bipartite graphs on the same ground set,

satisfying Δ(Fi) � d and |Fi| > (k − 1)d. Then the system F1, . . . , Fk has a rainbow matching.

For d = 1 this is false, since for every k > 1 there are matchings F1, . . . , Fk of size k not

having a rainbow matching.

Theorem 3.1 has the following simpler counterpart, which we believe to be true.

Conjecture 8.2. If Fi, i � k are subgraphs of Kn,n satisfying |Fi| � in for all i � k, then they

have a rainbow matching.

Theorem 8.3. Conjecture 8.2 is true for n >
(
k
2

)
.
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Proof. As before, we assume that Fi are all shifted. Number one side of Kn,n as w1, . . . , wn.

Let di,j = degFi
(wj). Let M be a (k × k) 0, 1 matrix, defined by mi,j = 1 if di,j > k − j and

mi,j = 0 otherwise. It is enough to find a permutation π : [k] → [k] such that mπ(j),j = 1 for

all j, since then one can match the vertices wj in Fπ(j) greedily, one by one, starting at wk:

at the jth step, when wk, . . . , wk−j+1 have already been matched, since degFπ(j−k)
(wk−j) � j

there exists at least one edge in Fπ(k−j) incident with wk−j that can be added to the rainbow

matching.

Assuming that there is no such permutation π, by Hall’s theorem there is a set J of p

columns of M and a set I of k − p + 1 rows, such that mi,j = 0 for all i ∈ I , j ∈ J . Let q

be the largest element of I . Then q � k − p + 1. We shall show that |Fq| < n(k − p + 1),

contradicting the assumption of the conjecture.

Let J = {j1, j2, . . . , jp}, arranged in ascending order. Since q ∈ I , we have dq,js � k − js
for all s � p. Since the sequence dq,j is non-increasing in j, we have

|Fq| =
∑
j�n

dq,j � n(j1 − 1) + (j2 − j1)(k − j1) + (j3 − j2)(k − j2)

+ · · · + (jp−1 − jp)(k − jp−1) + (n − jp + 1)(k − jp). (8.1)

Call the right-hand side of (8.1) c(J). Suppose that there exists s < p such that js + 1 <

js+1. Then, moving js to the right, namely replacing js in J with js + 1, decreases c(J) by 1

(the decrease in the term corresponding to js) and increases by js+1 − js − 1 (corresponding

to the increase in the terms between js + 1 and js+1). This means that c(J) has not

decreased. Hence, writing j for jp, we have

c(J) � c({j − p + 1, j − p + 2, . . . , j}). (8.2)

Writing γ(j) for the right-hand side of (8.2), we have

γ(j) = n(j − p) + (k − j + p − 1) + (k − j + p + 2) + · · · + (k − j) + (n − j)(k − j)

=

(
p

2

)
+ p(k − j) + n(j − p) + (n − j)(k − j).

This is a quadratic expression in j, which attains its maximum at one of the two extremes,

j = p or j = k. In fact, for both values of j it attains the same value,
(
p
2

)
+ n(k − p).

We have shown that |Fq| <
(
p
2

)
+ n(k − p). By the assumption n >

(
k
2

)
this implies that

|Fq| < n(k − p + 1), which is the desired contradiction.

To formulate yet another conjecture we shall use the following notation.

Notation 8.4.

(1) For a sequence a = (ai, 1 � i � k) of real numbers we let −→a denote the sequence

rearranged in non-decreasing order.

(2) Given two sequences a and b of the same length k, we write a � b (respectively a < b)

if −→a i � −→
b i (respectively −→a i <

−→
b i) for all i � k.
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Given subgraphs Fi, i � k of Kn,n, define a (k × n) matrix A = (aij) as follows. Order

one side of the bipartite graph as v1, v2, . . . , vn, and let aij = degFi
(vj). The ith row sum

ri(A) of A is then |Fi|. Thus, Theorem 3.1 can be formulated as follows.

Theorem 8.5. If
∑

i�j
−→r i > j(j − 1)n for every j � k, then there exists a permutation π :

[k] → [k] such that aiπ(i) � (1, 2, . . . , k).

We believe that the following stronger conjecture is true.

Conjecture 8.6. If
∑

i�j
−→r i > j(j − 1)n for every j � k, then there exists a permutation

π : [k] → [k] such that
∑

i�j
−→a iπ(i) > j(j − 1) for every j.

9. The case of the complete r-uniform hypergraph

As remarked above, the topic of this paper belongs to the family of Erdős–Ko–Rado

problems. It is natural to assume that an analogous conjecture to Conjecture 1.3 is true in

the more involved case of complete r-uniform hypergraphs, which is the topic of the EKR

theory. Let
(
[n]
r

)
denote the set of subsets of size r of [n]. Let f(n, r, k) be the minimal

number such that every hypergraph larger than f(n, r, k) contained in
(
[n]
r

)
contains a

matching of size k. The EKR theorem states that if r � n/2 then f(n, r, 2) =
(
n−1
r−1

)
.

Conjecture 9.1. If F1, F2, . . . , Fk ⊆
(
[n]
r

)
are of size larger than f(n, r, k), then there exists a

rainbow matching, that is, a choice of disjoint edges fi ∈ Fi.

For k = 2 this conjecture follows from results in [9, 11], that in [9] were also extended

to two hypergraphs of different uniformities.

The following was proved in [5].

Theorem 9.2. If n � kr then f(n, r, k) � (k − 1)
(
n−1
r−1

)
.

A rainbow version of this theorem was proved in [8].

Theorem 9.3 ([8]). If F1, . . . , Fk are hypergraphs, where Fi is ri-uniform and n �
∑

i�k ri

and |Fi| > (k − 1)
(
n−1
ri−1

)
, then the family (F1, . . . , Fk) has a rainbow matching.

In [7] the case r = 3 of Conjecture 9.1 is solved for n � 4k − 1.

In [3] the value of f(n, 2, k) was determined for all k, as follows.

Theorem 9.4. f(n, 2, k) = max{
(
2k−1

2

)
, (k − 1)(n − 1) −

(
k−1
2

)
}.

In [2] this result was given a short proof, using shifting. Meshulam [10] noted that this

proof also yields Conjecture 9.1 for r = 2.
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Theorem 9.5. Let F = (Fi, 1 � i � k) be a collection of subsets of E(Kn). If

|Fi| > max

((
2k − 1

2

)
, (k − 1)(n − 1) −

(
k − 1

2

))
for all i � k,

then F has a rainbow matching.

Proof. Enumerate the vertices of Kn as v1, v2, . . . , vn. By Lemma 2.1 we may assume that

all Fi are shifted with respect to this enumeration. For each i � k let ei = (vi, v2k−i+1). We

claim that the sequence ei is a rainbow matching for F . Assuming negation, there exists i

such that ei �∈ Fi. Since Fi is shifted, every edge (vp, vq) in Fi, where p < q, satisfies

(P) p < i or q < 2k − i + 1.

The number of pairs satisfying p < i is (i − 1)(n − 1) −
(
i−1
2

)
. The number of pairs satisfying

p � i and q < 2k − i + 1 is
(
2k−2i+1

2

)
, so

|Fi| � (i − 1)(n − 1) −
(
i − 1

2

)
+

(
2k − 2i + 1

2

)
.

This is a convex quadratic expression in i, attaining its maximum either at i = 1 (in

which case |Fi| �
(
2k−1

2

)
) or at i = k (in which case |Fi| � (k − 1)(n − 1) −

(
k−1
2

)
). In both

cases we get a contradiction to the assumption on |Fi|.

We are grateful to Zoltan Füredi and Ron Holzman for useful information, and to Eli

Berger and Roy Meshulam for stimulating discussions.
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