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DIMENSIONAL GROUPS AND FIELDS

FRANK O. WAGNER

Abstract. Weshall define a general notion of dimension, and study groups and ringswhose interpretable

sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for

fields and domains, and show that a pseudofinite M̃c-group of finite positive dimension contains a finite-

by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble

subgroup of dimension 2.

Introduction. In this paper, we shall define a general notion of dimension, and
study groups and rings whose interpretable sets carry such a dimension. The aim is
to unify results from stability and simplicity theory, o-minimality, and the study of
pseudofinite structures (with dimensions induced by Lascar or SU-rank, o-minimal
dimension, or the logarithmof the countingmeasure, seeExample 1.5). In particular,
we deduce chain conditions for groups, definability results for fields and domains,
and show that pseudofinite groups contain big finite-by-abelian subgroups, and
pseudofinite groups of dimension 2 contain big soluble subgroups, generalizing a
result of Elwes and Ryten [6].

§1. Dimension.

Definition 1.1. A theory T is dimensional if there is a dimension function dim
from the collection of all interpretable sets in models of T to an ordered abelian
group Γ together with ±∞, satisfying for a formula ϕ(x,y) and interpretable sets X
and Y :

• Invariance: If a≡ a′ then dim(ϕ(x,a)) = dim(ϕ(x,a′)).
• Algebraicity: If X is finite nonempty then dim(X) = 0, and dim(∅) =–∞.
• Union: dim(X ∪Y) = max{dim(X),dim(Y)}.
• Fibration: If f :X →Y is a interpretable map such that dim(f –1(y))≥ d for all
y ∈ Y , then dim(X)≥ dim(Y)+d.

A dimension is real (or archimedean) if Γ≤R, discrete if Γ is discrete, and integer if
it is discrete and real (thus Γ∼= Z). Note that in a real or integer-dimensional theory
sets of dimension∞ are still allowed; a set (or a structure) X is finite-dimensional if
the dimension is integer and dim(X)<∞.
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DIMENSIONAL GROUPS AND FIELDS 919

For a partial type ð put dim(ð) = inf{dim(ϕ) : ð ⊢ ϕ}, where the infimum is
considered in a completion Γ of the ordered set Γ∪ {∞}. Note that unless the
dimension is real, there will be nonrealized cuts in Γ (for instance the sup of a
proper convex subgroup), and the extension of the group-operation by continuity

is only well-defined on the semigroup Γ
+
= {ã ∈ Γ : ã ≥ 0}. We write dim(a/B)

for dim(tp(a/B)), and dim(a) for dim(a/∅). Then for types dimension is invariant,
algebraic and satisfies union, but need not satisfy fibration. By the union condition
any partial type can be completed to a type of the same dimension. In particular,
for any nonempty type-definable X and any set A of parameters over which X is
type-definable, there is b ∈ X with dim(b/A) = dim(X).

Remark 1.2. There are some additional axioms and variants one might also
consider:

• Finesse: If dim(X) = 0 then X is finite.
• Product: dim(X ×Y) = dim(X)+dim(Y).
• Strong fibration: If f : X → Y is a interpretable map such that dim(f –1(y)) = d
for all y ∈ Y , then dim(X) = dim(Y)+d.

• Weak fibration: If f : X → Y is a interpretable map such that dim(f –1(y)) = d
for all y ∈ Y , then dim(X)≥ dim(Y)+d.

• Lower fibration: If f : X → Y is a interpretable map such that dim(f –1(y))≤ d
for all y ∈ Y , then dim(X)≤ dim(Y)+d.

• Definability: If dim(ϕ(x,a)) = d then there is a formula èϕ,d ∈ tp(a) such that
dim(ϕ(x,a′)) = d for all a′ |= èϕ,d .

• Semidefinability: If dim(ϕ(x,a))> d then there is a formula èϕ,d ∈ tp(a) such
that dim(ϕ(x,a′))> d for all a′ |= èϕ,d .

• Additivity: dim(a,b/A) = dim(a/A,b)+dim(b/A).
• Semiadditivity: dim(a,b/A)≥ dim(a/A,b)+dim(b/A).

We call a dimension coarse if it is not fine, that is, does not satisfy finesse.

Clearly both fibration and strong fibration imply weak fibration, strong fibration
implies product, fibration and lower fibration imply strong fibration, any kind of
definability implies invariance, definability plus strong fibration imply additivity,
and semidefinability plus fibration imply semiadditivity.

Remark 1.3.

• Invariance is equivalent to type-definability, that is, definability where èϕ,d is a
partial type (for instance tp(a) itself will do).

• We have chosen weak inequalities for (weak) fibration, as this behaves better
under limits. On the other hand, we took strict inequalities for semidefinability,
as this seems easier to achieve in examples.

• Onemight also define lower semidefinabilitywhere the inequalities are reversed.
This seems less useful, though.

• Note that fibration yields the inequality dim(X ×Y)≥ dim(X)+dim(Y).
• If definability holds, then by compactness dim only takes finitely many values
in any uniformly definable family of sets.

Remark 1.4. Additivity implies fibration and lower fibration, whence strong
fibration.
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920 FRANK O. WAGNER

Proof. Let f : X → Y be a definable map; adding parameters to the language
we may assume that X, Y , and f are ∅-definable. Note that dim(f (x)/x) = 0 for all
x ∈ X , whence

dim(x) = dim(x)+dim(f (x)/x) = dim(x, f (x)) = dim(x/f (x))+dim(f (x)).

Suppose first that dim(f –1(y))≥ d for all y ∈Y . Take b ∈Y with dim(b) = dim(Y),
and choose a ∈ f –1(b) with dim(a/b)≥ d. Then

dim(X)≥ dim(a) = dim(a/b)+dim(b)≥ d+dim(Y).

Suppose now that dim(f –1(y))≤ d for all y ∈Y . Take a ∈X with dim(a) = dim(X),
and put b= f (a). Then

dim(X) = dim(a) = dim(a/b)+dim(b)≤ d+dim(Y). ⊣

Example 1.5. Examples for integer dimensions with lower and strong fibration
include:

1. Finite Lascar rank, SU-rank or Uþ-rank on formulas, possibly localized at
some ∅-invariant family of types;

2. For any ordinal α, the coefficient of ùα in one of the ordinal-valued ranks in
(1.5) above (when written on Cantor normal form).

In these examples, for an interpretable set X we let dim(X) be the maximum of the
finite ranks (Lascar, SU ouUþ) of the types extending x∈X , and dim(X) =∞ if no
such maximum exists. In particular, in the case of finite Lascar rank, the dimension
of a formula is just equal to its Shelah rank. Note that in general the dimension
of a type need not be equal to the rank of the type even when the dimension is
finite, as witnessed by the standard example where Lascar and Shelah rank are finite
and different.1 Nevertheless, the Lascar inequalities for types are sufficient to show
that fibration and lower fibration hold (whence strong fibration as well). Note that
in example (1), not localized, the dimension is fine; if the rank is finite, so is the
dimension. (See e.g. [15] for details.)

3. o-minimal dimension on a densely ordered set. This dimension is finite, and
satisfies all additional properties of Remark 1.2.

An example for a real additive dimension is

4. coarse pseudofinite dimension (in some expansion by cardinality comparison
quantifiers), defined for a definable setX =

∏
iXi/U in a pseudofinite structure∏

iMi/U as log(
∏

|Xi|/U)+C ∈ (
∏
iR/U)/C, where C is a convex additive

subgroup containing the integers in the nonstandard real field
∏
iR/U , and

|Xi| is the cardinality of Xi, see [8–10]. If C is the convex hull of the integers,
this is fine pseudofinite dimension.

Here additivity holds by [8, Lemma 2.10], and in fact all additional properties
of Remark 1.2 hold except for definability and finesse. Clearly fine pseudofinite
dimension is fine in the sense of Remark 1.2.

1A structure with disjoint unary predicates {Pi : i < ù}, and on every Pi an equivalence relation Ei
with infinitely many infinite classes. The type {¬Pi : i < ù} has Lascar rank 1 but Shelah rank 2.
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DIMENSIONAL GROUPS AND FIELDS 921

Remark 1.6. If dim is a Γ-valued dimension and ã ∈ Γ, put

Γã = {ã ′ ∈ Γ : |ã ′| ≤ n|ã| for some n<ù}, and

Γã– = {ã ′ ∈ Γ : n|ã ′|< |ã| for all n<ù}.

Then Γã– < Γã ≤ Γ are subgroups, and there is a unique additive monomorphism
ó : Γã/Γã– → R with ó(ã) = 1. The function dimã defined by

dimã(X) =

{
ó(dim(X)) if dim(X) ∈ Γã ,
∞ otherwise

is a real dimension, the localization of dim at ã. If ã = dim(Y) for some definable
set Y, we also write dimY instead of dimã .

Lemma 1.7. Just assuming weak fibration, dimension is invariant under definable
bijections. Under strong fibration, dimension is invariant under finite-to-finite definable
correspondences.

Proof. Let f :X→Y be a definable bijection. Then dim(f –1(y)) = 0 for all y∈Y ,
so dim(X) ≥ dim(Y). Considering the definable bijection f –1 : Y → X , we obtain
dim(Y)≥ dim(X), whence equality.
Now assume strong fibration, and let R ⊂ X ×Y be a finite-to-finite correspon-

dencewith nonempty fibres of size atmost n. For x∈X putYx= {y∈Y : (x,y)∈R},
and consider Z = {Yx : x ∈ X}. Then the map x 7→ Yx from X to Z has finite
fibres bounded by n, so dim(X) = dim(Z) by strong fibration. Next, consider
Z′ = {(y1, ... ,yn) ∈ Y

n : {y1, ... ,yn} ∈ Z}. Then the map (y1, ... ,yn) 7→ {y1, ... ,yn}
from Z′ to Z has nonempty fibres of size at most n!, so dim(Z′) = dim(Z) by strong
fibration. Finally, the projection to the first coordinate from Z′ to Y has nonempty
fibres of size at most nn: for any y1 ∈ Y there are at most n different x ∈ X with
(x,y) ∈R, and for each x there are at most nn–1 choices for the coordinates y2, ... ,yn.
Thus dim(Z′) = dim(Y). ⊣

Definition 1.8. Let Y ⊆ X be type-definable sets. We say that X is broad if
0< dim(X)<∞. If X is broad, we say that Y is X -broad if 1n dim(X)≤ dim(Y)≤
ndim(X) for some n<ù.
Y is wide in X if for every definable superset Y ⊇ Y there is a definable superset

X ⊇ X with dim(Y)≥ dim(X); in particular for definable X and Y we have that Y
is wide in X iff dim(Y) = dim(X). We say that Y is wide if Y is wide in its sort.
A definable set X is negligible if dim(X) = 0; a type-definable set is negligible if it

is contained in some negligible definable set.
An element x is wide/broad/negligible over some parameters A if tp(x/A) is.

Remark 1.9.

• X is Y -broad iff Y is X -broad.
• If X is broad, Y is X -broad iff Y is broad for the localized dimension dimX .
• If the dimension is real and X is broad, then Y is broad iff it is X -broad.
• In fine dimension, a negligible type-definable set is finite.
• In fine, discrete dimension, a type-definable set of dimension 0 is finite.
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922 FRANK O. WAGNER

§2. Dimensional groups.

Lemma 2.1. Let G be a type-definable group over A in a dimensional theory, and
g,h ∈ G. If h is wide in G over A,g, then gh and hg are wide in G over A,g.

Proof. Let X be an A,g-definable set containing gh. Since G is a type-definable
group, restricting X we may assume that x 7→ g–1x is a bijection between X and
g–1X . As dimension is invariant under definable bijections, dim(X) = dim(g–1X).
But h ∈ g–1X , so gh is wide over A,g. The proof for hg is similar. ⊣

In a dimensional theory, we need not have fibration for definable maps between
type-definable sets. The situation is different for group homomorphisms.

Lemma 2.2. In a dimensional theory, let G and H be type-definable groups and f :
G→H a definable surjective homomorphism. Then dim(G)≥ dim(ker f )+dim(H).

Proof. If dim(G) =∞ this is clear. Otherwise, consider a definable X0 ⊇ G.
Reducing X0, if necessary, we may assume by compactness that there is a definable

map f extending f with domain X0. Again by compactness there is a definable

X1 =X
–1
1 ⊇G with X21 ⊆X0, and such that f (xx

′) = f (x)f (x′) for all x,x′ ∈X1. Put

Y = f (X1) and X = f
–1
(Y)⊆ dom(f ) = X0. Then for y ∈ Y we have

f
–1
(y)⊇ (f

–1
(y)∩X1)ker f ,

so dim(f
–1
(y))≥ dim(ker f ). Since H ⊆ Y it follows that

dim(X0)≥ dim(X)≥ dim(ker f )+dim(Y)≥ dim(ker f )+dim(H).

Thus dim(G) = inf{dim(X0) : X0 ⊇ G definable} ≥ dim(ker f )+dim(H). ⊣

We now turn to chain conditions.

Proposition 2.3. In a fine dimensional theory, let H be a definable subgroup of
infinite index in a definable group G with dim(G)<∞. Then dim(H)< dim(G).

Proof. Since G and H are definable, the quotient space G/H is interpretable.
Thus dim(G/H) is well-defined, and strictly positive by finesse. The map G→G/H
has fibres of dimension dim(H). Hence by fibration,

dim(G)≥ dim(H)+dim(G/H)> dim(H). ⊣

This immediately yields:

Corollary 2.4. In a fine integer-dimensional theory there is no infinite descending
chain (Gi : i < ù) of definable groups of finite dimension, each of infinite index in its
predecessor.

Since we have not required the dimension to be defined on quotients by type-
definable equivalence relations, Proposition 2.3 and Corollary 2.4 may fail for type-
definable subgroups. This happens for instance in o-minimal theories: the additive
subgroup of infinitesimals has the same dimension as the ambient nonstandard real
field, but infinite, and even unbounded, index. In fact, we can have arbitrarily long
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DIMENSIONAL GROUPS AND FIELDS 923

(infinite) chains of more andmore infinitesimal type-definable subgroups. However,
we shall show next that this does not happen for a particular kind of type-definable
groups.

Definition 2.5. We call a group (relatively)
∧
- definable if it is an intersection

of (relatively) definable groups. A ring is (relatively)
∧
-definable if it is so as an

additive group.

As we have not defined dimension on arbitrary hyperimaginaries (quotients
modulo type-definable equivalence relations), we do not have a dimension on the
quotient of two type-definable groups. However, for a quotient of a type-definable
group G =

∧
i∈I Xi by a relatively

∧
-definable subgroup H =

∧
j∈JHj (where the

Xi are definable sets, the Hj are definable subgroups, and we take both to be closed
under finite intersections for ease of notation), we can put

dim(G/H) = sup
j∈J
dim(G/Hj) = sup

j∈J
inf
i∈I
dim(Xi/Hj) ∈ Γ.

Remark 2.6.

• In an ù-stable theory (and in particular in a theory of finite Morley rank),
definable,

∧
-definable and type-definable groups coincide.

• In a stable or supersimple theory, type-definable groups are
∧
-definable.

• In an o-minimal theory (as in any theory with descending chain condition on
definable groups),

∧
-definable subgroups are definable.

• Even in the fine integer-dimensional context, the three classes need not coincide.
For instance:
– The connected component of Z (in a saturated model) is a

∧
-definable

group which is not definable, in a superstable theory of Lascar rank 1.
– In a nonstandard real field the infinitesimals form a type-definable additive
group which is not

∧
-definable, in an o-minimal theory.

• If (Gi : i<ù) is a descending chain of definable groups with dim(Gi/Gi+1) = 1
for all i<ù, our definition yields dim(G/G)= 0 as expected.Hadwe exchanged
the limits, we would get inf i supj dim(Gi/Gj) =∞, which is clearly wrong.

We first check that
∧
-definability behaves well with respect to relative definability.

Lemma 2.7. Let G be a
∧
-definable group, and H a relatively definable subgroup.

Then H is
∧
-definable. In fact, there is a definable group H∗ with H = G∩H∗.

Proof. SupposeG=
∧
i∈I Gi, where theGi are definable groups, andH =G∩X ,

whereX is a definable set. Then x,y∈G∩X implies x–1y∈X . By compactness there
is some finite I0 ⊆ I such that x,y ∈

⋂
i∈I0
Gi ∩X implies x

–1y ∈ X . As the Gi are

groups, we also have x–1y ∈
⋂
i∈I0
Gi, andY =

⋂
i∈I0
Gi∩X is a definable group with

H = G∩Y . ⊣

Proposition 2.8. In a dimensional theory, let H be a
∧
-definable subgroup in a

type-definable group G. Then dim(G) ≥ dim(H)+ dim(G/H). In particular, if the
dimension is fine and discrete, or if the dimension is fine and G is definable, then
dim(H)< dim(G) iff H has unbounded index in G.
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924 FRANK O. WAGNER

Proof. Suppose H =
∧
iHi, where each Hi is a relatively definable subgroup

of G and the system (Hi)i is closed under finite intersection. Then for every i the
projection G→ G/Hi has fibres of dimension dimHi, whence by Lemma 2.2

dim(G)≥ dim(Hi)+dim(G/Hi)≥ dim(H)+dim(G/Hi).

Therefore

dim(G)≥ sup
i
[dim(H)+dim(G/Hi)]

= dim(H)+sup
i
dim(G/Hi) = dim(H)+dim(G/H).

In fine dimension, if the dimension is discrete or G is definable, then

G/H is unbounded ⇔ G/Hi infinite for some i

⇔ dim(G/Hi)> 0 for some i⇔ dim(G/H)> 0.

Thus under either condition, dim(G)> dim(H) iff G/H is unbounded. ⊣

Corollary 2.9. In a fine integer-dimensional theory there is no infinite descending
chain of relatively

∧
-definable groups of finite dimension, each of unbounded index in

its predecessor.

Proof. Let (Gi : i < ù) be such a chain. As the dimension is finite and discrete,
dim(Gi)> dim(Gi+1) by Proposition 2.8. But there is no infinite descending sequence
of positive integers. ⊣

Remark 2.10. In a coarse integer-dimensional theory we can still conclude
that there is no infinite descending chain of relatively

∧
-definable groups of finite

dimension, with non-negligible successive quotients.

§3. Fields and domains.

3.1. Skew fields. Let us note first that fields have better definability properties
than groups. Our first result generalizes the well-known fact that a supersimple
type-definable field is in fact definable.

Proposition 3.1. In a real-dimensional theory, a type-definable broad skew field K
is definable.

Proof. Suppose K =
⋂
i∈I Xi, where (Xi : i ∈ I) is a system of definable sets

closed under finite intersections. As 0< dim(K)<∞wemay also assume dim(Xi)<
2dim(K) for all i∈ I . By compactness,wemay further suppose that there is aminimal
element 0 ∈ I such that addition and multiplication are defined, commutative,
associative and distributive on X0 (but may take values outside), and for every
i > 0 all nonzero elements in Xi have an additive and a multiplicative inverse in Xi.
By compactness there is i ∈ I such thatXi · (Xi –Xi)+(Xi –Xi)⊆X0. But then for

any Xj ⊆ Xi and g ∈Xi we have gXj+Xj ⊆ X0. Moreover, if g(Xj – Xj)∩ (Xj – Xj) =
{0}, then the map from X2j → X0 given by (x,y) 7→ gx+y is injective, contradicting

dim(X2j )≥ 2dim(Xj)≥ 2dim(K)> dim(X0).
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DIMENSIONAL GROUPS AND FIELDS 925

Thus g ∈ (Xj – Xj) ·
(
(Xj – Xj)\{0}

)–1
, and

Xi ⊆
⋂

Xj⊆Xi

(Xj – Xj) ·
(
(Xj – Xj)\{0}

)–1
.

But by compactness for every k ∈ I there is some j ∈ I such that

(Xj – Xj) ·
(
(Xj – Xj)\{0}

)–1
⊆ Xk.

Thus

K ⊆ Xi ⊆
⋂

j

(Xj – Xj) ·
(
(Xj – Xj)\{0}

)–1
⊆

⋂

k

Xk ⊆ K ,

and K = Xi is definable. ⊣

Remark 3.2. Note that the hypothesis of Proposition 3.1 requires that dim(K)
is bounded away from 0.

Proposition 3.3. In a real-dimensional theory, let K be a non-negligible definable
skew field and V a nontrivial type-definable K-vector space with dim(V) <∞. Then
dim(V) ≥ lin.dimK(V) dim(K). In particular K and V are broad, lin.dimK(V) is
finite and V is definable.

Proof. Clearly dim(Kn)≥ n dim(K). As dimension is preserved under definable
bijection, dim(K)> 0 and dim(V)<∞, we get

∞> dim(V)≥ lin.dimK V dim(K)≥ dim(K)> 0.

So K is broad, lin.dimK V is finite, and V is definable as
∑
iKei, for a K-basis (ei)i

of V. ⊣

Remark 3.4. If the dimension satisfies product, then dimV = lin.dimK V dimK .

Proposition 3.5. Let K be a definable broad skew field in a fine real-dimensional
theory. Then K has finite dimension over its center.

Proof. If K× has finite exponent, then K satisfies a polynomial identity and has
finite dimension over its center by Kaplansky’s PI-Theorem [10]. In fact, the center
is a field of finite exponent, whence finite, and so is K.
Otherwise, there is an element a ∈K of infinite order, and Z(CK(a)) is an infinite

definable commutative subfield. But then K has finite dimension over the infinite
definable subfield Z(CK(a)), whence finite dimension over its center. ⊣

3.2. Domains. We now move to domains, generalizing both [11, Theorem2.2]
and [8, Exercises 3.5 and 3.6]. Recall that localizing a noncommutative domain is
not always possible: not only may right and left fractions differ, it is not a priori
possible to multiply say two right fractions in a consistent way.
The right/leftOre condition in a domainR asks that rR∩r′R 6= {0} for all nonzero

r,r′ ∈ R (or Rr∩Rr′ 6= {0}, respectively). If it holds then there is a right (resp., left)
fraction skew field; if both hold they give rise to the same skew field. A domain is a
left/right Ore domain if it satisfies the left/right Ore condition.
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926 FRANK O. WAGNER

Proposition 3.6. In a real-dimensional theory, let R be an invariant domain, and
suppose that there is a constant d <∞ such that dim(X) ≤ d for all type-definable
X ⊆ R, and dim(X) > 0 for some such X. Then R is right and left Ore, and its skew
field K of (right or left) fractions is definable.

Proof. As R is invariant, it is a union of type-definable sets (over some set of
parameters). The assumptions imply that there is some type-definable X ⊆ R with
2dim(X) > dim(Y) for any type-definable Y ⊆ R. For any two nonzero r,r′ ∈ R
consider the map

X2 → rX + r′X
(x,y) 7→ rx+ r′y.

Suppose it is injective. As rX + r′X is a type-definable subset of R, the choice of
X implies dim(rX + r′X) < 2dim(X). Hence there is a definable superset Y of X
with dim(rY + r′Y)< 2dim(X), and such that the map (x,y) 7→ rx+ r′y is bijective
between Y 2 and rY + r′Y . Then

2dim(X)> dim(rY + r′Y) = dim(Y 2)≥ 2dim(Y)≥ 2dim(X)

(where the equality holds by Lemma 1.7 and the first weak inequality by Remark
1.2), a contradiction.
Thus there are (y,y′) 6= (z,z′) with ry+r′y′ = rz+r′z′. Then r(y – z) = r′(z′ – y′) 6=

0, so R is right Ore. Similarly, R is left Ore. It follows that its field of left fractions
is equal to its field of right fractions, and equal to (X – X)/(X – X)×, which is
type-definable. Hence K is definable by Proposition 3.1. ⊣

Proposition 3.7. Let K be a definable skew field in a fine dimensional theory
satisfying product. Then K has no proper broad

∧
-definable (noncommutative,

nonunitary) left or right Ore sub-domain R whose fraction field is K.

Proof. We may assume that R is infinite by Wedderburn’s Theorem.
Suppose dim(R) < dim(K). Then 2dim(R) < dim(K) + dim(R), so by

∧
-

definability of R we can choose a definable additive subgroup A with R ≤ A ≤ K
such that 2dim(A)< dim(K)+dim(R). Consider a definable additive group B with
R≤ B≤ A and B+B2 ⊆ A.
Consider the map f : (x,y) 7→ xy–1 on A×A×, put Y = BB×

–1
⊇ K and X =

f –1(Y)⊆ A×A×. For every y ∈ Y we have

dim(f –1(y))≥ dim((b,b′)B×) = dim(B)

for any (b,b′) ∈ B×B× with y= bb′–1. Then product and fibration for f yield

2dim(A) = dim(A2)≥ dim(X)≥ dim(B)+dim(Y)≥ dim(R)+dim(K)> 2dim(A),

a contradiction. It follows that dim(R) = dim(B) = dim(K).
As the dimension is fine andK definable,Bhas finite index in (K ,+)byProposition

2.3. Hence for any r ∈ R× there are natural numbers m,n with n+1 < m such that
r–m and r–n lie in the same coset modulo B. Thus there is b ∈ B with r–m = r–n+ b,
and

r–1 = rm–1r–m = rm–1(r–n+b) = rm–n–1+ rm–1b ∈ R+RB⊆ B+B2 ⊆ A.

https://doi.org/10.1017/jsl.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.48


DIMENSIONAL GROUPS AND FIELDS 927

As this also holds for any definable subgroup of A∗ with R≤A∗ ≤A, we get r–1 ∈R
by

∧
-definability, whence R= K . ⊣

Corollary 3.8. In a fine real-dimensional theory, a
∧
-definable broad (noncom-

mutative, nonunitary) domain is a definable skew field.

Remark 3.9. The infinitesimals in a nonstandard real closed field show that
Proposition 3.7 and Corollary 3.8 may fail for type-definable domains in an o-
minimal (and hence fine integer-dimensional) theory.

Corollary 3.10. In a real-dimensional theory, let A be a type-definable abelian
group with dim(A)<∞. Suppose that there is an invariant set X generating a domain
R of definable automorphisms of A, and such that dim(Y)> 0 for some type-definable
Y ⊆X. Then the skew field of fractions K of R exists and is definable; A is a definable
K-vector space of finite linear dimension.

Proof. Fix any nonzero a ∈ A. Since R acts by automorphisms, the evaluation
map R → R · a is injective, which bounds dim(Z) = dim(Z · a) by dim(A) for
any type-definable subset Z ⊆ R. Now apply Proposition 3.6, and note that
the fraction field K acts on A since R× acts by automorphisms. We finish by
Proposition 3.3. ⊣

Notice that if R is commutative, so is K.

Remark 3.11. In Corollary 3.10 the hypothesis that dim(Y)> 0 for some type-
definable Y ⊆ X is necessary: Just consider an infinite field K in the language of
modules consisting of addition and unary functions ër for scalar multiplication by
r∈K , for every r∈K . This is an abelian structure which does not interpret an infinite
field.

3.3. Automorphisms. As opposed to the stable case, an infinite field with integer
fine dimension need not be ∅-connected and may have ∅-definable additive or
multiplicative subgroups of finite index: any pseudo-finite field will serve as an
example.

Lemma 3.12. In a real-dimensional theory, a definable endomorphism ϕ of a
definable broad skew field K is either 0 or a genuine skew field automorphism.

Proof. If ϕ is not zero, it is injective, and 0< dim(ϕ(K)) = dim(K)<∞. Hence
the degree [K : ϕ(K)] = 1 and K = ϕ(K). ⊣

It follows that a dimensional broad (commutative) field is perfect.
Next, we show that a ∅-connected definable broad field in a fine real-dimensional

theory does not admit an infinite type-definable family of automorphisms. This
generalizes [1, Theorem8.3]. Recall that an element of a field is absolutely algebraic
if it is the root of a nonzero polynomial with coefficients in Z; the set of absolutely
algebraic elements forms a subfield containing the prime field.

Lemma 3.13. In a fine dimensional theory, a ∅-definable broad additively or
multiplicatively ∅-connected field K contains infinitely many absolutely algebraic
elements.

Proof. In characteristic zero this is clear. So suppose the fieldK has characteristic
p> 0 and is additively ∅-connected; consider the ∅-definable additive endomorphism
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φ : x 7→ xp – xwith finite kernelFp. If there are only finitelymany absolutely algebraic
elements, then there is some n < ù such that φn(K)∩Fp = {0}. So φ : φn(K)→
φn+1(K) is injective, whence dim(φn+1(K)) = dim(φn(K)); as the dimension is fine,
φn+1(K) has finite index in φn(K). But ∅-connectivity of K implies that of φn(K),
and φn(K) = φn+1(K) = φ2n(K). But then K = φn(K)⊕kerφn, so φn(K) has finite
index in K as an additive subgroup. Again by connectivity φ is surjective. Hence K
has no Artin–Schreier extension. But the subfield of absolutely algebraic elements
is relatively algebraically closed in K ; if it were finite, it would have an extension of
degree p, which would yield an Artin–Schreier extension of K.
If K is multiplicatively ∅-connected, we use the multiplicative endomomorphism

φ : x 7→ xq for big prime q such that K has no primitive qth root of unity, and argue
with Kummer extensions. ⊣

Proposition 3.14. In a fine real-dimensional theory, let K be a definable broad
field with infinitely many absolutely algebraic elements. Then there is no infinite type-
definable family of definable automorphisms of K.

Proof. Suppose Φ is such a family. As K is definable, we may assume that Φ is
also definable (being an automorphism ofK is a definable property). If char (K) = 0,
putK0 =

⋂
ó∈ΦFix(ó). ThenK0 is definable and infinite, whence broad, and [K :K0]

is finite by Proposition 3.3. Thus Φ is a subfamily of Gal (K/K0), which is finite.
Now suppose char (K) = p> 0; we put

Ψ = {ô–1ó : ó,ô ∈Φ}.

If a ∈ K is absolutely algebraic, it has only finitely many images under Φ, and there
are infinitely many automorphisms in Ψ fixing a. By compactness there is some a
of infinite multiplicative order fixed by infinitely many automorphisms of Ψ. Put
Ψa = {ó ∈Ψ : ó(a) = a} and

K0 =
⋂

ó∈Ψa

Fix(ó).

Then K0 is definable and infinite, whence broad, and Ψa injects into Gal (K/K0)
which is finite.
In both cases we obtain a contradiction, so no infinite type-definable family of

automorphisms of K can exist. ⊣

Corollary 3.15. In a fine real-dimensional theory, a definable automorphism of a
∅-definable, broad, additively or multiplicatively ∅-connected field is acleq(∅)-definable.

Proof. The field has infinitely many absolutely algebraic elements by
Lemma 3.13. If there were an a-definable automorphism óa not definable over
acleq(∅), there would be an infinite type-definable family {óa′ : a

′ |= tp(a)} of
definable automorphisms, contradicting Proposition 3.14. ⊣

§4. Pseudofinite dimensional groups.

Proposition 4.1. Let G be a broad pseudofinite dimensional group with strong
fibration. Then there is an element g∈G\{1}withG-broad centralizer.More precisely,
there is g ∈ G \{1} with dim(CG(g))≥

1
3 dim(G).
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Proof. Suppose first that G has no involution. If G ≡
∏
I Gi/U for some family

(Gi)I of finite groups and some nonprincipal ultrafilter U , then Gi has no involution
for almost all i ∈ I , and is soluble by the Feit–Thompson theorem. So for almost all
i ∈ I there is gi ∈Gi \{1} such that 〈g

Gi
i 〉 is commutative. Put g= [gi]I ∈G\{1}. Then

〈gG〉 is commutative and gG ⊆ CG(g). As g
G is in definable bijection with G/CG(g),

we have

dim(CG(g))≥ dim(g
G) = dim(G/CG(g)) = dim(G) – dim(CG(g)).

In particular dim(CG(g))≥
1
2 dim(G).

Now suppose G has an involution i, but all centralizers of nontrivial elements
have dimension < 13 dim(G). Then

dim(iG) = dim(G/CG(i)) = dim(G) – dim(CG(i))>
2

3
dim(G).

For h ∈G \{1} putHh = {x ∈G : hx = h±1}. ThenHh is an h-definable subgroup of
G, andCG(h) has index two inHh, so dim(Hh) = dim(CG(h))<

1
3 dim(G).Moreover,

if j ∈ iG and h ∈ jGj, then j ∈Hh. Now by strong fibration

dim({(j,h) ∈ G×G : j ∈Hh}) = dim(G)+dim(Hh)<
4

3
dim(G).

On the other hand by fibration

dim({(j,h) ∈ G×G : j ∈Hh})≥ dim({(j,h) ∈ i
G×G : h ∈ jGj})

≥ 2dim(iG)>
4

3
dim(G),

as dim(jGj)= dim(jG)= dim(iG)> 23 dim(G) for all j ∈ i
G. This contradiction finishes

the proof. ⊣

We recall from [6] the definition of M̃c, the centralizer condition up to finite index.

Definition 4.2. A group G satisfies the M̃c-condition if there is n<ù such that
there are no (gi : i < n) in G such that |CG(gj : j < i) : CG(gj : j ≤ i)| ≥ n for all
i < n. In other words, in a saturated model there is no infinite chain of centralizers
CG(gj : j < i) for i <ù, each of infinite index in its predecessor.

Examples for M̃c-groups include all groups definable in a simple theory. Note
that a subgroup of an M̃c-group is again M̃c.

Lemma 4.3. Let G be an M̃c-group and Z a finite central subgroup. Then G/Z is
an M̃c-group.

Proof. AsZ is central, x 7→ [g,x] is a homomorphism fromCG(g/Z) toZ, whose
kernel is CG(g). It follows that CG(g) is a subgroup of CG(g/Z) of index at most
|Z|. The lemma follows. ⊣

Lemma 4.4. Let G be an M̃c-group. Then for any subgroup H there is a bound for
finite indices of the form |H : CH(g)|.
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Proof. Suppose not. Let n be given by the M̃c-condition, and choose a maximal
chain

H > CH(g0)> ···> CH(g0, ... ,gm)

with every group of finite index at least n in its predecessor. Then m< n. However,
if∞> |H : CH(g)|> n |H : CH(g0, ... ,gm)|, then

|CH(g0, ... ,gm) : CH(g0, ... ,gm,g)|> n,

contradicting maximality of m. ⊣

Definition 4.5. Let G be a group, and H, K subgroups.

• We say that H is almost contained in K, written H . K, if H ∩K has bounded
index in H. Clearly, . is transitive. If H . K and K . H, then H and K are
commensurable, denoted H ∼ K.

• The almost centralizer of H in K is the subgroup

C̃K(H) = {g ∈ K :H . CG(g)}.

The almost center Z̃(G) of G is the characteristic subgroup Z̃(G) = C̃G(G).

Fact 4.6.

1. If K is definable and H is type-definable, then by compactness H .K if and only
if H ∩K has finite index in H.

2. [6, Proposition 2.23] In an M̃c-group the almost centralizer of a definable
subgroup is definable by Lemma 4.4, and the almost center is finite-by-abelian,
as its conjugacy classes must be uniformly finite [12].

Fact 4.7 ([6, Theorem 2.10]). If H and K are type-definable, then H . C̃G(K) if
and only if K . C̃G(H).

Fact 4.8 ([6, Theorem 2.18]). Let G be a group, H and K subgroups, and suppose

H ≤NG(K), H ≤ C̃G(K), and K ≤ C̃G(H) uniformly

(meaning that there is n<ù such that |H : CH(k)| ≤ n for all k ∈ K). Then [H,K] is
finite.

Corollary 4.9. Let G be an M̃c-group, and M, N normal subgroups of G. Then
[C̃M(N), C̃N(M)] is finite.

Remark 4.10. It follows in particular that F = [C̃G(Z̃(G)), Z̃(G)] is finite in an
M̃c-groupG, as Z̃(G)= C̃Z̃(G)(G). ButG. C̃G(Z̃(G))= C̃G(C̃G(G)) byFact 4.7, and

F ≤ Z̃(G), so G1 = C̃G(Z̃(G))∩CG(F) has finite index in G. Moreover, F1 =G1∩F
is finite central in G1, and (G1∩ Z̃(G))/F1 is central in G1/F1.

Recall that a group is virtually P if it has a subgroup of finite index which is P.

Theorem 4.11. Let G be a broad pseudofinite dimensional M̃c-group satisfying
strong fibration. Then G has a G-broad definable finite-by-abelian subgroup C. More
precisely, any G-broad minimal centralizer (up to finite index) of a finite tuple is
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virtually finite-by-abelian, and has a G-broad finite-by-abelian centralizer (of some
bigger finite tuple) of finite index.

Proof. By the M̃c-condition, there is a G-broad centralizer C of some finite
tuple, such that CC(g) is not G-broad for any g ∈ C \ Z̃(C). Put Z = Z̃(C), a finite-
by-abelian normal subgroup of C which is definable by Fact 4.6.
We claim that Z is G-broad. Otherwise dimG(Z) = 0, and

dimG(C/Z) = dimG(C) – dimG(Z) = dimG(C)> 0.

For g ∈ C \Z we have dimG(CC(g)) = 0, whence for g = gZ we have

dimG(g
C/Z
) = dimG(g

CZ/Z) = dimG(g
CZ) – dimG(Z)≥ dimG(g

C) – dimG(Z)

= dimG(C) – dimG(CC(g)) – dimG(Z) = dimG(C/Z).

Hence for all g ∈ (C/Z)\{1} we have

dimG(CC/Z(g)) = dimG(C/Z) – dimG(g
C/Z
) = 0.

As C and Z are definable, C/Z is again pseudofinite, contradicting Proposition 4.1.
This shows that dimG(Z)> 0, proving the claim.
Now for g ∈ C̃C(Z) the index |Z : CZ(g)| is finite. In particular dim(CC(g)) ≥

dim(Z)> 0 and CC(g) is G-broad. By minimality, g ∈ Z̃(C). It follows that Z̃(C) =
C̃C(Z), which has finite index inC sinceZ. C̃C(C) impliesC . C̃C(Z) by Fact 4.7.
Moreover Z̃(C) is finite-by-abelian, and C is virtually finite-by-abelian.
By compactness (or Lemma 4.4) there is a bound n on the index |C : CC(c)| for

c∈ Z̃(C). For any c′ ∈C\Z̃(C), the index |Z̃(C) :CZ̃(C)(c
′)| is infinite. Fix such c′, let

c0, ... ,cn in Z̃(C) lie in different cosets moduloCZ̃(C)(c
′), and putC′ =CC(ci : i≤ n),

a subgroup of finite index in C.
We claim that |C : Z̃(C)| > |C′ : Z̃(C′)|. So suppose first that c′ ∈ C′Z̃(C), say

c′ = c′′c with c′′ ∈ C′ and c ∈ Z̃(C). Then there are i < j such that c–1i cj ∈ CC(c),
whence c–1i cj ∈ CC(c

′′c) = CC(c
′), a contradiction to the choice of the ci.

It follows that C′Z̃(C) is a proper subgroup of finite index in C. Then
Z̃(C′Z̃(C)) = Z̃(C) and Z̃(C′) = Z̃(C)∩C′, whence

|C : Z̃(C)|> |C′Z̃(C) : Z̃(C)|= |C′ : Z̃(C′)|,

proving the claim.
Inductively, we find a finite tuple c in Z̃(C) such thatCC(c) = Z̃(CC(c)), aG-broad

finite-by-abelian centralizer of finite index in C. ⊣

Theorem 4.11 holds in particular for any pseudofinite M̃c-group with coarse
pseudofinite dimension (see Example 1.5(4)). Note that the M̃c-condition is just
used in G, not in the section C/Z.

Corollary 4.12. A superrosy pseudofinite group with Uþ(G)≥ùα has a definable
finite-by-abelian subgroup A with Uþ(A)≥ ùα .

Proof. By [3, Proposition 1.4] a superrosy group is M̃c. If α is minimal with
Uþ(G)<ùα+1, put

dim(X)≥ n if Uþ(X)≥ ùα ·n,
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then dim is an integer dimension with 0 < dim(G) < ∞ and strong fibration
(Example 1.5(2)). The assertion now follows from Theorem 4.11. ⊣

Corollary 4.13. For any d,d′ < ù there is n = n(d,d′) such that if G is a finite
group without elements (gi : i ≤ d

′) such that

|CG(gi : i < j) : CG(gi : i ≤ j)| ≥ d

for all j ≤ d′, then G has a subgroup A with |A′| ≤ n and n |A|n ≥ |G|.

Proof. If the assertion were false, then given d,d′, there would be a sequence
(Gi : i < ù) of finite groups satisfying the condition, such that Gi has no subgroup
Ai with |A

′
i | ≤ i and i |Ai|

i ≥ |Gi|. But any nonprincipal ultraproduct G =
∏
Gn/U is

a pseudofinite M̃c-group; by Proposition 4.11 there is a definable subgroup A with
A′ finite and pseudofinite dimension dim(A) ≥ 1

n dim(G) for some n < ù. Hence

log |Ai| ≥
1
n log |Gi| –m for somem ∈N and almost all i<ù, whence emn|Ai|

n ≥ |Gi|.
For i ≥max{n, |A′|,emn} this yields a contradiction. ⊣

If G is a definable group, a definable subgroupH is definably characteristic in G if
it is invariant under all definable automorphisms of G.

Corollary 4.14. Let G be a pseudofinite M̃c-group of integer dimension 1 with
strong fibration. Then G has a definably characteristic wide finite-by-abelian subgroup,
which is a finite extension of the centralizer of a finite tuple (and hence quantifier-free
definable).

Proof. By Theorem 4.11 there is a broad finite-by-abelian centralizer C of a
finite tuple. As dim(G) = 1 and C is broad, dim(C) = 1 and dim(G/C) = 0.
For any definable automorphism ã of G the image Cã is still definable as the

centralizer of a finite tuple, and dim(G/Cã) = 0. As G/(C ∩Cã) definably embeds
into G/C×G/Cã , we have

dim(G/(C∩Cã))≤ dim(G/C)+dim(G/Cã) = 0,

whence dim(C∩Cã) = 1. By Lemma 4.4 there is a bound on the index of C∩Cã in
C and in Cã . Schlichting’s Theorem now yields a definably characteristic subgroup
N commensurable with C, which is a finite extension of a finite intersection of
conjugates of C under definable automorphisms, and thus a finite extension of the
centralizer of a finite tuple.
Now Z̃(N) is finite-by-abelian, and characteristic of finite index inN. It therefore

contains all finite-by-abelian subgroups of finite index inN, and in particularN∩C.
So Z̃(N) is a finite extension ofN∩C, and thus definable as a finite extension of the
centralizer of a finite tuple; clearly it is definably characteristic in G. ⊣

§5. Pseudofinite M̃c-groups of integer dimension 2.

Theorem 5.1. Let G be a pseudofinite integer-dimensional M̃c-group with strong
fibration. If dim(G) = 2, then G has a broad definable finite-by-abelian subgroup with
wide normalizer.

Proof. Note that by Corollary 4.14 we are done as soon as we find a definable
subgroup of dimension 1 with wide normalizer. By the M̃c-condition, there is a
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minimal wide centralizer of a finite tuple, up to finite index, and we can assume that
this is already G. Thus

Z̃(G) = {g ∈ G : dim(CG(g)) = 2}.

If dim(Z̃(G) ≥ 1 we are done, since Z̃(G) will be as required. Otherwise Z̃(G)
contains any subgroup H of dimension 0 with wide normalizer NG(H), since if
g ∈H then dim(gNG(H)) = 0 and dim(CNG(H)(g)) = 2, whence g ∈ Z̃(G). By Remark
4.10 there is a definable subgroupG1 of finite index inG and a finite central subgroup
F1 of G1 such that (G1 ∩ Z̃(G))/F1 is central in G1/F1. Now G1/F1 is still M̃c by
Lemma 4.3; replacing G by G1/F1 we can suppose Z̃(G) = Z(G).
Wemay assumeG=

∏
U Gi, where theGi are finite groups. For a subgroupH ≤G

we shall putH = (HZ(G))/Z(G); similarly we shall put H i = (HiZ(Gi))/Z(Gi) for
a subgroup Hi ≤ Gi.

Claim. There is some k < ù such that for almost all i there is no direct product of
simple nonabelian groups of length k in Gi. ⊣

Proof of Claim. Suppose otherwise. Fix a decreasing chain (Ik : k < ù) of sets
in U such that for i ∈ Ik there is a direct product

∏
j<kN ij ≤ Gi of nonabelian

simple groups. Fix such a product of length k for all i ∈ Ik \ Ik+1, and note that⋂
k<ù Ik = ∅, as i ∈ Ik implies k ≤ |Gi|. PutMij = N

′
ij. ThenMijZ(Gi)/Z(Gi) = N ij,

andMij is perfect. Recall that the three subgroupLemma states that for three normal
subgroups K ,L,M of a group we have [[K ,L],M] ≤ [[L,M],K] [[M,K],L]. Hence,
for j′ 6= j

[Mij,Mij′ ] = [M
′
ij,Mij′ ]≤ [[Mij,Mij′ ],Mij] [[Mij′ ,Mij],Mij] = {1},

since [Mij,Mij′ ]≤ Z(Gi).
For j<ù letMj =

∏
UMij; note that this iswell-defined, and theMj are nonabelian

and commute with one another. Put H =
∏
j<ùMj. Then if mj ∈Mj \Z(Mj) and

gk =
∏
j<kmj, we have

|CH(g0, ... ,gℓ) : CH(g0, ... ,gℓ ,gℓ+n)| ≥ 2
n

for all ℓ,n<ù, contradicting the M̃c-condition. ⊣

Claim. Wemay assume that almost all Gi are semisimple, that is, have no nontrivial
abelian normal subgroup.

Proof. Suppose otherwise, and let Ai be a nontrivial abelian normal subgroup
ofGi. Then for ai ∈Ai \Z(Gi) the element a= [ai] is not inZ(G), so dim(CG(a))≤ 1

and dim(aG) ≥ 1. Consider A = Z(CG(a
G
)), an abelian normal subgroup of G

containing a
G
. Then its preimage A is a definable normal subgroup of G with

dim(A)≥ dim(aG)≥ 1. Note that for a∈Awe have a–1aA ⊆Z(G) sinceA=A/Z(G)
is abelian, so dim(aA) = 0 and dim(CA(a)) = dim(A).
It follows that if C is a minimal wide centralizer in A of some finite tuple up to

finite index (which exists by the M̃c-condition), then C ∼ Cg for all g ∈ G, whence
C̃G(C) = C̃G(C

g) is normal inG. Therefore Z̃(C̃G(C)) is a definable finite-by-abelian
normal subgroup containingC, whence of dimension dim(A)≥ 1: we are done. ⊣

https://doi.org/10.1017/jsl.2020.48 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.48


934 FRANK O. WAGNER

Suppose Gi has at least two distinct minimal normal subgroups N i and N
∗

i for
almost all i. If ni ∈ Ni \Z(Gi) for almost i, then n = [ni] /∈ Z(G), so dim(n

G) ≥ 1.
The same holds for n∗ = [n∗i ] with n

∗
i ∈N

∗
i \Z(Gi). We put

N0 = CG(n
∗G
)⊇ n

G
and N1 = CG(N0)⊇ n

∗G
.

Then N0 and N1 are definable commuting normal subgroups of G of dimension
at least 1; their intersection must be trivial, as G is definably semisimple. Since
dim(G) = dim(G) = 2 we must have dim(N j) = 1 for j = 0,1. Now the preimages

Nj are definable normal subgroups of G with dim(Nj) = dim(N j) = 1; we are done
again by Corollary 4.14.
So we may assume that almost each Gi has a unique minimal normal subgroup

N i. Then N i is a finite direct product of (finite) simple groups N
j

i for j < ki, which
are permuted transitively by Gi. By the first claim, almost all ki take the same value
k.
Now every finite simple group is the product of two conjugacy classes [5, Theorem

1.4], so there are elements ni,n
∗

i with

N
0

i = {1}∪n
N
0
i
i n

∗N
0
i

i .

Note that if N
j

i = (N
0

i )
gij for some gij ∈ Gi, then

N
j

i = {1}∪n
N
0
i gij
i n

∗N
0
i gij

i .

Put X i = {1}∪n
Gi
i n

∗Gi
i . It follows from normality that

⋃
j<kN

j

i ⊆ X i ⊆N i, so N
0

i =

{1}∪n
X i
i n

∗X i
i is uniformly definable, as is N

j

i for j < k.

For j < k put N
j
=

∏
U N

j

i. Then N is definable as the direct product of the N
j

for j < k. Since the N
j
are definably isomorphic and 1 ≤ dim(N) ≤ 2, either k = 1

andN =N
1
, or k= 2= dim(N) and dim(N

0
) = dim(N

1
) = 1. If dim(N) = 1 we are

done by Corollary 4.14; if k= 2 the normalizer NG(N
0
) =NG(N

1
) has index 2 in G

and is wide, and we are done again.
So we may assume that dim(N) = 2 and N is an ultraproduct of finite simple

groups N i. As N is infinite, not almost all N i can be sporadic, and we may assume
they are all alternating or Chevalley groups (possibly twisted) over a finite field.
But their rank (where the rank of the alternating group Ak is k) must be bounded,
as otherwise the N i contain arbitrarily long direct products Pi of A4 or PSL 2,
contradicting the first claim.
It follows from [13] that N must be a (possibly twisted) Chevalley group over

a pseudofinite field. By results of Ryten [14] (see also [2]) the pure group N is bi-
interpretable with a pseudofinite (difference) fieldF ofSU-rank 1.NowN is internal
in F, and F is internal in any generic definable subset X of F, whence

dim(X)≥
1

m
dim(F)≥

1

n
dim(N)

for some positive integers m,n, and dim(X) > 0. As the dimension is integer, this
means dim(X) ≥ 1 for any definable generic subset of F. But SU(N) ≥ 3, so a
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generic element of N (interpreted in F) contains at least three independent generic
coordinates from F ; as SU-rank is definable in F, we obtain a definable subset of N
of dimension 3, contradicting dim(N)≤ dim(G) = 2.

Corollary 5.2. Let G be a pseudofinite group whose definable sections are M̃c,
and dim an integer dimension on G with strong fibration. If dim(G) = 2, then G has a
definable wide soluble subgroup.

Proof. By Theorem 5.1, there is a definable finite-by-abelian group N such that
NG(N) is wide. ReplacingN byCN(N

′), we may assume thatN is (finite central)-by-
abelian. If dim(N) = 2 we are done. Otherwise dim(NG(N)/N) = 1; by Corollary
4.14 there is a definable finite-by-abelian subgroup S/N with dim(S/N) = 1. As
above we may assume that S/N is (finite central)-by-abelian, so S is soluble.
Moreover,

dim(S) = dim(N)+dim(S/N) = 1+1 = 2,

so S is wide in G. ⊣

Corollary 5.3. A pseudofinite superrosy group G with ùα · 2 ≤ Uþ(G) < ùα · 3
has a definable soluble subgroup S with Uþ(S)≥ ùα ·2.

Proof. Superrosiness implies that all definable sections of G are M̃c. We put

dim(X) = n ⇔ ùα ·n≤Uþ(X)<ùα · (n+1).

This defines an integer dimension with strong fibration, and dim(G) = 2. The result
now follows from Corollary 5.2. ⊣
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