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The purpose of this commentary is to raise
awareness among Industrial and Organiza-
tional (I–O) researchers and practitioners
regarding how linear mixed models
(LMMs) can provide a framework for inte-
grating traditional perspectives on error in
performance ratings. The types of rating
models discussed by Murphy (2008) were
largely formulated long before modern
methods for fitting mixed models were
established and incorporated into common
statistical software (Littell, Milliken, Stroup, &
Wolfinger, 1996; SPSS, Inc., 2005). Al-
though the application of certain classes
of LMMs has found its way into the I–O
literature—most notably hierarchal linear
models (e.g., Bliese, 2002)—application
of the more general LMM has yet to cross
over into I–O research (Searle, Casella, &
McCulloch, 1992). This state of affairs is
unfortunate. The remainder of our response
details on how LMMs can be used
to integrate historically distinct perspec-
tives on error in ratings and the value of
doing so.

Traditional Perspectives on

Error in Ratings

Historically, organizational researchers
have maintained two perspectives on error
in ratings: (a) a reliability-based perspective,
based largely on Classical Test Theory (CTT),
that views error in ratings as random and
unexplainable (Lord & Novick, 1968) and
(b) a validity-based perspective that views
error in ratings as resulting from systematic,
construct-irrelevant sources of variance such
as specific characteristicsof raters, ratees, and
contexts in which ratings are made (Landy &
Farr, 1980). These perspectives are realized
in the three types of ratings models dis-
cussed by Murphy: The reliability-based per-
spective is reflected in Murphy’s one-factor
model and the validity-based perspective is
reflected in Murphy’s multifactor and medi-
ated models.

Researchers have generally avoided inte-
grating reliability- and validity-based per-
spectives on error in ratings, in part
because of the methodological and peda-
gogical traditions that have evolved around
them (Murphy & DeShon, 2000; Schmidt,
Viswesvaran, & Ones, 2000). Although
examples of integrated ratings models exist,
they still tend to treat systematic sources of
variation (both valid and invalid) and ‘‘mea-
surement error’’ as distinct, unrelated enti-
ties (Lance, Baxter, & Mahan, 2006). Such
a distinction is clearly reflected in Murphy’s
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figure 1, where sources of validity (and
invalidity) are depicted on the left-hand side
of the models and an omnibus measurement
error term is depicted on the right-hand side
of the models.

The Need for an

Integrated Framework

Past researchers have acknowledged that the
distinction between reliability- and validity-
based perspectives on error becomes
blurred when one considers measurement
error through the lens of generalizability
theory (G-theory) (Cronbach, Gleser, Nanda,
& Rajaratnam, 1972; Murphy & DeShon,
2000). Under G-theory, measurement error
can be multifaceted in nature, with the struc-
ture of that error reflecting the conditions of
measurement (e.g., raters, items, occasions)
across which one wishes to generalize a
given measurement procedure (Cronbach
et al., 1972). Unlike CTT, G-theory neither
assumes nor implies that variance across
measurement conditions is unexplainable—
and therefore unrelated to any external, sub-
stantive variables. Indeed, Cronbach et al.
(1972) clearly recognized this:

Suppose, for example, it is found that in
peer ratings there is a substantial subject-
rater interaction component . the find-
ing should impel the investigator to ask
what rater characteristics contribute to
[explain variance attributable to] the
interaction (p. 382, bracketed text added
for clarity).

The above statements are not meant to be
an indictment of CTT, rather they are just
meant to illustrate that relative to G-theory,
CTT implies a relatively narrow definition of
measurement error. Remember, the founda-
tions of CTT emerged during a period when
items on cognitive ability tests and occasions
of measurement were the primary measure-
ment facets of interest, not raters (Spearman,
1910). Raters, unlike test items, cognize and
reason; as such measurement designs that
involve raters introduce several potential
sources of variance (some that are likely

predictable, and others that are essentially
unpredictable), that do not really have ana-
logues when test items or occasions are the
only facets of measurement (Murphy &
DeShon, 2000). Thus, although the perspec-
tive that CTToffers on error may be sufficient
when test items or occasions are the only
facets of measurement, it is arguably not as
well suited for designs involving raters as a
facet of measurement. As the quote from
Cronbach et al. implies, G-theory is a bitmore
liberal in its definition of error relative to CTT
and does not close the door on the possibility
of explaining ‘‘error’’ in ratings—it leaves the
question open for researchers to address.

In light of the observations above, it is
somewhat ironic that G-theory offers little
in the way of modeling the substantive basis
of (a) variance across measurement con-
ditions (e.g., raters, items, occasions) and
(b) variance attributable to interactions
between such conditions and one’s objects
of measurement (e.g., variance attributable
to Ratee � Rater interaction effects). This is
not an indictment of G-theory per se. Rather,
it reflects the fact that the variance partition-
ing that occurs in the context of G-theory is
designed simply to estimate the magnitude
of variance components reflecting facets of
one’s measurement design (which is consis-
tent with the purpose of G-theory), not to
explain the substantive nature of the vari-
ability attributable to those components.
Thus, the traditional G-theory model offers
little insight into the contribution of specific,
construct-irrelevant sources of variance in
ratings such as those noted in Murphy’s sec-
ond and third types of models.

How Can the LMM Framework Help?

Conceptually, the benefit of using LMMs for
modeling ratings is that they offer a method
not only for partitioning variance in ratings
into components attributable to facets of
one’s measurement design (as G-theory
does) but also for simultaneously modeling
the impact of substantive variables (e.g.,
characteristics of rater–ratee pairs or of
individual raters) on each of those variance
components. That is, rather than treating
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substantive contaminants and error arising
from one’s sampling of measurement con-
ditions as distinct entities, researchers can
use LMMs to estimate the degree to which
the former can explain components of the
latter. By adopting an LMM approach to
modeling variance in ratings, researchers
can begin to classify substantive sources
of variation in ratings (e.g., the variables
on the left side of Murphy’s figure 1) in
terms of the pathways (components) through
which they influence ratings. As such,
LMMs offer a framework for integrating
reliability- and validity-based perspectives
on error in ratings.

How Do LMMs Differ From Models

Commonly Used in I–O?

To help clarify how LMMs ‘‘work,’’ it is useful
to illustrate their relation to the general linear
model (GLM) with which most researchers
are familiar. Recall that the GLM encom-
passes both analysis of variance (ANOVA)
and simple linear regression models that have
been used by researchers for nearly a cen-
tury. The GLM can be expressed as follows:

y ¼ Xb1 e, ð1Þ

where y is an N � 1 column vector of
observed values on the outcome of inter-
est (e.g., job performance ratings for N
ratees), X is an N � k matrix of observed
values for k2 1 predictor variables (the first

column of values in X consists of 1s, which
allows an intercept to be included in the
model; subsequent columns represent pre-
dictors, such as ratee conscientiousness),
b is a k � 1 column vector of fixed-effect

parameters (i.e., the model’s intercept and
slope coefficients for each predictor vari-
able), and e is the N � 1 column vector of
residual errors of prediction. In nonmatrix
form, this translates into:

yi ¼ b0 1 +
k21

m¼ 1

bmxmi 1 ei, ð2Þ

where the ‘‘i’’ subscript indexes the ith ratee
and the ‘‘m’’ subscript indexes the mth pre-
dictor variable.

The LMM, in contrast, is a more general
version of the GLM and can be expressed as
follows:

y ¼ Xb1Zu1 e, ð3Þ

where Z is the random-effects design matrix
(explained below) and u is a vector of
random-effect parameters (also explained
below). To illustrate the meaning and pur-
pose of Z and u in the LMM, consider the
following mock example.

Assume we have job performance ratings
for three ratees, each of whom was rated by
two raters. Further, assume that each ratee
was rated by the same two raters (i.e., a fully
crossed measurement design) and that we
have measures of (a) each rater’s agreeable-
ness (x1) and (b) each rater–ratee pair’s sim-
ilarity in terms of work values (x2) that are
entered into the model as predictors. If we
were to model the performance ratings using
the LMM, Equation 3 would take on the
following form:

In the above formulation, the yij are job
performance ratings for the ith ratee as made
by the jth rater. The x1�j are values on the rater
agreeableness measure for the jth rater (note
that these values do not vary across ratees)
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and x2ij are values on the rater–ratee work
value similarity measure (note that these val-
ues vary across ratees and raters). The pur-
pose of random-effects design matrix (Z) is to
specify the structure of the measurement
design underlying the ratings data. In this
example, the first three columns of Z indi-
cate which of the six ratings are for ratees, 1,
2, and 3, respectively, and the last two col-
umns of Z indicate which of the ratings were
made by raters 1 and 2, respectively.1 The
u column vector by which Z is postmulti-
plied holds the random-effect parameters
associated with each ratee and rater in one’s
design. Essentially, these random effects
reflect unmodeled sources of consistency
in ratings associated with a given ratee (ratee
main effects) and a given rater (rater main
effects). Labeling these effects as ‘‘random’’
signifies the notion that the ratees and raters
participating in our study represent a sample
from some broader population of ratees and
raters, not that the variance in ratings across
ratees or raters is unexplainable. For exam-
ple, addition of rater-level or rater and ratee-
level variables to the model, such as rater
agreeableness, or rater–ratee work value
similarity, might explain some of the varia-
tion in those effects. In nonmatrix form,
Equation 4 translates into:

yij ¼ b01b1x1�j1b2x2ij1ui�1u�j1eij : ð5Þ

Another important difference to note
between the GLM and the LMM in the con-
text of modeling ratings is that instead of
modeling ratings that have been averaged
across raters for each ratee, use of the LMM
involves modeling disaggregated ratings
(i.e., ratings for each rater–ratee pair are trea-
ted as separate observations). If we were to fit

a simple GLM to data with such a structure,
we would violate the assumption of inde-
pendence of residual errors of prediction
because some of the observations would
share a ratee in common and other observa-
tions would share a rater in common (Bliese
& Hanges, 2004). The addition of the ran-
dom-effect portion of the LMM (Zu) not only
accounts for these sources of nonindepen-
dence but also allows for estimation of vari-
ance components associated with different
facets of one’s measurement design (e.g.,
variance attributable to ratee main effects,
rater main effects, etc.). These variance
components serve as the building blocks for
generalizability coefficients and intraclass
correlations (Cronbach et al., 1972; McGraw
& Wong, 1996).

Although we highlight differences be-
tween the LMM and the GLM using matrix
notation, the example above is for pedagog-
ical purposes only. Fitting these models
does not require use or knowledge of matrix
algebra. These models can be estimated
easily using mixed-model procedures widely
available in statistical software. For example,
both SAS and SPSS have mixed-model proce-
dures that allow one to fit LMMs and offer
extensive formal documentation on how to
fit such models (e.g., Littell et al., 1996; SPSS,
Inc., 2005).

An Example of Integrating

Perspectives on Error Via the LMM

To illustrate how the LMM integrates vari-
ous perspectives on error in ratings, it is
useful to draw some parallels to traditional
applications of G-theory and hierarchal
linear modeling (HLM). As we note below,
the LMM represents a more general version
of (a) HLMs commonly used by organiza-
tional researchers to model multilevel data
(Bliese, 2002) and (b) random-effect ANOVA
models that underlie G-theory (Cronbach
et al., 1972).

First, consider what a typical decomposi-
tion of ratings based on G-theory provides
us. In G-theory, we fit a reduced version of
the LMM that typically omits all fixed-effect
parameters except for the intercept term,

1. Although our example illustrates how Z may be
structured when modeling ratings arising from a fully
crossed measurement design, LMMs afford research-
ers complete flexibility for structuring Z depending
on the measurement design they encounter in prac-
tice. For example, Z can be structured to fit a model
for ratings arising from a design in which raters are
nested within ratees (i.e., each ratee is rated by
a unique, nonoverlapping set of raters) or a design
that is more ill structured in nature (e.g., each ratee is
rated by a partially overlapping set of raters).
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which essentially leaves us with a random-
effect ANOVA model. In terms of Equation 4,
the X matrix becomes a column vector con-
sisting only of 1s, the b vector becomes a sin-
gle value reflecting the model intercept
(essentially, the grand mean rating across
rater–ratee pairs), and the structure of the
random-effect design matrix (Z) mimics the
measurement design underlying the ratings
(as shown in the example above). In terms of
Equation 5, this simply amounts to removing
the b1x1�j 1 b2x2ij portion of the model. If
we were to fit such a random-effect model
to the performance ratings in the example
above, it would partition variance in ratings
into three components: (a) variance attribut-
able to ratee main effects (r2

T), (b) variance
attributable to rater main effects (r2

R), and
(c) variance attributable to the combination
of the Ratee � Rater interaction and residual
effects (r2

TR,e). Although such a decompo-
sition of variance is useful from a G-theory
perspective, it does not address the question
of what substantive variables (if any) ex-
plain variance attributable to each of
these components. However, such a ques-
tion can be answered easily within the
context of the LMM.

To estimate the impact that substantive
variables such as rater agreeableness and
rater–ratee similarity have on each compo-
nent of variance in ratings (i.e., r2

T, r2
R,

r2
TR,e), one would follow a two-step pro-

cess. First, as described above, one would
fit a model that omitted all substantive pre-
dictor variables and let the random-effect
portion of the model reflect the structure of
one’s measurement design. The resulting
model would provide unconditional esti-
mates of the variance components underly-
ing the ratings (i.e., precisely what is

provided via G-theory). Next, one would
add the substantive predictor variables of
interest (e.g., rater agreeableness, rater–ratee
work value similarity) to the aforementioned
model as fixed predictor variables (e.g.,
Equations 4 and 5). This second model
would produce estimates of r2

T, r2
R,

r2
TR,e that are conditional on the substantive

predictor variables—that is, the components
would reflect decomposition of the variance
in ratings after removing variance accounted
for by the predictors (Searle et al., 1992). The
magnitude of these conditional variance
component estimates could then be com-
pared to the unconditonal variance com-
ponent estimates from the first model to
calculate the proportion of variance attribut-
able to each component that was explained
when the substantive predictor variables of
interest were added to the model (Snijders &
Bosker, 1944). If a substantive predictor vari-
able explains variance attributable to a com-
ponent, that component should become
smaller when the predictor variable is added
to the model. Table 1 provides an example
of SAS PROC MIXED code for fitting the
series of models described in the example
above. As alluded to earlier, the data set on
which this code is run would need to be
structured such that each row in the data
set corresponds to a unique rater–ratee pair.

Readers familiar with the HLM literature
may observe that the two-step process
described above is analogous to standard
practice when modeling multilevel data
(Bliese, 2002). A typical first step in appli-
cations of HLMs is to fit a null model that
provides unconditional variance component
estimates for each level of the model (e.g.,
individual and group levels). These uncon-
ditional components serve as a baseline for

Table 1. Example of SAS PROC MIXED Code for Fitting Linear Mixed Models

Step 1: fit the random-effects model Step 2: fit the mixed model

proc mixed method ¼ REML; proc mixed method ¼ REML;
class ratee_id rater_id; class ratee_id rater_id;
model rating ¼ ; model rating ¼ rater_agreeableness
random ratee_id rater_id; rater_ratee_similarity;

run; random ratee_id rater_id;
run;
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judging the contribution of fixed individual-
and group-level predictors that are added in
subsequent steps of the modeling process.
The primary difference between the typical
HLM modeling strategy and the application
of LMMs proposed here is that instead of
attempting to explain variance in an out-
come variable at different levels of analysis,
we are attempting to explain variance asso-
ciated with different facets of our measure-
ment design. Furthermore, unlike current
HLMs in vogue in the I–O literature, LMMs
do not practically limit us to modeling
nested data structures. The LMM is flexible
enough to easily model data structures
involving nearly any possible combination
of nested and crossed design factors imagin-
able. Taken together, the LMM provides
researchers with a tool that substantially
extends the modeling framework underlying
G-theory and current applications of multi-
level modeling.

Leveraging the LMM to Refine the

Classification of Errors in Ratings

The preceding sections illustrate how LMMs
can provide researchers with a powerful tool
for integrating reliability- and validity-based
perspectives on error in ratings. One key
implication of using LMMs in this manner
is that they can offer researchers a more
refined way to classify error in ratings. For ex-
ample, the LMM can allow researchers to
differentiate between variables that act as
(a) independent contaminants of ratings via
rater main effect variance (e.g., they explain
differences in rater leniency/severity but do
not explain any ratee main effect [true score]
variance) or via rater–ratee interaction effect
variance (e.g., they explain the idiosyncra-
sies in raters’ ratings of individual ratees but
do not explain any ratee main effect vari-
ance) and (b) nonindependent contaminants
(e.g., they explain variance not only in one or
both of the rater-related variance compo-
nents above but also ratee main effect [true
score] variance). Being able to identify and
minimize independent contaminants would
improve the reliability of ratings, whereas
identifying and minimizing nonindepen-

dent contaminants could potentially reduce
the reliability of ratings (as traditionally de-
fined). Regardless, these examples illustrate
how LMMs can be used to refine the classi-
fication of errors in ratings and, in turn,
clarify the implications such errors have for
the reliability of the resulting measure.

Summary

The LMM provides researchers with a tool to
quantify and classify the contribution of var-
ious sources of error to components of vari-
ance that underlie ratings. Although far from
being a comprehensive treatment of apply-
ing LMMs for this purpose, we hope that this
commentary encourages researchers and
practitioners to explore the potential of
LMMs for improving our understanding
of performance ratings. We realize that
simply improving our quantification and
classification of errors in ratings will not
ameliorate them. However, the hope is that
a better understanding of the variability in
ratings will enable us to design more effec-
tive rating systems.
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