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ABSTRACT

Claims reserving models are usually based on data recorded in run-off tables,
according to the origin and the development years of the payments. The
amounts on the same diagonal are paid in the same calendar year and are
influenced by some common effects, for example, claims inflation, that can
induce dependence among payments. We introduce hierarchical generalized
linear models (HGLM) with risk parameters related to the origin and the calen-
dar years, in order to model the dependence among payments of both the same
origin year and the same calendar year. Besides the random effects, the linear
predictor also includes fixed effects. All the parameters are estimated within the
model by the h-likelihood approach. The prediction for the outstanding claims
and an approximate formula to evaluate the mean square error of prediction
are obtained. Moreover, a parametric bootstrap procedure is delineated to get
an estimate of the predictive distribution of the outstanding claims. A Poisson-
gamma HGLMwith origin and calendar year effects is studied extensively and
a numerical example is provided. We find that the estimates of the correlations
can be significant for payments in the same calendar year and that the inclu-
sion of calendar effects can determine a remarkable impact on the prediction
uncertainty.
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1. INTRODUCTION

Claims reserving in non-life insurance is often based on run-off data where
claim payments are recorded according to the origin year and the develop-
ment year. The payments on the same diagonal of the run-off table share the
same calendar/accounting year, hence they are subject to common effects con-
nected with the year of payment that can induce dependence among payments
of the same calendar year. As a consequence, dependences among payments
of different origin years arise, whereas stochastic claims reserving models usu-
ally assume the independence. It emerges the need of adequately model such
dependencies by taking account of the calendar year effects.

The calendar year effect is also generally referred to as claims inflation.
Verbeek (1972) and Taylor (1977) introduce the separation method to separate
claims inflation from the development pattern of the payments. Björkwall et al.
(2010) develop a bootstrap procedure for estimating the predictive distribu-
tion of the claims reserve and assessing the prediction error for the separation
method. Jessen and Rietdorf (2011) present two models with diagonal effects
to account for claims inflation; the parameter estimation is based on the sep-
aration method and for the forecast of the diagonal effects an autoregressive
process is used. Bohnert et al. (2016) analyze the main driving factors for infla-
tion in automobile insurance. They study the impact of claims inflation on
claims reserving and extend the model in Björkwall et al. (2010) by account-
ing for an extrapolation of future claims inflation using stochastic inflation
models. Within the Chain-Ladder (CL)-type models the impact of claims infla-
tion is studied, for example, in Brydon and Verrall (2009) and in Kuang et al.
(2011).

Other contributions in literature mainly focus on modeling stochastic
dependences among payments, caused by calendar year effects, in order to
study the influence of such dependences on claims reserves and prediction
errors. In this context, by assuming a Bayesian set-up, Wüthrich (2010) stud-
ies a Bayes CL model that allows for inference on calendar year random
parameters. Within the same framework, Salzmann and Wüthrich (2012)
define a multivariate Bayes CL model that enables modeling dependence along
accounting years and study the sensitivities of claims reserves and prediction
uncertainty as a function of a correlation parameter within accounting years. In
the credibility framework, Bühlmann and Moriconi (2015) develop a stochas-
tic claims reserving model that extends the Bühlmann–Straub claims reserving
model. Besides the risk parameters for the origin years, risk parameters for
the calendar years are also considered, whereas the development pattern is
assumed as given and equal to the CL one.

We refer to the previous papers for further references on claims inflation
modeling and calendar year effects.

The quoted studies show that the calendar year effects might be significant
for the reserve estimate and can have a substantial impact on the evaluation of
prediction uncertainty.
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In this paper, we define a model that allows for the introduction of
dependences along origin and payment years and, on the lines traced by the
last-mentioned papers, we study the effects of such dependences on claims
reserve evaluation, whereas we do not deal with the problem of claims inflation
estimation and extrapolation.

In the Bayesian and credibility frameworks, the dependence induced by
calendar year effects is modeled through diagonal risk parameters. An exten-
sion of generalized linear models (GLM), the hierarchical generalized linear
models (HGLMs) (Lee et al., 2006), allows including risk parameters in the
model by means of random effects in the linear predictor. Claims reserving
in the HGLM framework is considered in Gigante et al. (2013a,b, 2016). The
HGLM approach to claims reserving is also discussed in Verrall and Wüthrich
(2015).

We assume for the standardized payments a HGLM with risk parameters
related to the origin and the calendar years. The two sets of risk parameters
allow modeling the dependence among payments of the same origin year and
of the same calendar year, respectively. Moreover, the parameters of the dis-
tributions of the random effects allow incorporating external information such
as expert opinion. Besides the random effects, the linear predictor also includes
fixed effects that can be used to model the claims development pattern. All
the parameters are estimated within the model by maximum h-likelihood. We
introduce a predictor for the outstanding claims and take advantage of an
approximate formula, developed in Gigante et al. (2013a), to evaluate the mean
square error of prediction (MSEP). The approximations are based on asymp-
totic results and the calculations are straightforward once the model estimates
are available. The model is also appropriate for a simulation approach, so that,
through a parametric bootstrap procedure, it is possible to get an estimate of
the predictive distribution of the outstanding claims and to evaluate theMSEP.
Moreover, simulation allows us to check the effect of the approximations in the
formula of the MSEP.

In particular, we study a Poisson-gamma HGLM with random origin and
calendar year effects, whereas the claims development pattern is modeled by
fixed effect parameters. For this model we provide a numerical example. The
parameters of the distributions of the origin year random effects are used to
incorporate external information on the ultimate claims. The estimates of the
covariances between payments show remarkable correlations for payments of
the same calendar year. As in other studies, it results that the insertion of diag-
onal risk parameters has an effect on the claims reserve estimate and an even
more remarkable effect on the MSEP.

The paper is organized as follows. In Section 2, we introduce the model
assumptions. In Section 3 we recall the estimation procedure for the HGLMs
based on the h-likelihood. Section 4 is devoted to the prediction problem and
to the MSEP evaluation in claims reserving. In Section 5 a Poisson-gamma
HGLM with calendar year effects is introduced. In Section 6, we develop a
numerical example on the same data set used in Bühlmann andMoriconi (2015)
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and Gigante et al. (2013b), in order to make some comparisons of the results
of the three models. Section 7 contains a simulation study. Finally, Section 8
concludes the paper.

2. MODEL ASSUMPTIONS

With respect to the claims of a portfolio, let Pi, j be the incremental payments
and Yi, j =Pi, j/ωi, j the payments standardized with respect to some known
exposure measure ωi, j, where i denotes the origin year (e.g., accident year,
underwriting year) and j the development year, i, j= 0, . . . , t. We assume that
all claims are settled within t+ 1 years and that a run-off triangle of data
yi, j = pi, j/ωi, j, i, j= 0, . . . , t, i+ j ≤ t, is available.

For the random process {Yi, j, i, j= 0, . . . , t}, we consider a mixture model
depending on a vector of risk parameters related to the origin and the calen-
dar (accounting, payment) years. The model belongs to the class of HGLMs.
The assumptions, the estimation procedure, and the prediction approach trace
those in Gigante et al. (2013a,b, 2016), to which we refer for the technical
details.

Let (U ,V)= (U0, . . . ,Ut,V0, . . . ,V2t) the vector of the risk parameters,
where Ui is related to the origin year i and Vi+j to the calendar year i+ j.

Model Assumptions

(a1) Independence assumptions
The components of the risk parameter (U ,V)= (U0, . . . ,Ut,V0, . . . ,V2t)
are independent.
Conditionally on (U ,V), the response variables Yi, j, i, j= 0, . . . , t, are
independent.
With respect to the risk parameters (U ,V), the conditional distribution
of Yi, j only depends on Ui and Vi+j.

(a2) Distributional assumptions for the responses conditional on the risk param-
eters
The distribution of Yi, j|(Ui,Vi+j)= (ui, vi+j) belongs to an Exponential
Dispersion Family (EDF) with cumulant and variance functions b and
V , respectively. So that

E[Yi, j|(Ui,Vi+j)= (ui, vi+j)]=μi, j,

var[Yi, j|(Ui,Vi+j)= (ui, vi+j)]= φi, j

ωi, j
V (μi, j).

As it is quite natural, the weights are assumed equal to the exposure
measures; however, this is not necessary.

(a3) Structural assumptions for the response variables
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The expectations of the conditional standardized payments are given by

E[Yi, j|(Ui,Vi+j)= (ui, vi+j)]=μi, j = g−1(xTi, jβ +wU ,i +wV ,i+j),

where xi, j is a vector of covariates; β are the regression parameters, called
fixed effects; w= (wU ,0, . . . ,wU ,t,wV ,0, . . . ,wV ,2t) are the random effects,
with wU ,i = gU (ui) and wV ,i+j = gV (vi+j). The functions g, gU , and gV are
strictly monotone with first- and second-order continuous derivatives.

(a4) Distributional assumptions for the risk parameters
LetWU ,i = gU (Ui) andWV ,i+j = gV (Vi+j). We assume that the densities of
WU ,i andWV ,i+j are

fWU ,i (w)= exp
{

1
λU ,i

(
ψU ,iθU − bU (θU )

)}
cU (ψU ,i, λU ,i),

fWV ,i+j (w)= exp
{

1
λV ,i+j

(
ψV ,i+jθV − bV (θV )

)}
cV (ψV ,i+j, λV ,i+j),

where: bU , bV are cumulant functions of EDFs; θU = b′−1
U (g−1

U (w)),
θV = b′−1

V (g−1
V (w)); ψU ,i, λU ,i, ψV ,i+j, λV ,i+j are parameters; cU (ψU ,i, λU ,i),

cV (ψV ,i+j, λV ,i+j) are normalizing functions.

The above assumptions define a mixture model with mixing the distribution
of W = (WU ,WV)= (WU ,0, . . . ,WU ,t,WV ,0, . . . ,WV ,2t). Since the risk param-
eters are introduced in the regression structure through random effects, the
model belongs to the class of mixed models.

The random parameters Ui and Vi+j take account of risk characteristics of
the origin year i and the calendar year i+ j, respectively. Such risk parame-
ters allow for the modeling of dependence of the Yi, j related to origin year
effects (e.g., correlation patterns among repeated payments of claims of the
same origin year) and to accounting year effects (e.g., claims inflation). Note
that, calendar year effects, such as claims inflation or, as pointed out in Taylor
(1977), exogenous influences operating in experience years, influence all the
payments in the same diagonal of the run-off table and introduce dependence
also between different accident years.

In fact, the covariances of the response variables, for (i, j) �= (h, k), are

cov(Yi, j,Yh,k)=E
[
cov(Yi, j,Yh,k)|(U ,V)

]+ cov
[
E(Yi, j|(U ,V),E(Yh,k|(U ,V)

]
= cov

[
g−1(xTi, jβ +WU ,i +WV ,i+j), g−1(xTh,kβ +WU ,h +WV ,h+k)

]
, (2.1)

where the second equality follows from the conditional independence of the
response variables, so that cov(Yi, j,Yh,k)|(U ,V)= 0. The last term is null if i �= h
and i+ j �= h+ k, due to the independence of the random effects, but it is not
null otherwise, that is, if the two responses refer to the same origin year, i= h,
or to the same calendar year, i+ j= h+ k.
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Coming back to the model specifications, if, in particular, gU is the canon-
ical link of bU , that is, gU = b′−1

U , then we have θU =w and the distribution
of WU ,i = b′−1

U (Ui) belongs to the conjugate family of the EDF with cumu-
lant bU . In this case, under suitable hypotheses, the hyperparameters ψU =
(ψU ,0, . . . ,ψU ,t), λU = (λU ,0, . . . , λU ,t) are related to the moments of the risk
parameter U . Specifically, ψU ,i =E(Ui) (see e.g., Jewell, 1974; Bühlmann and
Gisler, 2005) and, in Tweedie models with variance function V (μ)=μp, λU ,i =
var(Ui)/E(U

p
i ) (see Ohlsson and Johansson, 2006). Similar considerations

apply toWV ,i+j.
If b= bU = bV and g= gU = gV = b

′−1, then the distributions of both
WU ,i = b

′−1(Ui) and WV ,i+j = b
′−1(Vi+j) are conjugate of the distribution of

Yi, j|(Ui,Vi+j)= (ui, vi+j). In this case, the HGLM is called conjugate.
In the following, we assume that the parameters ψU = (ψU ,0, . . . ,ψU ,t),

ψV = (ψV ,0, . . . ,ψV ,2t) are given and that they are the expected values of the
risk parameters. We remark that the values of the parameters ψU , ψV can be
used to incorporate external information into the model (see the example in
Section 6).

We remark that the risk parameters are assumed to be independent. This
assumption could be questionable particularly for the calendar year param-
eters, since there may be trends in the data due to calendar year effects.
It can be accepted if we interpret the calendar year parameters as random
variations around a trend and assume that any calendar year trend (e.g.,
economic inflation) was preliminarily removed from the data. Alternatively,
we could incorporate in the model some trend estimates through the ψV =
(ψV ,0, . . . ,ψV ,2t). This would require side-estimates that would not be integral
to the model, by using any available exogenous or collateral information, but
possibly also informed by the model estimates of past calendar year effects.
However, we note that in the case of superimposed inflation it could be diffi-
cult to detect a trend. Moreover, superimposed inflation may appear in a form
that involves inherent serial correlation. Therefore, on the one hand, the inde-
pendence assumption simplifies the model, but on the other, it determines some
limitations.

3. PARAMETER ESTIMATION

In order to estimate the parameters in models with fixed and random effects,
Lee and Nelder (1996, 2001) and Lee et al. (2006) introduced the hierarchi-
cal log-likelihood. In our problem the h-log-likelihood is the joint log-density
evaluated at the data y= (yi, j, i+ j ≤ t):

h= log f(Y,W) = lY|W=w + lWU + lWV , (3.1)

where f(Y,W) denotes the joint density of (Y,WU ,WV), lY|W=w the log-likelihood
of Y|W =w, which is equal to the log-likelihood of Y|(U ,V)= (u, v), and lWU

and lWV are the logarithms of the densities ofWU andWV .
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We do not explain here in detail the estimation approach, since it can be
obtained by simple adaption of the procedures described in Gigante et al.
(2013a, 2016). We just outline it and remark some specific aspects of the current
model.

If in addition to ψU , ψV , and ω= (ωi, j, i, j= 0, . . . , t), also the dispersion
parameters φ = (φi, j, i, j= 0, . . . , t), related to the standardized payments, and
λU , λV , related to the risk parameters, are known, ignoring irrelevant constant
terms, we get

h(β,w;φ, λU , λV ;y,ψU ,ψV ,ω)=
∑

i, j:i+j≤t

ωi, j

φi, j

[
yi, jθi, j − b(θi, j)

]

+
t∑

i=0

1
λU ,i

[
ψU ,iθU ,i − bU (θU ,i)

]+ ∑
i, j:i+j≤2t

1
λV ,i+j

[
ψV ,i+jθV ,i+j − bV (θV ,i+j)

]
,

(3.2)

where

θi, j = b′−1(g−1(xTi, jβ +wU ,i +wV ,i+j)),
θU ,i = b′−1

U (g−1
U (wU ,i)),

θV ,i+j = b′−1
V (g−1

V (wV ,i+j)).

The h-log-likelihood (3.2) can be viewed as the log-likelihood of an aug-
mented GLM for the data y and pseudo-data ψU , ψV , with weights ωi, j/φi, j,
i+ j ≤ t, 1/λU ,i, i= 0, . . . , t, 1/λV ,i+j, i+ j ≤ 2t, respectively, and dispersion
parameter 1. Notice that in order to interpret (3.2) as the log-likelihood of a
genuine GLM, we should have b= bU = bV and g= gU = gV .

The augmented GLM has the following regression structure:

ηi, j = g(μi, j)= xTi, jβ +wU ,i +wV ,i+j, i+ j ≤ t,
ηU ,i = gU (ui)=wU ,i, i= 0, . . . , t,
ηV ,i+j = gV (vi+j)=wV ,i+j, i+ j ≤ 2t.

The maximum h-log-likelihood estimates of the fixed and random effects
δ = (βT ,wT )T are the solutions of the system

{
∂h/∂β = 0
∂h/∂w = 0.

It is easy to verify that the above conditions imply that the estimate ofwV ,i+j,
with i+ j> t, coincides with gV (ψV ,i+j):

ŵV ,i+j = gV (ψV ,i+j), i+ j> t. (3.3)

https://doi.org/10.1017/asb.2019.22 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.22


770 P. GIGANTE, L. PICECH AND L. SIGALOTTI

The system can be solved by the iterative weighted least squares algorithm.
The inverse I(δ̂)−1 of the Fisher information matrix of the augmented GLM,
evaluated at the estimate δ̂, is an estimate of the variance–covariance matrix

var
[

β̃

w̃−W

]
,

where β̃, w̃ are the estimators of the fixed and random effects. The estimator
w̃ of the parameter w is a predictor of the random vector W . In particular,
by (3.3), the maximum h-log-likelihood estimator of wV ,i+j, with i+ j> t, is
w̃V ,i+j = gV (ψV ,i+j).

In this way, by estimating the augmented GLM, we get estimates of the
model parameters and of the standard errors of their estimators.

The HGLMs have been extended to quasi-HGLMs, allowing for the pos-
sibility of specifying only the first two moments of the distributions of the
conditional responses and/or the risk parameters. Moreover, by following the
extended quasi-likelihood approach proposed by Nelder and Pregibon (1987),
the dispersion parameters also can be estimated and they can have their own
regression structures. The parameters of such models can be estimated through
an algorithm in which four interconnected GLMs are fitted iteratively: the
above augmentedGLM to obtain the fixed and random effects for given disper-
sion parameters, and three suitable GLMs with gamma distributed responses
to obtain the regression parameters of the dispersion components, given the
fixed and random effects.

The delineated estimation process allows obtaining the estimates of the
fixed effects β̂, of the origin year effects ûi, i= 0, . . . , t, of the calendar year
effects v̂i+j, i+ j= 0, . . . , 2t, and of the variance–covariance matrix of the
parameter estimators.

4. RESERVE PREDICTION AND PREDICTION ERROR

In order to predict the outstanding claims and evaluate the quality of the pre-
diction, as usually done, we restrict ourselves to considering the exposures
related to the origin years only, ωi. Moreover, we assume that the dispersion
parameters are constant, denoted by φ, λU , λV .

Let

Ri =
t∑

i=t−i+1

Pi, j =
t∑

i=t−i+1

ωiYi, j

denote the outstanding claims of the origin year i, i= 1, . . . , t, and

R=
t∑

i=1

Ri =
∑

i, j:i+j>t
Pi, j =

∑
i, j:i+j>t

ωiYi, j,
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the total outstanding claims.
The conditional expectation of R, at time t, is

E(R|Dt)=
∑

i, j:i+j>t
ωiE(Yi, j|Dt), (4.1)

where Dt =
{
Yi, j, i+ j ≤ t

}
.

By the tower property of the conditional expectation and the conditional
independence of the Yi, j, given (U ,V), we get

E(Yi, j|Dt)=E
[
E(Yi, j|Dt,U ,V)|Dt

]=E
[
g−1(xTi, jβ +WU ,i +WV ,i+j)|Dt

]
.

(4.2)

Now, we assume that the parameter estimates β̂, ŵ and the corresponding
estimators β̃, w̃ provide estimates and estimators of the linear predictors xTij β +
wU ,i +wV ,i+j, also for i+ j> t. Note that this does not allow considering the
payment year as a categorical covariate in xi, j.

As a predictor for Yi, j, i+ j> t, we consider the following estimator of
E(Yi, j|Dt):

Ỹi, j = g−1(xTi, jβ̃ + w̃U ,i + w̃V ,i+j),

where β̃, w̃U , w̃V are the maximum h-log-likelihood estimators. As noted in
Section 3, the predictors of the random effects related to future calendar years
are

w̃V ,i+j = gV (ψV ,i+j), i+ j= t+ 1, . . . , 2t.

Hence, future diagonal effects are forecast as functions of hyperparameters
associated with the distributions of diagonal risk parameters; these fore-
casts are certain because the hyperparameters are fixed. We note that also
in Bühlmann and Moriconi (2015) the estimators of the random parameters
related to future calendar years are assumed to be certain, given by the a pri-
ori expected values of such parameters. Here, this is implied by the HGLM
estimation approach, since they are the maximum h-log-likelihood estimators.

We obtain the following predictor for the total outstanding claims:

R̃=
∑

i, j:i+j>t
ωig−1(xTi, jβ̃ + w̃U ,i + w̃V ,i+j), (4.3)

and the reserve estimate

R̂=
∑

i, j:i+j>t
ωig−1(xTi, jβ̂ + ŵU ,i + ŵV ,i+j). (4.4)
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As a measure of prediction uncertainty, we use the conditional MSEP which
takes account of the fluctuations of the outstanding claims around the pre-
dictor R̃. As in previous papers on claims reserve evaluation in the HGLM
approach (see Gigante et al., 2013a, 2013b, 2016), we use an approximate
formula for the MSEP based on the following decomposition:

MSEPR|Dt(R̃)=E
[
(R− R̃)2|Dt

]
= var(R|Dt)+

(
E(R|Dt)− R̃

)2
=E[var(R|U ,V)|Dt]+ var[E(R|U ,V)|Dt]+

(
E(R|Dt)− R̃

)2
. (4.5)

In the current model, the estimate becomes

̂MSEPR|Dt(R̃)=
∑

i, j:i+j>t

φ̂

ωi
V
(
g−1(xTi, jβ̂ + ŵU ,i + ŵV ,i+j)

)
+ {

J r(w)H−1
22 J r(w)

T
} ∣∣

δ̂ + {
J f (β)G−1J f (β)T

} ∣∣
δ̂ , (4.6)

where J r and J f denote the Jacobian matrices of the functions

r(w)=
∑

i, j:i+j>t
ωig−1(xTi, jβ +wU ,i +wV ,i+j),

f (β)=
∑

i, j:i+j>t
ωig−1(xTi, jβ + w̃U ,i(β)+ w̃V ,i+j(β)),

with w̃(β) denoting the maximum h-log-likelihood estimator of w obtained for
given β. The Jacobian matrix of w̃(β) is given by −H−1

22H
T
12 (Lee and Nelder

1996, Appendix C; Lee and Ha, 2010). The matrices H−1
22 , G

−1 and HT
12 are

obtained from the Fisher information matrix of the augmented GLM and its
inverse

I(δ)=
[
H11 H12

HT
12 H22

]
, I(δ)−1 =

[
G−1 F
FT C

]
, (4.7)

where H11 denotes the block of the second derivatives of the h-log-likelihood
with respect to β, H22 denotes the block of the second derivatives with respect
to w, and H12 the block of the mixed derivatives.

The estimate of the conditional MSEP (4.5) takes account of the variability
in the estimates of both the regression parameters β and the random effects w.
However, it does not allow for the variability in the dispersion parameter esti-
mates, γ̂ φ, γ̂ λU , and γ̂ λV . An insight into this aspect can be obtained from
the standard errors estimated through the Fisher information matrices of the
GLMs used to estimate such parameters.

In conclusion of this section, we would like to stress the usefulness of a
closed formula for the MSEP, easy to calculate, although approximate, to get
an evaluation of the quality of the reserve prediction. Alternatively, a simula-
tion approach can be used, which allows getting much more information on
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the predictive distribution. However, we remark that in mixture models, sim-
ulation techniques are often computationally demanding, because they require
repeated estimation of the model parameters on the basis of re-sampled data.
In Section 7 we illustrate a simulation approach to get estimates of the MSEP
and of the predictive distribution of the outstanding loss liabilities.

5. POISSON-GAMMA HGLM WITH CALENDAR YEAR EFFECTS

As an example of a model that falls within the scope of the paper, we consider
an extension of the Poisson-gamma HGLM in Gigante et al. (2013b), obtained
by adding random calendar year effects.

More precisely, in the model assumptions of Section 2, we consider the
following specifications:

The response variables Yi, j are the incremental payments Pi, j (unstandard-
ized).

In (a2), the conditional distribution of Yi, j|(Ui,Vi+j)= (ui, vi+j) is overdis-
persed Poisson, with constant dispersion parameter φ and weight 1. Hence we
have a quasi-HGLM.

In (a3), the link function g and the functions gU , gV that transform the risk
parameters are the logarithm. It follows that we obtain a multiplicative model
for the conditional expected value μi, j of Yi, j:

E[Yi, j|(Ui,Vi+j)]= exp (βj + log (Ui)+ log (Vi+j))= eβjUiVi+j,

where the fixed effects are related to the development years only.
In (a4), the distributions of WU ,i = log (Ui) and WV ,i+j = log (Vi+j) are

conjugate of the Poisson EDF, with constant dispersion parameters, that is,

fWU ,i (w)= exp
{

1
λU

(
ψU ,iw− exp (w)

)}
cU (ψU ,i, λU ),

fWV ,i+j (w)= exp
{

1
λV

(
ψV ,i+jw− exp (w)

)}
cV (ψV ,i+j, λV ).

Hence, Ui and Vi+j are gamma distributed with E(Ui)=ψU ,i, E(Vi+j)=ψV ,i+j,
assumed to be given, and var(Ui)=ψU ,iλU , var(Vi+j)=ψV ,i+jλV .

We discuss some aspects of the model.
The covariances of the response variables are (see (2.1))

cov(Yi, j,Yh,k)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

var(Yi, j) i= h, i+ j= h+ k

eβj eβkvar(Ui)E(Vi+j)E(Vh+k) i= h, i+ j �= h+ k

eβj eβkE(Ui)E(Uh)var(Vi+j) i �= h, i+ j= h+ k

0 i �= h, i+ j �= h+ k

, (5.1)
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where

var(Yi, j)=E
[
var(Yi, j|Ui,Vi+j)

]+ var
[
E(Yi, j|Ui,Vi+j)

]
=E

[
φeβjUiVi+j

]+ var
[
eβjUiVi+j

]
= φeβjE(Ui)E(Vi+j)+ (eβj )2

[
E(U2

i )E(V
2
i+j)−E(Ui)2E(Vi+j)2

]
. (5.2)

The correlations of payments of the same origin year or of the same calen-
dar year are all positive. Given β and ψU , the greater the variance of Ui, the
greater the covariances of payments of origin year i. Analogously, given β and
ψV , the greater the variance of Vi+j, the greater the covariances of payments of
calendar year i+ j.

As for the parameter estimates, similarly as in Gigante et al. (2013b), it can
be proved that they satisfy the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(β̂j)=
∑t−j

i=0 yi, j∑t−j
i=0 ûiv̂i+j

j= 0, . . . , t

ûi = ẑU ,i

∑t−i
j=0 yi, j∑t−i

j=0 exp (β̂j)v̂i+j
+ (1− ẑU ,i)ψU ,i i= 0, . . . , t

v̂k = ẑV ,k

∑
i+j=k yi, j∑

i+j=k exp (β̂j)ûi
+ (1− ẑV ,k)ψV ,k k= 0, . . . , t

v̂k =ψV ,k k= t+ 1, . . . , 2t

(5.3)

with

ẑU ,i =
∑t−i

j=0 exp (β̂j)v̂i+j∑t−i
j=0 exp (β̂j)v̂i+j + φ̂/λ̂U

(5.4)

and

ẑV ,k =
∑

i+j=k exp (β̂j)ûi∑
i+j=k exp (β̂j)ûi + φ̂/λ̂V

. (5.5)

Therefore, the risk parameter estimates follow a sort of credibility formula,
in that they are mixtures of the a priori expected values and of estimates based
on the available data. The weights depend on the ratios φ̂/λ̂U and φ̂/λ̂V of the
estimates of the dispersion parameters.

By exploiting the expression of the origin year effect estimates, ûi, the
reserve estimate R̂i is given by a mixture of two components: a CL-type reserve,
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R̂CL−type
i , that is based on the last cumulative payments, and a Bornhuetter-

Ferguson (BF)-type reserve, R̂BF−type
i , that takes account of the external

estimate ψU ,i. In fact, it is easy to verify that

R̂i = ûi
t∑

j=t−i+1

exp (β̂j)v̂i+j

=
(
ẑU ,i

∑t−i
j=0 yi, j∑t−i

j=0 exp (β̂j)v̂i+j
+ (1− ẑU ,i)ψU ,i

)
t∑

j=t−i+1

exp (β̂j)v̂i+j

= ẑU ,iR̂
CL−type
i + (1− ẑU ,i)R̂

BF−type
i , (5.6)

where

R̂CL−type
i = (1− b̂i,t−i)

b̂i,t−i

t−i∑
j=0

yi, j, R̂BF−type
i =ψU ,i

⎛
⎝ t∑

j=0

exp (β̂j)v̂i+j

⎞
⎠ (1− b̂i,t−i),

with

b̂i,h =
∑h

j=0 exp (β̂j)v̂i+j∑t
j=0 exp (β̂j)v̂i+j

, h= 0, . . . , t. (5.7)

Note that b̂i,h, h= 0, . . . , t, can be interpreted as the prediction of the claims
development pattern of origin year i,

bi,h = E(Ci,h)
E(Ci,t)

=
∑h

j=0 exp (βj)ψV ,i+j∑t
j=0 exp (βj)ψV ,i+j

, h= 0, . . . , t,

where Ci, j denotes the cumulative payments in cell (i, j).
As it is well known, in the CL method, the outstanding loss liabilities of

origin year i are given by

RCL
i =Ci,t−i

(1− bt−i)
bt−i

,

where bh = 1/(fhfh+1 . . . ft−1) denotes the claims development pattern calculated
from the CL development factors fj, j= 0, . . . , t− 1 (see Wüthrich and Merz,
2008, (2.1)). So that the term R̂CL−type

i in (5.6) can be related to this reserve, but
note that in our model the claims development pattern depends on the origin
year and its estimate is also affected by the external estimates ψU ,i, ψV ,i+j. On
the other hand, in the BF method the outstanding loss liabilities of origin year
i are given by

RBF
i =μi(1− bt−i),
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where μi represents an external estimate of the ultimate claims of origin year i
and again bh denotes the claims development pattern, usually calculated from
the CL factors. Hence the term R̂BF−type

i can be related to a BF reserve if ψU ,i

is seen as an external estimate of the ultimate claims of origin year i that is
corrected by taking account of the run-off data through the multiplicative term∑t

j=0 exp (β̂j)v̂i+j.

6. NUMERICAL RESULTS

In this section we describe the results of a numerical example for the Poisson-
gamma HGLM with random origin and calendar year effects described in
Section 5.

The data are the incremental payments and the prior ultimate claims pro-
vided in Tables 2.4 and 2.5 in Wüthrich and Merz (2008). The same data have
been used in several papers so that some comparisons can be made. In particu-
lar, they have been used in Gigante et al. (2013b) to illustrate a Poisson-gamma
HGLMwith random origin year effects and in Bühlmann andMoriconi (2015)
to illustrate a credibility model with random origin year and diagonal effects.

As for the expected values of the risk parameters, we assume ψU ,i =E(Ui)
equal to the prior ultimate claims reported in Table 1, so that the external
information on the ultimate claims is incorporated into the model, and ψV ,i+j =
E(Vi+j)= 1. Therefore, we assume that there is no trend in the expected calen-
dar year effects. As noted in Bühlmann and Moriconi (2015) and remarked in
Section 2, this assumption would request to remove preliminarily any calendar
year trend (e.g., economic inflation) from the data. It follows that the expected
values of the unconditional payments are E(Yi, j)= exp (βj)ψU ,i. Hence, the
expected ultimate claim amount of origin year i, E(Ci,t)=ψU ,i

∑t
j=0 exp (βj), is

assumed to be proportional to the external information on the ultimate claims
ψU ,i and, according to the usual parameter interpretation, E(Yi, j) is the prod-
uct of the expected ultimate claim amount of origin year i and the proportion
of such amount paid in development year j.

Now we come to the model estimate (for implementation, we have devel-
oped our own code in SAS).

In Table 1, the estimates exp (β̂j), j= 0, . . . , t, ûi = exp (ŵU ,i), i= 0, . . . , t,
and v̂k = exp (ŵV ,k), k= i+ j ≤ t are reported, whereas, for k= i+ j> t, v̂k = 1.
It is easy to check that the development year factors are rather similar to the
CL ones, in particular for low development years. The parameters related to the
origin year effect are quite close to their expected values. As for the parameters
related to the calendar year effect, several of them are sensibly different from 1
(the expected value), in particular for the calendar years 1, 2, 8, 9. This indicates
that such effect is appreciable in the data. As noted above, for the sake of
comparison with Bühlmann and Moriconi (2015), we have set the parameters
ψV ,i+j equal to 1, hence we have assumed that any trend was already removed
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TABLE 1

PARAMETER ESTIMATES.

i, j, k exp (β̂j) ψU ,i ûi v̂k ẑU ,i ẑV ,k

0 0.5190 11,653,101 11,827,546 0.9776 0.2804 0.7155
1 0.2565 11,367,306 11,271,388 1.1045 0.2927 0.7844
2 0.0620 10,962,965 11,064,095 1.0884 0.2874 0.7933
3 0.0203 10,616,762 10,653,721 1.0395 0.2796 0.7922
4 0.0138 11,044,881 11,062,856 1.0097 0.2743 0.7964
5 0.0067 11,480,700 11,497,398 1.0098 0.2697 0.8026
6 0.0051 11,413,572 11,391,764 0.9581 0.2601 0.8046
7 0.0011 11,126,527 10,943,022 0.9563 0.2540 0.8011
8 0.0011 10,986,548 10,893,966 0.9365 0.2365 0.7990
9 0.0015 11,618,437 11,665,042 0.9195 0.1699 0.8051

FIGURE 1: Residuals versus fitted.

from the data. On the contrary, the estimates suggest the presence of a trend in
the data that should be accounted for through the ψV ,i+j or by inserting in the
fixed part of the model a regression component related to the payment year.

The estimates of the dispersion parameters are φ̂ = 12, 281, λ̂U = 5, 269, and
λ̂V = 0.00503. It follows that the estimates of the coefficients of variation of
the risk parameters Ui, (λU/E(Ui))1/2, are about 2% and the estimates of the
coefficients of variation of the risk parameters Vi+j are about 7%. The rather
high coefficients of variation for the calendar year effects suggest that a model
with random effects for such component is suitable for these data.

We point out that the model has not been selected through a validation pro-
cedure, but it has been chosen to derive some comparisons with the example
developed on the same data set in Gigante et al. (2013b), in order to appreci-
ate the effect of the calendar year components. However, the graphs of the
studentized deviance residuals in Figure 1 do not show remarkable model
failures.

The weights (5.4) and (5.5) are reported in the last two columns of Table
1; ẑU ,i, i= 0, . . . , t, show a decreasing trend with increasing i, whereas ẑV ,k,
k= 0, . . . , t, show an increasing trend with increasing k. Therefore, in gen-
eral, the more the available data in the run-off triangle, the higher the weights.
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FIGURE 2: Latest observed diagonal.

Note the quite high values of the weights for the calendar year effects, for
k= 0, . . . , t: this entails that the parameter estimates v̂k are nearer to the
observed component,

∑
i+j=k yi, j∑

i+j=k exp (β̂j)ûi
, than to the expected value,ψV ,k, in line with

the above remark on the presence of a calendar year effect in the data. This
happens because, in the weights ẑV ,k, φ̂/λ̂V = 2, 441, 202 is low with respect to∑

i+j=k exp (β̂j)ûi, k= 0, . . . , t. On the contrary, the high value of φ̂/λ̂U = 2.33

with respect to
∑t−i

j=0 exp (β̂j)v̂i+j, i= 0, . . . , t, implies that the weights ẑU ,i are
not so high.

We observe that in this example the two random components act so that,
if the total observed payment of one origin year,

∑t−i
j=0 yi, j, is greater than the

estimate of its expected value, Ê(Ci,t−i)=ψU ,i
∑t−i

j=0 exp (β̂j)ψV ,i+j, then also the

prediction of the same payment, Ĉi,t−i = ûi
∑t−i

j=0 exp (β̂j)v̂i+j, is greater than the
expected value. Moreover, the predictions entail a smoothing effect on the
latest observed diagonal values, as can be seen in Figure 2.

The HGLM reserve predictions, R̂i = ûi
∑t

j=t−i+1 exp (β̂j), and prediction
errors, given by the square roots of the MSEPs, are reported in Table 2. We
note that, as usual, there is considerable uncertainty in the reserve estimates in
the earlier origin years and then the relative prediction errors decrease. The pre-
diction error for the whole reserve as a percentage of the claims reserve is about
7.7%. As already remarked, the conditional MSEP estimate allows for the vari-
ability in the estimates of the fixed effects β and also in the random effects
w= (wU ,0, . . . ,wU ,t,wV ,0, . . . ,wV ,2t), not in the dispersion parameter estimates.
The process error is sensibly higher than the estimation error in all origin years,
except in the first one.

It is interesting to compare these results with the reserve and predic-
tion error estimates obtained in Gigante et al. (2013b) in the Poisson-gamma
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TABLE 2

RESERVE AND PREDICTION ERROR ESTIMATES.

Origin Reserve Prediction % Process % Estimation %
year error error error

1 16,389 20,295 123.8 14,238 86.9 14,462 88.2
2 27,841 24,917 89.5 18,553 66.6 16,633 59.7
3 38,434 27,926 72.7 21,797 56.7 17,456 45.4
4 96,297 41,488 43.1 34,712 36.0 22,722 23.6
5 176,998 54,905 31.0 47,280 26.7 27,912 15.8
6 332,200 73,887 22.2 65,533 19.7 34,128 10.3
7 540,715 93,593 17.3 84,637 15.7 39,953 7.4
8 1,213,470 146,811 12.1 134,907 11.1 57,911 4.8
9 4,291,646 355,320 8.3 329,211 7.7 133,687 3.1

Total 6,733,989 521,451 7.7 437,300 6.5 284,042 4.2

HGLM without calendar year effects, reported in Table 3. We note that with
respect to the current model, the reserves and the prediction errors are underes-
timated. In fact, the reserve in Table 2 is about 8% higher than that in Table 3
and even more relevant is the difference between the prediction errors, about
24% higher in Table 2. Actually, as noted in several papers (e.g., Wüthrich,
2010; Salzmann and Wüthrich, 2012; Bühlmann and Moriconi, 2015), the
inclusion of random diagonal effects can be significant especially for the eval-
uation of the prediction uncertainty. The higher prediction errors are implied
by a more appropriate dependence modeling of the incremental payments. In
this regard, we have estimated the coefficients of correlation of the couples of
payments from (5.1) and (5.2), by plugging-in the parameter estimates. The
correlations for payments related to the same origin year are rather low, they
vary from 0.005 to 0.05. In Figure 3(a), we have plotted the correlation coeffi-
cients of (Y0,0,Y0,j), j= 1, . . . , t. The correlations of (Y0,h,Y0,j), j= h+ 1, . . . , t,
are lower than those of (Y0,0,Y0,j), but they show a pattern that is similar to
the one in the figure, from h on. Similar patterns are found for the other ori-
gin years. Differently, the correlations for payments of the same calendar year
are quite high in the first development years: the correlation coefficients of
(Yi,0,Yi−1,1) are about 0.58, and the correlation coefficients of (Yi,0,Yi−2,2) and
(Yi−1,1,Yi−2,2) vary from 0.33 to 0.38. Then the correlation coefficients decrease.
For example, in Figure 3(b) we have plotted the following correlation coef-
ficients of the last observed calendar year corr(Y9,0,Y9−j,j), j= 1, . . . , 9. The
pattern could be explained by the type of data that are from a motor insurance
portfolio where most of the claims are paid within the second development
year, as can also be seen from the development factors reported in Table 1.
The model takes account of such correlations in the reserve evaluation.

The two components, CL-type and BF-type in (5.6), of the reserve pre-
dictions and the still-to-come factors 1− b̂i,t−i, with b̂i,t−i given in (5.7), are
reported in Table 4. Note that the CL-type and BF-type reserves are rather
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TABLE 3

RESERVE AND PREDICTION ERROR ESTIMATES WITHOUT CALENDAR YEAR EFFECTS.

Origin Reserve Prediction %
year error

1 15,199 21,082 138.7
2 26,125 26,155 100.1
3 34,857 28,674 82.3
4 86,623 42,357 48.9
5 159,377 55,987 35.1
6 294,565 74,221 25.2
7 470,703 92,566 19.7
8 1,086,682 142,204 13.1
9 4,061,356 312,042 7.7

Total 6,235,487 419,505 6.7

FIGURE 3: (a) corr(Y0,0,Y0,j), j= 1, . . . , 9. (b) corr(Y9,0,Y9−j,j), j= 1, . . . , 9.

close. This happens because, differently than the genuine CL and BF reserves,
both of them combine the external estimates and the run-off data. As a dif-
ference to Gigante et al. (2013b), the current HGLM reserves are closer to
the BF-type reserves than to the CL-type. This is explained by the weights
ẑU ,i that are all lower than 30%. However, the other comments in the quoted
paper still apply here. In fact, as already noted, the still-to-come factors show
that, in this portfolio, most of the claim amount for a given origin year is paid
within the first two development years; the estimate of the factor

∑t
j=0 exp (βj)

is 0.8869, lower than 1, hence the estimate of the expected ultimate claims
Ê(Ci,t)=ψU ,i

∑t
j=0 exp (β̂j) is lower than the external estimate ψU ,i; since, as

remarked in other papers, such external estimates are quite conservative for
the portfolio under consideration, the HGLM estimates update the external
data according to the run-off data.

Finally, we report in Table 5 the reserve predictions and the prediction
errors of the total portfolio obtained by the HGLM model and by the homo-
geneous and inhomogeneous credibility models in Bühlmann and Moriconi
(2015). Although the models are different, even in the structures of the expected
conditional payments, some comparison can be made. The HGLM reserve is
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TABLE 4

CL-TYPE AND BF-TYPE COMPONENTS OF THE HGLM RESERVES.

Origin R̂CL−type
i R̂BF−type

i 1− b̂i,t−i
year

1 16,052 16,529 0.0015
2 28,472 27,587 0.0027
3 38,777 38,300 0.0040
4 96,711 96,140 0.0098
5 177,694 176,741 0.0176
6 330,390 332,836 0.0344
7 514,082 549,782 0.0586
8 1,180,174 1,223,783 0.1337
9 4,375,391 4,274,499 0.4353

Total 6,757,743 6,736,197

TABLE 5

MODEL COMPARISONS.

Model Reserve Prediction error %

HGLM 6,733,989 521,451 7.7
Homogeneous credibility model 6,416,109 426,609 6.6
Inhomogeneous credibility model 7,002,087 407,426 5.8

intermediate between the two credibility reserves. Note that, similarly to the
inhomogeneous credibility model, we assume that the expected values of the
origin year effects, ψU ,i, are not estimated from the data and are set equal to
the external estimates of the ultimate claims. But, on the other hand, as noted
above, the estimates of the development year parameters have the effect to
correct such external estimates. The correction term is 0.8869 that can be com-
pared with the “collective correction factor”, μ̂0 = 0.8820, that adjusts the a
priori estimates of the ultimate claims in the homogeneous credibility model.
The prediction error in the HGLM is higher than in both of the credibility
models. The difference can be explained by the fact that in these models the
development pattern is not estimated within the model and the CL one is used.
Hence the estimation error connected with this component is not accounted for
in the prediction error. In fact, the prediction errors in the credibility models
are close to the process error component in the HGLM (see Table 2).

7. SIMULATION STUDY

In this section, we illustrate the evaluation of the MSEP and of the predic-
tive distribution of the outstanding loss liabilities by means of a simulation
approach.
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If the distributions of Ui, Vi+j and Yi, j|(Ui,Vi+j)= (ui, vi+j) in Section 3 are
suitable for simulation, the MSEP can be estimated by the usual parametric
bootstrap procedure defined by the following algorithm. We note that the esti-
mation of the MSEP obtained via simulation can also be used to empirically
test the effect of the approximations considered in Section 3.

Step 1 Parameter estimation

From the original data, given ψU ,i =E(Ui), i= 0, . . . , t, and ψV ,i+j =
E(Vi+j), i+ j= 0, . . . , 2t, calculate the HGLM estimates of the param-
eters (β̂, φ̂, λ̂U , λ̂V ).

Step 2 Simulation

Assume that the stochastic process

{U0, . . . ,Ut,V0, . . . ,V2t,Y0,0, . . . ,Yt,t}
follows the estimated distribution, hence the model parameters are
(ψU ,ψV , β̂, φ̂, λ̂U , λ̂V ).
For b= 1, . . . ,B,
– simulate, independently, the random effects u(b)0 , . . . , u(b)t ,
v(b)0 , . . . , v(b)2t from the respective distributions with parameters
(ψU ,i, λ̂U ), i= 0, . . . , t, (ψV ,i+j, λ̂V ), 0≤ i+ j ≤ 2t;

– simulate y(b)i, j for the upper triangle, i+ j ≤ t, and y∗(b)
i, j for the lower

triangle, i+ j> t, from the respective overdispersed Poisson condi-
tional distributions with parameters (β̂j, u

(b)
i , v(b)i+j, φ̂).

Step 3 Parameter estimation from simulated triangles

For b= 1, . . . ,B,
– from the simulated upper triangle y(b)i, j , i+ j ≤ t, given (ψU ,ψV ), esti-

mate the parameters (β̂
(b)
, φ̂(b), λ̂(b)U , λ̂(b)V ) and the predictions of the

random effects ŵ(b)
U , ŵ(b)

V ;
– evaluate the predicted outstanding claims R̂(b), by (4.4), and the

estimated mean square error of prediction, ̂MSEP
(b)
, by (4.5) and

(4.6);
– calculate the simulated outstanding claims that is the sum of the

simulated payments in the lower triangle R∗(b) =∑
i, j:i+j>t ωiy

∗(b)
i, j .

Step 4 MSEP estimation

Let MSEPest = 1
B

∑B
b=1

̂MSEP
(b)

the average of the estimated MSEPs
and MSEPsim = 1

B

∑B
b=1 (R

∗(b) − R̂(b))2 the MSEP estimated via simula-
tion.

Simulation also allows obtaining an estimate of the predictive distribution
of the outstanding claims, from which we can get estimates of the expected
loss liabilities, of the coefficient of variation, and of the quantiles. For this
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TABLE 6

PREDICTION ERRORS.

Origin MSEP1/2
est MSEP1/2

sim

year

1 20,109 20,283
2 24,550 24,351
3 27,838 27,538
4 41,483 40,824
5 54,937 54,791
6 74,131 74,267
7 94,789 95,027
8 147,944 148,781
9 355,084 359,460

Total 520,535 525,669

purpose, in Step 3 of the above algorithm, for any b= 1, . . . ,B, simulate M
lower triangles y∗∗(b,m)

i, j , i+ j> t, m= 1, . . . ,M, from the process with distri-

bution given by the estimated parameters (ψU ,ψV ,i+j, β̂
(b)
, φ̂(b), λ̂(b)U , λ̂(b)V ). The

estimate of the outstanding claims distribution is then given by the empiri-
cal distribution function of the simulated values R∗∗(b,m) =∑

i, j:i+j>t ωiy
∗∗(b,m)
i, j ,

b= 1, . . . ,B,m= 1, . . . ,M.
A simulation study has been conducted for the numerical example in

Section 6.
In Table 6 we report the values of the square root of the average of the

estimated MSEPs, MSEPest, and of the MSEPsim estimated via simulation, in
20,000 simulations. As noted above,MSEPsim can be compared withMSEPest

to appreciate the effect of the approximations in (4.6). The relative differ-
ences are very low for the total reserve lower than 1%; the higher difference
is 1.6% for the reserve of origin year 4. The two estimated root MSEPs are also
very close to the prediction errors of the reserve estimators obtained from the
original data in Table 2. We can say that, for this model and these data, the
approximate formula for the MSEP derived in Section 4 performs quite well.

To get estimates of the predictive distributions of the outstanding loss liabil-
ities, for each of the B= 20, 000 simulated run-off triangles, we have simulated
M = 10 lower triangles. Some characteristic values of the distributions are
reported in Table 7. The means are very close to the HGLM reserve predictions
in Table 2. The standard errors can be compared with the prediction errors
of the reserves. The distribution of the total liability is slightly skewed to the
right; the skewness coefficient is about 0.16. As expected, and in line with the
results in Table 2, the coefficients of variation are decreasing with increasing
origin years. The percentiles or Value-at-Risk at high confidence levels allow
obtaining additional information on the distributions. They can also be used
to assess a risk adjustment component to be added to the estimate of the out-
standing loss liabilities to evaluate the liability for incurred claims as requested
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TABLE 7

CHARACTERISTIC VALUES OF THE PREDICTIVE DISTRIBUTIONS.

Origin Mean Std VaR75% VaR90% VaR95% VaR99% CV%
year

1 16,435 20,098 26,586 44,067 56,556 83,371 122.3
2 27,654 24,493 41,118 60,833 74,295 103,844 88.6
3 38,780 27,684 54,692 76,143 90,339 120,775 71.4
4 97,270 41,407 122,705 151,997 170,743 210,091 42.6
5 178,220 54,934 212,688 250,186 274,024 322,863 30.8
6 334,633 74,245 382,333 431,396 461,743 523,393 22.2
7 551,977 95,397 613,718 675,752 714,074 790,420 17.3
8 1,226,380 149,904 1,323,935 1,420,112 1,478,786 1,597,240 12.2
9 4,277,567 360,496 4,510,545 4,738,896 4,882,555 5,169,551 8.4

Total 6,748,915 524,390 7,090,591 7,421,755 7,632,194 8,046,769 7.8

by the IFRS 17 accounting standard. We note that the percentiles of the distri-
bution of the total liability are near to those of the normal with same mean and
variance. Therefore, as highlighted in Taylor (2000), for practical purposes the
normal approximation could be acceptable for the whole reserve. However, as
expected, it could be critical for the single accident years, in particular for the
less recent ones.

8. CONCLUSIONS

We have introduced HGLMs that allow for the modeling of calendar year
effects in claims reserving in order to take account of the dependences among
payments, due to such effects.

We obtain the prediction of the outstanding claims and an approximate
analytical formula for theMSEP, easy to compute once the model estimates are
available. The MSEP takes account of the process risk and, for the estimation
risk, of variability in the regression parameters and random effects. The model
provides estimates of the correlations between payments.

We have studied in detail an overdispersed Poisson-gamma HGLM with
random effects related to the origin and the calendar years. It has been applied
to a motor insurance liability data set of the actuarial literature. The results
have confirmed the relevance of calendar year effects. In fact, the estimates
of covariances show remarkable correlations between payments of the same
calendar year, made in the first development years. The inclusion of calendar
year effects determines a remarkable increment of the MSEP, with respect to
other models in which the dependence among payments in the same calendar
year is ignored.

Moreover, a simulation approach has been considered to estimate the pre-
dictive distribution and to check the impact of the approximations in the
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MSEP formula. We have found, in our example, that the impact of the
approximations is moderate. So, the analytical formula for the MSEP appears
particularly useful to get insights on the quality of the reserve prediction.
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