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The swash of solitary waves on a plane beach is studied using large-scale experiments.
Ten wave cases are examined which range from non-breaking waves to plunging
breakers. The focus of this study is on the influence of breaker type on flow evolution,
spatiotemporal variations of bed shear stresses and run-up. Measurements are made
of the local water depths, flow velocities and bed shear stresses (using a shear plate
sensor) at various locations in the swash zone. The bed shear stress is significant
near the tip of the swash during uprush and in the shallow flow during the later
stages of downrush. In between, the flow evolution is dominated by gravity and
follows an explicit solution to the nonlinear shallow water equations, i.e. the flow
due to a dam break on a slope. The controlling scale of the flow evolution is the
initial velocity of the shoreline immediately following waveform collapse, which
can be predicted by measurements of wave height prior to breaking, but also shows
an additional dependence on breaker type. The maximum onshore-directed bed shear
stress increases significantly onshore of the stillwater shoreline for non-breaking waves
and onshore of the waveform collapse point for breaking waves. A new normalization
for the bed shear stress which uses the initial shoreline velocity is presented. Under
this normalization, the variation of the maximum magnitudes of the bed shear stress
with distance along the beach, which is normalized using the run-up, follows the
same trend for different breaker types. For the uprush, the maximum dimensionless
bed shear stress is approximately 0.01, whereas for the downrush, it is approximately
0.002.

Key words: shallow water flows, solitary waves, wave breaking

1. Introduction

Solitary waves have been previously studied for various applications (e.g. Longuet-
Higgins 1974; Hammack & Segur 1978; Fenton & Rienecker 1982; Peregrine 1983;
Liu et al. 1995; Madsen, Fuhrman & Schäffer 2008; Baldock, Peiris & Hogg 2012;
Chen & Yeh 2014). While there have been many studies that examine the evolution,
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breaking and run-up of a solitary wave on a sloping beach (Ippen & Kulin 1954;
Camfield & Street 1969; Saeki, Hanayasu & Takgi 1971; Pedersen & Gjevik 1983;
Synolakis 1987; Zelt 1991; Synolakis & Skjelbreia 1993; Grilli et al. 1994; Grilli,
Svendsen & Subramanya 1997; Lin, Chang & Liu 1999; Li & Raichlen 2001;
Baldock et al. 2009), and studies examining the boundary layer under solitary waves
propagating in water of constant depth (Keulegan 1948; Mei 1989; Liu et al. 2006;
Liu, Park & Cowen 2007; Sumer et al. 2010; Seelam, Guard & Baldock 2011), the
boundary layer in the run-up tongue in the swash of solitary waves has received
only limited attention (Kobayashi & Lawrence 2004; Sumer et al. 2011; Pedersen
et al. 2013). This study focuses on the flow in the swash zone, defined as the
region between the run-up and run-down limits of waves on a beach, driven by
solitary waves. The swash is an important region for coastal processes such as wave
breaking and run-up (Battjes 1974; Peregrine 1983), sediment transport (Butt &
Russell 2000; Elfrink & Baldock 2002; Puleo & Butt 2006; Bakhtyar et al. 2009)
and beach morphodynamics (Masselink & Puleo 2006; Brocchini & Baldock 2008).
The influence of groundwater (Horn 2006) and the evolution of turbulence (Longo,
Petti & Losada 2002; Sou, Cowen & Liu 2010) add further complications to the
hydrodynamics, but it is established that the bottom boundary layer – the variation of
bed shear stress in particular – remains a key component to understanding the overall
mechanics of sediment transport on a beach (Nielsen 1992, 2002).

Because the swash zone is a challenging environment to make measurements in,
few studies have focused on measuring the bed shear stress. The most common
difficulties are that the flow depths are very shallow and the water often contains
entrained air. Added complexities include that the flow is unsteady and almost always
turbulent. Laboratory and field studies typically measure the near-bed velocity to
infer the bed shear stress (e.g. Cox, Kobayashi & Okayasu 1996; Cowen et al. 2003;
Raubenheimer 2004; O’Donoghue, Pokrajac & Hondebrink 2010; Sou & Yeh 2011;
Kikkert et al. 2012). This method usually requires assumptions about the boundary
layer structure, and relationships developed for steady flows have to be applied to
the unsteady swash (Kikkert, Pokrajac & O’Donoghue 2009). On the other hand,
numerical solutions of the swash zone using nonlinear shallow water equations face
challenges due to the moving shoreline and wave breaking (Brocchini & Dodd 2008),
and numerical models used to complement measurements require calibration to data
to be able to predict flow depths and depth-averaged velocities with accuracy (Barnes
et al. 2009; O’Donoghue et al. 2010). Coupling of the nonlinear shallow water
equations with a momentum integral method for the boundary layer (Briganti et al.
2011) and with a k–ω turbulence model (where k is the turbulent kinetic energy
and ω the specific rate of dissipation, Adityawan, Tanaka & Lin 2013) has enabled
realistic time histories of the bed shear stress to be obtained.

Recent studies have used a shear plate sensor (Barnes et al. 2009) and a hot-film
sensor (Conley & Griffin 2004; Sumer et al. 2011) to measure the bed shear stress
in the swash zone. These studies have found that the bed shear stress in the swash is
asymmetric, i.e. the uprush bed shear stress and corresponding friction coefficients are
larger than the downrush bed shear stress and corresponding friction coefficients. It has
also been concluded that a constant friction coefficient is unable to predict the time
evolution of the bed shear stress. Although these and other studies have elucidated
some properties of the boundary layer in the swash zone (Barnes et al. 2009; Sou
& Yeh 2011; Kikkert et al. 2012), the influence of varying offshore wave conditions
that lead to different types of breakers remains to be thoroughly investigated. The
aim of this study is to begin to address these questions. Another important objective
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FIGURE 1. Definition sketch for a solitary wave climbing a plane beach. The origin of
the co-ordinate system, (x, z), is at the stillwater shoreline. The solitary wave height is H0
and the stillwater depth is h0. Here, R denotes the run-up, the maximum vertical excursion
of the water up the beach, and Rd denotes the run-down, the maximum vertical distance
the shoreline recedes below the stillwater shoreline. The beach slope s= tan θ .

of this study is to investigate the applicability of the nonlinear shallow water wave
theories developed for the climb and swash of a bore on a beach (Keller, Levine &
Whitham 1960; Ho & Meyer 1962; Shen & Meyer 1963) to the swash of breaking
solitary waves. Since a bore was envisaged as a long wave that breaks in the surf zone
and then travels to the shoreline, a natural extension of the theories would be to apply
them to solitary waves that break. These theories have been tested experimentally (Yeh
& Ghazali 1988; Yeh, Ghazali & Marton 1989) and numerically (Hibberd & Peregrine
1979; Zhang & Liu 2008; Mory et al. 2011), but their application to breaking solitary
waves has not been investigated.

The basic set-up of the problem under consideration is given in figure 1: a solitary
wave is generated in a region where the water depth is constant and is incident
upon a plane beach of constant slope where it creates a swash event. The use of a
solitary wave to drive the swash offers the advantage that a single swash event can
be studied in isolation, which is a limitation imposed to avoid the complexities that
arise when the swash of one wave interacts with the swash of the next wave, but
it is recognized that interactions of swash events may be an unavoidable complexity
in swash hydrodynamics. A large offshore water depth is also used to ensure a
high-Reynolds-number swash event relevant to field conditions since it is known that
in small-scale experiments, swash tongues become laminar and the viscosity and
surface tension become important (Mahony & Pritchard 1980; Liu, Synolakis & Yeh
1991; Pedersen et al. 2013).

This paper begins with a review of the relevant previously known theoretical results
in § 2. Section 3 describes the experimental set-up and the shear plate sensor used to
measure the bed shear stress. The results and discussion are presented in § 4 and the
conclusions are given in § 5.

2. Review of theoretical results
In this section, we review the essential known results that describe the propagation,

shoaling, breaking and run-up of solitary waves, and other relevant theories, such
as bore evolution, bore collapse and bore-driven swash. These results are utilized to
interpret experimental data and motivate further analysis in later sections.

2.1. Solitary waves
The Boussinesq theory for small-amplitude solitary waves gives the free-surface
displacement as

η(x, t)=H0sech2[K0(x− c0t)], (2.1)
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where K0 =
√
(3H0)/(4h3

0) and c0 = √g(h0 +H0). The wave height, H0, and the
stillwater depth, h0, are sufficient to fully describe the wave, and the dimensionless
parameter ε0 = H0/h0 represents the nonlinearity of the wave. In the Boussinesq
theory, terms of O(ε2

0) or higher are ignored, and the theory has been shown to
provide results that agree with experiments up to ε0 . 0.25 (Dingemans 1997). The
horizontal velocity and the leading-order vertical velocity are given by

u=U0sech2 [K0 (x− c0t)] , (2.2a)

w= (3ε0)
1/2 (z+ h0)

h0
U0sech2 [K0 (x− c0t)] tanh [K0 (x− c0t)] , (2.2b)

respectively. Here, U0 = ε0
√

gh0 is the maximum horizontal velocity and it occurs
under the wave crest. The horizontal velocity is O(ε0) whereas the leading-order
vertical velocity is O(ε3/2

0 ). Although the wavelength and period of a solitary wave
are infinite, following Madsen et al. (2008), an effective wavelength and an effective
period can be defined as

L0 = 2π

K0
, T0 = 2π

K0c0
, (2.3a,b)

respectively. The inviscid theory predicts that the solitary wave travels without change
of form, but in reality damping is introduced via thin boundary layers that develop at
the bottom boundary and at the free surface. The laminar bottom boundary layer of
a solitary wave was first studied by Keulegan (1948), and more recently by Liu et al.
(2007) and Park et al. (2014). However, the boundary layer does not remain laminar
for large solitary waves, and the transition to turbulence in a solitary wave boundary
layer was studied by Sumer et al. (2010), who defined a relevant Reynolds number
as

Re0 = a0U0

ν
. (2.4)

The length scale, a0=U0/(K0c0), is the half-excursion-length for a water particle and
ν is the kinematic viscosity of water. Their study used an oscillating water tunnel
to replicate the pressure gradient cycle under a solitary wave for Reynolds numbers
spanning the range 2.8× 104<Re0< 2× 106, and they found a departure from laminar
behaviour for Re0 as low as 2× 105.

2.2. Nonlinear shallow water equations
In the constant depth region, neglecting the effects of boundary layers, a solitary wave
maintains its form due to a balance between nonlinear steepening and frequency
dispersion, but as it climbs the slope and approaches the stillwater shoreline, the
water depth decreases and the steepness of the water surface increases, indicating that
nonlinearity dominates dispersion. Thus, in the nearshore region, an appropriate set of
governing equations are the nonlinear shallow water equations (NSWEs; see Peregrine
1972, for a derivation). These one-dimensional equations for the conservation of mass
and momentum are given respectively by

∂η

∂t
+ ∂

∂x
[(h+ η) u]= 0, (2.5a)

∂u
∂t
+ u

∂u
∂x
+ g

∂η

∂x
= 0, (2.5b)

where g is the gravitational acceleration, u (x, t) is the depth-averaged velocity in the
x direction and η(x, t) is the free-surface displacement measured from the stillwater
level. The beach slope has been assumed mild enough so that sin θ ≈ tan θ = s.
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2.2.1. Solutions for non-breaking solitary waves at a plane beach
The NSWEs were used by Synolakis (1987), who applied the formulation of Carrier

& Greenspan (1958) and Keller & Keller (1964) to study solitary waves moving from
a constant depth region onto a plane beach. Synolakis found a solution to the NSWEs
for an incident solitary wave at the toe of the beach under the assumption that the
nonlinearity is negligible before the wave starts to climb the slope. In his theory, the
run-up, R (defined in figure 1), of non-breaking solitary waves when the slope is mild
enough (s� 3.47ε1/2

0 ) is given by

R
h0
= 2.831s−1/2ε

5/4
0 . (2.6)

Synolakis (1987) also provided a breaking criterion based on when the free
surface first becomes vertical, i.e. when the Jacobian of the nonlinear hodographic
transformation used to solve (2.5b) becomes zero. The breaking criterion was found
to be

ε0 > 0.8183s10/9, (2.7)

but it was noted that this method would predict breaking earlier than expected in
reality due to neglect of dispersion in the NSWEs. Recently, Madsen & Schäffer
(2010) provided a summary of the analytical solutions to the problem of waves
travelling over a constant depth region and then climbing a plane beach. They were
motivated by tsunami run-up and thus they only considered non-breaking waves. They
also used the NSWEs on the plane beach and assumed linearized governing equations
in the constant depth region. An incident solitary wave with small nonlinearity was
presented as a special case with the same run-up and uprush breaking criterion results
as Synolakis (1987), but they also provided a criterion to predict breaking during
downrush,

ε0 > 0.5139s10/9, (2.8)

and a result for the run-down (the largest vertical distance that the shoreline recedes
below the stillwater shoreline, as shown in figure 1), Rd,

Rd

h0
=−1.125s−1/2ε

5/4
0 . (2.9)

Downrush breaking has also been referred to as the landward-facing bore in the
downrush by Hibberd & Peregrine (1979), and is referred to herein as the hydraulic
jump at the end of the downrush (though it may occur earlier in the downrush, as
shown by Shen & Meyer 1963). The downrush breaking criterion, (2.8), is more
stringent than the uprush breaking criterion, (2.7), so that waves of small amplitude
that do not break during uprush may break during downrush. It should be noted that
the run-down result is for non-breaking waves, and the theory predicts that downrush
breaking, if it occurs, occurs before the shoreline reaches the run-down given by
(2.9).

2.2.2. Solution for bore collapse at a plane beach
The NSWEs have also been used to study the climb and swash of a bore on a plane

beach, which relates to the climb of breaking waves. In the context of the NSWEs,
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z

xh(x)

FIGURE 2. Definition sketch for a bore climbing a plane beach.

a bore is simply a moving discontinuity in the free surface and velocity across which
the conservation of mass and momentum gives (Stoker 1957)

ub

Ub
= 1− h

hb
, (2.10a)

2U2
b = ghb

(
1+ hb

h

)
(2.10b)

respectively, where h(x) is the undisturbed water depth, hb = h+ η is the flow depth
behind the bore front, ub is the depth-averaged flow velocity behind the bore front and
Ub is the velocity of the bore front, as shown in figure 2. Equations (2.10), known
as the bore relations, imply that while mass and momentum are conserved across the
bore, energy is dissipated, which is physically interpreted as the turbulent dissipation
from breaking. Whitham (1958) applied the bore relations to the differential relation
du + 2dc − g dh/(u + c) = 0, which is valid on the positive characteristics of (2.5)
defined by dx/dt = u + c (in which c = √g(h+ η) is the local long-wave celerity).
This exercise gives Whitham’s approximate formula for the evolution of the bore,

1
h

dh
dM
= −4 (M + 1)

(
M − 1

2

)2 (
M3 +M2 −M − 1

2

)
(M − 1)

(
M2 − 1

2

) (
M4 + 3M3 +M2 − 3

2 M − 1
) , (2.11)

where M=Ub/
√

ghb; (M−1) gives a measure of the strength of the bore. Keller et al.
(1960) provided a solution to Whitham’s formula,

h= A

(
M2 − 1

2

)
exp[0.2808 arctan(M + 0.6769)/0.3179]

(M − 1)4/5(M − 0.7471)1.180(M2 + 1.354M + 0.5593)1.173(M + 2.393)1.673
,

(2.12)
where the constant of integration, A, is determined from an initial condition for the
bore strength, M, and the corresponding stillwater depth, h. The solution, (2.12),
predicts the bore collapse phenomenon, i.e. the height of the bore vanishes as the
bore reaches the stillwater shoreline, and the water velocity behind the bore, ub,
and the bore front velocity, Ub, approach the same finite value, Us. The constant of
integration, A, and the velocity limit, Us, both provide a measure of the energy at the
time of bore collapse in units of length and velocity respectively, and they are related
via Us = 1.763

√
gA (Keller et al. 1960). Ho & Meyer (1962) showed that not only

does Whitham’s formula provide an accurate approximation of bore evolution as the
bore approaches the stillwater shoreline, but that the development of the bore in the
last stages before it reaches the stillwater shoreline depends only very weakly on the
details of the flow behind the bore front. Keller et al. (1960) also reached the same
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conclusion from their numerical computations. Thus, Whitham’s formula provides an
accurate prediction of the velocity Us, provided that the initial condition for the bore
strength is sufficiently high, i.e. the bore front is sufficiently close to the stillwater
shoreline. Barker & Whitham (1980) also showed that Whitham’s formula is accurate
when the bore strength is high.

2.2.3. Solution for bore-driven swash at a plane beach
Shen & Meyer (1963) extended the analysis of Ho & Meyer (1962) to the swash

generated by bore collapse and found that the shoreline, which impulsively starts
moving at the velocity Us, follows the same parabolic path as a solid particle given
an initial velocity and acted on only by gravity. This shoreline motion is described
by

xs =Usts − 1
2 gst2

s , (2.13a)

us =
(
U2

s − 2gsxs
)1/2

, (2.13b)

where xs is the shoreline position, us is the shoreline velocity and ts = 0 denotes the
time of bore collapse. Shen & Meyer (1963) also found that the water surface locally
at the shoreline is tangential to the beach and given by η(x, ts)→ [xs(ts)− x]2/(3ts)

2

as (xs− x)→ 0. Thus, pressure gradient forces in the flow direction are negligible and
the shoreline motion is governed solely by the force of gravity. Peregrine & Williams
(2001) extended Shen & Meyer’s (1963) asymptotic solution by applying the water
depth local to the shoreline to the entire swash and obtained both the water depth
and the flow velocity throughout the swash. This swash solution is given by

η (x, ts)= 1
9g

(
Us − 1

2
gsts − x

ts

)2

, (2.14a)

u (x, ts)= 1
3

(
Us − 2gsts + 2

x
ts

)
, (2.14b)

where η is used to denote the total water depth in the swash (x>0) since the stillwater
depth, h, is zero there. The swash solution is an explicit solution to the NSWEs, and
the only free parameter is Us, the velocity with which the shoreline starts to move.

The bore collapse solution is linked to the swash solution. To see this, the NSWEs
need to be written in characteristic form by introducing the local long-wave celerity,
c=√g(h+ η), and restricting the beach slope to be a constant, s. Then, the NSWEs
can be expressed as [

∂

∂ts
+ (u+ c)

∂

∂x

]
α = 0, (2.15a)[

∂

∂ts
+ (u− c)

∂

∂x

]
β = 0, (2.15b)

where the characteristic variable α=u+2c+gsts is constant on positive characteristics
defined by dx/dts=u+ c and the characteristic variable β=u−2c+gsts is constant on
negative characteristics defined by dx/dts= u− c. The swash solution is analogous to
a dam-break flow on a slope, where α= u+ 2c+ gsts is constant throughout the entire
swash (Peregrine & Williams 2001). By evaluating α for the swash solution, (2.14),
it can be seen that α=Us for the swash, (x, ts) > (0, 0). Peregrine & Williams (2001)
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also pointed out that any initial condition for which u+2c+gsts=Us in (x, ts)< (0,0)
is a valid initial condition for the swash solution, (2.14). The bore collapse solution
from Whitham’s formula satisfies this requirement. Whitham’s formula is equivalent
to specifying that the flow depth and flow velocity behind the bore front must obey
the characteristic rule, i.e. ub + 2cb + gsts = const., where cb =√ghb. The constant is
in fact Us since ub→Us as hb→ 0 at ts = 0 in bore collapse.

For a swash flow where α is not constant everywhere, Guard & Baldock (2007) and
Pritchard, Guard & Baldock (2008) have developed a semi-analytical solution for the
case where α increases linearly in time on the negative characteristic that originates
at (x, ts)= (0, 0).

2.3. Fully nonlinear potential flow equations
The shoaling and breaking of a solitary wave on a plane beach were also studied
numerically using the fully nonlinear potential flow equations by Grilli et al. (1994)
and Grilli et al. (1997). Their numerical model solved the Laplace equation for the
velocity potential without further assumptions using a boundary element method.
However, their studies were limited to the point where the wave overturning jet
reconnected with the fluid in front shortly after the breaking point. (The breaking
point is defined as the time when some part of the free surface first becomes vertical.)
Solitary waves were generated in the region of constant depth in their model using a
numerical wavemaker simulating the motion of a physical piston-type wavemaker. To
characterize the type of interaction a solitary wave has with the plane beach, Grilli
et al. (1997) defined a solitary wave slope parameter as the ratio between a length
scale of the wave and the length of the slope, S0 = sL/h0. They chose the length
scale, L, to be the length between the points that have the maximum slope on a
solitary wave described by the profile in (2.1), and using their numerical data for
solitary wave breaking, they provided an empirical breaking criterion in terms of the
slope parameter,

S0 = 1.521
s√

H0/h0
; breaker type=


no breaking, if S0 > 0.37,
surging, if 0.3< S0 < 0.37,
plunging, if 0.025< S0 < 0.3,
spilling, if S0 < 0.025.

(2.16)

3. Laboratory experiments
3.1. Experimental set-up

Experiments were conducted in the Large Wave Flume (LWF) at the Hinsdale Wave
Research Laboratory at Oregon State University to study the swash zone of solitary
waves at a much larger scale than typical laboratory studies. The LWF is a flume of
length 104 m, width 3.7 m and depth 4.6 m equipped with a piston-type wavemaker
installed at one end of the flume and a plane beach of slope 1:12 at the other end.
A schematic of the LWF set-up is shown in figure 3. The flume sidewalls and floor
are made of concrete and the plane beach is made of discrete concrete panels of
length 3.7 m, width 3.7 m and thickness 0.3 m. These panels are held in place with
metal brackets that are bolted to the sidewalls. A custom-built test platform replaced
one of the concrete panels and housed the instruments to make measurements of the
bed shear stress and near-bed flow quantities. The test platform was made of marine
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FIGURE 3. Schematic of the experimental set-up in the entire wave flume.

Shear plate sensor 

Shear plate sensor 
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(a) (b)

FIGURE 4. Photographs of the test platform with the instrument set-up: (a) looking
offshore towards the wavemaker and (b) top view of the instrument set-up.

plywood painted with a water-resistant paint and reinforced with aluminium beams
underneath. Photographs of the test platform are shown in figure 4.

Measurements of the free-surface displacement, water particle velocity and dynamic
pressure were made in the constant depth region, at a distance of 21.4 m from
the wavemaker, when it was in its fully retracted position. There were additional
measurements of the free-surface displacement at the toe of the beach and further
onshore. The free-surface displacement measurements were made using custom-built
resistance-type wave gauges, which were calibrated by the standard method of
lowering systematically into water and recording the output voltage. The gauges were
calibrated at the start and end of every day and the calibration coefficients used for
each experimental run were values linearly interpolated in time. This procedure was
followed because it was found that the calibration coefficients were prone to drift,
which was thought to be due to a combination of the changing chemical composition
of the water, which changes the resistivity, and the changing surface conditions on
the wires, which changes their conductivity, (e.g. Dibble & Sollitt 1989). The water
particle velocity was measured using an acoustic Doppler velocimeter (ADV, Nortek
Vectrino with plus firmware) mounted at a height of z = −1.1 m, and the dynamic
pressure was measured using a pressure transducer (Druck PDCR 830; accuracy
30 Pa) mounted at a height of z=−1.41 m.

Measurements of the local bed shear stress, free-surface level, bed pressure and
near-bed velocity were made in the swash measurement zone (see figure 3) at nine
different locations. The local bed shear stress was measured using a shear plate
sensor which is described in the following section. The free-surface elevation was
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Measurement locations (m):
L1 L2 L3 L4 L5 L6 L7 L8 L9

x

z

Run-ups (m): W1 W2 W3 W4 W5

W8, W9, W10
run-ups

W6 W7

HJ zone Plunging waves
collapse zone

Surging waves
collapse zone

FIGURE 5. A diagram, to scale, of the swash measurement zone. Here, L1, L2, etc. denote
the measurement locations. The diagram also shows the zone of wave collapse during
uprush, the run-up, R, of all ten wave cases (W1, W2, etc.) and the zone where the
hydraulic jump occurs, i.e. the run-down limit, Rd, for all ten wave cases. The numbers
in brackets are values for the x coordinate in metres. A full set of run-up and run-down
data is provided in table 1.

measured using an ultrasonic wave gauge (Senix TS-30S1 series; accuracy 1 mm), the
bed pressure was measured using a pressure transducer (Druck PDCR 830; accuracy
30 Pa) which was installed with its measurement face flush with the bed and the
near-bed velocity was measured using a side-looking ADV (also Nortek Vectrino
with plus firmware) mounted with its measurement volume at a height of 2 cm above
the bed. All measurements in the swash measurement zone were collocated in the
cross-shore direction. The ultrasonic wave gauge was installed directly over the centre
of the shear plate sensor and the ADV was installed such that its measurement volume
was directly above the pressure transducer. The test platform had three separate
sites for installation of the shear plate sensor and bed pressure transducer, and the
test platform was in turn installed in three separate positions on the plane beach,
replacing a different concrete panel each time. Relative to the stillwater shoreline,
the coordinates of the measurement locations are shown to scale in figure 5. Each
wave case was regenerated for each measurement location. The data taken at different
locations were synchronized using the start of the wavemaker motion. The incident
waves aligned in phase in this way were found to be very repeatable; the largest
time-averaged standard deviation of separate runs of the same wave was less than
1.5 mm. At locations onshore of the stillwater shoreline, i.e. x > 0 in figure 5, the
ADV was only submerged in water of sufficient depth for a short duration of time in
which the signal to noise ratio (SNR) was above a threshold value of 15 dB. Thus,
the near-bed velocity measurements were only available during the uprush after the
swash tip, carrying entrained air, had passed and during the downrush before the
water depth dropped to below roughly 5 cm. All instruments were recorded at a
rate of 50 Hz using a data acquisition system (National Instruments PXI-6259) and
all instrument positions were recorded using a surveying system (Nikon NPL-352;
resolution 5 mm).

Additionally, the shoreline motion was also tracked using overhead cameras. Two
cameras (Panasonic AW-HE60) were mounted above the flume and recorded the
experiments at 59.94 Hz. With the instruments located at location L1 (see figure 5),
the stillwater shoreline and the entire swash were visible to the cameras. A small
LED was installed that was visible in the camera frame, which turned on to indicate
the start of the data acquisition system. In this way, the data from the camera
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were synchronized with the rest of the data to within one data sample (±0.02 s).
Regularly spaced markings on the concrete panels were used to remove camera
distortion and perspective by mapping these points from the camera data to their
true locations, which were known from survey measurements. The camera data
were then interpolated onto a horizontal plane with a new uniform resolution of
1 pixel cm−1. The original resolution of the camera was higher than 1 pixel cm−1

in the swash measurement zone, so the accuracy of the shoreline tracking near the
stillwater shoreline was not limited by camera resolution. After this image processing,
a tracking algorithm was used, which looked for strong spatial gradients in the middle
third (in the spanwise sense) of the flume, to track the position of the shoreline at
each time step. This method of tracking the position of the shoreline was only
successful for the uprush flow. The receding shoreline was somewhat ambiguous
since the water depth gradually decreased to zero on the wetted beach and there was
no sharp optical signature.

The water depth was kept constant at h0= 1.72 m throughout all of the experiments
and solitary waves of ten different wave heights were generated at the wavemaker.
The trajectory of the wavemaker was calculated using the Goring (1978) method. The
wave heights were measured at the wave gauge in the constant depth region and used
to calculate the effective wavelength and effective period, (2.3). The solitary wave
Reynolds number, (2.4), was calculated using the maximum u velocity measured by
the ADV in the constant depth region, and the horizontal water particle half-excursion-
length was calculated from the u velocity data of the ADV simply as

a0 = 1
2

∫ T0/2

−T0/2
u dt. (3.1)

All characteristics of the solitary waves that were generated are given in table 1.
The last column of table 1 gives the time duration of the swash event associated with
each solitary wave, which is further defined and discussed in § 4. The incident wave
nonlinearity and the solitary wave Reynolds number span an order of magnitude. The
horizontal distance from the wavemaker to the stillwater shoreline was 58.3 m, which
is roughly equal to the wavelength of the longest wave generated and roughly twice
the wavelength of the shortest wave generated. The large water depth, combined with
the fact that the waves only travelled small multiples of their wavelength, meant that
viscous damping of the solitary waves in the constant depth region was negligible.

3.2. Shear plate sensor
The bed shear stress was measured using a shear plate sensor designed specifically
for measurements in the nearshore region. The details of the shear plate sensor
operation are provided in Pujara & Liu (2014), but a brief overview is given here
for completeness. The range of the shear plate sensor is ±200 Pa and its accuracy is
±1 %, but its true accuracy may depend on other factors such as vibration noise and
secondary forces. The shear plate sensor (shown schematically in figure 6) consists
of a shear plate (length 43.0 mm, width 136.0 mm and thickness 0.8 mm) supported
by four cylindrical links (diameter 1.6 mm and length 62.2 mm). The cylindrical
links are rigidly clamped to a base plate (thickness 6.4 mm) and rigidly attached to
the shear plate. This configuration creates a parallel linkage mechanism providing
stiffness to horizontal deflections of the shear plate. This mechanism is installed into
an acrylic housing, which also contains pressure tappings upstream and downstream
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Wave H0 ε0 L0 T0 U0 a0 Re0 S0 Breaker R Rd Ts

(m) (—) (m) (s) (m s−1) (m) (×105) (—) type (m) (m) (s)

W1 0.085 0.050 56.6 13.4 0.20 0.42 0.6 0.57 NB 0.30 0.13 8.5
W2 0.128 0.074 46.1 10.8 0.30 0.51 1.1 0.47 NB 0.46 0.17 8.5
W3 0.173 0.100 39.6 9.2 0.40 0.58 1.7 0.40 NB 0.61 0.18 7.9
W4 0.226 0.131 34.7 7.9 0.51 0.67 2.4 0.35 SU 0.75 0.20 7.8
W5 0.261 0.151 32.3 7.3 0.58 0.71 2.9 0.33 SU 0.83 0.20 7.6
W6 0.295 0.171 30.4 6.8 0.65 0.75 3.5 0.31 SU 0.90 0.19 7.4
W7 0.345 0.199 28.1 6.2 0.74 0.81 4.3 0.28 PL 0.96 0.20 7.4
W8 0.410 0.237 25.8 5.6 0.85 0.86 5.2 0.26 PL 1.09 0.21 7.5
W9 0.443 0.256 24.8 5.4 0.92 0.88 5.8 0.25 PL 1.16 0.21 7.6
W10 0.493 0.286 23.5 5.0 1.00 0.91 6.5 0.24 PL 1.23 0.21 7.7

TABLE 1. The properties of the solitary waves generated; NB is a non-breaking wave,
SU is a surging breaker and PL is a plunging breaker.

of the shear plate. There is a gap of 1 mm around the perimeter of the shear plate to
allow for small deflections, which are measured by an eddy-current proximity probe
(Lion precision ECL-202; range 2 mm, resolution 0.001 mm) which measures the
distance to a target plate hanging vertically below but rigidly attached to the shear
plate. Knowing the stiffness of the parallel linkage mechanism, the total force on the
shear plate can be found from measurements of its deflection. Apart from the primary
force of the fluid friction on the shear plate, there is an extra secondary force of the
pressure difference between the upstream and downstream edges of the shear plate
(e.g. Hanratty & Campbell 1996). Pujara & Liu (2014) provided a methodology for
correcting for this force if the pressure gradient in the flow direction is mild and
known. The bed shear stress is found using

τb = 1
Aplate

(
F− fPG

∂p
∂x

Vplate

)
, (3.2)

where τb is the bed shear stress, F is the total force on the shear plate, Aplate is the
shear plate area, Vplate is the shear plate volume, ∂p/∂x is the streamwise pressure
gradient at the shear plate and fPG=0.8 is a constant for the shear plate sensor. Details
on how this constant is calculated are provided in Pujara & Liu (2014). The finite size
of the shear plate sensor provides measurements of the local mean bed shear stress.
The measurements are local with respect to the larger scales of the swash zone, but
mean with respect to turbulent fluctuations.

The pressure gradient in the flow direction was estimated via measurements of
the pressure difference between the pressure tappings upstream and downstream of
the shear plate using a differential pressure transducer (Omega Engineering PX409
series; accuracy 2.5 Pa). It was found that the magnitude of the estimated pressure
gradient force on the shear plate reached as high as 25 % of the total force when
the shear plate sensor was located offshore of the stillwater shoreline (locations L1
and L2). Under these circumstances, it is important to use both terms in (3.2) to
obtain the bed shear stress. At locations onshore of the stillwater shoreline (x > 0,
locations L3–9), the magnitude of the largest estimated pressure gradient force only
reached 10 % of the total force. For breaking waves, this ratio was even smaller at
5 %. However, the pressure gradient measurements were found to be unreliable for
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3

2 1
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FIGURE 6. Schematic of the shear plate sensor (adapted from Pujara & Liu 2014): 1,
eddy-current proximity probe; 2, target plate; 3, cylindrical links; 4, base plate; 5, shear
plate; 6, pressure tappings.

breaking waves at locations onshore of the stillwater shoreline, probably because the
pressure difference was very small and the vibration noise created by the breaking
waves caused a disturbance to the differential pressure sensor and led to drifts in
the measurements and shifts in the zero level. Fortunately, as mentioned above, the
highest ratio of the pressure gradient force to the total force on the shear plate sensor
in these cases was 5 %. Thus, a conservative estimate of the accuracy of the bed shear
stress measurements can be considered to be ±5 %, but the actual accuracy for the
majority of the swash cycle is closer to the accuracy of the sensor, ±1 %. The bed
shear stress measurements suffered from an additional issue related to the large-scale
nature of the facility. The discrete composition of the plane beach meant that small
gaps, protrusions and recessions at the edges of the test platform and between the
test platform and the sidewalls were unavoidable. The gaps and recessions were filled
with plywood planks and expanding foam and relevelled. Thus, at locations close to
the edge of the test platform, the shear plate sensor did not capture the shear stress
near the swash tip accurately. Locations L1, L3, L4 and L6 suffered from this issue,
and hence flow quantities near the swash tip at these locations show disrupted signals
and are not presented.

4. Results
4.1. Constant depth region

At the reference wave gauge, the free-surface displacement and the water particle
velocity for W5 are compared with the Boussinesq theory of solitary waves,
(2.1)–(2.3a,b), and the higher-order solitary wave theory of Grimshaw (1971), which
retains terms up to O(ε3

0). These comparisons are shown in figures 7 and 8. These
are typical comparisons between data and theory for the free-surface displacement
and water particle velocity; it can be seen that the generated solitary waves match
the theoretical solitary wave solutions well. The Boussinesq theory provides a slightly
better match for the free-surface displacement, perhaps due to the fact that the
wavemaker trajectory is based on the Boussinesq solution. The Grimshaw theory
provides a better match for the water particle velocities, especially the vertical
velocity.

Figures 9 and 10 show the comparison of the free-surface displacement and
water particle velocity respectively for the largest wave generated, W10. There is a
deviation from the theoretical solution in the later stages of the deceleration phase,
and it is more pronounced for the free-surface displacement. The precise source of this
deviation is not known, but it is probably due to a combination of (i) small departures
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FIGURE 7. Measurements of the free-surface displacement in the constant depth region
for W5 (SU, H0 = 0.261 m, ε0 = 0.151):E, data; ——, Boussinesq solution, (2.2); — —,
Grimshaw (1971) solution.

3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

3 4 5 6 7 8 9 10 11

–0.1
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t (s)

(a)

 (b)

FIGURE 8. Measurements of the water particle velocity in the constant depth region for
W5 (SU, H0 = 0.261 m, ε0 = 0.151): E, data; ——, Boussinesq solution, (2.2); — —,
Grimshaw (1971) solution (indistinguishable from the data).

of the wavemaker motion from the prescribed motion and (ii) the limitations of the
wave generation theory, which starts to become less reliable for higher-amplitude
waves in which the vertical variation of the horizontal velocity starts to become
stronger and cannot be reproduced by a vertical piston-type wavemaker. This inability
of a vertical piston-type wavemaker to produce solitary waves for which ε0 & 0.25 was
also noted by Grilli & Svendsen (1991) in their numerical study and Jensen, Pedersen
& Wood (2003) in their experimental study. Wave W10 was the largest-amplitude
wave generated and hence has the worst comparison with the theoretical solution. In
the swash measurement zone, this wave would have already broken and lost memory
of its initial shape, and thus we do not expect these discrepancies to produce radically
different results.
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FIGURE 9. Measurements of the free-surface displacement in the constant depth region
for W10 (PL, H0= 0.493 m, ε0= 0.286):E, data; ——, Boussinesq solution, (2.1); — —,
Grimshaw (1971) solution.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
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FIGURE 10. Measurements of the water particle velocity in the constant depth region for
W10 (PL, H0 = 0.493 m, ε0 = 0.286): E, data; ——, Boussinesq solution, (2.2); — —,
Grimshaw (1971) solution (indistinguishable from the data).

4.2. Shoaling
The shoaling of a solitary wave on a plane beach has been previously studied, but
no shoaling laws (theoretical or empirical) exist to predict the shoaling rate for a
wide range of slopes and incident wave heights. Peregrine (1967) pointed out that as
long as the water depth is much larger than the bottom boundary layer thickness and
the celerity of the waveform is much higher than the velocity of the water, so that
rotational velocities in the boundary layer are not carried with the wave, the shoaling
process is not influenced by the viscosity and the value of the offshore water depth,
h0, also does not influence shoaling results. Green’s law, which states that H ∼ h−1/4,
is originally a result from oscillatory linear long waves (for a review, see Synolakis
& Skjelbreia 1993) and was rederived for solitary waves by Synolakis (1991) and
Synolakis & Skjelbreia (1993). Their derivation required that the nonlinearity of the
wave was negligible before it started to climb the slope and that Green’s law was
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FIGURE 11. Growth of the wave height as a function of the local depth: symbols, wave
gauge data; ——, power law fits, (4.1). Refer to table 1 for the incident wave properties
of W1, W2, etc.

only valid near the toe of the plane beach. Thus, Green’s law is only applicable to a
limited range of parameters for solitary wave shoaling. The other well-known result is
the Boussinesq law for shoaling of a solitary wave, which states that H∼ h−1. It was
derived by assuming that the total energy of the wave is conserved without change of
shape (Boussinesq 1872), but laboratory studies usually report steepening of the front
face of the wave as it climbs the slope. Ippen & Kulin (1954) conducted extensive
experiments testing solitary waves with incident nonlinearities spanning the range
0.2<ε0 < 0.7 on slopes in the range 1/43.5< s< 1/15.4 and found that the shoaling
rate decreases as the slope becomes steeper. Synolakis & Skjelbreia (1993) proposed
a ‘two-zone’ evolution of solitary waves based on their own experimental results as
well as those of Camfield & Street (1969), Saeki et al. (1971), Synolakis (1986) and
Skjelbreia (1987): a ‘zone of gradual shoaling’ following Green’s law and a ‘zone of
rapid shoaling’ just before wave breaking occurs following Boussinesq’s law. As they
noted, shoaling according to the Boussinesq law just before wave breaking is a purely
empirical result since the shape of the wave is changing very rapidly in this zone.
Only data on slopes of s = 1/20 or milder were considered in their analysis. Hsiao
et al. (2008) conducted experiments on a slope of s= 1/60 and found the two-zone
model to agree qualitatively with their data. The results of the numerical studies of
Grilli et al. (1994) show that on the mildest slope they considered, s = 1/35, their
results agree qualitatively with the two-zone model: solitary waves follow Green’s
law of shoaling until the local nonlinearity becomes H/h ≈ 0.5 and the Boussinesq
law just before breaking. On steeper slopes, they concluded that there was no general
law able to predict the shoaling rate, and on very steep slopes, the wave height is
unchanged or even decreases as the wave travels up the slope.

The three wave gauges on the slope and the wave gauge at the toe provide wave
height data for 0.47< h/h0< 1. The data from repeated waves are averaged and fitted
to a power law of the form

H ∝ hn (4.1)

and plotted in figure 11. The exponent of the power law, n, is plotted in figure 12
as a function of the incident wave height. The uncertainty in the exponent, n,
is found by applying the bootstrap technique (Efron & Tibshirani 1993) to the
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FIGURE 12. The shoaling rate exponent, n, calculated from a power law fit to the data,
(4.1), as a function of the incident wave nonlinearity. The vertical bars represent the
uncertainty in n (see the discussion in the text).

power law fit. The data show that for waves W4 to W10, covering a wide range
of incident wave heights, 0.13 < ε0 < 0.29, the shoaling rate hardly changes,
−0.12 < n < −0.10. Considering all waves, the absolute value of the shoaling
rate decreases with increasing incident wave height, but for this slope, there seems
to be a limit of approximately n=−0.1 for how slowly the wave height grows. For
the smallest incident waves, the rate of shoaling seems to approach that of Green’s
law (n=−0.25), but it is still lower in absolute value. The current shoaling data are
consistent with the conclusions drawn in the literature: (i) the shoaling of a solitary
wave is independent of the incident wave height for large incident wave amplitudes;
(ii) when the nonlinearity of the wave remains small, the shoaling rate near the toe
is closer to Green’s law. The current experiments do not show evidence of the two
zones of shoaling, although Li & Raichlen (1998) point out that on steeper slopes,
the waves tend to break before they have a chance to evolve due to the effect of the
slope.

4.3. Wave breaking and collapse
In the current study, two types of breakers were observed: surging breakers and
plunging breakers (see table 1). For plunging breakers, the overturning crest formed a
jet that hit the dry land onshore of the stillwater shoreline, and for surging breakers,
the front face of the wave became very steep as it moved past the stillwater shoreline
and then collapsed.

The breaking point is usually defined as the location at which some part of the free
surface becomes vertical, corresponding to the mathematical interpretation of breaking
that leads to the theoretical breaking criteria, (2.7) and (2.8). Since there was no
opportunity to observe the waves from the side in these experiments to gather data on
instantaneous wave shape, it was not possible to locate the breaking points. Whether
wave breaking occurred was decided by whether the surface of the water remained
smooth and free of entrained air during the uprush, which could be determined from
the overhead camera data. If the wave broke, the location onshore of the stillwater
shoreline at which the surface of the water was no longer smooth was identified by
the overhead camera data and is called the collapse point in this study to distinguish
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Wave Collapse time HL2 (H/h)L2 ML2 Us,p Us Uα,(x>0) Ud,L2 Frd,L2

(s) (m) (—) (—) (m s−1) (m s−1) (m s−1) (m s−1) (—)

W1 — 0.119 1.19 — — — — 1.59 1.90
W2 — 0.158 1.58 — — — — 1.95 2.31
W3 — 0.205 2.05 — — — — 1.99 2.38
W4 16.9 0.262 2.62 1.25 4.1 3.6 4.8 1.97 2.35
W5 16.7 0.274 2.74 1.26 4.2 3.7 5.0 2.11 2.52
W6 16.3 0.328 3.28 1.31 4.7 4.1 5.3 2.21 2.59
W7 16.0 0.386 3.86 1.36 5.2 5.0 5.4 2.19 2.57
W8 15.6 0.460 4.60 1.41 5.7 5.7 5.5 2.29 2.72
W9 15.3 0.522 5.22 1.46 6.2 6.2 5.6 2.41 2.89
W10 15.1 0.556 5.56 1.49 6.5 6.6 5.7 2.54 2.97

TABLE 2. Nearshore and swash properties of solitary waves. (i) The collapse time
for all breaking waves. (ii) Local properties of all solitary waves at location L2 (h =
0.10 m, h/h0 = 0.058): HL2, (H/h)L2, ML2. (iii) Predicted and measured swash initiation
shoreline velocities: Us,p, Us. (iv) Constant value of the characteristic variable, α, as
determined from measurements in the swash: Uα,(x>0). (v) Measured maximum downrush
velocity and Froude number at location L2: Ud,L2, Frd,L2.

it from the breaking point and because of the process of rapid conversion of potential
energy to kinetic energy, analogous to bore collapse, that followed. The collapse points
for all breaking waves fall within a narrow region onshore of the stillwater shoreline
0.1< x< 0.3 m as seen in figure 5, which also shows that surging breakers collapsed
further onshore than plunging breakers. The time at which this collapse point occurs
is referred to as the collapse time and is given in table 2.

According to the breaking criterion provided in Synolakis (1987), all waves with
ε0 > 0.0517 would break during uprush, whereas waves up to ε0= 0.1 were observed
to show no signs of breaking. This underestimation in the wave amplitude required
for breaking is probably due to the shallow water approximation made in that theory
which neglects the effects of dispersion, which act against wave steepening and may
locally alter whether the free surface becomes vertical. The Synolakis (1987) theory
is also restricted to incident solitary waves of very low nonlinearity (ε0� 1), and thus
the theory may be inappropriate for the larger-amplitude solitary waves used in this
study. On the other hand, visual observations confirmed that the type of breaking event
that occurred matched the prediction of the slope parameter, S0, defined in (2.16), that
was formed using data from numerical computations of the fully nonlinear potential
flow equations by Grilli et al. (1997). In the following sections, we present our results,
taken from a single slope, in terms of S0, so that properties of the swash can be
studied in terms of the breaker type and future results on different slopes can be more
meaningfully compared with the present results.

4.4. Shoreline motion
The tracked shoreline position along the slope, xs(t), for all waves is plotted in
figure 13. A second-order accurate finite difference scheme was used to obtain the
shoreline velocity along the slope, us(t). Figure 14 shows the shoreline velocity as
a function of its position for the three non-breaking waves, two surging breakers
and two plunging breakers. For waves that break, the shoreline motion tracking
starts when it is already moving with a large velocity immediately following the
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FIGURE 13. Shoreline position, xs(t), for all waves: W1–3, NB; W4–6, SU; W7–10, PL.
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FIGURE 14. Shoreline velocity, us(t), for W1–5, W9, W10; waves W6–8 are left off for
reasons of space: W1–3, NB; W4–6, SU; W7–10, PL.

collapse point, when the water surface first becomes rough. Just prior to that, during
the breaking process, the shoreline position is undefined as the wave crest curls
over the stillwater shoreline. The shoreline accelerations seen in the initial stages
of the surging and plunging breakers are caused by the steepness of the wavefront
(a pressure gradient that is favourable in the onshore direction), which is lost when
the collapse is completed. A similar feature was observed in the numerical study of
Hibberd & Peregrine (1979). For the plunging breakers, the collapse point occurs just
after the stillwater shoreline, so that the shoreline shows a very short acceleration
phase during this time. For the surging breakers, the collapse point occurs further
onshore (see figure 5) and thus the shoreline acceleration persists for slightly longer.
For non-breaking waves, the shoreline accelerates more gradually from rest at the
stillwater shoreline and reaches a maximum velocity before a gradual deceleration
until the run-up is reached.

The shoreline velocity of the plunging breakers, e.g. W9 and W10 in figure 14,
shows a sudden increase near x= 11 m before falling to zero at the end of the run-up.
This feature was also observed by Yeh et al. (1989) and Zhang & Liu (2008), who
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FIGURE 15. The free-surface elevation, η, of waves W5–10 at location L2 (x=−1.21 m):
(a,c,e) W5–7; (b,d,f ) W8–10.

called it a ‘mini-collapse’. Zhang & Liu (2008) examined the velocity field in the
vicinity of the mini-collpase and showed that there was a build-up of fluid behind
the swash tip due to the effects of bed friction at the swash tip. The built-up fluid
resembled a small bore that created a mini-collapse when it caught up with the
shoreline.

4.5. Swash initiation shoreline velocity
Figure 15 shows that the wave fronts are very steep for waves W5–10 at location L2
(stillwater depth h = 0.10 m), although the waves still have smooth rounded crests.
These features show sufficient nonlinear steepening to make use of the NSWEs, (2.5),
appropriate. The steep fronts can be treated as bore fronts in the context of (2.5) and
the wave heights at location L2 as the height of the bores. If the bore strength is
high enough, we expect bore evolution to be governed by Whitham’s formula, (2.11),
as the bore approaches the stillwater shoreline. Then, the swash initiation shoreline
velocity, Us, is expected to be well predicted by the solution to Whitham’s formula,
(2.12), in which the bore height at location L2 provides the initial condition. Table 2
lists the values of the swash initiation shoreline velocity (i) predicted using Whitham’s
formula, Us,p, and (ii) measured immediately after collapse, Us.

Figure 16 plots these predicted and measured swash initiation shoreline velocities,
made dimensionless by the offshore linear long-wave speed. The measured maximum
shoreline velocity during uprush, Us,m, is also plotted for comparison. There are two
sources of uncertainty in the measurement of the shoreline velocity: the truncation
error in the finite difference scheme to calculate the shoreline velocity from the
shoreline position data and the uncertainty in the position of the shoreline at each
datapoint. The uncertainty in the shoreline position dominates in this case, and it is
propagated to an uncertainty in the shoreline velocity to give the error bars in the
measured swash initiation shoreline velocity (e.g. Taylor 1997). The overall agreement
between the predicted and measured values of the swash initiation shoreline velocity
verifies the theory of Ho & Meyer (1962), who showed that the evolution of the bore
during collapse is only very weakly influenced by the details of the bore. However, it
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FIGURE 16. Swash initiation shoreline velocity – comparison of predictions and
measurements: E, Us,p; ×, Us; B, Us,m. The error bars represent the uncertainty in the
measurement of the shoreline velocity (see the discussion in the text) and are not shown
for the maximum measured shoreline velocity, Us,m, for reasons of space.

can be seen that while the predicted values for the swash initiation shoreline velocity
match the measured values very well for plunging breakers (0.025 < S0 < 0.3), the
measured values for surging breakers (0.3< S0 < 0.37) are slightly lower than those
predicted. The source of this discrepancy for surging breakers is probably the fact
that surging breakers do not completely collapse by the time the shoreline starts to
move. We return to this idea in the following section in the context of the flow
evolution in the swash.

A similar agreement in the predicted and measured swash initiation shoreline
velocities was also observed by Yeh et al. (1989), who found that for undular bores
(or weak bores), the swash initiation shoreline velocity predicted by Whitham’s
formula matched the measured value, but it occurred slightly onshore of the stillwater
shoreline. The description of the collapse of undular bores matches that of the
plunging breakers in this study, i.e. the collapse occurs via overturning of the fluid
onto the dry land onshore of the stillwater shoreline. For fully developed bores (or
strong bores), Yeh et al. (1989) found that the bore exchanges momentum with the
wedge-shaped fluid in front of the bore and pushes this fluid onshore to initiate
the swash. This momentum exchange causes a lower initial shoreline velocity than
predicted by Whitham’s formula. Such a transition might be expected for solitary
waves that are spilling breakers.

Figure 16 also shows that the dimensionless swash initiation shoreline velocity
for solitary waves that barely break (S0 ≈ 0.35) is close to the offshore linear
long-wave speed,

√
gh0. As S0 decreases towards plunging breakers, Us increases to

approximately 1.6
√

gh0, and it may increase further for even larger waves. Overall,
the relationship between Us/

√
gh0 and S0 provides a link between the velocity scale

of the swash, i.e. the swash initiation shoreline velocity, and the offshore water depth
by using S0 to predict the breaker type. The data provided here are only for one
slope and, in general, there may be an additional slope dependence since the slope
is of primary importance in the determination of increases in wave height during
shoaling.
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FIGURE 17. Free-surface elevation, near-bed velocity and bed shear stress for wave W10
(PL, H0= 0.493 m, ε0= 0.286) at location L5 (x= 2.42 m). (a) Free-surface elevation, η.
(b) Near-bed velocity, u. (c) Bed shear stress, τb.

4.6. Flow evolution in the swash
The time series of a typical set of results for the free-surface elevation, near-bed
velocity and bed shear stress in the swash measurement zone are plotted in figure 17.
For a given location onshore of the collapse point, the bed shear stress is highest
(and directed onshore) at the swash tip when the shoreline arrives, and the bed shear
stress values are high (but directed offshore) near the end of the downrush. Further
discussion of the bed shear stress is left to the following section, but at this point
it is important to note that during the mid-swash duration, after the swash tip passes
and before the end of the downrush, the bed shear stress is small and velocity data
are available from the ADV (as mentioned is § 3.1, the ADV velocity measurements
are only available for a truncated time during the swash when the SNR is above a
threshold value).

Given that the applicability of the bore collapse theory to breaking solitary waves
was affirmed in § 4.5 and bed friction is found to be significant only in the swash
tip and at the end of the downrush, it is natural to ask whether the flow evolution
in the mid-swash duration follows the swash solution, (2.14), since it was established
in § 2.2.3 that bore collapse provides a valid initial condition for the swash solution.
Figure 18 plots the characteristic variable, α, as a function of time for all breaking
waves (W4–10). The value of α = u + 2c + gsts is calculated from measurements:
the free-surface elevation is used to compute the local long-wave celerity, c = √gη,
the near-bed velocity, u, is assumed to approximate the depth-averaged velocity, u,
during the mid-swash duration (vertical variation of the horizontal velocity is weak
in the swash, e.g. Pedersen et al. 2013) and the collapse point as described in § 4.3
is taken to be (x, ts) = (0, 0). Additionally, the value of α is averaged across all
measurement locations onshore of the stillwater shoreline (L3–L9) because α does
not vary appreciably in x. The data in figure 18 show that α ≈ const. throughout the
swash flow, except near the swash tip and towards the end of the downrush where the
effects of vertical accelerations or bed friction may be important locally. A constant
α is in accordance with the swash solution, but unlike the swash solution, the data
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FIGURE 18. The characteristic variable, α, calculated from experimental data and made
dimensionless by the measured swash initiation shoreline velocity, Us, as a function of
time for all breaking waves, W4–10. The origin of time for the swash of breaking
waves, ts = 0, is the collapse time given in table 2.

in figure 18 show that the constant is not necessarily equal to the measured swash
initiation shoreline velocity, Us. By taking a time average of the data in figure 18
during the mid-swash duration, the constant value of α in the swash is calculated. This
constant value is denoted as Uα,(x>0) and is listed in table 2 for all breaking waves
(W4–10). Figures 19 and 20 plot the free-surface elevation and the near-bed velocity
for two breaking waves (W5, W8) at two separate locations (L5, L8) and compare
the data with the swash solution, (2.14), which is calculated using Uα,(x>0) instead
of the measured Us. The data match the swash solution very well, as expected since
the value of Uα,(x>0) was determined from the data. However, the more meaningful
result is that the flow evolution in the swash for breaking solitary waves does follow
the swash solution, since α ≈ const., but the constant, which is also the only free
parameter in the swash solution, must be correctly scaled. Then, important quantities
such as the maximum flow depth and time of flow reversal at a given location can
be accurately determined. With the knowledge that the flow evolution of the swash
of breaking solitary waves follows the swash solution, the following salient features
of this flow can be pointed out. The time of flow reversal does not necessarily occur
in phase with the maximum flow depth – the free surface starts to decrease while
the velocity is still positive. Flow reversal occurs earlier further down the slope, and
the location where flow reversal occurs climbs the slope, stretching and thinning the
swash flow. The free-surface gradient, ∂η/∂x, is positive, or equivalently the total fluid
particle acceleration is negative, for the majority of the swash. These features are
discussed in more detail in the context of field measurements by Baldock & Hughes
(2006).

To compare the various estimates and measurements of the swash initiation
shoreline velocity, figure 21 plots the direct measurement of the initial shoreline
velocity, Us, the prediction of the swash initiation shoreline velocity from wave
height measurements at location L2, Us,p, and the constant value of the characteristic
variable, α, determined from measurements in the swash, Uα,(x>0), against the slope
parameter, S0. As S0 decreases, i.e. as the breaker type moves from surging to
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FIGURE 19. Free-surface elevation, η, and near-bed velocity, u, for W5 (SU, H0 =
0.261 m, ε0= 0.151) at locations L5 (x= 2.42 m) and L8 (x= 6.10 m), and comparisons
with the swash solution, (2.14), scaled using Uα,(x>0): (a) ——, η at L5; ——, η at L8;
— —, η from the swash solution, (2.14); (b) ——, u at L5; ——, u at L8; — —, u from
the swash solution, (2.14);E, shoreline velocity, us, at L5;u, shoreline velocity, us, at L8.
The origin of time for the swash of breaking waves, ts = 0, is the collapse time given in
table 2.
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FIGURE 20. Free-surface elevation, η, and near-bed velocity, u, for W8 (PL, H0 =
0.410 m, ε0= 0.237) at locations L5 (x= 2.42 m) and L8 (x= 6.10 m), and comparisons
with the swash solution, (2.14), scaled using Uα,(x>0): (a) ——, η at L5; ——, η at L8;
— —, η from the swash solution, (2.14); (b) ——, u at L5; ——, u at L8; — —, u from
the swash solution, (2.14);E, shoreline velocity, us, at L5;u, shoreline velocity, us, at L8.
The origin of time for the swash of breaking waves, ts = 0, is the collapse time given in
table 2.

plunging, the relative magnitudes of the three swash initiation shoreline velocity
scales change from Uα,(x>0)>Us,p >Us to Uα,(x>0)<Us,p <Us, although the difference
between Us and Us,p is not appreciable for the plunging breakers.

For surging breakers, the corresponding physical interpretation is that the flow in
the swash zone is driven by a larger initial energy than that predicted by bore collapse
theory, which in turn is larger than the energy corresponding to the velocity of the
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FIGURE 21. Comparisons of different estimates for the swash initiation shoreline
velocity: E, Us,p, predicted from Whitham’s formula for bore collapse, (2.11)–(2.12); ×,
Us, measured initial shoreline velocity with error bars representing uncertainty (same as
figure 16);u, Uα,(x>0), constant value of the characteristic variable, α, from measurements
in the swash.

shoreline when it first begins moving. As discussed in § 4.5, the initial shoreline
velocity for surging breakers is lower than that predicted by bore collapse theory
because the theory assumes that the height of the bore collapses to zero and the
conversion between potential energy of the bore and kinetic energy of the swash
is complete by the time the shoreline starts to move. Due to the kinematics of
surging breakers (see Jensen et al. (2003) for detailed measurements of the velocity
and acceleration fields near the stillwater shoreline for a surging breaker), this
transformation is not complete when the shoreline starts to move. The same idea can
also be interpreted as an ambiguity in the location and time of collapse, (x, ts)= (0, 0),
in the context of bore collapse theory. Additionally, bore collapse theory is valid when
the initial bore strength is high, as mentioned in § 2.2.2 and discussed in Ho & Meyer
(1962). Thus, the prediction from bore collapse theory, Us,p, may be an underestimate
for surging breakers because, as measured at location L2, they may not be a good
approximation to bores of high strength, i.e. their dynamics is not the same as that
of a bore of the same height. The milder wave fronts of waves W5–7 compared with
waves W8–10 in figure 15 show evidence for this argument. Alternatively, it can be
said that for surging breakers, data are required from closer to the stillwater shoreline
than location L2 to use bore collapse theory.

For plunging breakers, Us ≈ Us,p to within the uncertainty of measurement,
suggesting that bore collapse theory is valid, but Uα,(x>0) < Us. The reason for a
swash zone flow that is driven by a lower initial energy than that corresponding
to the initial shoreline velocity is probably the loss of energy from the mean flow
to turbulent kinetic energy in the violent breaking process that occurs in plunging
breakers. Overall, for the range of breaker types investigated, the swash zone flow is
driven by an initial energy that corresponds to a swash initiation shoreline velocity
in the range 1.1

√
gh0 <Uα,(x>0) < 1.4

√
gh0.

4.7. Bed shear stress
The time series of the bed shear stress and near-bed velocity in the swash
measurement zone for three representative locations (L2, L5 and L8) for three
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FIGURE 22. Bed shear stress and near-bed velocity for wave W3 (NB, H0=0.173 m, ε0=
0.100): ——, bed shear stress, τb; ——, near-bed velocity, u; E, shoreline velocity, us.
Locations: L2 (x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).
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FIGURE 23. Bed shear stress and near-bed velocity for wave W5 (SU, H0=0.261 m, ε0=
0.151): ——, bed shear stress, τb; ——, near-bed velocity, u; E, shoreline velocity, us.
Locations: L2 (x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).

representative waves (W3, non-breaking; W5, surging breaker; W10, plunging breaker)
are shown in figures 22–24. The sign convention for the bed shear stress is positive
when it is directed onshore and negative when it is directed offshore. Oscillations in
the bed shear stress are seen at locations L2 and L5 in figures 23 and 24 at times
corresponding to the collapse times (see table 2) for waves W5 and W10 respectively.
These may be vibration noise in the beach caused by the wave collapse. The shoreline
velocities for each wave for locations onshore of the stillwater shoreline (L5, L8)
are also plotted in figures 22–24. The free-surface elevation and bed pressure for the
same waves at the same locations are shown in figures 25–27. At location L2, none
of the waves have reached their breaking point, but at location L5, all waves that
break have fully collapsed.

At a location onshore of wave collapse, the highest bed shear stress occurs when the
swash tip first arrives during uprush, where the water particle velocity must equal the
shoreline velocity (figures 22–24). In the same region, the bed pressure rises faster

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

43
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.435


582 N. Pujara, P. L.-F. Liu and H. Yeh

15 20 25 30
−50

0

0

50

100

0

50

100

L2

L5

L8

–5

0

0

5

10

0

5

10

t (s)

FIGURE 24. Bed shear stress and near-bed velocity for wave W10 (PL, H0 =
0.493 m, ε0 = 0.286): ——, bed shear stress, τb; ——, near-bed velocity, u;E, shoreline
velocity, us. Locations: L2 (x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).

than the free surface (figures 25–27), implying large vertical accelerations, although
quantitative comparisons between the bed pressure and the free-surface elevation at
the swash tip are not attempted because the free surface is somewhat ill defined at the
swash tip due to a large amount of entrained air that rises to the surface. Furthermore,
the spatial resolution of the free-surface elevation measurement is coarser than the
bed pressure measurement due to the differences in sensor sizes and principles of
operation (see § 3). The high values of bed shear stress at the swash tip are thought
to be due to the continually developing boundary layer and bore-generated turbulence
from the continuous breaking. Measurements of the velocity near the swash tip have
so far proven difficult due to the presence of air bubbles, the highly unsteady nature of
the swash tip and its fast translational velocity (e.g. O’Donoghue et al. 2010; Kikkert
et al. 2012), but Pedersen et al. (2013) have measured and computed velocity profiles
close to a laminar swash tip in a small-scale laboratory study. Baldock et al. (2014)
have also studied a laminar swash tip by using a highly viscous fluid. They showed
that there is flow convergence at the swash tip as the fluid near the surface travels
faster than the fluid near the bed and impinges onto the bed, creating high strain
rates that lead to high values of the bed shear stress. The impingement of the fluid
onto the bed may also explain why the bed pressure is measured to be higher than
the hydrostatic pressure. Sumer et al. (2011) showed similar trends for the bed shear
stress in the swash of a plunging solitary wave. They used a hot-film sensor that
was 0.5 mm × 0.5 mm; the small size of the sensor allowed them to also capture
turbulent fluctuations of the bed shear stress. In the swash zone, they showed that
the instantaneous bed shear stress at the swash tip could be twice the mean bed shear
stress, which they obtained through ensemble averaging. Behind the swash tip, the bed
shear stress decays rapidly and the pressure returns to hydrostatic. The low values
of the bed shear stress are in phase with the velocity due to the absence of strong
pressure gradients, unlike boundary layers under waves in water of constant depth
where the bed shear stress leads the velocity (e.g. Nielsen 1992; Liu et al. 2007).
The flow in this part of the swash cycle, the mid-swash duration, is essentially a
gravity-driven flow that follows the evolution predicted by the swash solution, (2.14),
as discussed in the previous section.
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FIGURE 25. Free-surface elevation and bed pressure for wave W3 (NB, H0 =
0.173 m, ε0 = 0.100): ——, free-surface elevation, η; ——, bed pressure, pb. Locations:
L2 (x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).
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FIGURE 26. Free-surface elevation and bed pressure for wave W5 (SU, H0 =
0.261 m, ε0 = 0.151): ——, free-surface elevation, η; ——, bed pressure, pb. Locations:
L2 (x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).

Towards the end of the downrush, the bed shear stress values are also high
(and directed offshore). The flow velocities during this period are also difficult
to measure due to the very shallow depths, but the velocity data before the flow
depth becomes too shallow show that the flow is accelerated down the slope by
gravity and the magnitude of the bed shear stress increases to slow down the flow
while the flow depth continues to reduce. The bed shear stress reaches a peak
negative value after which it reduces to zero as the water runs out. The velocity
must also reduce to zero as the water runs out, and thus at some intermediate
stage, the offshore-directed velocity must reach a maximum magnitude when there
is a temporary balance between the gravitational acceleration and the bed shear
stress (we expect the streamwise velocity gradient and the streamwise pressure
gradient not to be of leading-order importance in the momentum balance). During
this period, the bed pressure measurements are also higher than the free-surface
elevation measurements, implying the existence of vertical accelerations. Although
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FIGURE 27. Free-surface elevation and bed pressure for wave W10 (PL, H0 = 0.493
m, ε0 = 0.286): ——, free-surface elevation, η; ——, bed pressure, pb. Locations: L2
(x=−1.21 m); L5 (x= 2.42 m); L8 (x= 6.10 m).

the flow is very shallow, the free surface must be rising relative to the bed in
the flow direction, i.e. ∂η/∂x < 0, because the water depth further onshore of the
measurement location reduces to zero earlier than the water depth further offshore of
the measurement location. Thus, locally, there may exist some streamline curvature
that would explain the non-hydrostatic pressure measurements. At location L5, at
approximately t ≈ 22 s, there is a sudden increase in the magnitude of the bed
shear stress in the negative direction for all waves plotted in figures 22–24. A
similar feature is observed for other locations. Sumer et al. (2011) also identified this
feature in their results and, using the ensemble averaging procedure to decompose
the bed shear stress into mean and fluctuating components, concluded that this point
was where the fluctuating component of the bed shear stress was large. Thus, they
indicated that this must be the time when the downrush flow boundary layer becomes
turbulent, generating fluctuations in the bed shear stress and causing a sudden increase
in its mean magnitude.

The flow behaviour near the swash tip and towards the end of downrush is not
very well understood, but these are the regions in the swash cycle when the bed
shear stress is most significant. However, in the mid-swash duration, the flow is well
understood, and to attempt to parameterize the bed shear stress in this part of the flow,
a local time-varying friction coefficient and Reynolds number can be calculated using
the near-bed velocity, free-surface elevation and bed shear stress signals. The friction
coefficient is defined as

C′f =
τb

1
2ρu2

, (4.2)

where the prime refers to the fact that it is a local time-varying quantity. The Reynolds
number is calculated as

Re′ = uη
ν
, (4.3)

where the local water depth, η, is chosen as the relevant length scale and the prime
once again refers to the fact that it is a local time-varying quantity. These quantities
are plotted in figures 28, 29 and 30 for location L5 for waves W3, W5 and W10
respectively. It can be seen that the friction coefficient is not well defined around
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FIGURE 28. (a) The free-surface elevation, η, ——, and the near-bed velocity, u,
——. (b) The local time-varying Reynolds number, Re′. (c) The local time-varying friction
coefficient, C′f . Location L5 (x= 2.42 m) for wave W3 (NB, H0 = 0.173 m, ε0 = 0.100).

the time when the flow changes from uprush to downrush and the velocity goes to
zero. Furthermore, values for C′f and Re′ are not available near the swash tip and
near the end of downrush where velocity data are unavailable. During downrush,
the data show that for different incident waves, the values of Re′ fall within the
range 0.5× 105 < Re′ < 105 with a corresponding range of 0.005<C′f < 0.01. Barnes
et al. (2009) conducted a careful investigation of the variation in C′f with Re′ and
location within the swash using depth-averaged velocities obtained from an NSWE
hydrodynamic model. They found that during uprush, C′f tends to decrease with
increasing Re′, which is the trend for steady flows, but at locations further up the
slope in the swash, the same Re′ gives a lower C′f than at locations further down
the slope. During downrush, C′f initially decreases with increasing Re′ and then the
trend is reversed during the later stages of downrush. They also compared their
data with the Colebrook–White formula for steady turbulent open-channel flow and
found that C′f was underpredicted during uprush and overpredicted during downrush.
These results have been corroborated by the results of O’Donoghue et al. (2010) and
Kikkert et al. (2012), who used a log-law fitting to estimate the bed shear stress from
velocity data obtained from particle image velocimetry measurements in the swash. It
should be noted that when using velocity measurements to infer the bed shear stress,
it was not possible to obtain bed shear stress values near the swash tip and near the
end of downrush. The same conclusions can be drawn from the current data, with the
trend of decreasing C′f with increasing Re′ during uprush and a mixed dependence of
C′f on Re′ during downrush visible in figures 28–30. Thus, for the data in this study,
C′f is not a universal function of Re′, probably because the swash flow is unsteady.

Instead of parameterizing the time-varying value of the bed shear stress, we choose
to focus on parameterizing the maximum magnitudes since these occur when the bed
shear stress is much more important to the flow dynamics. The maximum magnitudes
of the bed shear stress during uprush and downrush at a given location are denoted
as τb,u and τb,d respectively. The sign convention is retained so that τb,d is a negative
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FIGURE 29. (a) The free-surface elevation, η, ——, and the near-bed velocity, u,
——. (b) The local time-varying Reynolds number, Re′. (c) The local time-varying friction
coefficient, C′f . Location L5 (x= 2.42 m) for wave W5 (SU, H0 = 0.261 m, ε0 = 0.151).
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FIGURE 30. (a) The free-surface elevation, η, ——, and the near-bed velocity, u,
——. (b) The local time-varying Reynolds number, Re′. (c) The local time-varying friction
coefficient, C′f . Location L5 (x= 2.42 m) for wave W10 (PL, H0 = 0.493 m, ε0 = 0.286).

quantity referring to the fact that the downrush stress is offshore-directed. These
quantities are shown in figure 31. For the breaking waves, W5 and W10, there is an
O(6)-fold and O(7)-fold increase in the maximum uprush bed shear stress across the
collapse points respectively. Sumer et al. (2011) observed a similar increase across
breaking for their plunging wave case. This increase is usually attributed to the effects
of breaking and collapse, which produce high-velocity turbulent flow at the swash
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FIGURE 31. Maximum magnitudes of the bed shear stress for W3 (NB, H0 =
0.173 m, ε0 = 0.100), W5 (SU, H0 = 0.261 m, ε0 = 0.151) and W10 (PL, H0 =
0.493 m, ε0 = 0.286) as a function of distance from the stillwater shoreline, x.

tip. However, the non-breaking wave W3 also shows an O(6)-fold increase in the
maximum uprush bed shear stress across the stillwater shoreline, indicating that the
swash tip generates a much higher bed shear stress than the wave-induced boundary
layer even when there is no breaking. There is also an asymmetry in the swash,
with larger values of τb,u than τb,d, which has been previously noted by Barnes et al.
(2009) and others. This asymmetry is less pronounced further up the slope.

To compare the values of the maximum magnitudes of the bed shear stress in the
uprush and downrush for different breaking waves, the maximum magnitudes of the
uprush and downrush bed shear stress need to be made dimensionless. The swash
initiation shoreline velocity has been identified as the largest and defining velocity
scale of the swash in previous sections, and thus it is the appropriate velocity scale
to make the maximum magnitudes of the bed shear stress dimensionless. Thus, a
dimensionless measure of the maximum magnitudes of the uprush and downrush shear
stress at a given location can be defined as

τb,u
1
2ρU2

α,(x>0)
, (4.4a)

τb,d
1
2ρU2

α,(x>0)
, (4.4b)

where the estimate of the swash initiation shoreline velocity obtained from
measurements in the swash zone, Uα,(x>0), is used. This estimate is used instead
of other estimates of the same quantity because it is derived from the data. Figure 32
shows that the dimensionless maximum magnitudes of the bed shear stress for
different incident waves collapse under this normalization, giving further confidence
in the importance of this velocity scale in the swash. The maximum magnitude for the
uprush dimensionless maximum bed shear stress is τb/(0.5ρU2

α,(x>0)) ≈ 0.01, which
occurs just after the collapse region. The maximum magnitude for the downrush
dimensionless maximum bed shear stress is τb/(0.5ρU2

α,(x>0)) ≈ 0.002, which occurs
just before the hydraulic jump. The asymmetry of the bed shear stress between the
uprush and downrush is also evident in figure 32.
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FIGURE 32. Dimensionless maximum magnitudes of the bed shear stress for all breaking
waves, W4–10, as function of the dimensionless distance from the stillwater shoreline.

4.8. Run-up
There are many studies of the run-up of solitary waves. Most do not consider the
effects of bottom friction, turbulent dissipation or the surface tension, and so the
variables of interest are reduced to those shown in figure 1. Analytical solutions
are available for the run-up of non-breaking solitary waves, (2.6) and (2.9), but
only empirical relationships are available for breaking solitary waves (see Li &
Raichlen 2003; Fuhrman & Madsen 2008; Lo, Park & Liu 2013). For periodic waves,
a surf similarity parameter, first introduced by Battjes (1974), has been used to
predict run-up. Mei (1989) showed how the form of the surf similarity parameter
for monochromatic waves is consistent with the breaking criterion from the theory
of Carrier & Greenspan (1958), and following this pattern for solitary waves, Lo
et al. (2013) introduced a solitary wave surf parameter, s(H0/h0)

−9/10, where the
breaking criterion from Synolakis (1987), (2.7), is reduced to its fundamental form
by removing all constants. A similar solitary wave surf parameter, in which the
exponent is −1 instead of −9/10, was introduced by Kobayashi & Karjadi (1994)
and given an explicit form by Fuhrman & Madsen (2008). Intuitively, for a given
offshore water depth and slope of the plane beach, the highest run-up normalized by
the incident wave height, R/H0, should be expected to occur for a solitary wave that
almost breaks. The reasoning behind this intuition is that large waves that break far
offshore form fully developed bores by the time they reach nearshore, and in doing
so they lose energy that would have been converted to potential energy of the run-up.
On the other hand, for non-breaking waves, the higher the incident wave height, the
larger the incoming energy and the larger the run-up are expected to be. Therefore,
it is reasonable to expect that the dimensionless run-up, R/H0, should be a function
of a breaking criterion. The most reliable parameter to predict solitary wave breaker
type is the slope parameter proposed by Grilli et al. (1997), since it is derived, albeit
empirically, from computations of the fully nonlinear potential flow equations on a
range of slopes and incident amplitudes. Interestingly, the Synolakis (1987) run-up
law, (2.6), can be re-expressed using the slope parameter to give

R
H0
= 3.49S−1/2

0 , (4.5)
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which was also identified by Fuhrman & Madsen (2008), who refer to a form of S0
without any constants as a solitary wave run-up parameter. It should be noted that, as
mentioned in § 2.2.1, the run-up law is only formally valid for S0� 5.28. The run-up
of solitary waves from current and previous laboratory studies is plotted against the
solitary wave slope parameter in figure 33. It can be seen that the highest run-up is
in the vicinity of the breaking criterion, S0 = 0.37, confirming that S0 is a relevant
parameter. In fact, if the highest dimensionless run-up is expected from waves that
almost break, the data in figure 33 actually suggest that the breaking criterion of Grilli
et al. (1997) slightly overestimates the incident wave amplitude and that waves of a
slightly lower incident amplitude are likely to break, so that the breaking criterion
should be S0 ≈ 0.4–0.5. Given that the numerical model used by Grilli et al. (1997)
is 2D (thereby excluding any effects of spanwise instabilities) and excludes both
viscosity and surface tension (both of which might be important in the early onset
of breaking), it seems reasonable to expect that breaking in laboratory experiments
starts to happen earlier than predicted by potential flow equations. The data of Hsiao
et al. (2008), which were obtained on a slope of s = 1/60, show the same trend as
the rest of the data, where the range of slopes spans 1/30 6 s 6 1. Plotted in this
way, the data show that Synolakis’s run-up law, (4.5), provides an upper bound for
the run-up of non-breaking waves (as might be expected from a theory that does not
consider frictional effects) for values of the slope parameter larger than S0 ≈ 0.54.
The data of Hall & Watts (1953) show higher run-ups than (4.5), but it is known
that the generation mechanism for their solitary waves was rudimentary and thus
the run-up measurements are of limited accuracy. The current data differ somewhat
from previous data since they are taken at a much larger scale than typical laboratory
measurements. However, they are seen to fit well with the rest of the data. It should
be noted that the solitary wave surf parameter introduced by Lo et al. (2013) also
provides a collapse of all the data, including the current data and the data of Hsiao
et al. (2008). Here, we show that S0 provides a credible parameterization of the
run-up as well as the breaker type, and that the two phenomena are invariably linked.

For the current data, the reduction in run-up due to dissipation from bottom friction
for breaking waves is briefly considered. The run-up measurements can be used to
calculate a hypothetical initial shoreline velocity of an ideal frictionless swash that
follows (2.13) but reaches the same run-up as the real case. This hypothetical initial
shoreline velocity is given by

√
2gR. The discrepancy between this velocity and the

measured swash initiation shoreline velocity gives the scale of the energy dissipation
in the swash tip. The implied assumptions are that the energy dissipation is dominantly
from friction at the swash tip and the work done by pressure on the swash tip from
behind is negligible. Figure 34 shows the comparisons between an ideal frictionless
shoreline velocity and the actual shoreline for a surging breaker, W5, and a plunging
breaker, W10. It can be seen that the plunging breaker achieves a shoreline velocity
of roughly 1.4

√
2gR. Since energy is proportional to velocity squared, this shows that

only just over 50 % of the initial energy of the shoreline is converted to the potential
energy of the run-up and the rest is lost to dissipation. For the surging breaker, almost
90 % of the initial energy is converted to the potential energy of the run-up.

4.9. Run-down
When the supercritical downrush flow meets the near-quiescent offshore water body, a
hydraulic jump is created. This hydraulic jump is sometimes referred to as downrush
breaking, due to the similarities it shows to conventional wave breaking during uprush
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FIGURE 33. Run-up of solitary waves plotted against the slope parameter: LO, Lo et al.
(2013); LR, Li & Raichlen (2001, 2002); SY, Synolakis (1987); BR, Briggs et al. (1995);
HS, Hsiao et al. (2008); CH, Chang, Hwang & Hwung (2009); HW, Hall & Watts
(1953); LS, Langsholt (1981); JN, Jensen et al. (2003); PE, Pedersen et al. (2013); CU,
current data; ——, Synolakis (1987) run-up law, (4.5); — —, Grilli et al. (1997) breaking
criterion, (2.16).
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FIGURE 34. Shoreline velocity comparison with the ideal inviscid case for waves W5
(SU, H0 = 0.261 m, ε0 = 0.151) and W10 (PL, H0 = 0.493 m, ε0 = 0.286): symbols, data;
——, ideal inviscid shoreline motion that follows the motion described by (2.13).

(for a description of its formation, see Hibberd & Peregrine 1979). The occurrence
of the hydraulic jump was identified by the overhead cameras, and the region where
it occurred for all waves is shown in figure 5. The criterion from Madsen & Schäffer
(2010), (2.8), predicts that for this slope (s = 1/12), all waves with ε0 > 0.0325
would exhibit downrush breaking. All the waves generated satisfied this criterion
and they were all observed to break during downrush and create a hydraulic jump.
As mentioned in § 2.2.1, the run-down in the Madsen & Schäffer (2010) theory
is for non-breaking waves, and since all waves in this study showed evidence of
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FIGURE 35. The run-down of solitary waves plotted against the slope parameter: E,
data; ——, Madsen & Schäffer (2010) run-down law, (4.6); — —, Grilli et al. (1997)
breaking criterion, (2.16); · · · · · ·, S0= 0.70 (value of the slope parameter that corresponds
to the downrush breaking criterion, (2.8), for s= 1/12).

a hydraulic jump during downrush, a comparison with the theory cannot be made.
For waves where a hydraulic jump does occur, the run-down can be defined as the
vertical extent below the stillwater shoreline that the hydraulic jump occurs, and these
data are shown in table 1. Unfortunately, a general downrush breaking criterion in
terms of S0 based on the fully nonlinear potential flow equations is not available,
but the run-down is nonetheless plotted against the solitary wave slope parameter,
S0, in figure 35. The run-down from the Madsen & Schäffer (2010) theory, (2.9), is
re-expressed using the slope parameter to give

Rd

H0
=−1.39S−1/2

0 (4.6)

and is also plotted in figure 35. The vertical lines in figure 35 demarcate the values
of S0 for which the wave will break during uprush, the wave will not break during
uprush but will create a hydraulic jump during downrush, or the wave will not break
during uprush or downrush. Similarly to the run-up, the trend is that the magnitude
of Rd/H0 decreases on either side of the value of S0 where the downrush breaking is
first predicted to occur for this slope. The effects of friction on downrush breaking are
expected to be larger than those for uprush breaking since, accounting for friction, the
run-up is reduced and the downrush begins earlier. Due to the effects of friction, the
downrush flow meets the main water body with less momentum than in a frictionless
case, causing an earlier hydraulic jump.

The strength of the hydraulic jump can be determined by checking the largest
Froude number that is reached before the hydraulic jump occurs. It can be seen in
figure 5 that the hydraulic jumps for all waves occur offshore of location L2. The
maximum offshore-directed velocity measured by the ADV at location L2 is denoted
as Ud,L2 and is also listed in table 2. The value of the local water depth when the
velocity reaches Ud,L2 is typically approximately 7 cm. After the water depth decreases
beyond this point, the ADV is no longer able to make reliable measurements; Ud,L2
is used as an approximate depth-averaged velocity in the flow at location L2 and
combined with the measurement of the free-surface elevation at that time to estimate
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FIGURE 36. The swash period plotted against the slope parameter.

the maximum Froude number that the flow at location L2 reaches, Frd,L2. The values
for this estimated Froude number are shown in table 2. It can be seen that Froude
numbers as large as Frd,L2 ≈ 3 are reached for wave W10.

4.10. Swash period
The total time duration of a swash event can be of importance in the overall
mechanics of the swash zone, particularly so for the interaction of swash events.
In their review of swash zone morphodynamics, Masselink & Puleo (2006) discussed
the importance of the time duration of the swash relative to the period of the incident
waves. The time duration of the swash is referred to herein as the swash period and
denoted by Ts. It is defined as the time from when the wave collapses in the uprush
to the time when the hydraulic jump forms during downrush. For non-breaking waves,
the swash period is defined as the time from when the shoreline starts to move in
uprush until the hydraulic jump forms in the downrush. The ratio of the swash period
to the incident wave period is then Ts/T0. Table 1 gives the values of Ts for each
wave case, and the dimensionless swash period, Ts/T0, is plotted in figure 36. The
data show that as S0 decreases, i.e. as wave breaking becomes more pronounced, the
dimensionless swash period increases from Ts/T0 < 1 to Ts/T0 > 1, while waves that
barely break (S0 ≈ 0.37) have a dimensionless swash period of Ts/T0 ≈ 1.

5. Conclusions
The shoaling, swash zone flow and run-up of solitary waves were investigated using

large-scale experiments that allowed the study of single swash events at scales relevant
to the field scale, and the results were compared with known theoretical results, where
available. Ten solitary waves with systematically varying amplitudes that spanned the
range of nonlinearity 0.05 6 ε0 6 0.3 were used. This range spans from the longest-
wavelength solitary wave that would fit in the wave flume to the largest-amplitude
wave that can be reasonably generated using a piston-type wavemaker. The generated
solitary waves were incident upon a plane impermeable beach of slope s = 1/12 to
generate swash events of non-breaking waves, surging breakers and plunging breakers.
The variation of the solitary wave amplitude near the toe of the beach was investigated
to find that the wave amplitude increases as the local water depth decreases following
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a power law, where the exponent in the power law decreases in magnitude for larger-
amplitude waves, indicating that larger-amplitude waves do not significantly alter their
wave height as they run into shallower water and break. Smaller-amplitude waves
show a wave amplitude increase close to that given by Green’s law, consistent with
previous results in the literature.

Measurements in the swash zone showed that during uprush, the bed shear stress
is most significant near the swash tip when the flow has a significant amount of
entrained air, and during downrush, in the later stages of the downrush when the water
depth is very shallow. For the duration in between, the bed shear stress is low and
the flow of breaking solitary waves is controlled by gravity and follows the swash
solution, (2.14). Furthermore, bore collapse as described by Whitham’s rule, (2.11),
was shown to provide an initial condition compatible with the swash solution. The
controlling scale of the swash, which is also a measure of the initial energy of the
swash, was shown to be the only free parameter in the swash solution, the swash
initiation shoreline velocity. This velocity scale was measured or predicted in three
different ways: (i) using Whitham’s rule, (2.11), and measurements of the height of
the solitary wave just before it breaks; (ii) measurements of the shoreline velocity
immediately after wave collapse; (iii) calculation of the characteristic variable, α =
u+ 2c+ gsts, using measurements in the swash. The way in which the kinematics of
different breaker types affects the swash initiation shoreline velocity was investigated
and the variation of this velocity with breaker type was plotted. Further data are
necessary to understand the dependence of the swash initiation shoreline velocity on
the breaker type on different slopes.

A large increase (O(7)-fold) in the maximum magnitude of the uprush bed shear
stress for breaking waves compared with pre-breaking magnitudes was observed, as
expected, but a large increase (O(6)-fold) was also observed for non-breaking waves
across the stillwater shoreline. These data suggest that the mechanism that generates
much higher values of the bed shear stress in the swash zone compared with the
pre-breaking wave boundary layer is the continually developing boundary layer in
the tip of the swash. For the same reason, the maximum onshore-directed bed shear
stresses observed were significantly larger than the maximum offshore-directed bed
shear stresses. The maximum onshore- and offshore-directed bed shear stresses in
the swash for different breaker types were collapsed under a new normalization that
used the swash initiation shoreline velocity. Under this normalization, the largest
dimensionless bed shear stresses for uprush and downrush were roughly 0.01 and
0.002 respectively, and they occurred just after wave collapse during uprush and just
before the hydraulic jump during downrush. The fact that data from different types
of breakers collapsed under this normalization provides confidence that the swash
initiation shoreline velocity is also an important scale for the bed shear stress in the
swash.

The run-up of non-breaking and breaking solitary waves was shown to be well
parameterized by the slope parameter first introduced by Grilli et al. (1997), and it
was shown that the maximum dimensionless run-up is R/H0 ≈ 4 and it occurs for
waves that barely break (S0 ≈ 0.4). The run-down measurements showed that the
magnitude of the dimensionless run-down, Rd/H0, is also maximum for waves that
barely break during downrush, i.e. they cause the weakest hydraulic jump during
downrush.

Finally, it is thought that the ratio between the time period of the swash and the
period of the incident wave is an important quantity in the interaction between swash
events of successive waves (not investigated here), and it was shown that there is a
significant variation of this quantity with breaker type.
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