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Abstract

Let π be a set of primes. We say that a group G satisfies Dπ if G possesses a Hall π-subgroup H and every
π-subgroup of G is contained in a conjugate of H. We give a new Dπ-criterion following Wielandt’s idea,
which is a generalisation of Wielandt’s and Rusakov’s results.
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1. Introduction

All groups considered here are finite. Let G be a group and let π be a set of primes.
Recall that a subgroup H of a group G is called a π-subgroup of G if all primes dividing
the order of H lie in π. Moreover, a subgroup H is called a Hall π-subgroup of G if it
is a π-subgroup and its index is not divisible by the elements of π.

According to Hall [2], a group G is said to satisfy Eπ (or G ∈ Eπ for short) if there
exists a Hall π-subgroup of G. If G ∈ Eπ and all π-Hall subgroups are conjugate then
we say that G satisfies Cπ (G ∈ Cπ). If G ∈ Eπ and every π-subgroup of G is contained
in a conjugate of a π-Hall subgroup of G then we say that G satisfies Dπ.

In 1954, Wielandt [5] proved the classical result that a group G possessing
a nilpotent π-Hall subgroup satisfies Dπ. After several years, one of the earliest
generalisations of Wielandt’s theorem was obtained by Wielandt himself in [6].
Suppose that a set of primes π is a union of disjoint subsets σ and τ, and a group
G possesses a Hall π-subgroup H = Hσ × Hτ, where Hσ is a nilpotent σ-subgroup
of H and Hτ is a τ-subgroup of H. If G satisfies Dτ, then G satisfies Dπ. In the
same paper, Wielandt conjectured that one can replace ‘the nilpotency of Hσ’ with
the weaker condition that ‘G satisfies Dσ’ in the above theorem. This conjecture was
completely confirmed by Guo et al. [1] by using the classification of finite simple
groups. It is worth pointing out another inspiring result due to Rusakov [4] that if a
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group G possesses a Hall π-subgroup H whose Sylow subgroups are all cyclic, then G
satisfies Dπ.

In this paper, we try to weaken the ‘direct product relation’ between Hσ and Hτ in
Wielandt’s theorem, replacing it with a special semidirect product. Our main theorem
is the following result.

THEOREM 1.1. Let a set π of primes be a union of disjoint subsets σ and τ. Let a group
G possess a Hall π-subgroup H = HσHτ such that:

(1) Hσ is a normal σ-subgroup of H;
(2) Hτ is a τ-subgroup of H with all Sylow subgroups cyclic;
(3) Hτ normalises every subgroup of Hσ.

If G satisfies Dσ, then G satisfies Dπ.

It is worth mentioning that the proof of Theorem 1.1 does not depend on the
classification of finite simple groups. In Theorem 1.1, neither of the hypotheses
(2) or (3) can be removed. In fact, we can see this in the projective linear group
G = PSL(2, 11). Let π = {2, 3} and notice that Hall π-subgroups of G are isomorphic
to the alternating group A4 or the dihedral group D12. Hence G � Dπ.

If H � D12, then we can set σ = {3} and τ = {2}. Hence Hσ � C3 and Hτ � C2 ×C2
are the Sylow 3-subgroup and the Sylow 2-subgroup of H, respectively. Clearly
G ∈ D{3}, Hσ � H and Hτ normalises every subgroup of Hσ, which means that all
hypotheses in Theorem 1.1 hold except hypothesis (2) because Hτ is not cyclic.

If H � A4, we may assume that σ = {2} and τ = {3}. Then Hσ � C2 ×C2 and Hτ �
C3 are the Sylow 2-subgroup and the Sylow 3-subgroup of H, respectively. We see that
G ∈ D{2}, Hσ � H and Hτ is cyclic but Hτ does not normalise all subgroups of Hσ.

The following two corollaries both follow directly from Theorem 1.1. The first
unifies Wielandt’s and Rusakov’s results.

COROLLARY 1.2. Let a set π of primes be a union of disjoint subsets σ and τ. Let a
group G possess a Hall π-subgroup H = HσHτ such that:

(1) Hσ is a normal nilpotent σ-subgroup of H;
(2) Hτ is a τ-subgroup with all Sylow subgroups cyclic;
(3) Hτ normalises every subgroup of Hσ.

Then G satisfies Dπ.

The second corollary is a generalisation of Rusakov’s result following Wielandt’s
idea; it is also a direct corollary of the result of Guo et al. [1].

COROLLARY 1.3. Let a set π of primes be a union of disjoint subsets σ and τ. Let a
group G possess a Hall π-subgroup H = Hσ × Hτ such that:

(1) Hσ is a σ-subgroup of H;
(2) Hτ is a τ-subgroup with all Sylow subgroups cyclic.

If G satisfies Dσ, then G satisfies Dπ.
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2. Lemmas

In this section we list some lemmas, most of which are well known. The first is a
direct consequence of Burnside’s p-nilpotency criterion.

LEMMA 2.1 [3, IV, Theorem 2.8]. Let G be a group and let p be the smallest prime
dividing the order of G. If G possesses a cyclic Sylow p-subgroup, then G is p-nilpotent.

LEMMA 2.2. Let G be a group with all Sylow subgroups cyclic. Then G has two cyclic
subgroups N1, N2 such that G = N1N2, N1 � G and (|N1|, |N2|) = 1.

PROOF. This is a consequence of [3, IV, Theorem 2.11]. �

The following lemma gives a property of groups with all Sylow subgroups cyclic
and will be useful in the proof of our main theorem.

LEMMA 2.3. Let G be a group with all Sylow subgroups cyclic and assume that p is
the smallest prime dividing the order of G. If K is a p′-subgroup of G, then there exists
a Sylow p-subgroup P of G such that P ≤ NG(K).

PROOF. By Lemma 2.1, G is p-nilpotent. Denote by N the normal p-complement of G.
Clearly K ≤ N. Notice that all Sylow subgroups of N are also cyclic. By Lemma 2.2,
we can assume that N = N1N2, where N1, N2 are cyclic, (|N1|, |N2|) = 1 and N1 � N.

Let K1 = K ∩ N1. As N1 is a normal Hall subgroup of N, it is easy to see that
K1 is a normal Hall subgroup of K. By the Schur–Zassenhaus theorem, we may
assume that K = K1K2, where K2 is a complement of K1 in K. Since N/N1 � N2 is
cyclic, it follows that K2N1/N1 is a characteristic subgroup of N/N1. Since N1 is a
characteristic subgroup of N, it is not difficult to check, by definition, that K2N1 is
a characteristic subgroup of N. As N � G, it follows that K2N1 � G. By a Frattini
argument, G = NG(K2)N1. Since the index of NG(K2) in G is a p′-number, there exists
a Sylow p-subgroup P of G such that P ≤ NG(K2).

On the other hand, it is easy to see that K1 is a characteristic subgroup of N1 as N1
is cyclic. Since N1 is a characteristic subgroup of G, we deduce that K1 � G. It follows
that P normalises K = K1K2. Hence P ≤ NG(K), as desired. �

Recall that a group G is called minimal non-p-nilpotent if G is not p-nilpotent but
every proper subgroup of G is p-nilpotent. The structure of minimal non-p-nilpotent
groups is well known, due to N. Itô.

LEMMA 2.4. Let p be a prime and G be a minimal non-p-nilpotent group. Then G
possesses a normal Sylow p-subgroup P and a cyclic Sylow q-subgroup Q � 1 for
some q � p such that G = PQ.

PROOF. See [3, IV, Theorem 5.4]. �
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3. Proof of Theorem 1.1

Suppose that the theorem is false so that there exists a group G possessing a Hall
π-subgroup H = HσHτ such that G, Hσ, Hτ satisfy the hypotheses of Theorem 1.1 but
G � Dπ, which means that there exists a π-subgroup K of G such that Kg � H for each
g ∈ G. Choose the counterexample triple (G, H, K) with |G| + |H| + |K| minimal and,
without loss of generality, assume that π ⊆ π(G).

By hypothesis, if τ is empty, the result is trivial. Now let p be the smallest prime
in τ. Since all Sylow subgroups of Hτ are cyclic, Hτ is p-nilpotent. As Hσ � H, H is
also p-nilpotent. Set π̃ = π − {p} and τ̃ = τ − {p}. Then we will derive a contradiction
from the following three steps.

Step 1: p ∈ π(K).
If p � π(K), then K is a π̃-subgroup of G. Let ˜H = HσHτ̃, where Hτ̃ is the normal

p-complement of Hτ. It is obvious that ˜H is a π̃-Hall subgroup of G and ˜H ≤ H.
Considering the triple (G, ˜H, K), by minimality, K is contained in a conjugate of ˜H
and also in a conjugate of H, contrary to the choice of K.

Step 2: K is minimal non-p-nilpotent.
For any proper subgroup T of K, minimality implies that T is contained in a

conjugate of H. As H is p-nilpotent, so is T. Now we will show that K is not p-nilpotent.
Assume that K is p-nilpotent and let K = KpKπ̃, where Kp and Kπ̃ are the Sylow

p-subgroup and the normal p-complement of K, respectively. Since p ∈ π(K) by Step 1,
Kp � 1 and Kπ̃ < K. By minimality, Kπ̃ is contained in a conjugate of H. Without loss
of generality, we can assume that Kπ̃ ≤ H. Write Kσ = Hσ ∩ Kπ̃. Since Hσ is a normal
Hall σ-subgroup of H, it follows that Kσ is a normal Hall σ-subgroup of Kπ̃. By the
Schur–Zassenhanus theorem, we may assume that Kτ̃ is the complement of Kσ in Kπ̃,
which is also a Hall τ-subgroup of K.

Since H has a Hall τ-subgroup Hτ with all Sylow subgroups cyclic, by Rusakov’s
theorem, H ∈ Dτ. As Kτ̃ is a τ-subgroup of H, Kτ̃ ≤ Hh

τ for some h ∈ H.
Moreover, as Kτ̃ is a p′-subgroup, it follows from Lemma 2.3 that there exists

a Sylow p-subgroup P of Hh
τ such that P normalises Kτ̃. On the other hand, by

hypothesis, Ph−1 ≤ Hτ normalises every subgroup of Hσ. Since h ∈ H and Hσ � H,
Kh−1

σ ≤ Hh−1

σ = Hσ. Hence Ph−1
normalises Kh−1

σ , and so P normalises Kσ. Thus P
normalises Kπ̃ = KσKτ̃, that is, P ∈ NG(Kπ̃).

Notice that P is also a Sylow p-subgroup of G and also of NG(Kπ̃), and Kp ≤ K ≤
NG(Kπ̃) since Kπ̃ � K. By Sylow’s theorem, there exists an element x ∈ NG(Kπ̃) such
that Kx

p ≤ P. Thus

Kx = Kx
pKx
π̃ ≤ Kx

pKπ̃ ≤ PH ≤ Hh
τH = H,

which is a contradiction. Hence K is minimal non-p-nilpotent.

Step 3: The final contradiction.
Since K is minimal non-p-nilpotent, it follows from Lemma 2.4 that K = KpKq,

where Kp is the normal Sylow p-subgroup of K and Kq � 1 is a cyclic Sylow
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q-subgroup of K for some prime q � p and q ∈ π. Notice that Kq � 1 and so
Kp < K. Minimality implies that Kp is contained in a conjugate of Hτ. Since all Sylow
subgroups of Hτ are cyclic, Kp is cyclic. Hence, by the N/C theorem,

K/CK(Kp) � Aut(Kp).

Note that K � CK(Kp) otherwise Kp is in the centre of K and K is nilpotent, contrary
to Step 2. Hence the order of K/CK(Kp) is a positive power of q, which implies that
q divides |Aut(Kp)| = pa(p − 1) for some nonnegative integer a. As p � q, q divides
p − 1. Since p is the smallest prime in τ, it follows that q � τ. As q ∈ π = σ ∪ τ, this
forces q ∈ σ.

By Rusakov’s theorem, G satisfies Dτ. Hence we can assume that Kp ≤ Hg
τ for

some g ∈ G. Let Q be a Sylow q-subgroup of Hg
σ. By hypothesis, Hg

τ normalises every
subgroup of Hg

σ. This implies that Kp normalises every subgroup of Q. For each cyclic
subgroup Q1 of Q, Q1 is also Kp-invariant and so |Kp/CKp (Q1)| divides |Aut(Q1)| =
qn−1(q − 1), for some positive integer n. As q < p, it follows that Kp = CQ1 (Kp) and
thus Kp acts trivially on each cyclic subgroup Q1 and also on Q. In particular,
Q ≤ NG(Kp). Since Q is a Sylow q-subgroup of NG(Kp) and Kq ≤ K ≤ NG(Kp), there
exists an element y ∈ NG(Kp) such that Ky

q ≤ Q. Now we see that

Ky = Ky
pKy

q ≤ KpKy
q ≤ Hg

τQ ≤ Hg
τH

g
σ = Hg,

which is the final contradiction. The proof is complete.
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