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We present large-eddy simulations (LES) of separation and reattachment of a
flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region,
we develop a two-dimensional virtual wall model which can calculate the time-
and space-dependent skin-friction vector field at the wall, at the resolved scale.
By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS)
model, we construct a self-consistent framework for the LES of separating and
reattaching turbulent wall-bounded flows at large Reynolds numbers. The present
LES methodology is applied to two different experimental flows designed to produce
separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds
number Reθ based on the momentum boundary-layer thickness θ . Comparison
with data from the first case at Reθ = 2000 demonstrates the present capability
for accurate calculation of the variation, with the streamwise co-ordinate up to
separation, of the skin friction coefficient, Reθ , the boundary-layer shape factor and
a non-dimensional pressure-gradient parameter. Additionally the main large-scale
features of the separation bubble, including the mean streamwise velocity profiles,
show good agreement with experiment. At the larger Reθ = 11 000 of the second
case, the LES provides good postdiction of the measured skin-friction variation along
the whole streamwise extent of the experiment, consisting of a very strong adverse
pressure gradient leading to separation within the separation bubble itself, and in the
recovering or reattachment region of strongly-favourable pressure gradient. Overall, the
present two-dimensional wall model used in LES appears to be capable of capturing
the quantitative features of a separation-reattachment turbulent boundary-layer flow at
low to moderately large Reynolds numbers.

Key words: turbulence modelling, turbulent boundary layers, turbulent flows

1. Introduction
The importance of the mechanisms whereby turbulent boundary-layer (TBL)

flows undergo separation and subsequent reattachment has long been recognized in
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aerodynamics. While several decades of experimental, theoretical and computationally-
based research have both clarified and categorized several salient features of
the TBL separation/reattachment process, a general understanding of separated
flow remains elusive; see Simpson (1989) for a review. At the same time, the
rapid growth of computational resources has enabled some accurate predictions
of separation/reattachment flows using direct numerical simulation (DNS) at low
Reynolds numbers (Na & Moin 1998). At larger Reynolds numbers, typical of real
engineering applications, advances in the numerical simulation of separated flows
past bodies with complex geometry have been made using wall-modelled large-eddy
simulation (LES) or detached-eddy simulation (DES) strategies (Spalart 2009).

For flow past either a streamlined or bluff-body, such as an airfoil or cylinder,
respectively, critical factors that may induce or affect either incipient or actual
separation of a TBL are the wall curvature in one or two directions, or the presence
of an adverse pressure gradient (APG) or some combination of these. A somewhat
simpler flow that nonetheless offers a natural setting for the study of the fundamental
structure of separation is the flat-plate TBL with an imposed APG. The attraction
here is the absence of curvature but the presence of the reasonably well understood,
canonical TBL prior to separation. Further, there exists several well documented
studies of separation/reattachment of the flat-plate TBL that can provide validation
cases for simulations over a range of Reynolds numbers. Presently, we develop
and apply a wall model suitable for the LES of separated flow that provides direct
calculation of the surface skin friction vector and allows detailed comparison between
wall-modelled LES and experimental results for separation and reattachment of a
flat-plate TBL at low to moderate Reynolds numbers.

The systematic study of separation in flat-plate TBL flow perhaps began in the
1970s. Perry & Fairlie (1975) investigated a nominally two-dimensional (in the mean)
turbulent separation bubble in a wind tunnel with a tailored diverging–converging
roof system designed to produce first, a region of adverse pressure gradient flow
that induced separation of the TBL on the flat-plate floor below, followed by a
steep favourable pressure gradient that forced shear-layer reattachment. In order to
minimize the unwanted effects of boundary-layer separation on the upper wall on the
separation bubble flow below, their roof system consisted of two disconnected and
separate diverging and converging parts, staggered and overlapped so that the gap
separating the parts swallowed the (possibly separating) boundary layer generated on
the diverging part. They investigated two cases with different pressure gradient profiles,
the first of which generated a closed separation bubble, while the second produced
incipient but not actual separation. They also developed a simple separation model
which utilized an inviscid region of uniform vorticity to represent the separation
bubble and which proved capable of reproducing some average properties of the
experimental data.

Later, Simpson and co-workers systematically studied separating turbulent boundary
layers, beginning with separation induced by an airfoil-type pressure gradient
(Simpson, Strickland & Barr 1977) and subsequently using a series of experiments that
investigated velocity profile scalings up to separation, together with some higher-order
moments (Simpson, Chew & Shivaprasad 1981a,b), and also a scaling for backflow
velocity inside the bubble (Simpson 1983). Patrick (1987) employed the Perry &
Fairlie (1975) two-roof strategy to produce a large-scale separation bubble with an
extremely strong imposed pressure gradient, showing that separated flow generally
follows Simpson’s velocity profile scaling. Patrick also found interesting reattachment
behaviour which is quite unsteady and somewhat similar to that observed in separation
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from a backward-facing step. Recently, Lögdberg, Angele & Alfredsson (2008)
investigated three separation flows each with a mild pressure gradient. They argued
that their mean-velocity defect profiles showed reasonable similarity for separated
regions. A study of separation in an axisymmetric turbulent boundary layer (Alving
& Fernholz 1996) has also improved our general understanding of separation induced
by an adverse pressure gradient.

DNS of turbulent boundary-layer separation was performed by Spalart & Coleman
(1997), who noted that a prescribed pressure gradient along the boundary layer
could be generated by imposing a tailored normal velocity distribution on the upper
boundary of a rectangular computational domain. Using DNS, Na & Moin (1998)
give a detailed discussion of the flow characteristics near separation and reattachment,
finding that the mean velocity profile before separation deviates from both a linear
law and logarithmic form, and that the reattachment zone is unsteady. Skote &
Henningson (2002) argue that the flow near separation can be analysed using two
velocity scales obtained from a boundary-layer equation. Na & Moin (1998) and
Skote & Henningson (2002) are both at Reθ ≈ 300 where Reθ = U∞θ/ν is the
Reynolds number based on the momentum boundary-layer thickness θ , U∞ is the
free-stream velocity and ν is the kinetic viscosity of the flow. Recently, Abe et al.
(2012) extended the case of Na & Moin (1998) to Reθ = 986, which is still well
below Perry & Fairlie (1975) (Reθ ≈ 2000) and Patrick (1987) (Reθ = 11 000).

LES has proven a useful tool for the numerical simulation of turbulent free-shear
and wall-bounded flows at large Reynolds numbers. In LES, the flow on turbulent
length scales, at or larger than the local grid resolution, are simulated directly within
the algorithmic discretization scheme, while the range of scales below a cutoff
length scale, usually proportional to the grid size, is modelled. LES of wall-bounded
turbulent flows generally fall into two categories; wall-resolved and wall-modelled.
In wall-resolved LES, for example Abe et al. (2012), the simulation can be viewed
as hybrid LES–DNS, with the near-wall either fully or nearly resolved. While useful,
wall-resolved LES is presently limited to flows where log(Reτ ) is not large, where
Reτ ≡ uτ δ/ν, with δ an outer length scale and uτ =√|τw|/ρ the friction velocity.

In order to achieve larger log(Reτ ), while eliminating the need to resolve near-wall
motions, wall-modelled LES generally introduces a subgrid-scale (SGS) model at
the wall that recognizes both near-wall anisotropy of the unresolved small-scale
turbulence and also the no-slip condition, while communicating the wall-normal flux
of energy and momentum to the outer flow; see Piomelli & Balaras (2002) for a
review. Two major issues for wall-modelled LES are first, capturing Reynolds-number
effects that can be weak for attached flows and second, the adequate modelling of
flow separation. Useful approaches to the latter have included hybrid methods that
implement a Reynolds-averaged Navier–Stokes (RANS) model very near the wall,
merged with conventional LES away from solid surfaces, for example Constantinescu
& Squires (2004), and the use of a slip boundary condition based on use of a
differential filter as described by Bose & Moin (2014).

The essence of the present wall model, henceforth referred to as the virtual-wall
model, is the application of a near-wall integration strategy to obtain an ordinary
differential equation (ODE), at each wall point describing the time variation of an
instantaneous, filtered or window-averaged wall skin-friction velocity. This ODE is
then numerically evolved to provide boundary condition information for LES in the
bulk of the flow. The model also proposes use of a plane parallel to, but displaced
above, the physical wall. A Dirichlet velocity boundary condition is applied on this
plane, which is, for the outer-flow LES, considered as a virtual wall. The offset of the
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virtual wall is set to be proportional to the mesh size, which ensures the convergence
of fine mesh LES to DNS. To provide the velocity boundary condition, Chung &
Pullin (2009) developed a log-like relationship obtained from the stretched-vortex
subgrid model under an assumption of linear scaling of the wall-parallel vortex scale
with distance from the wall. The virtual-wall model has been applied and validated
for LES of both smooth- and rough-wall channel flow (Saito, Pullin & Inoue 2012;
Saito & Pullin 2014) and to fully-developed turbulent boundary-layer flow for both
zero pressure gradient (Inoue & Pullin 2011; Inoue et al. 2012) and attached-flow
APG cases (Inoue et al. 2013). As an alternative to the sub-virtual wall modelling
leading to a log-variation for the slip velocity, Cheng & Samtaney (2014) used a
power-law relation for the virtual-wall slip velocity. For the zero-pressure gradient
boundary layer they found little effect on the calculated outer-flow properties.

Chung & Pullin (2009) made the strong assumption that the wall-shear stress lies
in the direction of the outer free-stream flow. While this may be reasonable for
wall-attached boundary layers, it cannot describe a general flow near a wall where,
on the wall itself, the wall-shear stress is a surface vector field whose field lines
are everywhere orthogonal to the vorticity at the wall, and in general will not be
approximately parallel to the driving, outer free-stream flow. The purpose of the
present work is first, to extend our LES capability, with calculation of the wall
shear stress, to separated flow at moderately large Reynolds numbers, and second,
to apply this capability to the study of boundary-layer separation/reattachment in the
form of a separation bubble flow. The virtual-wall model is presently extended to
two wall-parallel dimensions. It will be shown that this treatment of the wall-slip
boundary condition allows local backflow near the virtual wall with respect to an
outer free stream, and permits accurate LES modelling of separation/reattachment
flows.

In the following section, the development of the two-dimensional wall model is
described in § 2. In § 3 the present numerical LES strategy is outlined including
discussion of the virtual-wall boundary condition. This is followed by a description
of the LES for two cases of flow in a turbulent separation bubble. Section 4 contains
an account of the present strategy for simulation of the experimental conditions. This
section also describes a comparison with the medium Reynolds number, mild pressure
gradient experiments of Perry & Fairlie (1975). The LES of the higher-Reynolds
number, sharper pressure gradient case of Patrick (1987) is discussed in § 5. Further
parametric studies and the prospects for more detailed simulations are discussed
in § 6.

2. Physical model
In implementing wall-modelled LES, both a SGS model for the outer flow and a

wall model are required. The latter is essentially an SGS model designed specifically
to recognize the special character of near-wall flow, including the no-slip boundary
condition. We employ the stretched vortex SGS model introduced by Misra &
Pullin (1997), and further developed by Voelkl, Pullin & Chan (2000) and Chung
& Pullin (2009). This last-cited version is used presently for the outer flow without
modification. In this section, we first summarize the stretched vortex SGS model to
provide a closure for LES simulation. Then an extended wall model is derived.

2.1. Stretched vortex SGS model
In LES, the velocity components ui and pressure p can be decomposed as a resolved
part and an unresolved part: ui = ũi + u′i, p = p̃ + p′. After applying a filter with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

60
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.604


82 W. Cheng, D. I. Pullin and R. Samtaney

scale ∆c, the filtered Navier–Stokes (N–S) equations can be written as

∂ ũi

∂t
+ ∂ ũiũj

∂xj
=− ∂ p̃

∂xi
+ ν ∂

2ũi

∂x2
j
− ∂T ij

∂xj
,

∂ ũi

∂xi
= 0, (2.1)

with the subgrid stress (SGS) tensor T ij ≡ ũiuj − ũiũj. The subscript i or j presently
denotes three components x, y and z, corresponding to the streamwise, spanwise and
wall-normal directions, respectively. The three velocity components are also written as
u, v and w.

The stretched-vortex SGS model owes its genesis to the stretched-spiral vortex
model by Lundgren (1982). The model assumes that in each computational cell,
the subgrid motion is dominated by a vortex with direction ev, modelled by a
delta-function probability density function. The SGS tensor is modelled as Chung &
Pullin (2009):

T ij = (δij − evi evj )K, K =
∫ ∞

kc

E(k) dk=K ′
0 Γ [−1/3, κ2

c ]/2 (2.2)

with kc = π/∆c the cutoff wavenumber, k the wavenumber, and E(k) the energy
spectrum. In the integration above, the Lundgren vortex model is used, with K ′

0 =
K0ε

2/3λ2/3
ν , Γ is an incomplete Gamma function with κc = kcλν , λν = (2ν/(3|ã|))1/2,

ã= evi evj S̃ij is the stretching along the subgrid vortex and S̃ij = (∂ ũi/∂xj + ∂ ũj/∂xi)/2
is the resolved strain-rate tensor.

By using a matching procedure, the constant K ′
0 can be found as K ′

0 =
〈F2〉/〈Q(κc, d)〉. Here 〈 〉 denotes the local average and is computed technically
from a set of 26 neighbouring points, and F2 is the local second-order velocity
structure function calculated from the resolved velocities. The quantity

Q(κc, d)= 4
∫ κc

0
κ−5/3e−κ

2[1− J0((κ/κc)πd)] dκ, (2.3)

is calculated using an efficient asymptotic approximation with d = r/∆c and r is the
distance from neighbour point to the vortex axis (Chung & Pullin 2009).

The SGS model discussed above is utilized in the main body of the flow. For
modelling near-wall flow, Chung & Pullin (2009) developed an extended SGS model
based on the idea that the convection of both the passive scalars and the axial
velocity inside cylindrical SGS vortices can be analysed within a two-dimensional,
three-component flow framework. This leads to an additional term added to the
original SGS model

T ij =K(δij − evi evj )−Ks

[
evj evk

∂ ũk

∂xl
(δli − evl evi )+ evi evk

∂ ũk

∂xl
(δlj − evl evj )

]
(2.4)

with Ks = γ∆cK1/2/2 and γ a ‘mixing’ constant. This SGS model was used in the
virtual-wall model to obtain the wall-normal flux of wall-parallel momentum in the
near wall region.
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2.2. Wall model
Chung & Pullin (2009) argue that the dominant parameter for near wall-modelling
is uτ . In order to calculate uτ without resolving the fine scales near the wall,
they introduce wall-normal averaging of the wall-parallel, streamwise (outer flow)
momentum equation combined with local inner scaling used to treat the time-
dependence of the filtered, wall-parallel velocity. This latter assumption requires
no specific form for the wall-normal variation of this velocity. This results in an
ODE describing the local wall-normal velocity gradient η0 = ∂ ũ/∂z|w or equivalently
u2
τ ≡ ν η0, at each wall point with coefficients and source terms that, with a few-point

approximation to certain wall-normal integrals, can be determined dynamically from
the outer LES at the first few grid points away from the wall. Combined with a
log-based description of the slip velocity at a virtual wall at a distance h0 (to be
defined later) from the actual wall that is a small fraction of the first wall-normal
grid location, this provides closure.

Following this approach, we begin with the Navier–Stokes equations and apply two
filters:

φ̃(x, y, z, t)=
∫ ∫

φ(x′, y′, z, t)G(x− x′;∆f )G(y− y′, ∆f ) dx′ dy′, (2.5)

〈φ〉 = 1
h

∫ h

0
φ̃(x, y, z, t) dz, (2.6)

where (2.5) defines the wall-parallel filtered (xy-plane) quantity φ̃ and (2.6) defines a
wall-normal (z) or top-hat filter 〈φ〉. For the wall-parallel velocity components these
are presently ũ and ṽ and 〈u〉 and 〈v〉, respectively. We remark that presently, the
wall-parallel filtering is strictly formal.

After applying the wall-parallel filter to both the streamwise and spanwise
momentum equations, neglecting lateral diffusion, we obtain

∂ ũ
∂t
+ ∂ ũu
∂x
+ ∂ ũv
∂y
+ ∂ ũw

∂z
=−∂ p̃

∂x
+ ν ∂

2ũ
∂z2

,

∂ṽ

∂t
+ ∂ṽu
∂x
+ ∂ṽv
∂y
+ ∂ṽw

∂z
=−∂ p̃

∂y
+ ν ∂

2ṽ

∂z2
.

 (2.7)

2.2.1. Inner scaling assumption and ODE of η0
The virtual-wall model adopts an inner scaling assumption, which states that very

near the wall, the SGS, instantaneous wall-filtered, wall-parallel velocity scales locally
with the time-dependent uτ (x, y, t) and ν. This is a widely-accepted standard for
mean-velocity profiles, sufficiently close to the wall, in either steady or statistically
stationary, wall-bounded flows such as laminar boundary layer, turbulent channel
flow, the TBL and also the APG TBL. While its strict accuracy for the fluctuating,
near-wall filtered velocity profile is unknown, it was shown to work well in LES
determination of the mean wall-friction velocity for both the ZPG and APG TBLs
(Chung & Pullin 2009; Inoue & Pullin 2011).

For the purposes of wall modelling in a virtual-wall region h0 > z > 0, where h0
is much smaller than the thickness of the wall layer, we presently assume that the
magnitude of the resultant velocity in the wall-parallel plane q̃= (ũ2 + ṽ2)

1/2, follows
inner scaling. We then have

q̃
uτ
= F(z+), z+ ≡ z

l+
= zuτ

ν
, (2.8)
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where F(z+) is unknown, together with

η0 ≡ ∂ q̃
∂z

∣∣∣∣
0

, u2
τ = νη0,

∂uτ
∂η0
= ν

2uτ
= 1

2

(
ν

η0

)1/2

,
∂z+

∂η0
= z+

2η0
. (2.9a−d)

Applying the wall-normal filter to the time derivative of q̃ then gives

∂〈q〉
∂t
= q̃|h

2η0

∂η0

∂t
, q̃|h ≡ uτF(h+), (2.10)

where we note that, in obtaining (2.10) wall-normal integrals containing F(z+) in the
integrand cancel. If q̃|h in (2.10) is identified as the resolved-scale fluid speed at the
first grid point off the wall, then here, the specific form of F(z+) is not required. From
the definition of q̃, we obtain

∂〈q〉
∂t
= 1

h

∫ h

0

1

(ũ2 + ṽ2)
1/2

(
ũ
∂ ũ
∂t
+ ṽ ∂ṽ

∂t

)
dz. (2.11)

Then combining (2.11) with the momentum equations (2.7), and using (2.10) for the
unsteady term, we have an equation for η0 as

q̃|h
2η0

∂η0

∂t
= 1

h

∫ h

0

[
−1

q̃

(
ũ
∂ ũu
∂x
+ ũ

∂ ũv
∂y
+ ũ

∂ ũw
∂z
+ ṽ ∂ṽu

∂x
+ ṽ ∂ṽv

∂y
+ ṽ ∂ṽw

∂z

)
+ 1

q̃

(
−ũ
∂ p̃
∂x
+ νũ

∂2ũ
∂z2
− ṽ ∂ p̃

∂y
+ νṽ ∂

2ṽ

∂z2

)]
dz. (2.12)

2.2.2. Treatment of near-wall region
The integration on the right-hand side of (2.12) can be further simplified. Using

integration by parts, for the viscous term, one can obtain

−
∫ h

0

1
q̃

(
ũ
∂2ũ
∂z2
+ ṽ ∂

2ṽ

∂z2

)
dz= ∂ q̃

∂z

∣∣∣∣
h

−η0−
∫ h

0

[
1
q̃

((
∂ ũ
∂z

)2

+
(
∂ṽ

∂z

)2

−
(
∂ q̃
∂z

)2
)]

dz.

(2.13)
For the purposes of modelling we make the approximation that, within the first grid
cell 0 6 z 6 h, the angle θ ≡ arccos(ũ/q̃) is constant. The last term in the above
equation is then zero. Also, terms such as ũ/q̃ and ṽ/q̃ will then be constant in
the wall-normal direction and integration over them is straightforward. Using these
results, performing all integrations on integrands expressed as ∂../∂z and applying
exact no-slip boundary conditions at z= 0, (2.12) can then be written as

q̃|2h
2η0

dη0

dt
+
(

ũ
∂〈uu〉
∂x
+ ũ

∂〈uv〉
∂y
+ ṽ ∂〈vu〉

∂x
+ ṽ ∂〈vv〉

∂y
+ ũ

∂〈p〉
∂x
+ ṽ ∂〈p〉

∂y

)∣∣∣∣
h

+ 1
h

(
ũ ũw+ ṽ ṽw

)∣∣
h −

νq̃|h
h

(
∂ q̃
∂z

∣∣∣∣
h

− η0

)
= 0. (2.14)

Each 〈· · ·〉 or tilde term in above equation can be estimated by resolved-scale
quantities near, or at, the first grid point z= h above the wall. For example, nonlinear
terms are approximated by LES resolved-scale values at z= h as

∂〈uu〉
∂x
≈ ∂ ũu|h

∂x
= ∂ ũ|hũ|h

∂x
+ ∂Txx|h

∂x
, (2.15)
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with similar approximations for other terms. The wall-normal integrated pressure 〈p〉
is also approximated as p̃|h. Equation (2.14) can then be interpreted as a nonlinear
ODE for η0.

Once η0(x, y, t) is known and θ is estimated as θ = θ0, the angle of the shear stress
at the wall is known, then the local wall-shear stress components can be calculated
as

τw,x

ρ
= ν η0 cos θ0,

τw,y

ρ
= ν η0 sin θ0. (2.16a,b)

where τw≡ (τw,x, τw,y) is the LES representation of the surface stress vector. Since the
wall-parallel momentum equations have been (formally) filtered in two wall-parallel
directions, then the present estimate of τw should be interpreted as a wall-parallel
filtered and not a point-wise version of this quantity. We presently investigate two
models for the estimation of θ0 as follows:

(1) θ0 = θh ≡ arccos(ũ|h/q̃|h), namely the flow angle at z = h = h0 + 1z/2. This is
extremely simple and is referred to as model I;

(2) obtain an independent equation for θ0 using similar arguments to those leading
to (2.14) for η0. This is done in appendix A and is referred to as model II.

The ODE (2.14) is independent of the possible presence of local backflow at z= h,
with respect to the outer free stream. Note that, by construction, we expect that
η0 > 0 except possibly at a finite number of critical points of the surface stress vector
field. In principle, these can occur when q̃|h = 0 which means the appearance of an
actual wall-parallel stagnation point at the first wall-normal grid cell. In real turbulent
separated flow at large Reynolds number, the area measure of critical points of τw
is unknown but is expected to be zero. Likewise, the grid-set measure of stagnation
points in the wall parallel direction (that is q̃|h= 0 at a grid point) is also expected to
be zero, and in fact none has been encountered in the present LES. This is discussed
further in appendix B. Presently we demonstrate that (2.14) works well for flow that
is considered to be separated. In passing, we remark that there appears to be no
precise definition of separation for spatially three-dimensional flow.

2.2.3. Slip wall boundary conditions
The wall model is completed with a slip velocity specified at a raised virtual plane

at z= h0, h0< h. The slip velocity may represent a back flow with respect to the outer
free stream. The slip velocity used presently is defined by

q̃|h0
=




uτ

(
1

K1
log
(

h+0
h+ν

)
+ h+ν

)
, h+0 > h+ν ,

uτh+0 , h+0 < h+ν ,
τw,x > 0,

uτ h+0 , τw,x 6 0,

(2.17)

where h+0 ≡ h0 uτ/ν and h+ν is a parameter to be discussed. For τw,x > 0 the above is
essentially a log/linear version of the slip velocity used by Chung & Pullin (2009) and
derived from the stretched-vortex SGS model in the near-wall region, with dynamic
calculation of the Kármán-like parameter K1. This is used everywhere except where
h+0 < h+ν where a simple linear relationship is used. In (2.17), z+ = h+ν is a standard
division of the viscous sublayer and the log layer. Presently, h+ν = 11 is used which
is an empirical parameter of the present model. The condition τw,x < 0, which is the
present version of the more general condition τw · U∞ < 0, is interpreted presently as
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the wall-model indication of local back flow. In this case it is considered that a state
of ordered boundary-layer-like flow has broken down. While it cannot be ruled out
that a sufficiently ordered back flow could produce an equilibrium wall layer with its
own log-like behaviour, we presently use a simple linear relationship consistent with
local inner scaling, namely ũ+= z+. We remark that, sufficiently close to the wall, the
latter relation is always valid except at critical points of the surface stress field.

In Chung & Pullin (2009) for channel flow, h0/1z=0.18 remains fixed with respect
to the computational grid and the sensitivity to changes was documented. Their
collated mesh arrangement results in h= h0 +1z, but this relation is not required by
the wall model. Inoue & Pullin (2011) extended the model to turbulent boundary-layer
flow. Their staggered mesh strategy changes the relation to h = h0 + 1z/2 while
retaining h0/1z = 0.18. Their verification shows good convergence and reasonable
agreement for the near-wall physical variables. Presently we follow Inoue & Pullin
(2011).

Since h0 is fixed, h+0 can be calculated locally using uτ = √νη0 where η0 > 0 is
known from the solution of (2.14). In calculating the slip velocity at the virtual wall
z = h0, a straightforward strategy is to align the velocity vector to the skin-friction
vector, i.e., ũ|h0 = q̃|h0 cos θ0 and ṽ|h0 = q̃|h0 sin θ0.

The velocity component in the wall-normal direction on the virtual wall, w̃|h0 , is
generally non-zero, especially for flow in the vicinity of separation. It is natural to
evaluate w̃|h0 by applying the inner scaling assumption to the wall-normal integrated
continuity equation. This gives

w̃|h0 =−
q̃|hh
2η0

η0,n, η0,n = ∂η0

∂x
cos θ0 + ∂η0

∂y
sin θ0, (2.18)

where η0,n is the spatial gradient parallel to the wall. Numerical implementation,
however, shows that this wall-parallel spatial gradient near separation can produce
over-shoot fluctuations, which decrease the robustness of the code. This over-shoot
appears to be associated with using the spatial gradient of a fluctuating, locally
modelled quantity. Hence presently, a spanwise filter is applied on η0 prior to
wall-parallel differentiation

w̃|h0 =−
q̃|hh
2η0

η0,n, (2.19)

where η0,n is the spanwise filter of η0,n. Note that we still employ the local
instantaneous value for q̃|h and η0. From a physical viewpoint, we would expect the
magnitude of |w̃|h0/q̃|h0 to be generally small, except perhaps in the neighbourhood
of critical points of the τw field where wall-normal and wall-parallel flow speeds may
be of the same order.

3. Numerical configuration and simulation strategy
3.1. Numerical method

The LES equations, including the resolved-scale Navier–Stokes equations and the ODE
for η0, are integrated using the three-stage low-storage Runge–Kutta method of Spalart,
Moser & Rogers (1991) for temporal evolution. For each stage, the fractional-step
method (Perot 1993) is implemented for the temporal-discretized Navier–Stokes
equation which results in a modified Helmholtz equation for the velocity arising
from an implicit treatment of the viscous terms, a Poisson equation for pressure and
finally a correction step. For spatial discretization, we employ a staggered grid in
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Code A Code B
Top Bottom Left Right Top Bottom Left Right

u= 1 u= uw R C
∂u
∂z
= ∂w
∂x

u= uw D C

∂v

∂z
= 0 v = vw R C

∂v

∂z
= 0 v = vw D C

∂w
∂z
= 0 w=ww R C w=Wtop(x, t) w=ww D C

p= 0
∂p
∂z
= 0

∂p
∂x
= 0

∂p
∂x
= 0

∂p
∂z
= 0

∂p
∂z
= 0

∂p
∂x
= 0

∂p
∂x
= 0

TABLE 1. Boundary conditions for A and B codes. D, Dirichlet type; R, recycling
method (Lund et al. 1998); C, convective outflow.

the streamwise/wall-normal plane in which the streamwise (respectively wall-normal)
velocity components are stored at the x (respectively z) faces of the computational
cells and cell-centred storage in the spanwise direction. In obtaining Helmholtz
equations, both convective and nonlinear terms are evaluated using a fourth-order finite
difference scheme in the x and z-directions, and a pseudo-spectral representation for
the y-direction. A skew-symmetric form for convective terms is employed to improve
energy conservation and reduce aliasing errors. The Poisson equation for pressure
is reduced to a series of one-dimensional equations in the z-direction by applying
a spectral method in the y-direction and a fast-cosine transform in the x-direction.
Finally, the Helmholtz equation and the one-dimensional Poisson equations are solved
by the septa-diagonal matrix solver provided by LAPACK. The above methods,
originally implemented by Inoue & Pullin (2011), have been validated for both DNS
and LES of TBL flows.

The present code is designed as an ‘AB code’ framework, with code-A for a prior
zero pressure gradient turbulent boundary layer (ZPGTBL) simulation and code-B
for the main separation/reattachment LES. The computational domains for both
codes are of rectangular parallelepiped shape. Code-A and code-B employ the same
numerical method as discussed above, but employ different boundary conditions. For
comparison, table 1 lists all the boundary conditions for both code-A and code-B.
The same boundary conditions are used in the two codes for the outflow boundary
and the virtual wall boundary. The inflow boundary condition for code-A is generated
by the recycling method (Lund, Wu & Squires 1998). In code-A, a Dirichlet pressure
boundary condition is used for the top boundary. Since code-B does not have uniform
free-stream flow at the upper boundary, the most accurate boundary condition for the
top boundary is to specify the normal velocity profile Wtop(x, t). This type of boundary
condition was used in DNS of separation in a flat-plate TBL by Na & Moin (1998)
and Skote & Henningson (2002).

3.2. Simulation strategy
Presently, we try to match wall conditions in experiments performed with curved
upper walls using LES in rectangular parallelepiped domains. For flow where there
exists a separation bubble, care is required in making comparisons between LES and
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the results of these experiments. Our general strategy is to design boundary conditions
for code B that will reproduce flat-wall, streamwise pressure distributions close to
those measured in the experiments. This, together with a parametric description that
characterizes flows with separation/reattachment is now discussed in some detail.

Unlike the ZPGTBL, which has a uniform free-stream flow and only one parameter
(Reynolds number), flow with separation from a flat plate will depict features that
depend critically on the top boundary condition. Suppose that the form of the vertical
velocity function along the top wall is given by Wtop(x/Lp), where LP is a length scale.
Then for a given rectangular parallelepiped computational domain, the remaining flow
parameters would be the inflow velocity U∞, the viscosity ν, some measure of the
boundary layer thickness δ and Lp. For diagnosing flow results, two other parameters
of interest are the length LB and the height HB of the separation bubble. Using
dimensional analysis, we can then write

LB

δ
= F1

(
Reδ,

Lp

δ

)
,

HB

δ
= F2

(
Reδ,

Lp

δ

)
. (3.1a,b)

Generally the functional form of both F1 and F2 may be expected to depend on the
specific form of Wtop(x/Lp).

In order to produce flow containing a separation bubble, the imposition of a
streamwise pressure distribution is required. Here Cp increases with the imposed
APG prior to boundary-layer separation. Inside the separation bubble itself, Cp will
be determined by the structure the bubble flow, typically remaining approximately
constant for the first part of the separation bubble, and then increasing to an apex
or maximum within the incipient reattachment region. After reattachment, Cp then
decreases in a favourable-pressure-gradient (FPG) region to match a desired outflow
boundary condition. In order to discuss this in quantitative terms, we summarize
our interpretation of some prior work on the general effect of pressure gradient
as follows. We consider the smooth development of Cp(x) along a streamwise
direction, and define two parameters Cinc and Cdec, the streamwise average of changes
in Cp during separation and reattachment, respectively, with Cinc = |1Cp|i/1x′i and
Cdec=|1Cp|d/1x′d. Here the subscript ‘i’ denotes the increasing part before separation
and ‘d’ the decreasing part after reattachment and 1x′ is the dimensionless length
of the region over which Cp changes, generally defined as 1x′ = Lp/δ

in
99 where δin

99
is the 99 % boundary-layer thickness just before the onset of the imposed APG. In
the present simulation the APG corresponds to the first part of Wtop(x) on the top
boundary.

Table 2 lists our estimates of these parameters for some previous work on separation
in TBL flow. We find that Perry & Fairlie (1975) has a very mild APG but a strong
FPG. Patrick (1987) has both a strong APG and subsequent FPG, while Lögdberg
et al. (2008) has a mild APG for separation and weak FPG for reattachment. One
aim of the present work is to undertake strong quantitative comparisons between our
LES and some of the existing experimental studies of separation and reattachment. We
first address the case of Perry & Fairlie (1975) in order to test the present wall model
up to separation, and also for a mild APG followed by a strong FPG at low Reynolds
number. Subsequently, we address the flow studied by Patrick (1987) to evaluate the
performance of the overall LES, including the present two-dimensional wall model at
moderately high Reynolds number.
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Experimental
roof

LES
domain

FIGURE 1. Sketch configuration of the separation-bubble flow after Perry & Fairlie
(1975). Lin, length of ZPG part near inlet; Lout, length of ZPG part near outlet; LP length
of APG part; LB, length of the bubble; HB, height of the bubble.

Reθ Lp δin
99 Cinc Cdec Reference

2 000 1.71 m 12.0 mma 0.0063 0.048 Perry & Fairlie (1975)
11 100 1.52 m 100 cm 0.072 0.066 Patrick (1987)

300 300 5.13b 0.014 0.016 Na & Moin (1998)
2 260 1.70 m 10.4 mm 0.0047 ≈0c Lögdberg et al. (2008)

TABLE 2. Table of parameters for experimental and DNS data. Cinc and Cdec correspond
to the average spanwise increase and decrease in pressure coefficient Cp, respectively. All
Reθ , Lp and δ99 are calculated from data or scaled from figures in reference cited.
aEstimated from data on δ∗. Ratio of δ∗/δ99 from Chauhan, Monkewitz & Nagib (2009).

bFrom Skote (2001). cInsufficient information available.

4. Separation bubble: Perry & Fairlie (1975)
Utilizing the above analysis, we design boundary conditions to generate flows in a

parallelepiped domain which enable direct comparison with the experiments of Perry
& Fairlie (1975). They used a 2.5 m long working section and a Reynolds number
1.25× 106 m−1. While Perry & Fairlie (1975) do not provide data on the state of the
upstream ZPG TBL, their tabulated Cf and the displacement boundary-layer thickness
δ∗ data at x= 0.15 m (the first point in the data and inside the APG part), conforms
closely to the Coles–Fernholz 1 formula, Cf /4 = log(Reδ∗)/0.384 + 3.354 (Nagib,
Chauhan & Monkewitz 2007). Thus the data at this point are chosen as scaling
parameters. We note that the actual available length scale for Cp is Lp = 1.7 m.
Although the pressure gradient has still not fully recovered, this length, Lp is
nonetheless considered as the Lp in our LES. From the above discussion, we obtain
Reθ = 2000 and Lp/δ

in
99 = 142 from the experimental data.

4.1. Domain size and mesh resolution
Figure 1 provides a sketch for the interpretation of the present LES in relation to the
experimental conditions. This illustrates the definitions described previously, including
Lp, LB, HB and Reδ. We identify two distinct parts or portions of the ZPGTBL, before
separation and after reattachment, with lengths defined as Lin and Lout, respectively.
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30 60 90 120 180 2101500

 0.5

 0

 –0.5

 –1.0

FIGURE 2. Vertical velocity distribution Wtop(x) used as a boundary condition on the
top-wall of a rectangular parallelepiped domain for the case of Perry and Fairlie. – – – –,
Wtop = 0.

These connect to the non-zero pressure gradient part of the flow. These two ZPG parts
are used to accommodate the flow to ensure that the inflow and outflow boundary
conditions have minimal impact on the flow within the non-zero pressure gradient
region. In figure 1 the experimental configuration is sketched as a dual-roof top wall
which generates first the APG followed by the FPG. The present LES employs instead
a parallelepiped box. The present strategy is then to match the given experimental
Cp(x) data, to be discussed subsequently, on the bottom wall by tuning Wtop(x). This
is done by trial and error using a rough, simple potential flow model using sinks,
sources and vortices as a guide. The final Wtop(x/δ0) used for the Perry & Fairlie
(1975) experiment is plotted in figure 2.

We use a nominal boundary-layer thickness δ0 as a length scale and fix the 99 %
boundary-layer thickness at the beginning of the APG region as 1.2δ0. The domain
length in the streamwise direction was set to be 216δ0, with Wtop(x/Lp) enforced in
a length Lp = 170δ0. This numerical test section joins an upstream ZPG part with
Lin = 10δ0, which is for the development of the inflow, and is connected to a second,
downstream ZPG part with Lout = 36δ0. The ZPG parts are designed to ensure that
the influence of vertical velocity enforcement does not reach the inflow and outflow
boundaries in the streamwise direction. As a check, we plot isolines of the mean
(in the sense of spanwise and time-averaged) vertical velocity in the (x, z) plane of
the simulation domain in figure 3 for a typical LES. It can be seen that the isolines of
w=±0.01, which correspond to approximately 1 % of the maximum vertical velocity,
do not extend to either the inflow or outflow boundaries.

The domain size in the wall-normal direction should be restricted by a fully-
potential flow top boundary criterion. We ensure that the saddle point of the ũ(x, y)
field above the separation bubble is located within the computational domain. A
similar criterion was used by Na & Moin (1998). Figure 4, in which the dashed lines
are the isolines of mean streamwise velocity while the solid lines are the streamlines
of the mean velocity, illustrates this criterion. The domain in the z-direction is
presently 24δ0. This is also where the vertical velocity boundary condition Wtop(x),
shown in figure 2, is imposed.
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30 60 90 120 180 2101500
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0.01

0.1

–0.01
–0.40.05 0.05

FIGURE 3. (Colour online) Isolines of spanwise mean vertical velocity W. W = 0.01
describes the upper limit of the desired vertical velocity for an acceptable upstream
influence of the APG.

80 100 120 180160140
0
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0.5

0.5 0.7 0.9

0.7

0.8

FIGURE 4. (Colour online) Isolines of mean streamwise velocity U (– – – –) and
streamlines of mean velocity (—— with arrows). Line — · — is the isoline of U=0.4595,
a visualization of the saddle point.

There is no straightforward criterion available for the domain size in the
spanwise direction. Ideally the spanwise domain should have sufficient space for
the development of the largest turbulent structures. However, as wall-modelled LES
cannot precisely capture these largest structures, the present strategy is to compare
the averaged properties from results predicted with a different spanwise domain. We
start with a spanwise domain 12δ0, which is comparable to the domain size of 9.8δ0
in Na & Moin (1998).

Presently, several LES cases are implemented in order to assess the influence
of domain-size and resolution; see table 3. Three coarse mesh cases test domain
size, with C0 the baseline domain discussed above, C1 a smaller domain in the
wall-normal direction Lz= 18δ0 and C2 is the doubled spanwise domain. Case F1 is a
fine mesh case for assessing mesh resolution. Note that for all cases with Lz = 18δ0,
the vertical velocity at z = 18δ0 obtained from case C0 is imposed on the top
boundary. The Reynolds number is set to Rein

θ = 2000 with superscript ‘in’ denoting
just upstream of the region where the vertical velocity boundary condition is imposed.
This is implemented by adjusting the inflow boundary-layer thickness in code-A. For
most LES, model I was used for calculation of θ0. One case was performed using
model II.

4.2. Wall streamwise pressure distribution
As shown in figure 5, Cp distributions from the various LES are similar and they
all match reasonably with the experimental measurements of Perry & Fairlie (1975).
Figure 5 also includes a close-up of Cp in the separated region. We find that the
differences between cases are within model error, and that the fine mesh case F1
shows somewhat better agreement with experimental data than the coarse mesh cases.
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FIGURE 5. (Colour online) Wall pressure coefficient Cp:@, experiment (Perry & Fairlie
1975), – – – –, case C0; — · —, case C1; — · · —, case C2; · · · · · ·, case C3; ——,
case F1.
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0 500 1000 1500 2000 2500 3000

Transition Stabilization Statistics

t

FIGURE 6. (Colour online) Time evolution of maximum height of the backflow region, hB.
First 3Tt is the start-up transient followed by 5Tt for stabilizing the flow and then a final
10Tt for diagnostics and output. Tt is a typical particle transit time across the domain.

We note also that the LES using model I for θ0 is very close to that using model II
at a similar resolution.

The initial conditions used for both code A and code B are zero-pressure gradient
results from previous LES at the same Reynolds number. The vertical velocity
boundary condition on the top boundary is applied instantaneously from t=0. Figure 6
shows the time evolution of the maximum height of the backflow region hB. This
rapidly increases from zero, reaching a maximum at about three times a characteristic
flow time 3Tt where Tt refers to the time required for a typical free-stream particle
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FIGURE 7. (Colour online) Boundary-layer thickness parameters up to separation. Symbols
for experiment (Perry & Fairlie 1975), lines for LES results, case F1.@, Reθ ,E, H. ——,
Reθ , - - - -, H.

Case Lx/δ0 Ly/δ0 Lz/δ0 Nx Ny Nz

C0 216 12 24 576 32 192
C1 216 12 18 576 64 144
C2 216 24 18 576 128 144
C3 216 12 18 576 64 144
F1 216 12 18 1152 128 288

TABLE 3. LES performed for Perry & Fairlie (1975) flow: three coarse-mesh cases with
different spanwise and wall-normal domain dimensions, and one finer-mesh case, F1.
Rein

θ = 2000 is held constant. C3 is an extension of C1 with using model II.

to transit the full flow domain. At about t = 8Tt, the flow is considered to reach
statistical steady state, and simple average diagnostics are implemented in the next
10Tt period.

4.3. Boundary-layer thickness and skin-friction distribution
Because Perry & Fairlie (1975) recorded boundary-layer flow data prior to flow
separation, we focus first on the APG of the flow. Figure 7 shows the streamwise
variation of both Reθ and the shape factor H ≡ δ∗/θ , respectively versus x/δ0 prior
to separation. It can be seen that our LES generally matches the Reθ number
development in this region.

The skin friction Cf is defined presently as

Cf ≡ |τw,x|
1
2 ρ U2∞

= 2ν
U2∞
|η0 cos θ0|, (4.1)

where the overline refers to a time-spanwise average, and we note that, by definition,
Cf > 0 always. This is perhaps the most important flowfield parameter in our wall-
modelled LES as we directly solve for η0 from the ODE (2.14). Figure 8 plots Cf
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FIGURE 8. (Colour online) Skin friction coefficient Cf . Symbols for experiments by Perry
& Fairlie (1975), lines for present LES.@, Cf ;E, separation point;A, reattachment point;
– – – –, case C0; — · —, case C1; — · · —, case C2; · · · · · ·, case C3; ——, case F1.
Horizontal dashed line indicates Cf = 0.

versus x/δ0. It is seen that our LES can reasonably capture the Cf development in the
streamwise development prior to separation where measurements were recorded. This
means the whole APG TBL development before separation is accurately represented
by the LES. This result is consistent with the APG TBL simulation performed by
Inoue et al. (2013), which uses Dirichlet streamwise velocity and pressure boundary
conditions. Note that in Inoue et al. (2013), a one-dimensional wall model is used
and only a small APG region is implemented. Again it can be seen that the Cf (x)
variation using model I for θ0(x, y, t) is very close to that obtained using model II.
This is evidence that the overall LES is relatively insensitive to this choice. Hence
subsequently, all LES discussed presently utilize the simpler model I.

Two points plotted in figure 8 are the separation point and reattachment point
obtained from experiment from mean-flow streamlines. In the present simulation, the
two-dimensional wall model enables calculation of Cf up to and through separation.
For three-dimensional flow, even when statistically stationary in some sense, a
‘separation point’ is not generally defined. But since the present flow is driven
by boundary conditions that have no variation in the y or spanwise direction, it
is expected to be statically stationary and two-dimensional in the time-wise mean.
Hence presently, the separation and reattachment points in x are defined as those
points where the time-spanwise averaged x-shear stress τw,x, as calculated from
the ODE, changes sign. As shown in figure 8, this measure of the separation and
reattachment points agrees well with the experimental results.

The separation/reattachment flow is highly unsteady and far from two dimensional.
This is illustrated in figure 9 which shows an x–y plane plot, on the plane z= 0, of
the instantaneous (at a particular time) streamwise component of wall shear stress τw,x.
The whole-domain plot on the figure 9(a) shows the spatially non-uniform character
of a typical instantaneous distribution of τw,x. From the close-up plot, we can see that
separation is not well defined in an instantaneous image. In the region surrounding the
mean separation line as defined previously, at about x/δ0= 112, the instantaneous field
of τw,x is highly irregular, showing patches and areas of both positive and negative sign
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FIGURE 9. (Colour online) Contour plot of the instantaneous τw,x(x, y). Case F1 of table 3.
(a) The whole domain. (b) Close-up near separation. Both figures use the key shown.

Experiment C0 C1 C2 F1

LB/δ
in
99 41.4 43.9 40.1 40.2 42.5

HB/δ
in
99 8.40 8.29 8.44 8.25 8.56

TABLE 4. Comparison of bubble size with experimental data from Perry & Fairlie (1975):
length of the bubble LB and height of the bubble HB. Length scale δin

99 set to be δ99 before
APG part of flow.

over a region of extent many δ0 in the streamwise direction. This feature is perhaps
associated with the moderate APG for this case. In contrast, further downstream, the
τw,x field appears to be more ordered in the reattachment region where the strong FPG
enables recovery of the skin friction to quite strong positivity.

4.4. Bubble size and velocity profile

To compare data that characterizes the extent of the separation bubble, we compare
both LB/δ

in
99 and HB/δ

in
99 in table 4. Note that here LB/δ

in
99 is defined by the separation

point and reattachment point from Cf = 0. HB/δ
in
99 is evaluated from the maximum

height of the enveloping line of the separation bubble. Both the bubble length and
height in all simulations are close to the experimental data within a few per cent.

Figure 10 shows the mean streamwise velocity profile at different locations. These
match those of the experiment, with two upstream of the bubble (x/δ0= 102.6, 110.6),
four points inside the bubble (x/δ0 = 121.6, 131.0, 139.4, 150.0) and one final point
downstream the bubble (x/δ0= 160.0). We plot velocity profiles for two cases, a solid
line for C1 and dashed line for F1. It can be found that, in the region upstream of
the bubble, the velocity profiles obtained from LES are in reasonably good agreement
with experiments.
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FIGURE 10. (Colour online) Comparison of velocity profiles.p, Experimental data Perry
& Fairlie (1975); ——, LES case C1; – – – –, LES case F1.

Skote & Henningson (2002) propose a model for mean velocity scaling in the
separation region. Prior to separation, their mean velocity is given by

U+ = 1
κ

(
ln z+ − 2 ln

√
1+ λz+ + 1

2
+ 2(
√

1+ λz+ − 1)

)
+ B, (4.2)

while the velocity profile inside the separation region is

U+ = 1
κ

(
2
√
λz+ − 1− 2 arctan(

√
λz+ − 1)

)
+C, (4.3)

where

U+ = u
uτ
, λ=

(
up

uτ

)3

, up =
(
ν

dp
dx

∣∣∣∣
z=0

)1/3

, uτ =
√

2Cf . (4.4a−d)

The present LES is compared with these scalings in figure 11 where we use the
same parameters as suggested in Skote & Henningson (2002): κ = 0.41, B= 1.5 and
C =−7. In determining the LES profiles, we presently use uτ defined in (4.4). This
is strictly for the present comparison and is not the same as the wall-model definition
of uτ given by the second of (2.9). We compare two velocity profiles at x/δ0= 102.6
and 121.6, which are the first and third velocity profiles in figure 10. The velocity
profile at x/δ0 = 102.6, which is in the APG region, agrees quite well with (4.2),
but is different from the classical log law. The velocity profile within the separated
region also matches (4.3) reasonably well up to z+≈ 350, implying that the Skote and
Henningson theory is valid for weakly separated flow.

For the region downstream of separation, Simpson (1983) suggests a scaling
formula to describe the velocity profile of the main backflow region. In this scaling,
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FIGURE 11. (Colour online) Comparison of velocity profiles: · · · · · ·, log line U+ =
(1/0.378) ln z+ + 4.08 (Inoue & Pullin 2011); — · —, (4.2); – – – –, (4.3); —— with
symbols, LES results.E, x/δ0 = 102.6;@, x/δ = 121.6.

the maximum negative velocity UN and its distance from the wall N are two basic
parameters. Simpson’s equation, which covers the region of 0.02< z/N < 1.0 with z
the wall-normal coordinate, is given by

U
UN
= A

( z
N
− ln

∣∣∣ z
N

∣∣∣− 1
)
− 1 (4.5)

with A= 0.3. To compare with this scaling formula, contours of the backflow velocity
are first plotted in figure 12(a). This shows that the present LES can capture the
maximum negative velocity at about 135 < x/δ0 < 145. The streamwise velocity at
four positions are extracted and plotted in figure 12(b), with x/δ0= 133.5(P1), 136.5,
140 and 145. We find that at position P2, which is a good example from the LES
owing to obvious maximum backflow velocity and sufficient mesh points for z < N,
the LES results agree quite well with the formula. For P1, there is interaction of
different isolines. This complexity raises the backflow velocity to somewhat above the
theory. The velocity profiles at position P3 also agrees well with the scaling formula.
Comparison of P2 and P3 shows that only the first two near-wall points deviate from
the formula, with fair agreement for other points. Except for P4, where there are only
three points under the maximum negative velocity, the present LES results are broadly
consistent with (4.5).

4.5. Discussion
We have argued that the present wall model can accurately model the near wall flow
before separation, reasonably postdict the separation and reattachment points and show
good agreement for the velocity profiles. Referring to the velocity slip component
of the wall model defined by (2.17), we find that for the LES corresponding to the
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FIGURE 12. (Colour online) Velocity in backflow region. (a) Isolines of mean streamwise
velocity of backflow, U<0 (contour of U). Velocity probed at P1, P2, P3 and P4 (vertical
dash lines) are extracted for (b). (b) Scaled velocity. ——, Scaling equation (4.5), Simpson
(1983); – – – – with symbols, LES results. A, P1; @, P2; E, P3; ♦, P4 (comparison of
scaled U).

Perry & Fairlie (1975) flow, use of Reθ = 2000 results in a small h+0 within the
separation bubble. In particular, for both the coarse and fine mesh LES, h+0 (x, y, t),
which fluctuates in time because the calculated uτ (x, y, t) fluctuates, satisfies
h+0 (x, y, t) < h+ν in more than 99 % of realizations. From (2.17) this then means
that the linear form of the slip velocity is overwhelmingly used within the separated
region. Next, we consider a second case from Patrick (1987), at sufficiently high
Reynolds numbers, Reθ = 11 000, which gives h+0 > h+ν within the separation bubble.

5. Separation bubble: Patrick (1987)
The experiment of Patrick (1987) differs from Perry & Fairlie (1975), owing to the

relative size of the separation bubble in comparison to the scale of the confining duct
geometry. From table 2, we find that Lp/δ

in
99 in Perry & Fairlie (1975) is almost ten

times that in Patrick (1987). Differences of Cinc are similar. In other words, Patrick
(1987) provides a separation process induced by a very strong APG. This tends to
generate a separation region that is more confined in the streamwise direction and
somewhat more ordered than the Perry & Fairlie (1975) flow. It also implies a Wtop(x)
boundary condition on the upper wall with very strong streamwise gradients, which
can potentially reduce the robustness of the LES.

In designing the LES, a similar procedure to that used previously is repeated here to
determine the dimensions of the computational domain in streamwise, spanwise and
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FIGURE 13. (Colour online) Case of Patrick: vertical velocity on the top boundary Wtop

(— · —) and mean wall-pressure coefficient Cp (——).@, Experiment, Patrick (1987).
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FIGURE 14. (Colour online) Streamwise variation of skin-friction coefficient Cf .
@, Experiment, Patrick (1987); ——, LES; – – – –, Cf = 0.

wall-normal directions. The domain used is 36δ0 × 12δ0 × 3.2δ0. In the streamwise
direction, the first Lin = 10δ0 is a zero-pressure-gradient flow which then connects
to the varying pressure gradient part with Lp = 15.2δ0. The final subdomain, which
is approximately Lout = 11δ0, is used to adapt the flow back to the ZPG state. The
mesh used, which has similar resolution to that of case F1, is 384× 128× 96. The
vertical velocity imposed on the top boundary is shown in figure 13. It can be seen
that the Cp(x) distribution on the wall, which is derived from the actual LES, captures
approximately the streamwise variation of pressure in the experiment.

Figure 14 compares the Cf of the LES and experiment. This shows that the present
LES can capture well almost all variations within the separated flow. In the approach
to separation, the decrease of Cf due to the steep APG is reasonably modelled. The
LES also reproduces well the Cf variation inside the bubble, with good agreement
between experiment and LES. In the LES the first grid point is beyond the viscous
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FIGURE 15. (Colour online) Comparison of mean streamwise velocity profiles at different
locations.@, Experimental data Patrick (1987); – – – –, reference of streamwise locations;
——, LES results.

sublayer, with h+0 > h+ν in more than 80 % of realizations. This demonstrates the
present effectiveness of a simple linear model given in (2.17) for regions of local
back flow.

In figure 15 we also compare the streamwise velocity profiles at several streamwise
locations with the experimental measurements of Patrick (1987). Results show that the
velocity profile predicted by LES generally follows the experimental data.

6. Results and discussion
6.1. Separation bubble

It is of interest to discuss some other features of the separation bubble flows of
both Perry & Fairlie (1975) and Patrick (1987). As discussed previously, the case
of Perry and Fairlie has a mild APG combined with a strong FPG, and its Cf from
the LES shows a strong streamwise asymmetry in figure 8. This behaviour can be
observed in the bubble shape, as shown in figure 16(a), where we find the bubble
is not perfectly symmetric, being slightly lifted towards the downstream part of the
flow domain. Physically, it is reasonable that the bubble is not symmetric owing
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FIGURE 16. Comparison of separation bubble shape. (a) LES for the case of Perry &
Fairlie (1975); (b) experiment by Perry & Fairlie (1975); (c) LES for the case of Patrick
(1987); (d) experiment by Patrick (1987).

to the unsymmetrical pressure gradient. Interestingly, this feature is not present in
all cases. For the Patrick flow, the Cf (x) variation of figure 14, while not perfectly
symmetric, is more so than in the case of Perry and Fairlie. The bubble shape is also
approximately symmetric. Considering the sharp pressure gradient near separation, a
rather large bubble is generated. In figure 16, experiment and LES look reasonably
similar near and inside the separation bubble.

Another interesting effect is the change of bubble size due to Reynolds number. The
case of Perry and Fairlie was extended to three further LES with Rein

θ = 8000, 16 000
and 105. The same numerical set-up as in case C1 was used. In figure 17(a), the
Cf (x) variation is qualitatively similar for all cases. As Rein

θ increases, the values of Cf
before separation and after reattachment reduce substantially at a given x, consistent
with the effect of increasing Reynolds number on an attached flow TBL. In contrast,
inside the separation bubble, differences in Cf (x) are relatively smaller between the
various cases, suggesting an interior bubble flow that is only weakly dependent on
Reynolds number over a broad range.

To compare the wall-model behaviour in cases with different Reynolds number,
the variation of h+0 versus x/δ0 is shown in figure 17(b) for the Perry–Fairlie flow.
The quantity h+0 (x, y, t) is dynamically calculated at every wall point. Here, its mean
diagnostic is defined as

h+0 (x)≡
h0

√
u2
τ

ν
= h0

√
η0

ν
. (6.1)

The average of η0 is implemented in both the spanwise direction and in time. It is
interesting that h+0 does not approach zero even near the separation and reattachment
points. This is reasonable as we would expect that η0(x, y, t), which is proportional
the magnitude of the skin-friction vector, would be zero only at isolated critical points.
Since we have fixed relation h+= 0.68/0.18h+0 , the behaviour of h+ is not shown. The
variation of h+0 (x) for the Patrick flow is similar to that of figure 17(b).

An issue of some interest is the effect of the boundary condition (2.19) used
presently for the wall-normal velocity. For the LES of the Perry–Fairlie flow, we find
that at the virtual wall, Prob : {|w̃|h0/q̃|h0 >0.05}≈0.07, Prob : {|w̃|h0/q̃|h0}>0.1≈0.038
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FIGURE 17. (Colour online) Effect of Reynolds number: ——, Rein
θ = 2000; – – – –, Rein

θ =
8000; — · —, Rein

θ = 16 000; — · · —, Rein
θ = 105;@, from experimental data of Perry &

Fairlie (1975). (a) Cf versus x/δ0; (b) h+0 versus x/δ0; (c) β versus x/δ0.

and Prob : {|w̃|h0/q̃|h0 > 0.2} ≈ 0.02, while for the Patrick flow the corresponding
results are Prob : {|w̃|h0/q̃|h0 > 0.05} ≈ 0.097, Prob : {|w̃|h0/q̃|h0 > 0.1} ≈ 0.061 and
Prob : {|w̃|h0/q̃|h0 > 0.2} ≈ 0.038. These values are small but not negligible and are
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probably associated with local regions of small |τw| within the large-scale separated
flow. When, however, (2.19) is replaced with |w̃|h0 = 0, we find LES results for
example for the Cf (x) distribution (not shown) that are little different to those shown
presently.

In passing, we note the large-scale Reynolds numbers ReB≡U∞ Lb/ν for the present
separation-bubble flows. For the Perry–Fairlie flow with Rein

θ = 2 × 103, 8 × 103,
1.6 × 104 and 105, we find ReB = 5.3 × 105, 2.1 × 106, 4.2 × 106 and 4.2 × 107,
respectively. For the Patrick case with Rθ = 1.1× 104, then ReB= 6× 105. This shows
that ReB for the two experiments are almost the same. This is because for the Patrick
case, θ is six times larger than for the Perry and Fairlie flow, but the bubble length
is five times smaller. These values of ReB serve to indicate that we are performing
LES at substantial values of the large-scale Reynolds number.

For quantifying different APG flows over a range of Reynolds number, a commonly
used metric is the non-dimensional pressure gradient parameter

β = δ
∗

τw

dP
dx
, (6.2)

which is plotted versus x/δ0 in figure 17(c). Results show that all three cases plotted
collapse into a curve, which is consistent with results by Inoue et al. (2013). When
the TBL is lifted by the APG, we observe that β in the lowest Reynolds number case
first lifts upwards and then reaches separation. This implies that the separation bubble
will shrink with increasing Reynolds number, although this effect is very slow. Lastly,
we also observe that the difference between Rein

θ = 8000 and Rein
θ = 16 000 is smaller

than the difference between Rein
θ = 2000 and Rein

θ = 8000. The LES for Rein
θ = 105

shows differences in β(x) compared with Rein
θ = 16 000 of order the plot-line thickness

and is therefore not shown.

6.2. h–λ relation
A correlation in an h–Λ plane has been suggested to demarcate the regions of
separation where h = (H − 1)/H with H ≡ δ∗/θ and Λ ≡ δ∗/δ99. Previous studies
have identified two important lines on h–Λ plots. The line h = 1.5Λ was discussed
by Simpson (1989), who stated that the data of Perry & Schofield (1973) supported
the hypothesis that this characterized a path for detaching flow. Another line is
h= 1/(2−Λ) proposed by Sanborn & Kline (1961). They suggested that at a given
Λ, h greater than this value would indicate appreciable intermittent backflow. For a
more detailed discussion of the h–Λ plane, see Simpson (1989).

Figure 18(a) plots the whole path of case C2 in the h–Λ plane for the Perry &
Fairlie (1975) flow. For interpretation purposes, Cf is also plotted. The near inflow
part, which includes the ZPG portion and subsequent APG part, develops from
point A to point B. Here point B is the first point where our LES falls onto the
Perry & Schofield (1973) line. Point C, corresponding to zero skin friction, which
is followed by mean backflow, corresponds closely to the Sanborn–Kline relation, as
does the reattachment point D. Between these two points, the LES h–Λ plot satisfies
the Sanborn–Kline relation criterion. After reattachment, the flow further develops,
and the LES h–Λ path deviates somewhat from the Perry and Schofield correlation.
The recovery of the flow near outflow to the ZPG state can be seen where the LES
h–Λ path almost closes near point A.

Figure 18(b) compares measurements by Patrick with the present LES. Note
that points E and F, which are the separation point and the reattachment points,
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FIGURE 18. (Colour online) Comparison of mean velocity profile parameters. In (a) and
(b), ——, Perry and Schofield correction; – – – –, Sanborn and Kline relation. In (a) and
(c), p with line for LES results of case F1. (a) h–Λ plot for case by Perry & Fairlie
(1975). — · — for Cf ; horizontal line for Cf = 0; (b) h–Λ plot for case by Patrick (1987).
@, experimental data; — · —, LES result; (c) plot of h(2−Λ) versus τu,x. Horizontal line
for h(2−Λ)= 1 and vertical line for τw,x = 0.

respectively, agree well with the Sanborn–Kline relation and again the LES h–Λ
path satisfies the Sanborn–Kline relation in the separated flow region. Although LES
cannot exactly reproduce the experimental h–Λ path, both are close to the Perry and
Schofield correlation. A plot of h(2 − Λ) versus τw,x is provided in figure 18(c) to
illustrate the interaction points between LES and Sanborn–Kline relation.

7. Conclusion
The present work develops a two-dimensional virtual-wall model designed to

model in LES, both streamwise and spanwise fluctuating skin-friction properties in
a turbulent wall-bounded flow that may include regions of separated flow. This wall
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model is a natural extension of the virtual-wall model of Chung & Pullin (2009)
discarding the strong assumption of near-wall flow in the virtual-wall layer along
the outer streamwise direction. Starting from both components of the wall-parallel
momentum equations, and assuming local inner scaling for the magnitude of the
filtered, instantaneous, wall-parallel velocity up to the first wall-normal grid point,
then an ODE for the wall-normal gradient of the wall-parallel fluid speed at the wall,
or equivalently the square of the wall skin-friction velocity, can be obtained. Aligning
the slip velocity on the virtual wall with the skin-friction vector locally at every wall
point, we obtain a self-consistent and robust wall model capable of accommodating
backflow with respect to an outer free-stream flow direction.

The wall model is implemented in LES for two flows, Perry & Fairlie (1975) and
Patrick (1987), that exhibit separation and reattachment of a turbulent boundary
layer and the subsequent production of a structured separation bubble that is
two-dimensional in the mean. Owing to non-equilibrium effects, the skin friction
coefficient Cf along the wall generally shows a somewhat complex behaviour: first
decreasing up to separation, then maintaining a small magnitude within a separation
bubble and finally recovering in the reattached portion of the flow. This spatial-varying
behaviour presents a challenging scenario for LES. The present wall model is found
to reasonably reproduce Cf for both the medium Reynolds number case of Perry
& Fairlie (1975) and the higher Reynolds number flow studied by Patrick (1987).
The present LES also reproduces other features of the separated flow including the
variation in the streamwise direction of the pressure-gradient parameter β(x) and
the Reynolds number Reθ(x) based on the boundary-layer momentum thickness prior
to separation, the scale and shape of the separation bubble, wall-normal streamwise
velocity profiles and features of the wall-flow in a h–λ plane. The LES can be
extended to quite high Reynolds number flow, presently Reθ = 105. This indicates that
the effect of increasing Reynolds number on the skin friction variation is substantial
outside the separation bubble but small within the bubble. Further, the effect of
increasing Reynolds number on the streamwise size of the separation bubble, when
the imposed wall pressure profile is fixed, appears to be small.

Although the present wall model has been developed and implemented in simple
Cartesian geometry for plane walls, these constraints can be relaxed. In principle,
our approach to wall-modelling for LES can be extended to a system of general
coordinates on a generally curved wall with two-dimensional curvature. This suggests
further applications both attached and separated flows past streamlined and bluff
bodies.
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Appendix A. Equation for θ0

Here we derive an equation for θ0, the angle of the shear-stress vector at the wall.
Define θ generally as

θ = tan−1
(v

u

)
, −π< θ 6π, (A 1)
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and θ0 ≡ θz→0. So

∂θ

∂t
=−1

q
sin θ

∂u
∂t
+ 1

q
cos θ

∂v

∂t
, q2 = u2 + v2, (A 2)

where sin θ = u/q, cos θ = v/q. Now take the limit z→ 0, to obtain (using L’Hopital’s
rule)

∂θ0

∂t
=−sin θ0

(
∂η0,x/∂t
η0

)
+ cos θ0

(
∂η0,y/∂t
η0

)
. (A 3)

Equations for η0,x, η0,y are

∂η0,x

∂t
= 2 η0,x

ũ|h

(
F̃x + νh

(
∂ ũ
∂z

∣∣∣∣
h

− η0,x

))
,

∂η0,y

∂t
= 2 η0,y

ṽ|h

(
F̃y + νh

(
∂ṽ

∂z

∣∣∣∣
h

− η0,y

))
,

 (A 4)

where

F̃x =−∂ ũu|h
∂x
− ∂ ũv|h

∂y
− 1

h
ũw|h − ∂ p̃

∂x

∣∣∣∣
h

,

F̃y =−∂ ũv|h
∂x
− ∂ṽv|h

∂y
− 1

h
ṽw|h − ∂ p̃

∂y

∣∣∣∣
h

.

 (A 5)

Using, η0,x=η0 cos θ0, η0,y=η0 sin θ0 and substituting (A 4) into (A 3) and simplifying
then gives

∂θ0

∂t
=−2 sin θ0

q̃|h

(
F̃x + νh

(
∂ ũ
∂z

∣∣∣∣
h

))
+ 2 cos θ0

q̃|h

(
F̃y + νh

(
∂ṽ

∂z

∣∣∣∣
h

))
, (A 6)

where the approximation, valid to first order in θ0− θh (θh is the value of θ at z= h)

ũ|h0 ≈ q̃|h0 cos θ0, ṽ|h0 ≈ q̃|h0 sin θ0, (A 7a,b)

has been used. This equation can be solved in tandem with (2.14).

Appendix B. ODE behaviour near a singular point
Here we consider the behaviour of (2.14) in the neighbourhood of a singular point.

This may occur when there is an actual wall-parallel stagnation point at z= h, so that
q̃|h→ 0 from above. In this case the dominant terms will be the pressure gradient P
in the direction of q̃|h > 0. Since the flow is decelerating, it is expected that P > 0.
Equation (2.14) can then be approximated by its dominant terms as

1
η0

dη0

dt
=− a

q̃|h

(
P
a
+ η0

)
, (B 1)

where a= ν/h. We consider q̃|h ≈ b (t0 − t), t0 > t, b> 0. This gives

1
η0

dη0

dt
=−a

b
1

t0 − t

(
P
a
+ η0

)
, (B 2)
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with solution

η0 = P
a

(1− t/t0)
P/b

1− (1− t/t0)P/b
(B 3)

from which it can be seen that η0 → 0 when t → t0 provided P/b > 0. In the
present wall model, this would correspond to a critical point of the surface stress
vector field. If the above is replaced by q̃|h ≈ b (t0 − t)n, t0 > t, b > 0, n > 1 and n
integer then the above is replaced by an expression involving logs but the result is
similar. In the present LES, no actual singular behaviour of (2.14) at grid points has
been encountered, probably because an actual stagnation point during a time step is
extremely unlikely. In separated flow regions we cannot rule out near-zero q̃|h, in
which case we would expect behaviour similar to the above.
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