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Abstract

Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and
vaccines represent the most efficacious, safe, economically feasible and environmentally sus-
tainable intervention. The evolution of tick vaccinology has been driven by multiple chal-
lenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by
reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick spe-
cies, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to
improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7)
Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens
evolved from organ protein extracts to recombinant proteins to chimera designed by vacci-
nomics and quantum vaccinomics. Future directions will advance in these areas together
with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, micro-
biota-driven probiotics and vaccines, and combination of vaccines with other interventions in
collaboration with regions with high incidence of tick infestations and tick-borne diseases for
a personalized medicine approach.

Challenge 1: ticks are difficult to control

Ticks and tick-borne pathogens constitute a growing problem with increasing social and eco-
nomic concern worldwide (e.g. de la Fuente et al., 2023a). Ticks are difficult to control, and
traditional control methods are mainly based on the use of chemical acaricides with partial
success and drawbacks such as selection of resistant ticks and negative impact on animal
health and production and environmental contamination (Agwunobi et al., 2021; Githaka
et al., 2022; Gonzaga et al., 2023). A number of reports of establishment of multiacaricides
resistant ticks in different parts of the world (Bishop et al., 2023) and growing global public
concern of environment pollution due to high use of chemical acaricides has posed serious
challenges on continuation the use of conventional methods for tick management.

Under the One Health and sustainability perspective, vaccines are the most effective and
safe intervention to reduce tick populations and risks associated with transmitted pathogens
(de la Fuente, 2018; reviewed by Estrada-Peña et al., 2022). However, although a number of
reports of significant efficacy of other vaccine formulations have been reported (de la
Fuente and Kocan, 2003; de la Fuente and Contreras, 2015; Bishop et al., 2023; Parizi et al.,
2023), only Bm86/Bm95-based vaccines TickGARD in Australia and Gavac in Cuba were
registered and commercialized for the control of Rhipicephalus microplus tick infestations
(de la Fuente et al., 2007; Rodríguez-Mallon, 2023). Currently, only Gavac (CIGB, Havana,
Cuba; https://www.cigb.edu.cu/en/product/gavac-2/) and Bovimune Ixovac (Lapisa, La
Piedad, Michoacán, Mexico; https://lapisa.com/productos/bovimune-ixovac) with Bm86 anti-
gen are still commercially available in some Latin American countries.

Based on the evolution of vaccinology (Andreano et al., 2019), this review approached the
evolution of tick vaccinology to face challenges and advance in the development of new effect-
ive anti-tick vaccines and other control interventions (Fig. 1).

Challenge 2: vaccines control tick infestations by reducing ectoparasite fitness and
reproduction

The proof-of-concept of anti-tick vaccine was proposed by Allen and Humphreys (1979) using
organ specific protein extracts. The first challenge was then approached with the discovery of
R. microplus Bm86/Bm95 antigen and the development, registration and commercialization of
TickGARD and Gavac vaccines for the control of cattle tick infestations (Willadsen et al., 1988,
1995; Rodríguez et al., 1994; reviewed by de la Fuente and Kocan, 2003; de la Fuente et al.,
2007; Rodríguez-Mallon, 2023). The protective mechanism was associated with antibody pro-
duction in response to vaccine and antibody-antigen interactions in the midgut lumen of ticks
feeding on immunized host (Willadsen and Kemp, 1988). This interaction affected tick protein
function, which translated into reduction in the number of ticks completing life cycle, weight,
oviposition and fertility (de la Fuente and Kocan, 2014). Considering the role of cattle hosts in
tick-borne diseases (TBD), these vaccines may not only reduce tick infestations and incidence
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of TBD in cattle but also in humans and other animal species
(Chakraborty et al., 2023). However, due to significant variation
in vaccine efficacy reported of 0–100% (de la Fuente and Kocan,
2014; Parizi et al., 2023) against different strains of R. microplus,
these vaccines have not been approved in most countries.

Challenge 3: vaccine efficacy against multiple tick species

Despite the advances on anti-tick R. microplus vaccines with
Bm86/Bm95 antigens, conserved protective antigens across differ-
ent tick genera needed to be identified. To address this challenge,
Subolesin (SUB; originally named 4D8 and ortholog of Akirin)
was discovered by expression library immunization in Ixodes sca-
pularis mouse model (Almazán et al., 2003). The SUB-vaccine
protective responses were not only mediated by anti-SUB anti-
bodies entering tick cells by unknown mechanisms and blocking
protein translocation to the nucleus to exert its regulatory func-
tion, but also through activation of other immune protective
mechanisms (de la Fuente et al., 2011, 2021; Merino et al.,
2011; Artigas-Jerónimo et al., 2020). The immune response to
SUB affects multiple biological processes, which translates in
various hosts (e.g. cattle, deer, sheep, dog, rabbit, mouse, chicken)
into reduction of fitness and reproduction of different tick species
(e.g. Ornithodoros, Ixodes,Haemaphysalis, Amblyomma,Dermacentor,
Hyalomma, Rhipicephalus) and other arthropod vectors (e.g. mos-
quito, sand fly, poultry red mite) and vector-borne pathogens (e.g.
Anaplasma, Babesia, Borrelia, Plasmodium) (Artigas-Jerónimo
et al., 2018; Parizi et al., 2023) (Table 1). The efficacy and effect-
iveness of vaccines with SUB antigens have been evaluated not
only under pen-controlled conditions (Shakya et al., 2014;
Artigas-Jerónimo et al., 2018), but also in field trials (Torina
et al., 2014; Mendoza-Martínez et al., 2021). Under field condi-
tions in vaccinated cattle and sheep, the results showed 63% of
sheep tick infestations, 8-fold reduction in the per cent of infested
cattle, 32–55% reduction in tick weight, reduction in acaricide
treatments and in the prevalence of Anaplasma marginale tick-
transmitted genotypes (Torina et al., 2014). Recently, SUB vaccine

provided a 67% efficacy in cattle infested with R. microplus
(Mendoza-Martínez et al., 2021) and 83–90% efficacy in cattle
vaccinated with Rhipicephalus appendiculatus SUB and infested
with R. appendiculatus, Rhipicephalus decoloratus and Amblyomma
variegatum (Kasaija et al., 2020).

Taken together, these results support the efficacy of SUB vac-
cines against different tick genera and other arthropod vector spe-
cies. Additionally, other antigens such as p29, Aquaporin,
Metalloprotease, Potassium ion channels, Protease inhibitors,
Calreticulin, P0, Ferritin 2 and Tropomyosin have shown protec-
tion against different tick species (de la Fuente and Kocan, 2003;
de la Fuente and Contreras, 2015; Manjunathachar et al., 2019;
Abbas et al., 2023; Parizi et al., 2023; de la Fuente et al., 2023b;
Nepveu-Traversy et al., 2024).

Challenge 4: impact of tick strain genetic diversity on
vaccine efficacy

Even if tick vaccine antigens such as SUB have shown efficacy
against multiple tick species, the challenge related to strain genetic
diversity and other factors needs to be considered. To face this
challenge, a ‘personalized medicine’ approach was proposed con-
sidering regional, tick species/strains and host factors.

An example of this approach is the SUB antigen from
R. appendiculatus, R decoloratus and A. variegatum, main tick spe-
cies infesting Bos indicus and crossbred cattle in Uganda (Kasaija
et al., 2020). Vaccine formulations with antigens from these tick
species were evaluated under controlled pen conditions in both cat-
tle breeds to select R. appendiculatus-derived SUB as the antigen
with higher cross-species protection (Kasaija et al., 2020). This vac-
cine is now under field trial in Uganda (Kabi et al., 2022). Other
personalized SUB vaccines have been evaluated against different
Indian tick species (Parthasarathi et al., 2023).

These results highlight the importance of personalizing vaccines
considering tick, host and livestock farm management factors to
improve effectiveness under field conditions.

Figure 1. Tick vaccine research in the context of the evolution of vaccinology. Key advances in tick vaccinology are highlighted in red with tick stickers.
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Challenge 5: antigen combination to improve vaccine
efficacy

Antigen combinations have been considered to improve vaccine
efficacy and results of experimental trials provided support for
this approach (e.g. Vitellin-degrading cysteine endopeptidase
(VTDCE), Boophilus yolk pro-cathepsin (BYC) and Glutathione
S-transferase (GST-Hl), Parizi et al., 2012; Bm86, SUB and
Tropomyosin (TPM), Parthasarathi et al., 2023; Bm86 and P0
peptide, Rodríguez-Mallon et al., 2023) (Table 2). A compara-
tively higher efficacy was noted when compared with single anti-
gen immunization. However, the main limitation of this approach
is that protein-protein physical and immunological interactions
may affect protective immune response in vaccinated hosts and
thus additional experiments are required to eliminate the possible
constraints in developing vaccine formulation using multiple
antigens.

To approach this limitation, the possibility of combining SUB
DNA and protein in a vaccine formulation was considered
(Hassan et al., 2020). However, recent research has focused on

quantum vaccinomics algorithms for the combination of antigen
protective epitopes or immunological quantum (Artigas-Jerónimo
et al., 2020; Contreras et al., 2022a, 2022b). As recently proposed
(de la Fuente et al., 2023b), in this approach, the prediction, iden-
tification and validation of protective epitopes is based on the
combination of in vitro, in silico, in music and epitope mapping
approaches with systems biology integration of omics datasets,
artificial intelligence (AI) and Big Data (Villar et al., 2017; de la
Fuente et al., 2018; de la Fuente and Contreras, 2023).

Vaccinomics is based on the integrations of omics dataset for
the identification of candidate vaccine protective antigens (Poland
et al., 2013; de la Fuente and Merino, 2013; Contreras et al., 2016,
2017, 2019a). The proposal of quantum vaccinomics originated
from vaccinomics and the random processes such as im-
munoglobulin recombination events, direct correlation between
atomic coordination and peptide immunogenicity and quantum
dynamics of the immune response that has been subjected to
optimizing evolution within living organisms supporting quan-
tum immunology (reviewed by de la Fuente and Contreras,
2021). Then, in reference to Albert Einstein quantum of light,

Table 1. Examples of the efficacy of animal immunization with SUB tick protective antigen

Tick species
Expression
system Host Dose and delivery Adjuvant

Efficacy (E) against
infestation (%) Reference

I. scapularis E. coli Rabbit 500 μg 2 doses; S/C Freund’s
incomplete
adjuvant

46%, I. scapularis Almazán et al. (2005)

R. microplus P. pastoris Chicken 50 μg 3 doses; S/C Montanide ISA
50 V

35.1%, Dermanyssus
gallinae gallinae

Harrington et al., 2009

R. microplus E. coli Cattle 100 μg 3 doses; I/M Montanide ISA
50 V

R. annulatus
larvae, adults, 37–48%

Almazán et al. (2010)

A. americanum E .coli Cattle 100 μm 3 doses;
S/C

Montanide ISA
50 V

55% de la Fuente et al.,
(2010)

I. scapularis Vaccinia virus Mice 108 pfu given orally No adjuvant used 52% Bensaci et al., 2012

R. microplus E. coli White-tailed
deer

100 μg 3 doses; I/M Montanide ISA
50 V

83% Carreón, et al., 2012

R. microplus P. pastoris Mice 25 μg 3 doses; I/M Montanide ISA
50V2

I. ricinus larvae, 54% Moreno-Cid et al.,
2013

R. microplus E. coli Cattle 100 μg 3 doses; I/M Montanide ISA
50 V

60% Merino et al., 2013

R. microplus E. coli Cattle 100 μg 2 doses; I/M Montanide 888 44%. Shakya et al., 2014

R.
appendiculatus

E. coli Cattle 100 μg 3 doses; I/M Montanide ISA
50V2

R. appendiculatus,
47–90%;
A. variegatum,
50–89%;
R. decoloratus, 51%

Kasaija et al., 2020

A. variegatum E. coli Cattle 100 μg 3 doses; I/M Montanide ISA
50V2

R. appendiculatus,
83–86%;
A. variegatum,
47–76%;
R. decoloratus, 72%

Kasaija et al., 2020

R. decoloratus E. coli Cattle 100 μg 3 doses; I/M Montanide ISA
50V2

R. appendiculatus
66–89%;
A. variegatum 50–89%;
R. decoloratus, 51%

Kasaija et al., 2020

H. longicornis E.coli Rabbit 500 μg 2 doses; I/M TiterMax Gold 37.4% Lee et al., 2020

R. microplus
SUB peptide

E. coli Cattle 100 μg 3 doses; S/C Montanide ISA 50 67% Mendoza-Martínez
et al., 2021

R. microplus E. coli Cattle oral Montanide ISA
50V2

R. decoloratus, 7196%;
R. appendiculatus,
87–99%

Kasaija et al., 2022

Abbreviations: S/C, subcutaneous; I/M, intramuscular; pfu, plaque forming units.
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Table 2. Examples of the efficacy of vaccination of animals with SUB combined with other tick/parasite antigens

Antigen I Antigen II Antigen III Host Dose and delivery Adjuvant Efficacy Reference

R. microplus
BM86

H. anatolicum SUB H.anatolicum
tropomyosin
(TPM)

Cattle Each antigen 100 μg 3 doses;
I/M; Co-vaccination

Montanide
ISA 50V2

87.2% and 86.2% against H.
anatolicum larvae and adults;
86.7% against R. microplus

Parthasarathi et al.,
2023

R. microplus BM86 SUB peptide of R. microplus ---- Cattle 100 μg 3 doses; S/C; dual
vaccine

Montanide
ISA 50V2

49% Mendoza-Martínez
et al., 2021

R. microplus SUB Anaplasma marginale
Major surface protein-1

---- Cattle 120 μg 3 doses; S/C; chimeric
vaccine

Montanide
ISA 50V2

81% Almazán et al. (2012)

R. appendiculatus SUB A. variegatum
SUB

R. decoloratus
SUB

Cattle Cocktail of 100μg each
protein prepared 3 doses;
S/C; Cocktail vaccine

Montanide
ISA 50V2

R. appendiculatus 74–92;
A. variegatum 51–69%;
R. decoloratus 71%

Kasaija et al., 2020

R. microplus SUB heat inactivated
Mycobacterium bovis (IV)

---- Cattle 200 μg of SUB mixed with
6 × 106cfu IV in 18 ml PBS for
SUB + IV 2 doses;
Oral

IV acts as
adjuvant

65% Contreras et al.
(2019a, 2019b)

Subolesin-Akirin chimera (Q38) ----- Roe
deer

100 μg 3 dose I/M; chimeric
vaccine

Montanide
ISA 50V2

More than 95% against I. ricinus
and 46.4% Dermacentor reticulatus
larvae

Contreras et al., 2020

Protective epitopes of I.
scapularis SUB

Protective epitopes of
A. albopictus
Akirin

SUB-MSP1a construct ---- Cattle 100 μg 2 doses; I/M; chimeric
vaccine

Montanide
ISA 50V2

60% Almazán et al. (2012)

R. microplus SUB Anaplasma
marginale Major Surface
Protein 1a (MSP1a)
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immune protective epitopes were proposed as immunological
quantum and quantum vaccinomics as the identification and
combination of antigen immunological quantum for vaccine
development (Artigas-Jerónimo et al., 2020).

Antigens such as Q38 with SUB protective epitopes
(Artigas-Jerónimo et al., 2020; de la Fuente et al., 2023b) have
shown protection against tick infestations and other arthropod
vectors (Merino et al., 2013; Moreno-Cid et al., 2013; Contreras
et al., 2020; Letinić et al., 2021) with correlation between
SUB-reactive epitopes and vaccine efficacy (Contreras et al.,
2022a). The chimeric antigen RmSEI composed of R. microplus
Subtilisin inhibitor 7 (RmSI-7), a Trypsin inhibitory like serine
protease inhibitor, an interdomain region from the Kunitz inhibi-
tor BmTI-A, and a cysteine-rich AMP-like Microplusin (RmSEI)
was designed and showed anti-tick and antimicrobial activities
(Costa et al., 2023). This approach can also be used to combine
tick with pathogen derived antigens (Shrivastava et al., 2020).
Two multiepitopic peptides using amino acid sequences of
ferritin-2 (FER2) and tropomyosin (TPM) vitellogenin receptor
(VgR) were synthesized and tested against H. anatolicum infesta-
tions with more than 80% efficacy (Nandi et al., 2023) (Table 2).

Quantum vaccinomics also considers immune mechanisms
mediated by protein post-translational modifications such as
carbohydrate alpha-gal (Galα1-3Galβ1-4GlcNAc) present in gly-
coproteins (Galili, 2021) to address limitations of reductionists
methods such as reverse vaccinology (Van Regenmortel, 2018;
de la Fuente et al., 2023b). Accordingly, quantum vaccinomics
covers some of the proposed top biotechnology trends in 2024
(https://www.startus-insights.com/innovators-guide/top-10-biotech-
industry-trends-innovations-in-2021/) including AI, Big Data, gene
editing, precision medicine, gene sequencing, biomanufacturing and
synthetic biology.

In this way, quantum vaccinomics for protective antigen
design considers vaccine efficacy and safety, geographic, environ-
mental and population factors, host-tick-pathogen interactions
and derived factors and host immunity for vaccinomics and
adversomics.

Challenge 6: vaccine formulations and delivery platforms

Even when protective antigens are identified or designed, formu-
lations and delivery are the key components of vaccine efficacy.
Regarding tick control, recent advances in vaccine formulations
targeting vector gut microbiota commensal bacteria was found
effective (Mateos-Hernández et al., 2020, 2021). Experimental
manipulation of the microbiota has been achieved by antibiotic
exposure or sterile-rearing conditions of the vector.
Anti-microbiota vaccine impacted tick physiology by increasing
tick weight during feeding and modulated tick microbiota com-
position and diversity in a taxon-specific manner. The impact
of anti-microbiota vaccines on pathogen development was
shown in Plasmodium relictum and the mosquito vector Culex
quinquefasciatus (Aželytė et al., 2022), and recently it was
reported that perturbations of tick microbiota can impact highly
sensitive Borrelia spp. with departure from the modulation
induced by the pathogen in the vector microbiota posing a high
cost to the spirochete (Wu-Chuang et al., 2021). However, these
methods induce global changes in the microbiota and make the
depletion of specific bacteria difficult. Recently, anti-microbiota
vaccines were proposed as a precise tool for microbiota manipu-
lation (Wu-Chuang et al., 2021; Maitre et al., 2022). Other
advances including probiotics and formulations with high alpha-
gal content (Cabezas-Cruz and de la Fuente, 2017; Hodžić et al.,
2020; Bamgbose et al., 2021) and adjuvants with heat-inactivated
alpha-gal-containing bacteria for oral vaccine administration
(Contreras et al., 2019b; Kasaija et al., 2022). Oral vaccine

formulations combining R. appendiculatus-derived SUB with
heat-inactivated mycobacteria resulted in 96% and 99% efficacy
against R. decoloratus and R. appendiculatus, respectively (Kasaija
et al., 2022).

Tick vaccines have mainly been designed with recombinant
antigens, but recent research includes advances in mRNA vac-
cines (Sajid et al., 2021; Boulanger and Wikel, 2023; Matias
et al., 2023). For antigen combination, chimeric antigens on
microparticles and mRNA-lipid nanoparticles may be considered
for vaccine delivery (Sajid et al., 2021; Matias et al., 2023).

Challenge 7: combination of vaccines with transgenesis and
paratransgenesis

Recently, Cas9-mediated gene editing was implemented in ticks
by embryo injection and ReMOT Control (Sharma et al., 2022).
The CRISPR-Cas molecular machines also provide interventions
for paratransgenesis to manipulate tick microbiome and virome
composition and function (Ramachandran and Bikard, 2019).

More recently, Frankenbacteriosis was developed for para-
transgenic manipulation of tick commensal Sphingomonas bacter-
ium to reduce tick fitness and Anaplasma phagocytophilum
pathogen infection (Mazuecos et al., 2023a, 2023b; de la Fuente
et al., 2023b).

Transgenesis and paratransgenesis may be combined with
anti-tick vaccines and other control interventions including the
proposed Suicidalbacteriosis in which tick commensal bacteria
are manipulated to produce and secrete antigens protective
against ticks and tick-borne pathogens to immunize hosts during
blood feeding (de la Fuente et al., 2023b). For example, genetic
manipulation of tick microbiome and virome composition and
function may produce ticks more susceptible to tick vaccine
induced host immune response thus improving vaccine efficacy
for the control of tick infestations and vector capacity.

However, application of gene editing technology involves risks
since it may produce off target deleterious mutations. A high fre-
quency of off-target effects has been reported in human cells but
low in mice and zebrafish (Hwang et al., 2013; Yang et al., 2013).
Large genomes may contain identical or homologous DNA
sequences to intended target DNA sequence. Gene editing tech-
nology may delete these unintended sequences causing mutations
which may cause cell death or transformation. Efforts have been
made to reduce off-target mutations, but further improvement
is required. Another problem is efficient safe delivery of
CRISPR-Cas9 into cell types that are hard to transfect. If there
is a risk of transferring genes to other species, there is risk of
transferring modified sequences. It is difficult to control disper-
sion of gene driven trait. Moreover, disappearance of whole popu-
lations targeted by gene drive may have serious consequences in
the ecosystem equilibrium. All these risk factors demand careful
assessment of each potential application and need for critical
regulatory norms.

Conclusions and future directions

Tick vaccine antigens evolved from organ specific protein extracts
to recombinant proteins to vaccinomics algorithms for designing
chimeric antigens. Recent advances in tick vaccinology and future
directions include discovery of novel protective antigens (de la
Fuente and Contreras, 2015; Abbas et al., 2023) including the
application of AI and Big Data analytic techniques (de la
Fuente et al., 2018), novel vaccine formulations and delivery plat-
forms (Ndawula, 2021; Tabor, 2021; Pereira et al., 2022), mRNA
vaccines (Sajid et al., 2021; Matias et al., 2023; Boulanger and
Wikel, 2023), vaccinomics and quantum vaccinomics (Poland
et al., 2013; de la Fuente and Contreras, 2021, 2023; Contreras
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et al., 2022b). Other methods include use of formulations with
combined protective antigens (Ndawula and Tabor, 2020;
Parthasarathi et al., 2021), probiotics and other formulations
targeting tick microbiota (Cabezas-Cruz and de la Fuente, 2017;
Hodžić et al., 2020; Mateos-Hernández et al., 2020, 2021; Wu-
Chuang et al., 2023). To improve vaccine efficacy, post-
translational modifications such as alpha-gal have also been con-
sidered to improve vaccine efficacy (Hodžić et al., 2020).
Moreover, characterization of tick-host-pathogen interactions,
immune protective and acaricide-resistance mechanisms
(Bhowmick and Han, 2020; Bishop et al., 2023; Waldman et al.,
2023), transgenesis and paratransgenesis for the genetic manipu-
lation of commensal bacteria and ticks (Sharma et al., 2022;
Mazuecos et al. 2023a; de la Fuente et al., 2023b) and combin-
ation of vaccines with other interventions such as natural plant
and animal-derived compounds and cultural practices among
other interventions (Showler and Saelao, 2022) were considered
as possible alternatives. International collaborations with regions
with high incidence of tick infestations and TBD (Estrada-Peña
and de la Fuente, 2023), personalized medicine approach based
on regional, tick species/strains and host-driven variables
(Kasaija et al., 2020) are also proposed for sustainable manage-
ment of the relevant vector.

Data availability statement. All data used in the study is disclosed in the
paper and corresponding references.
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