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The interaction between a fixed particle and decaying homogeneous isotropic
turbulence is studied numerically using an overset grid that provides resolution of all
scales of fluid motion. A description of the numerical technique and validation of the
solution procedure are presented. An ensemble of 64 simulations with the particle in
different regions of the flow is computed. The particle diameter in the simulations
is approximately twice the size of the unladen Kolmogorov length scale, and the
maximum value of the particle Reynolds numbers due to the turbulent fluctuations is
close to 20. Ensemble averages of quantities from the numerical solutions are used to
investigate the turbulence modification and the fluid forces on the particle. Volume-
averaged profiles of the turbulent kinetic energy and dissipation rate from the overset
grid simulations reveal that the displacement of fluid by the particle and the formation
of the boundary layer at the particle surface lead to turbulence modification in a
local region. Time histories of the force applied to the particle from each overset grid
simulation are compared to those predicted by a particle equation of motion. The
particle equation of motion is shown to underpredict the root mean square (RMS)
force applied to the particle by the turbulence. RMS errors between the forces from
the overset grid simulation and those predicted by the particle equation of motion
are shown to be between 15 % and 30 % of the RMS force on the particle. The
steady viscous drag force is shown to be the dominant term in the particle equation
of motion while the history integral term is negligible.

1. Introduction
Particle, droplet and bubble laden flows are ubiquitous in nature. Examples include

dust storms, volcanic ash eruptions, rain, snowflake and meteorite formation, and
the transport of blood corpuscles in the human body. The study of this portion of
the broader field of multiphase flows has received a great deal of attention owing to
the wide variety of engineering applications where particles, droplets and bubbles
interact with a fluid carrier phase. Coal combustors, solid-fuel rocket engines,
pneumatic conveyers and spray combustors are all engineering devices whose
performance can be enhanced by a detailed understanding of the interaction between
the dispersed and carrier phases.

A number of complicated phenomena occur in particle-laden flow systems.
Depending on their inertia, particles can preferentially concentrate into carrier flow
regions with low vorticity and high strain rate. This behaviour can lead to local
concentrations of particles that far exceed the mean concentration. Particle-laden
flow systems with a sufficient mass loading of particles can show turbulence levels
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that are significantly reduced from their unladen values. However, other systems show
that turbulence levels are increased by the presence of particles. In cases where the
interparticle separation is small, particle collisions and hydrodynamic interactions
play an important role in determining the overall system behaviour. Each of these
phenomena help to highlight the fact that a particle-laden flow system is always more
complicated than its single-phase counterpart owing to a broader range of length and
time scales and the increased number of parameters introduced by the presence of
a dispersed phase. It is also apparent that momentum coupling between the discrete
and carrier phases plays a key role in the behaviour of particle-laden flow systems.

The complexity of the momentum coupling in a particle-laden flow depends on a
number of parameters. The particle volume fraction, αp , particle mass loading, φp ,
and the ratio of the particle time constant, τp , to the Kolmogorov fluid time scale,
τk , given by the Stokes number, St , determine the type of momentum coupling that
will occur. In systems where the particle diameter, dp , is small and the ratio of the
fluid density, ρ, to the particle density, ρp , is small, αp can be small while φp is
non-negligible and St � O(10). In this regime, the system is two-way coupled as the
carrier flow disperses the particulate phase and the particulate phase modifies the
carrier flow, but particle–particle interactions are negligible.

1.1. Turbulence modification in experiments

A large number of experimental studies have focused on turbulence modification
in two-way-coupled particle-laden flows. Kulick, Fessler & Eaton (1994) and Paris
& Eaton (2001) found that glass and copper particles significantly reduced the
turbulence at the centreplane of a vertical fully developed air channel flow. However,
measurements by Sato & Hishida (1996) in a similar geometry with glass particles and
water as the carrier fluid showed augmentation of the streamwise turbulence intensity
in the core region of the channel. Fessler & Eaton (1999) measured the effect of
particles in a backward-facing step flow and found that turbulence levels at locations
above the step height were reduced by up to 35 % for a 40 % mass loading of 150 µm
glass particles. The turbulence in the particle-laden vertical air pipe flow studied by
Tsuji, Morikawa & Shiomi (1984) was attenuated by 200 µm plastic particles but
augmented by 3 mm plastic particles. Measurements of a vertical flat-plate turbulent
boundary layer in air by Rogers & Eaton (1991) showed that a 20 % mass loading
of 70 µm copper particles reduced the streamwise turbulence intensity by up to 35 %.
Parthasarathy & Chan (2001) performed turbulence measurements in a water jet
laden with 64 and 180 µm glass beads. Their results showed that the radial velocity
fluctuations were reduced up to 30 % by the large particles while the axial velocity
fluctuations were unchanged.

The brief review of experimental work in the previous paragraph shows that
turbulence modification by particles is an extremely complex phenomenon. Attempts
have been made to determine a reduced parameter set with which to classify the results
from the many different types of experiment. Gore & Crowe (1989) compiled data
from the centreline of a large number of particle-laden jet and pipe experiments and
showed that the ratio of dp to the characteristic length of the most energetic eddies
of the carrier flow could be used to determine the type of turbulence modification.
Hetsroni (1989) suggested that the particle Reynolds number based on the slip velocity
and the particle diameter, Rep , determines the nature of the turbulence modification by
particles. Elghobashi (1994) presented a slightly more complicated classification map
where St and αp can be used to determine if turbulence augmentation or attenuation
occurs.
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While dp , αp , Rep and St affect the behaviour of two-way-coupled particle-
laden flow systems, it is clear from a review of the experimental literature that
turbulence modification is controlled by an even larger number of parameters.
Simplified classifications may be used in specific flow configurations to make an
initial assessment of the possibility of turbulence modification, but no information
can be gained as to the degree of turbulence attenuation or augmentation. In order
to develop the predictive capability required to improve engineering devices, a more
detailed understanding of the physics of particle–turbulence interaction is required.
This understanding can be facilitated through the use of numerical simulations which,
although restricted to lower Reynolds numbers than experiments, can provide detailed
information that cannot be accurately measured in experiments.

1.2. Resolved simulations

Fully resolved simulation of particle-laden flow systems is a challenging task.
The procedure requires the solution of the unsteady incompressible Navier–Stokes
equations in a complex domain that changes in time as the particles move through
the carrier fluid. The computation must resolve the effect of the no-slip boundary
condition at each particle surface in order to predict accurately the motion of the
particles and the resulting turbulence modification. In spite of the computational
expense, several techniques have been developed to solve the coupled equations
of fluid and particle motion with resolution of the no-slip boundary condition at
the particle surface. This group of computational procedures includes the arbitrary
Lagrangian–Eulerian (ALE) technique (see Hu, Patankar & Zhu 2001) which has
been used primarily for two-dimensional simulations, and the deformable-spatial-
domain/stabilized space–time (DSD/SST) technique which was applied to the three-
dimensional direct numerical simulation (DNS) of 1000 spheres falling in a liquid
tube by Johnson & Tezduyar (1999).

A number of less-expensive numerical procedures suitable for simulating particle–
fluid interaction have been developed and applied to particle-laden flows. These
techniques avoid placing grid points on the surface of the particles and use a single
uniform grid to capture the behaviour of both phases. Glowinski et al. (2001) describe
a distributed Lagrange-multiplier (DLM) based fictitious domain methodology for the
simulation of flows with moving boundaries that has been successfully applied to the
simulation of the fluidization of a bed of 1204 spherical particles by Pan et al. (2002).
The Physalis technique developed by Prosperetti & Og̃uz (2001) was used to simulate
10 sedimenting cylinders by Zhang & Prosperetti (2003). An alternative technique for
obtaining solutions to the equations of fluid mechanics is the lattice Boltzmann method
(LBM) (see Chen & Doolen 1998). This method relies on simplified kinetic models
that incorporate the microscopic behaviour of fluids, to produce averaged properties
that obey the continuum equations. Simulations of the sedimentation of 32 000 solid
particles using the LBM were performed by Ladd (1997). Feng & Michaelides (2004)
developed an immersed-boundary LBM and simulated the sedimentation of 504
circular particles.

Advances in computational power and the development of numerical techniques
with simplified representations of the interface between the phases have allowed fully
or partially resolved simulations of thousands of particles in simple flows. However,
these simulations lack the complexity of turbulent flow and the number of particles is
still orders of magnitude below those found in industrial and experimental particle-
laden flows. In order to make simulation of these flows computationally tractable,
the requirement of resolution of the flow around each particle must be relaxed.
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Without resolution of the flow, the forces and torques at the particle surface cannot
be directly computed. Therefore, an alternative means must be used to incorporate the
momentum coupling between the phases. Typically, a Lagrangian particle equation of
motion is used to move the particles through the flow domain and a force coupling
scheme is used to account for modification of the carrier phase.

1.3. Particle equation of motion

Much of the history of the equation of motion for a spherical particle in a turbulent
carrier fluid is described by Maxey & Riley (1983). They rederived the equation
of motion from first principles and included the effects of spatial variations in the
carrier phase velocity. The derivation assumes that the particle is small compared to
the length scale of the variations in the undisturbed flow, the strain rate is small,
and that Rep is small. These restrictions limit the applicability of the Maxey–Riley
particle equation of motion, and a large amount of numerical work has been done in
an attempt to validate and/or correct the terms in the equation to develop a modified
equation for particle-laden flows with larger Rep (see Michaelides 2003). A suitable
general form for the particle equation of motion at moderate Rep is given by Bagchi
& Balachandar (2003b),

mp

dV
dt

= Fd + 3πµdp

∫ t

−∞
K(t − τ, τ )

(
du
dτ

− dV
dτ

)
dτ

+ CMmf

(
Du
Dt

− dV
dt

)
+ mf

Du
Dt

+ (mp − mf )g, (1.1)

where mp is the mass of the particle, µ is the fluid viscosity, mf is the mass of fluid
displaced by the particle, u is the fluid velocity undisturbed by the presence of the
particle, V is the particle velocity, D/Dt = ∂/∂t + u · ∇ is the total derivative following
a local fluid element, d/dt = ∂/∂t + V · ∇ is the total derivative following the particle,
and all the undisturbed fluid terms are evaluated at the location of the particle centre.

The first term on the right-hand side of (1.1) is the steady viscous drag force.
Typically, a drag correlation based on a fit to experimental and simulation data is
used to specify Fd . The most common correlation used for particle-laden flows is that
of Schiller and Nauman (see Clift, Grace & Weber 1978) which is valid for Rep < 800.
Using this correlation, the steady viscous force can be expressed as

Fd = 3πµdp(u − V )
[
1 + 0.15Re0.687

p

]
. (1.2)

However, (1.2) ignores the effect of the strain rate, ∇u, on Fd . Bagchi & Balachandar
(2003b) used simulation results for steady axisymmetric (Magnaudet, Rivero & Fabre
1995) and planar straining flows (Bagchi & Balachandar 2002c) past a sphere to show
that there is a complex dependence of Fd on strain. Because of the complexity of
the dependence for simple straining flows and the lack of a corresponding expression
for a turbulent flow, (1.2) will continue to be used for simulation of particle-laden
turbulent flows.

The second term is the history force which accounts for increased viscous drag due
to unsteadiness. Analytical formulae for the history kernel, K(t − τ, τ ), at moderate
Rep in a uniform ambient flow have been proposed by Mei & Adrian (1992) and Kim,
Elghobashi & Sirignano (1998). In both cases, the history kernel goes as (t − τ )−1/2

at short times and (t − τ )−2 at longer times. The results of Bagchi & Balachandar
(2003b) indicate that the kernel of Mei & Adrian (1992) is inadequate for a particle
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in a rapidly imposed straining flow. However, Bagchi & Balachandar (2003b) and
Kim et al. (1998) show that the history force is not significant in simulations of freely
translating particles.

The third term is the added mass force which is the force required to accelerate the
fluid that is displaced by the sphere. In the potential and creeping-flow regimes, the
added mass coefficient, CM , is known to be 1/2. A number of numerical studies have
shown that the form of the added mass term in (1.1) with CM = 1/2 is correct for
a particle in a viscous fluid at moderate Rep (Mei, Lawrence & Adrian 1991; Chang
& Maxey 1995; Magnaudet, Rivero & Fabre 1995; Bagchi & Balachandar 2003b).
The remaining terms on the right-hand side of (1.1) are the force due to the pressure
gradient and viscous stresses in the undisturbed fluid and the force due to gravity.

In addition to the forces on the right-hand side of (1.1), particles may also experience
lift forces due to shear (see Saffman 1965; McLaughlin 1991) and particle rotation
(see Rubinow & Keller 1961). The forms of the terms representing these forces were
derived analytically under the assumption of small Rep . The lift forces for particles
at moderate Rep are usually assumed to be smaller than the drag force in the same
direction, and are neglected. In cases where dp is of the same order as the length scale
of the flow variations, the Faxén corrections due to the curvature of the undisturbed
velocity field are required to predict accurately the forces on the particle. The form
of the Faxén corrections can be derived analytically in the low Rep limit (see Maxey
& Riley 1983). However, a suitable form for the Faxén corrections at moderate Rep
has not yet been developed.

1.4. Force coupling

Equation (1.1) provides a way to calculate the motion of a particle without resolving
the flow to the particle surface. In unresolved simulations of two-way coupled
flows, forces from the particles must be applied onto the carrier phase to introduce
modification of the carrier phase. Therefore, an additional term is added to the right-
hand side of the Navier–Stokes equations. One way to specify this forcing term is
to assume that each particle applies a point force with the same magnitude as the
force applied to the particle by the fluid, but in the opposite direction. The total
force applied to each fluid grid node during the solution procedure is a weighted
combination of the point forces from particles inside a specified local region. This
technique is called the point-force approximation.

In addition to the point-force approximation, there are other numerical techniques
for applying the effect of the particle onto the carrier phase. A modified point-force
technique that replaces the point forces on the right-hand side of the Navier–Stokes
equation using the pressure gradient and stress tensor terms from an analytical
velocity disturbance field was proposed by Pan & Banerjee (1996). A novel force-
coupling technique that obviates the solution of the particle equation of motion was
developed by Maxey et al. (1997). The technique uses a Gaussian distribution of the
force from the particle onto the fluid. The particle velocity is obtained by filtering
the fluid velocity field. Further development and validation in sedimenting flows has
been done by Maxey & Patel (2001) and Lomholt, Stenum & Maxey (2002).

1.5. Unresolved turbulent simulations

Fully resolved simulations of simple flows with a limited number of particles are
computationally expensive. Simulations of turbulent flow are also computationally
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expensive owing to the wide range of scales that must be resolved even in the
absence of a particulate phase. Therefore, simulations of two-way-coupled particle-
laden turbulent flows use force-coupling techniques and the particle equation of
motion.

Spectral simulations of particle-laden stationary isotropic turbulent flow have been
performed by Squires & Eaton (1990a) and Boivin, Simonin & Squires (1998) using
point-force coupling. Particles were found to reduce the equilibrium turbulent kinetic
energy and dissipation rate with increasing mass loading. Elghobashi & Truesdell
(1993) used finite-difference techniques and point-force coupling to simulate the
interaction between decaying homogeneous isotropic turbulence and small solid
particles. Their results show an increased decay of turbulent kinetic energy and
slower decay of the dissipation rate at short times, compared to the unladen case.
A similar numerical method was used by Druzhinin (2001) to simulate modification
of decaying turbulence by microparticles (τp � τk). Two-way-coupled point-force
spectral simulations of decaying homogenous isotropic turbulence were performed by
Sundaram & Collins (1999). Similar trends to those seen by Elghobashi & Truesdell
(1993) were observed in the time histories of the fluid kinetic energy and dissipation
rate.

Rouson, Eaton & Abrahamson (1997) performed a spectral DNS of particle–
turbulence interaction in a fully developed turbulent channel flow using point-force
coupling. The particles were the same as those used in the experiments of Kulick et al.
(1993), but the Reynolds number of the simulated flow was only a quarter of the
experimental value. Rouson et al. (1997) found no significant turbulence modification
by a 20 % mass loading of copper particles, casting doubt on the ability of the point-
force approximation to predict turbulence modification accurately. A similar spectral
simulation of particle-laden turbulent channel flow including the effect of collisions
was done by Li et al. (2001). The wall-normal and spanwise fluid velocity fluctuations
in the simulations were reduced by the particles, leading to greater anisotropy in the
turbulence in agreement with the results of Rouson et al. (1997).

Maxey et al. (1997) performed spectral simulations of particles under the influence
of gravity in forced and decaying homogeneous isotropic turbulence using the
Gaussian force distribution technique. At high wavenumbers, the forced turbulence
simulations showed that the effect of the particle force on the energy budget was small
compared to the nonlinear transfer. In the decaying turbulence simulations, the two
effects were of similar magnitude. Pan & Banerjee (1996) simulated the effects of near-
neutral density solid particles on turbulent flow in a horizontal open channel using
spectral methods and the modified point-force technique. Particles smaller than the
Kolmogorov length scale in the near-wall region were found to suppress turbulence,
whereas larger particles enhanced the turbulence.

1.6. Objectives and approach

A review of the turbulent particle-laden-flow literature shows that the interaction
between particles and turbulence is complex and that the understanding of the
turbulence modification process is limited at best. While experiments and unresolved
simulations provide a large amount of information that is useful in assessing the
impact of particles on a variety of turbulent flows, neither approach provides
the accuracy required to enable the general prediction of turbulence modification.
Predictive capability will only come from a detailed understanding of the physics of
particle–turbulence interaction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

68
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005006889


Particle–turbulence interaction 73

There have been a large number of fully resolved simulations investigating laminar
flow over fixed particles (see Mei et al. 1991; Kim et al. 1993, 1995, 1997; Chang &
Maxey 1994, 1995; Magnaudet et al. 1995; Ghidersa & Dušek 2000; Mittal 2000;
Tomboulides & Orszag 2000; Bagchi & Balachandar 2002 a–c), particles undergoing
prescribed motion (see Mei 1994), and freely moving particles (see Kim et al. 1998;
Bagchi & Balachandar 2002a , 2003b). However, there are few simulations of fully
resolved turbulent flow over particles. Bagchi & Balachandar have performed high-
accuracy spectral simulations of turbulent flow past a fixed particle (2003a, 2004) by
sweeping a frozen isotropic turbulent field past the particle. The use of the frozen
isotropic turbulent field as an inflow boundary condition prevented the particle from
modifying the inflow turbulence. Therefore, this numerical technique is suitable only
for the cases with non-zero mean slip velocity that were considered by the authors.

In this work, the fully coupled interaction between a fixed particle and a turbulent
flow with zero mean slip velocity is considered. We perform a series of simulations
of decaying homogeneous isotropic turbulence with a fixed particle, and the results
are used to analyse turbulence modification in the region near the particle and the
force applied to the particle by the turbulent field. The use of a fixed particle could
be justified as relevant to turbulence modification by heavy particles moving at the
mean flow velocity in decaying turbulence behind a grid or particles in microgravity.
However, these simulations are directed more toward developing an understanding of
the fundamental physics than a specific turbulent particle-laden flow. Therefore, the
results of the simulations will be useful in directing the development of modelling
techniques for unresolved simulations of turbulent particle-laden flows of interest in
engineering applications.

2. Numerical method
Accurate simulation of turbulent flow around a fixed particle requires resolution of

a range of scales from the large turbulent eddies to the boundary layer at the particle
surface. In order to capture this range of scales, we use an overset grid composed of
a Cartesian background grid and a body-fitted spherical grid. The Cartesian grid is
sized to capture the range of turbulent scales in the absence of the particle and the
spherical grid provides the extra resolution required to capture the effects of the no-
slip boundary condition at the particle surface. Information is transferred to the
pseudoboundary nodes at the outer radial boundary of the spherical grid from the
Cartesian grid via interpolation. A large portion of the Cartesian grid underneath
the spherical grid is designated as a hole region since the spherical grid provides
the solution in that region. Information is transferred from the spherical grid to the
Cartesian grid pseudoboundary nodes at the edge of the hole region via interpolation.
With the solution of the incompressible Navier–Stokes equations on each grid and
the transfer of information in both directions between the grids via interpolation, a
fully coupled solution of the governing equations is obtained.

2.1. Governing equations

For an incompressible flow, the non-dimensional Navier–Stokes and continuity
equations can be written as

∂u
∂t

= ∇ · f − ∇p, (2.1a)

0 = ∇ · u, (2.1b)
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where u is the fluid velocity vector, p is the pressure, and f is the combined viscous
stress and nonlinear term tensor. For solution on the Cartesian grid, (2.1a)–(2.1b) are
written using Cartesian coordinates and the Cartesian velocity vector, (u, v, w), where
u, v and w are the velocity components in the x, y, and z directions, respectively. For
solution on the spherical grid, (2.1a)–(2.1b) are written using spherical coordinates
and the spherical velocity vector, (ur, uθ , uφ), where ur , uθ and uφ are the velocity
components in the radial, tangential (0 � θ � π) and azimuthal (0 � φ � 2π)
directions, respectively.

The variables in (2.1a)–(2.1b) are non-dimensionalized by the particle diameter,
dp , and the initial root mean square (RMS) velocity fluctuation, urms0

. The non-
dimensional variables are defined as

(x, y, z, r) =
(x∗, y∗, z∗, r∗)

dp

, t =
t∗urms0

dp

, (2.2a)

(u, v, w, ur, uθ , uφ) =
(u∗, v∗, w∗, u∗

r , u
∗
θ , u

∗
φ)

urms0

, p =
p∗

ρu2
rms0

, (2.2b)

Re =
urms0

dp

ν
, (2.2c)

where the superscript ∗ denotes a dimensional quantity and ν is the fluid kinematic
viscosity. All results in this work are reported in terms of non-dimensional variables
based on dp and urms0

unless otherwise indicated.

2.2. Geometry and grid

The governing equations are solved using an overset grid composed of a uniform
Cartesian grid with Nx × Ny × Nz = 192 × 192 × 192 points and a spherical grid
with constant geometric stretching in the radial direction and Nφ × Nr × Nθ =
192 × 192 × 96 points. The Cartesian grid covers a cubic domain with sides of
non-dimensional length, L = 192. The particle centre is located at (x, y, z) =
(95.5, 95.5, 95.5) and the spherical grid extends to a non-dimensional radius of 35
with the poles (θ = 0, π) parallel to the Cartesian x-axis. A fixed overlap is specified
such that all Cartesian cells with centres inside r = 30.5 are designated as hole nodes.
A close-up of the overset grid near the particle surface is shown in figure 1 and a
portion of the overlap region is shown in figure 2.

A staggered grid (Harlow & Welch 1965) arrangement of the dependent variables is
used for the Cartesian and spherical grids. The locations of the velocity components
and the cell-centred pressure nodes are shown in figure 3 for the Cartesian grid and
figure 4 for the spherical grid. In both cases, the velocity components in all three
directions are offset from the cell centre in the direction of the component. The i, j

and k subscripts shown in figures 3 and 4 are used to reference locations in the x, y

and z directions, respectively, and the φ, r and θ directions, respectively.

2.3. Spatial discretization

The appropriate forms of (2.1a)–(2.1b) are spatially discretized with second-order-
accurate finite-volume flux differencing on each grid. The locations of the off-
diagonal f tensor components required for this discretization are shown in figure 3
for the Cartesian grid and figure 4 for the spherical grid. The diagonal f tensor
components required for the discretization are located at the cell centres with the
pressure nodes in both coordinate systems. The discrete f tensor components at all
locations are computed using second-order-accurate central differences and two-point
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Figure 1. Close-up of overset grid near particle surface.

Figure 2. Close-up of overset grid overlap region.

averages. Details on the pole treatment and particle surface treatment used for spatial
discretization of the governing equations in the spherical coordinate system can be
found in the Appendix.
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wi, j, k

v i, j, k

ui, j,k
pi, j,k

fxyi, j, kfyz i, j, k

fxzi, j, k

x

y

z

Figure 3. Cartesian staggered grid cell.

θ

r

φ

uφi, j, k

uθi, j, k

uri, j, k

pi, j, k

frφi, j, k
frθi, j, k

fθφi, j, k

Figure 4. Spherical staggered grid cell.

2.4. Temporal discretization

The spatially discretized governing equations are integrated in time using the overset
grid fractional-step method and the three-step time-advancement algorithm described
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Figure 5. Cartesian multigrid coarsening process.

by Burton & Eaton (2002a). This numerical technique was used by Burton & Eaton
(2002b) in two-dimensional simulations of fixed cylinders in a vortex array. The
spatially discretized Cartesian grid momentum equations are time-advanced using
explicit third-order Runge–Kutta for all velocity terms. The spatially discretized
spherical grid momentum equations are time-advanced using implicit Crank–Nicolson
for the radial and azimuthal viscous terms and the azimuthal convective terms, and
explicit third-order Runge–Kutta for the remaining velocity terms. The pressure
terms in the Cartesian and spherical grid momentum equations are time-advanced
with implicit Euler. Further details on the hybrid time-advancement algorithm and
the solution procedure for the fully discretized momentum equations can be found in
Burton & Eaton (2003).

The momentum update and the enforcement of the continuity equation are
performed in different steps in the fractional-step algorithm. The momentum update
produces an intermediate velocity field which must then be projected to a divergence-
free subspace. The Cartesian grid velocity field is first advanced since the update
uses explicit time advancement. Once the intermediate Cartesian grid velocity field
is determined, the pseudoboundary velocity values at the outer edge of the spherical
grid can be interpolated and the discretized spherical grid momentum equations can
be solved. After the intermediate velocity field is determined on the spherical grid, the
velocity values at the pseudoboundary nodes on the Cartesian grid are determined
by interpolation.

2.5. Poisson equation

The intermediate velocity field in the fractional-step algorithm is projected using the
solution to the overset-grid discrete Poisson equation (see Burton & Eaton 2002a).
The pressure is updated using the same solution. While the momentum updates
on the two grids are effectively decoupled from one another, the solution to the
discrete Poisson equation is fully coupled between the two grids. To solve the fully
coupled problem, the iterative scheme described in Burton & Eaton (2002a) is used
in combination with a multigrid method on each grid separately.

Geometric multigrid (see Briggs, Henson & McCormick 2000) is used to construct
the equations for each multigrid level in the solution of the spherical-coordinate
Poisson equation. Owing to the behaviour of the discrete operators near the poles of
the spherical coordinate system, point relaxation is ineffective in the φ-direction (see
Ruge et al. 2000). Therefore, line relaxation is used in the φ-direction. The multigrid
method on the Cartesian grid is slightly more complicated owing to the hole region.
The coarsening process on a two-dimensional grid with a hole in it is shown in
figure 5. While the multigrid levels can be visualized in this way, it is not clear how
to discretize the equation on the coarse grids owing to the irregular cell structure.
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Therefore, an agglomeration multigrid technique is used to determine the coarse grid
systems of equations (see Mavriplis & Venkatakrishnan 1995).

2.6. Interpolation equations

The velocities at the pseudoboundary nodes are obtained using third-order-accurate
tri-quadratic interpolation of the velocity field on the other grid. The staggered grid
arrangement of the dependent variables requires that all three components of the
velocity vector on each grid are interpolated to the location of each component of the
velocity vector on the other grid. Since the pseudoboundary velocities are interpolated
directly to the staggered grid locations, the spatial differencing stencils near the outer
boundary of the spherical grid and the hole boundary of the Cartesian grid need not
be modified.

2.7. Boundary and initial conditions

Periodic boundary conditions are used at the boundary of the Cartesian grid for the
turbulent simulations. In cases where the uniform flow over a sphere is simulated,
the velocity at the inflow (x = 0) is set to the free-stream velocity and a convective
boundary condition is used at the outflow (x = L). The no-slip boundary condition
at the inner boundary of the spherical grid is applied directly to the ur nodes since
they are located on the particle surface. The effect of the no-slip boundary condition
on the other velocity components is taken into account in the calculation of frθ and
frφ at the particle surface discussed in the Appendix.

In order to simulate the interaction between a fixed particle and decaying
turbulence, a turbulent field is first obtained on the Cartesian grid. This turbulent
field is prescribed initially using the technique described by Lee (1985). The Fourier
coefficients of the turbulent field are chosen to satisfy isotropy and continuity
constraints and to produce a desired energy spectrum, E(k),

E(k) =
6√
π

k2

k3
p

exp

[
−

(
k

kp

)2
]
, (2.3)

where kp is the wavenumber at which E(k) is maximum. The non-dimensional
Kolmogorov length scale, η, and the Taylor microscale Reynolds number, Reλ, are
the input parameters used to specify kp and the non-dimensional viscosity for the
simulation, 1/Re. The equations for Re and kp can be derived from (2.3) and
the definitions of the Kolmogorov length scale, the Taylor microscale in isotropic
turbulence, and the dissipation rate (see Tennekes & Lumley 1974)

kp =

(
20

27Re2
λη

4

)1/4

, (2.4)

Re =

√
3

10
kpReλ. (2.5)

Once the Fourier coefficients have been generated, conjugate symmetry is enforced and
an inverse Fourier transform is used to specify the velocity values at the staggered
Cartesian grid locations. The velocity field satisfies (2.1b), but not its discretized
version. Therefore, the velocity field is projected to a divergence-free subspace. This
projection causes only minor changes to the velocity field.

The initial turbulent field satisfies the continuity and isotropy constraints and
matches a desired analytical energy spectrum. However, higher-order statistics are
not representative of real turbulence. Therefore, the turbulent simulation is first run
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without a particle to develop a suitable initial point at which to insert the particle, and
to compute turbulence statistics in the unladen flow. When the developed turbulent
state is reached and the particle grid is introduced into the solution domain, fourth-
order-accurate three-dimensional cubic splines are used to interpolate the velocity field
to every node in the spherical coordinate system. The cubic spline interpolation does
not guarantee that the velocity field interpolated to the spherical grid is divergence-
free or that the velocity is zero at the particle surface. Therefore, the velocity field on
both grids is projected (see Burton & Eaton 2002a) to produce a velocity field that
satisfies the discrete continuity equation on both grids and has zero radial velocity at
the particle surface.

2.8. Solver validation

2.8.1. Spatial order of accuracy

The Cartesian and spherical coordinate solvers were validated independently before
they were combined to create the overset grid solver. Simulations of the Taylor vortex
array were used to validate the spatial order of accuracy of the Cartesian coordinate
solver. Since the solution is two-dimensional, one grid refinement study was done with
the vortices in the (x, y)-plane and another study was done with the vortices in the (y,
z)-plane. The simulations were run until the vortices had decayed to approximately
half of their initial strength. Velocity and pressure RMS errors (see Burton & Eaton
2003) show that the non-zero velocity components and the pressure are second-order
accurate in space and the error in the remaining velocity component is machine zero.

The spatial order of accuracy of the discretization used for the spherical coordinate
solver was verified by calculating the force on a sphere due to uniform flow at
Re∞ = 20, where Re∞ is the Reynolds number based on dp and the free-stream
velocity, U∞. The force was calculated by numerically integrating the pressure and
shear stress on the sphere surface. Uniform flow over a sphere at Re∞ < 210 is steady
and axisymmetric. Therefore, an axisymmetric version of the spherical coordinate
code was used first to validate the spatial order of accuracy and to determine a
grid-independent value for the drag coefficient,

Cd =
Fd

1
2
ρU 2

∞(π/4)d2
p

, (2.6)

where all quantities on the right-hand side are dimensional and Fd is the drag force.
The drag coefficient can be split into the pressure coefficient, Cp , which includes the
part of the force due to the pressure, and the friction coefficient, Cf , which includes
the part of the force due to the viscous stress.

The axisymmetric grid refinement studies were done in a domain that extended to
r = 25. The velocity at the outer radial boundary was set to the free-stream velocity
at the inflow, (π/2 � θ � π), and calculated with a convective boundary condition
at the outflow, (0 � θ < π/2). The numerically computed values of Cf , Cp and Cd

from the grid refinement study are presented in table 1. Each time the number of grid
points was doubled, the radial stretching factor, rstretch, was reduced so that the radial
grid spacing adjacent to the sphere surface, 	r1, was halved. If rstretch is not reduced
during grid refinement, then the differencing in the radial direction will be first-order
accurate. An estimate of the spatial order of accuracy of the code, h, can be obtained
using a sequence of the numerically computed drag coefficient values (see Ferziger &
Perić 1996)

h =
log [(Cd2	 − Cd4	)/(Cd	 − Cd2	)]

log 2
, (2.7)
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Nr × Nθ rstretch 	r1 Cf Cp Cd

64 × 32 1.07289 0.0200 1.738 1.062 2.801
128 × 64 1.03562 0.0100 1.710 1.031 2.742
256 × 128 1.01761 0.0050 1.703 1.023 2.726
512 × 256 1.00876 0.0025 1.702 1.021 2.722

Extrapolation 1.702 1.020 2.721

Table 1. Grid refinement study for axisymmetric simulation of uniform flow over a sphere at
Re∞ = 20.

Study Cf Cp Cd

Dennis & Walker (1971) 1.708 1.024 2.730
Chang & Maxey (1994) 1.726 1.076 2.800
Magnaudet et al. (1995) 1.721 0.986 2.707
Kim et al. (1998) 1.725 1.038 2.763
Present study 1.702 1.021 2.722

Table 2. Force coefficients for uniform flow over a sphere at Re∞ = 20.

where the grid spacing used to compute Cd	 is a factor of two smaller than the
grid spacing used to compute Cd2	 and a factor of four smaller than that used to
compute Cd4	. Using the values of the drag coefficient from the 128 × 64, 256 × 128
and 512 × 256 simulations in (2.7) shows that the spherical coordinate solver is
second-order accurate in space. Improved estimates of the force coefficients using
Richardson extrapolation (see Ferziger & Perić 1996) are also presented in table 1.
It is clear that the computed values on the 512 × 256 grid are very close to the
grid-independent values as the Richardson extrapolation predicts little change with
further grid refinement.

Several other authors have computed the force coefficients at Re∞ = 20. A
comparison of the results is presented in table 2. The ranges of variation are 1.4 %,
9.1 % and 3.4 % of the minimum value for Cf , Cp and Cd , respectively. None of
the other studies in table 2 include a detailed grid refinement study at this Reynolds
number and so it is difficult to account for the differences in the results. Streamlines
and vorticity contours from the 512 × 256 grid solution reveal that the calculated flow
is not separated at Re∞ = 20, in agreement with the results of the other studies in
table 2.

The effect of the boundary condition at the outer radial boundary was investigated
by comparing the results in table 1 to similar calculations using the free-stream velocity
along the entire outer radial boundary. It is well known that the use of Dirichlet
boundary conditions at the outflow boundary will produce reflections that propagate
back upstream into the flow domain. However, the reflections in our simulations
remained far downstream and had a negligible effect on the force coefficients. These
results indicate that our domain size was large enough to produce accurate calculations
of the force coefficients and that Dirichlet boundary conditions may be used at this
Re∞ without adversely affecting the results.

The results from the axisymmetric grid refinement studies indicate that the
discretizations of the spherical coordinate governing equations are second-order
accurate in r and θ . Therefore, a grid refinement study in φ was required for the
three-dimensional version of the spherical code. Since the azimuthal and tangential
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Nφ × Nr × Nθ rstretch 	r1 Cf Cp Cd Angle (deg.)

32 × 64 × 16 1.08758 0.01 1.863 1.128 2.991 0
64 × 64 × 32 1.08758 0.01 1.738 1.047 2.785 0

128 × 64 × 64 1.08758 0.01 1.708 1.027 2.735 0
32 × 64 × 16 1.08758 0.01 1.780 1.065 2.845 45
64 × 64 × 32 1.08758 0.01 1.718 1.032 2.749 45

128 × 64 × 64 1.08758 0.01 1.703 1.024 2.727 45
32 × 64 × 16 1.08758 0.01 1.805 1.081 2.887 90
64 × 64 × 32 1.08758 0.01 1.724 1.036 2.760 90

128 × 64 × 64 1.08758 0.01 1.704 1.025 2.729 90

Table 3. θ–φ grid refinement study for three-dimensional simulation of uniform flow over a
sphere at Re∞ = 20.

Grid rstretch 	r1 Cf Cp Cd

Overset 1.02509 0.0075 1.707 1.027 2.733
Spherical 1.02509 0.0075 1.705 1.026 2.731

Table 4. Force coefficients from overset grid simulation and spherical grid simulation of
uniform flow over a sphere at Re∞ = 20.

grid spacings should be the same to provide similar resolution in all directions, a θ–φ

grid refinement study was performed instead. Three different angles of the uniform
flow velocity to the poles of the spherical coordinate system were used as part of the
grid refinement study, and the velocity at the outer radial boundary condition was
set to the free-stream velocity. The calculated force coefficients are shown in table 3.
Using (2.7), the three-dimensional code is shown to be second-order accurate in θ

and φ, independent of the flow angle to the poles. Therefore, the spherical coordinate
solver is second-order accurate in space for all coordinate directions.

The calculated values of the force coefficients in table 3 at the different flow angles
are very similar on the 128 × 64 × 64 grid. The range of variation is 0.29 % of the
minimum value for all three coefficients. Therefore, the spherical coordinate solver
produces results that are virtually independent of the flow angle to the pole. This is
important for the turbulent simulations, as the flow angle to the poles is constantly
changing in time.

Both Navier–Stokes solvers are second-order accurate in space. Therefore, the
overset grid code composed of these two solvers will also be second-order accurate
in space, provided that a fixed overlap is used during grid refinement and the
interpolation is third-order accurate (see Burton & Eaton 2002a). A comparison of
the force coefficients computed from a simulation using the overset grid described
in § 2.2 and those computed from an axisymmetric simulation on a spherical grid
with the same resolution in r and θ , is shown in table 4. The differences between the
results of the two simulations are very small. The force coefficients from the overset
grid solution are within 0.6 % of the values computed from the highest resolution
axisymmetric simulation shown in table 1. Therefore, the overset grid system is capable
of accurately resolving flows over the particle up to at least Rep = 20.

2.9. Temporal order of accuracy

The temporal order of accuracy of each solver was validated independently. However,
it is important also to validate the time accuracy of the overset grid code due to
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the time-dependent corrections that are made to the discrete continuity equation as
part of the fractional-step method (see Burton & Eaton 2002a) and the different time
advancement algorithms on each component grid. One of the turbulent simulations
was advanced for one time step, 	t = 0.001. Two other simulations starting from
the same point were advanced for the same length of time with 10 and 100 time
steps. Finally, an ‘exact’ solution was computed with 400 time steps. The errors in the
calculated forces on the sphere when compared to the ‘exact’ solution demonstrated
second-order time accuracy (see Burton & Eaton 2003). Therefore, the computed
velocity components are second-order accurate in time as is expected owing to the
Crank–Nicolson treatment on the spherical grid.

3. Unladen simulation
The initial condition for the particle–turbulence calculation required a turbulent

field that was developed independently on the Cartesian grid. Additionally, the
unladen simulation was continued after the developed state was reached, in order
to collect statistics for comparison with the laden overset grid calculations. The
analytical energy spectrum in (2.3) was used to specify the initial velocity field on the
1923 Cartesian grid. The non-dimensional input parameters for the simulation were
Reλ = 65 and η = 0.5.

The unladen calculation was run for 50 non-dimensional time units with 	t =
0.1. The development of the turbulence was measured using the velocity derivative
skewness

Sk = −
u3

1,1(
u2

1,1

)3/2
= −

1
3

3∑
i=1

(∂ui/∂xi)3

[
1
3

3∑
i=1

(∂ui/∂xi)2

]3/2
, (3.1)

where the overbar denotes the ensemble average over all cells in the Cartesian grid
and the subscripts 1, 2 and 3 identify the vector components in the x, y and z

directions, respectively. When Sk reaches its asymptotic value, the flow is considered
to be representative of real turbulence. Previous simulations (see Mansour & Wray
1994) have shown that the asymptotic value of Sk in developed turbulence is between
−0.4 and −0.5. In this simulation, Sk reached an asymptotic value of −0.48 beginning
around t = 15. Therefore, the turbulence was assumed to have reached a developed
state at t = 15.

The isotropy of the unladen turbulence simulation was verified by monitoring the
statistics of the velocity field. The time histories of the RMS velocity components
were virtually indistinguishable from one another over the length of the simulation,
indicating that the turbulence remained isotropic. Another check of isotropy was
made by calculating the longitudinal integral scales. These length scales are computed
by integrating the two-point spatial correlation of each of the velocity components

Lαα =
1

u2
α

∫ L/2

0

uα(x)uα(x + reα) dr for α = 1, 2, 3, (3.2)

where eα is the unit vector in the α-direction. During the initial development
period, (t � 15), the length scales in the three coordinate directions showed different
behaviour. However, once the turbulence reached a developed state, the three length
scales grew consistently in time from a non-dimensional length of 11 at t = 15 to 16
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Figure 6. Time development of energy spectrum on 1923 and 3843 grids.

at t = 50. The small deviations in isotropy that were observed can be attributed to
the insufficient sample of large-scale motions (see Squires & Eaton 1990b).

The Kolmogorov length scale and Taylor microscale, λ, in the unladen simulation
initially decayed as the turbulence developed, and then grew as the simulation
continued from the developed state. The Taylor microscale Reynolds number initially
decayed rapidly as both the Taylor microscale and the RMS velocity components
decayed. However, after the turbulence reached a developed state and the Taylor
microscale began to grow, the decay of Reλ was slower.

The temporal development of the spherically symmetric three-dimensional energy
spectrum, E(k), is shown in figure 6. The initial analytical spectrum shows that there
is very little energy at length scales close to the particle diameter. As the initial
condition is advanced toward the developed state at t = 15, energy is distributed
to higher wavenumbers. After the developed state is reached, the energy spectrum
decays in time at all wavenumbers and the peak moves to lower wavenumbers.

The development of the dissipation spectrum, D(k) = (2/Re)k2E(k), is shown in
figure 7. The initial analytical energy spectrum prescribes a peak in the dissipation
spectrum near the peak wavenumber of the energy spectrum. In real turbulence, there
is separation between the energy-containing scales and the dissipative scales. The
initialization period produces this separation of scales as the peaks of the energy and
dissipation spectra move in different directions. However, Reλ is not large enough
for an inertial subrange with constant −5/3 decay to appear in the energy spectrum.
The dissipation spectrum behaves the same way as the energy spectrum after the
developed state is reached. The movement of the peak of the dissipation spectrum to
lower wavenumbers is consistent with the growth of the Kolmogorov length scale.

The resolution of the large scales in simulations of homogeneous isotropic
turbulence can be evaluated from the behaviour of the energy spectrum at low
wavenumbers. According to Mansour & Wray (1994), an order of magnitude drop
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Figure 7. Time development of dissipation spectrum.

in the energy spectrum from the value at the peak wavenumber to the value at the
lowest resolved wavenumber is ideal in order to guarantee a sufficient sample of
energy-containing eddies. The energy spectra in figure 6 at t = 15 and t = 30 satisfy
this criterion. However, the peak of the energy spectrum at t = 50 has a value that
is only four times the value at the lowest wavenumber. Therefore, the large-scale
resolution is marginal at t = 50.

The resolution of the small scales is determined by the product of the Kolmogorov
length scale and the highest resolved wavenumber, kmax . The criterion for adequate
resolution of the small scales is ηkmax ≈ 1. Many homogeneous isotropic turbulence
simulations are done with spectral methods, where the highest resolved wavenumber
is well defined. For a spectral simulation of the current flow on a 1923 grid, ηkmax =
1.57 at t = 0. However, finite-difference techniques do not resolve any non-zero
wavenumber exactly, and so it is not clear that the spectral criterion can be applied to
a finite-difference simulation. Inadequate resolution of the small scales in a turbulence
simulation can lead to energy pile-up at the high wavenumbers (see Mansour & Wray
1994). In order to verify that our small-scale resolution was sufficient, a calculation
was done on a 3843 grid using the developed field from the 1923 simulation at t = 15
as the initial condition. Figure 6 shows good agreement between the energy spectra
from the two simulations at the high wavenumbers. Therefore, the flow is adequately
resolved at the small scales with the 1923 grid.

The time histories of turbulent kinetic energy, q2
ul/2, and dissipation rate, εul , are

shown in figure 8. During the unladen simulation, these turbulent statistics were
computed from numerical integration of the energy spectrum and the dissipation
spectrum. The turbulent dissipation rate initially increases, leading to a decrease in
η while the turbulence is developing. The turbulent kinetic energy decays throughout
the simulation. Previous simulations of decaying homogeneous isotropic turbulence
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Figure 8. Turbulent kinetic energy and dissipation rate time histories.

(see Lee 1985) have shown self-similar decay of the turbulent kinetic energy with a
decay exponent in the range n = 1.33 ∼ 1.67. The dotted line in figure 8 represents
a constant decay exponent of 1.4 which was found in the simulation of Squires &
Eaton (1990b). The unladen simulation in this work did not produce a significant
period of self-similar decay of turbulent kinetic energy during the simulation time
period. However, the decay exponent is approaching a value consistent with previous
work.

For the purposes of comparison with the overset grid simulations where the
spectra cannot be computed, the turbulent kinetic energy and dissipation rate from
the unladen simulation were also calculated using finite-difference techniques. The
turbulent kinetic energy in each cell was calculated using two-point averages of the
velocity values at the cell boundary. The turbulent dissipation rate in each cell was
calculated by applying two-point averages and second-order-accurate finite differences
to the analytical expression for the dissipation rate

ε = 1
2
Re

[
τ 2
xx + τ 2

yy + τ 2
zz + 2

(
τ 2
xy + τ 2

xz + τ 2
yz

)]
, (3.3)

where the τ tensor components are the f tensor components without the nonlinear
terms. The values calculated in each cell for the turbulent kinetic energy and
dissipation rate were averaged to determine finite-difference versions of the time
histories in figure 8.

Figure 9 shows time histories of εul from the 1923 and 3843 calculations of the
unladen turbulent flow. The εul values are computed using integration of D(k), or
the finite-difference technique discussed in the previous paragraph. The spectrally
computed εul shows sensitivity to the grid resolution, indicating that the small-scale
resolution of the unladen simulation is not perfect. The decrease in the spectrally
computed εul with grid refinement is consistent with the small reduction of the energy
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Figure 9. Turbulent dissipation rate time histories using different grids and calculation
techniques. spec., spectrally computed; f.d., finite difference.

spectrum at high wavenumbers with grid refinement that is shown in figure 6. The
computation of εul with finite-difference techniques shows an even larger sensitivity to
grid resolution owing to the improved numerical approximation of the terms in (3.3)
with grid refinement. Similar time histories of q2

ul/2 show virtually no sensitivity to the
grid resolution or computational technique. The spherical grid provides much higher
resolution near the particle than even the 3843 Cartesian grid. Since the turbulence
modification results will focus on the region near the particle, the finite-difference
values of q2

ul/2 and εul from the 3843 unladen calculation are used to normalize
values from the finite-difference computation of the corresponding quantities on the
spherical grid in § 4.1.

4. Particle simulations
The behaviour of Sk in the unladen calculation indicated that a developed turbulent

state was reached on the Cartesian grid at t = ti = 15. Therefore, this velocity field
was used to specify the initial condition for the simulations with the fixed particle
using the procedure described in § 2.7. The unladen energy spectrum at t = 30 in figure
6 shows good resolution of the large and small scales of the turbulence based on the
criteria discussed in § 3. However, at later times, the peak of the energy spectrum is
less than an order of magnitude above the value at the lowest wavenumber, indicating
inadequate resolution of the large scales. The goal of this work was to perform a fully
resolved simulation of particle–turbulence interaction. Therefore, the simulations were
run between t = 15 and t = 30 where the turbulence was developed and adequately
resolved at both large and small scales. The properties of the unladen turbulent field
at t − ti = 0 and t − ti = 15 are presented in table 5. The particle diameter was
approximately twice the unladen Kolmogorov length scale during the simulation.
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q2/2 ε λ Reλ η

t − ti = 0 0.898 0.042 5.082 32.22 0.455
t − ti = 15 0.572 0.026 5.164 26.12 0.513

Table 5. Turbulence statistics from unladen calculation.

The simulations were run on the overset grid described in § 2.2 with rstretch =
1.02509. The time step for the simulations was 	t = 0.001. This time step was set by
the stability restriction due to the explicit treatment of the tangential viscous terms
in the spherical coordinate momentum equations. Using a smaller time step did not
affect the results in any significant way. A measurement of the time scale of the
dissipative eddies in the turbulence is given by the Kolmogorov time scale,

τk =

√
ν

ε
. (4.1)

The eddy turnover time from the unladen simulation can be estimated as

τe =
Λ

q
, (4.2)

where

Λ =
3π

2q2

∫ ∞

0

E(k)

k
dk (4.3)

is an estimate of the integral length scale. Using the appropriate values from the
unladen simulation at t = ti , the simulation duration, τsim, is related to the values of
these time scales at ti as

τsim = 1.78τe(ti) = 8.82τk(ti). (4.4)

The interaction between the particle and the turbulence depends on the type of
turbulent structure into which the particle is placed at the beginning of the simulation.
To obtain statistically meaningful measurements of particle–turbulence interaction,
we performed a series of simulations with the particle at different points in the
turbulent field. The location of the centre of the particle relative to the Cartesian
grid was always the same, but the background turbulent field was shifted on its grid
so that the particle was located in a different region of the turbulence. The set of
simulations included 64 different particle locations chosen from a uniformly spaced
4 × 4 × 4 array. Each of these starting locations is at least 48dp from any other starting
location. This distance is more than four times the integral length scale. Therefore,
each simulation is assumed to be independent of the others.

In order to verify that the spherical grid provides adequate resolution of the
boundary layer at the particle surface, Rep at each proposed particle location was
calculated during the unladen simulation. The maximum value of Rep over the 64
particle locations at all times was approximately 19. The spherical grid was shown to
resolve accurately flows up to at least Re∞ = 20 in § 2.8.1. Therefore, the overset grid
system is suitable for these simulations.

4.1. Turbulence modification results

During the simulations, the turbulent kinetic energy and dissipation rate were volume-
averaged in spherical shells to produce radial profiles. The q2 and ε profiles from
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Figure 10. Sample volume-averaged turbulent kinetic energy profiles.
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Figure 11. Sample volume-averaged turbulent dissipation rate profiles.

one of the simulations, chosen at random from the 64 cases, are shown in figures 10
and 11, respectively. The profiles are each normalized by the values of the unladen
turbulent kinetic energy, q2

ul/2, and dissipation rate, εul , at the same point in time.
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There is a sharp rise in the q2 profile in figure 10 at t = ti close to the particle
surface owing to the projection of the turbulent velocity field interpolated from the
Cartesian grid. The projection algorithm forces the radial component of velocity to
zero at the particle surface by turning the flow. However, the effect of the no-slip
condition is not applied in the tangential and azimuthal directions by the projection.
Therefore, the azimuthal and tangential velocity components close to the particle
surface increase, producing a higher q2 near the particle surface. The particle in the
sample calculation interacts with a region of high turbulent kinetic energy at later
times and dramatically damps q2 near the particle surface.

Figure 11 shows that ε near the particle surface is substantially higher than the
unladen value at all times. The dissipation rate for the spherical coordinate system is
defined analytically as

ε = 1
2
Re

[
τ 2
rr + τ 2

θθ + τ 2
φφ + 2

(
τ 2
rθ + τ 2

rφ + τ 2
θφ

)]
. (4.5)

The enhanced ε near the particle surface can be attributed to the effect of the no-slip
boundary condition. In particular, the magnitudes of the radial derivatives of all three
velocity components will be higher owing to the presence of the particle. Therefore,
τ 2
rr , τ 2

rθ and τ 2
rφ will be larger. The turning of the flow by the projection algorithm

causes the amplified ε at t = ti by increasing the magnitudes of the azimuthal and
tangential velocity components and also the radial derivative of ur , even though
the boundary layer has not yet formed. Therefore, the enhanced dissipation by the
particle is due to the displacement of fluid by the particle and the formation of the
boundary layer at later times.

The values of q2 at large radii in figure 10 are similar to the unladen value since
the volume integration at large radii samples a large region of the turbulent field.
The values of ε at large radii in figure 11 are lower than the unladen value because
εul was taken from the 3843 simulation instead of the 1923 simulation as discussed
in § 3. If the smaller value of εul from the 1923 simulation is used for normalization,
better agreement between the laden and unladen values of ε at large radii will
occur. However, this choice of normalization will cause artificial amplification of the
turbulent dissipation rate ratio at small radii which is less desirable as our focus is
on the near-particle region.

It is helpful to visualize the behaviour of the turbulence in the laden and unladen
cases in order to understand the results shown in the radial profiles. The laden and
unladen q2 contours for the sample case in a plane through the particle centre are
shown in figures 12 and 13. The contours are normalized by the value of the unladen
turbulent kinetic energy at ti , q2

ul(ti)/2. The small region of amplified q2 close to the
particle surface owing to the projection of the velocity field at t = ti can be seen
in figure 12. At later times, the particle is surrounded by a region of low turbulent
kinetic energy due to the no-slip boundary condition. Structures with high turbulent
kinetic energy approach the particle during the simulation, leading to the elevated q2

inside r = 10 shown in figure 10.
The laden and unladen ε contours for the sample case in a plane through the

particle centre are shown in figures 14 and 15. The contours are normalized by the
value of the unladen turbulent dissipation rate at ti , εul(ti). The elevated ε region at
t = ti , owing to the projection of the velocity field, is clearly visible in figure 14. The
region grows in time, as seen in the profiles in figure 11. At later times, the regions of
high ε far from the particle surface have decayed. However, the high ε region close
to the particle surface persists throughout the simulation.
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1.

(a)
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Figure 12. Sample turbulent kinetic energy, q2/q2
ul(ti), contours in the (x, y)-plane through

particle centre at (a) t − ti = 0, (b) 3 and (c) 6.
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(a)

(b)

(c)

Figure 13. Sample turbulent kinetic energy, q2/q2
ul(ti), contours in the (x, y)-plane through

particle centre at (a) t − ti = 9, (b) 12 and (c) 15.
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Figure 14. Sample turbulent dissipation rate ε/εul(ti) contours in the (x, y)-plane through
particle centre at (a) t − ti = 0, (b) 3 and (c) 6.
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(a)

(b)

(c)

Figure 15. Sample turbulent dissipation rate ε/εul(ti) contours in the (x, y)-plane through
particle centre at (a) t − ti = 9, (b) 12 and (c) 15.
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Figure 16. Ensemble average of the volume-averaged turbulent kinetic energy profiles.

A comparison of the laden and unladen contours in figures 12–15 shows that the
particle has a strong effect on a local region surrounding the particle. This is consistent
with the radial profiles in figures 10 and 11. The agreement of the laden and unladen
contours away from the particle surface reinforces the previous conclusion that the
1923 Cartesian grid accurately resolves the turbulent scales in the absence of the
particle. The laden calculation resolves the region shown in the contour plots with
a much larger number of grid points (see figure 1), but the contours are virtually
identical to those from the unladen calculation away from the particle surface.

4.1.1. Ensemble-averaged results

The volume-averaged profiles of the turbulent kinetic energy and dissipation rate
from each of the 64 simulations were ensemble averaged in an attempt to remove the
sensitivity to the local flow structure at small r . The ensemble-averaged q2 profiles
are shown in figure 16. These profiles are within 5 % of the unladen value at most
radial locations. Clearly, the ensemble averaging has reduced the fluctuations due to
the different turbulent structures with which each particle interacts. Near the surface
of the particle, the turbulence has been attenuated significantly. The amplification of
q2 near the particle surface at t = ti due to the projection of the initial condition is
visible in the ensemble average as it was for the sample simulation in figure 10.

The effect of the no-slip boundary condition is felt by the flow as the simulations
are advanced in time, creating a region of turbulence attenuation near the particle
surface. This region grows as the simulations progress in time, producing a 20 %
reduction in the turbulent kinetic energy at r = 2 and t − ti = 9. The radial extent of
the region of influence of the particle at t −ti = 15 is approximately r = 4 although the
modification outside r = 2 is small. In experiments, particles with dp ∼ η have been
shown to produce turbulence modification on a much larger scale. The limited effect
in these simulations is due to the small volume fraction, αp = 7.4 × 10−8. Typically,
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Figure 17. Ensemble average of the volume-averaged turbulent dissipation rate profiles.

particle-laden flows which exhibit turbulence modification have an interparticle
separation of the order of 10dp whereas the interparticle separation is 192dp in
these simulations. Because of the small volume fraction, the particle has a large
region from which to draw turbulent kinetic energy before it starts to attenuate the
turbulence significantly.

The ensemble-averaged turbulent dissipation rate profiles are shown in figure 17.
The amplification of ε near the particle surface at t = ti due to the displacement of
the fluid by the particle is visible in the ensemble average as it was for the sample
simulation in figure 11. The region of elevated dissipation adjacent to the particle
surface at t = ti spreads as the simulations are advanced in time. The laden ε value
inside r = 2 is at least 20 % higher than εul at all times after t = ti in figure 17.

A large ensemble of simulations would produce average turbulent kinetic energy and
dissipation rate profiles at t = ti , with only minor fluctuations outside the immediate
vicinity of the particle. This is not the case for the average of the dissipation rate
profiles from the set of 64 simulations used in this work, as can be seen in figure 17.
In order to remove the effect of the deviation in the average initial profile from the
desired value of unity, each volume-averaged q2 and ε profile is first divided by the
corresponding volume-averaged profile at ti . These new profiles are then ensemble
averaged and normalized by the ratio of the appropriate unladen value to its value at
ti . These new profiles have the desired value of unity at ti for all r by definition. The
new variables provide a comparison of the decay of the turbulent kinetic energy and
dissipation rate in the laden and unladen cases. Whenever the profiles are less than
unity, the quantity has decayed faster than in the unladen case and vice versa when
the profile values are greater than unity.

The new q2 profiles are shown in figure 18. The kinetic energy in the laden
simulations decayed faster than in the unladen simulation for r < 5 until
approximately t − ti = 9. However, at t − ti = 12 and t − ti = 15 the profiles
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Figure 18. Ensemble average of the volume-averaged t = ti-normalized turbulent kinetic
energy profiles.

indicate that the average overall decay of q2 in the laden simulations was slower
than the unladen simulation at all radial locations except for the region very close
to the particle surface. These results appear to be inconsistent with the profiles in
figure 16 which show a reduction of q2 compared to the unladen simulation at all
times for r < 5. To investigate the apparent discrepancy, we computed conditional
ensemble averages of the volume-averaged q2 profiles based on the volume-averaged
profile at ti , 〈q2(ti)〉. Cases for which the average value of 〈q2(ti)〉 between r = 1
and r = 5 was less than q2

ul(ti) were used to compute ensemble-averaged profiles for
a particle starting in a region of low turbulent kinetic energy. Similarly, cases for
which the average value of 〈q2(ti)〉 between r = 1 and r = 5 was larger than q2

ul(ti)
were used to compute ensemble-averaged profiles for a particle starting in a region
of high turbulent kinetic energy. The region between the particle surface and r = 1
was excluded from the classification criteria owing to the artificial enhancement of
the turbulent kinetic energy inside r = 1 caused by the initialization. Out of the 64
simulations in this work, 38 satisfied the criterion for the low initial q2 classification
and the remaining 26 were classified as high initial q2.

The conditional ensemble averages for the low initial q2 cases are shown in figure 19.
At short times, there is an accelerated decay of q2 compared to the unladen case in
the region r < 4. However, at later times, the turbulent kinetic energy in the same
region shows a reduced decay relative to the unladen case except for the thin region
adjacent to the particle surface. This change in behaviour is due to transport of
turbulent kinetic energy from the unmodified surrounding fluid. Flow locations where
the turbulent kinetic energy initially is low can experience a reduced decay rate of
turbulent kinetic energy owing to the transport of energetic turbulent structures from
other regions of the flow. The conditional ensemble averages for the high initial q2

cases are shown in figure 20. The profiles show that there is a consistent accelerated
decay of q2 in the region surrounding the particle. Because the time development
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Figure 19. Conditional ensemble average of the volume-averaged t = ti-normalized
turbulent kinetic energy profiles computed from cases with low initial turbulent kinetic energy.
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Figure 20. Conditional ensemble average of the volume-averaged t = ti-normalized
turbulent kinetic energy profiles computed from cases with high initial turbulent kinetic energy.

of the different conditional ensemble averages proceeds in opposite directions, the
overall ensemble average shown in figure 18 predicts little change in the average
decay rate of q2 except near the particle surface. As there were more low initial q2
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Figure 21. Ensemble average of the volume-averaged t = ti-normalized turbulent dissipation
rate profiles.

cases, the overall ensemble average is biased towards a reduced decay rate of q2 at
locations away from the particle surface, as shown in figure 18. A larger ensemble of
simulations would help to remove the bias and clarify the effect of the particle on q2

over a larger spatial region.
The difficulty with the data analysis for q2 is due to the sample size and the small

volume fraction in these simulations which causes minimal q2 modification except for
the region very close to the particle surface. The non-monotonic behaviour in time of
the profiles in figure 16 and the reduced decay rate outside the near-particle region at
later times in figure 18 are due to the competition between turbulence attenuation by
the particle and the transport of unmodified turbulence from the surrounding fluid.
A larger number of particles would reduce the effect of the transport of unmodified
turbulence and would help to elucidate the changes in q2 outside the near-particle
region. A better way to make comparisons of q2 in the unladen and laden turbulent
flows for the single-particle case would be to run unladen overset calculations where
the solution on the spherical grid extends to r = 0. The radial profiles from the
laden calculations could then be normalized by radial profiles from the corresponding
unladen overset calculations instead of the box-averaged turbulent statistics from the
unladen Cartesian grid simulation. The new proposed normalization will separate the
effects of turbulence modification from the volume-averaging and transport effects,
and will also help to address the resolution issues associated with the finite-difference
computation of ε discussed in § 3.

The ensemble-averaged t = ti-normalized ε profiles are shown in figure 21. The
profiles show that in most of the elevated ε region, r < 2, the dissipation rate is
decaying significantly more slowly than the dissipation rate in the unladen calculation.
However, the dissipation rate is decaying faster than the unladen calculation very
close to the particle surface. If this behaviour persists at later times, then a larger
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Figure 22. Conditional ensemble average of the volume-averaged t = ti-normalized turbulent
dissipation rate profiles computed from cases with low initial turbulent dissipation rate.

portion of the increased dissipation due to the presence of the particle will occur away
from the particle surface in the local fluid. The width of the region of decelerated
turbulent dissipation rate decay is increasing in time, indicating that the particle is
modifying a larger region of the turbulence. The persistence of the elevated ε region
is visible in the contour plots in figures 14 and 15 where the high ε regions away from
the particle surface decay while the high ε region near the particle surface remains
visible.

Conditional ensemble averages based on the volume-averaged ε profile at ti were
also computed. Cases for which the average value of 〈ε(ti)〉 between r = 2 and r = 5
was less than εul(ti) were used to compute ensemble-averaged profiles for a particle
starting in a region of low turbulent dissipation rate. Similarly, cases for which the
average value of 〈ε(ti)〉 between r = 2 and r = 5 was larger than εul(ti) were used
to compute ensemble-averaged profiles for a particle starting in a region of high
turbulent dissipation rate. The region between the particle surface and r = 2 was
excluded from the classification criteria owing to the artificial enhancement of the
turbulent dissipation rate inside r = 2 caused by the initialization. Out of the 64
simulations in this work, 37 satisfied the criterion for the low initial ε classification
and the remaining 27 were classified as high initial ε.

The conditional ensemble averages for the low initial ε cases are shown in figure
22. There is a consistent decelerated decay of ε compared to the unladen case, except
for a small region near the particle surface. The conditional ensemble averages for the
high initial ε cases are shown in figure 23. The profiles show that there is a decelerated
decay of ε inside r = 2 (except near the particle surface) and an accelerated decay
outside r = 2. Because the time development of the different conditional ensemble
averages proceeds in the same direction inside r = 2, the overall ensemble average
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Figure 23. Conditional ensemble average of the volume-averaged t = ti-normalized turbulent
dissipation rate profiles computed from cases with high initial turbulent dissipation rate.

in figure 21 shows that there is a significant region of slow decay of ε. This region
of slow decay is also a region of elevated ε, as shown in figure 17. Therefore, each
particle in decaying turbulence will act as a long-lived source of turbulent kinetic
energy dissipation.

The ensemble averages of the volume-averaged turbulent kinetic energy and
dissipation rate profiles are expected to provide a more accurate representation
of the average turbulent behaviour at large r owing to the volume-averaging effect.
However, this work is concerned with the behaviour near the surface of the particle
where a large amount of turbulence modification occurs. To investigate the quality of
the statistical sample, confidence intervals for the ensemble averages were computed.
The ensemble averages and the 90 % confidence intervals for the turbulent kinetic
energy and dissipation rate at t − ti = 9 are shown in figure 24. The widths of the
confidence intervals in the near-particle region, r < 2, and far from the particle, r > 10,
indicate that the statistical sample was sufficient in those regions. However, a larger
ensemble of simulations is required in order to reach more definitive conclusions about
turbulence modification between r = 2 and r = 10, as the confidence intervals are
significantly wider than the measured modification effect. The width of the confidence
intervals shrinks only as one over the square root of the number of samples. Therefore,
at least four times the number of samples are required in order to reduce the width
of the confidence intervals a significant amount.

4.2. Particle forces

The forces applied to the particle by the surrounding turbulent flow were recorded
during the overset grid simulations in order to compare with those predicted by a
particle equation of motion. Time histories of the three components of the force,
non-dimensionalized as shown in (2.6) with U∞ replaced by urms0

, from the sample
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Figure 24. Ninety percent confidence intervals for the ensemble average of the
volume-averaged turbulent kinetic energy and dissipation rate (inset) profiles at t − ti = 9.
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Figure 25. Sample force history from overset grid simulation.

simulation are shown in figure 25. The force components at ti are large owing to
the sudden introduction of the particle into the fluid. The force component in the
x-direction has the largest magnitude over the course of the simulation. This is
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consistent with the flow from right to left shown by the contour plots in figures 12
and 13. The ensemble average of each force component over all 64 simulations was
near zero, as expected since the flow direction at the particle location is random.
Owing to the isotropic nature of the flow, averaging over all three directions increases
the sample size and produces a value closer to the desired value of zero than the
average over any single direction.

It is common practice in simulations of turbulent particle-laden flow to use an
Eulerian–Lagrangian approach where the motion of the particles is determined by
the numerical integration of a particle equation of motion. The particle equation of
motion, (1.1), predicts that the non-dimensional forces applied to a fixed particle by
the turbulent field are

Ftotal =
24

Re
u

[
1 + 0.15Re0.687

p

]
+

24

Re
K1(t − ti)u (ti)

+
24

Re

t−ti∫
0

K(t − ti − τ, τ )
du
dτ

dτ + 2
Du
Dt

= Fd + Fivd + Fh + Fami, (4.6)

where Fd is the drag contribution, Fivd is the portion of the history term accounting
for the initial velocity difference between the particle and the fluid, Fh is the remainder
of the history term, and Fami is the combination of the added mass term and the
undisturbed fluid pressure gradient and viscous stress term. There are two different
Reynolds numbers in (4.6); Re is the Reynolds number based on the velocity used
for non-dimensionalization, urms0

, while Rep is based on the magnitude of the slip
velocity, |u|.

The history kernel of Kim et al. (1998) is used to specify K(t−ti −τ, τ ) and K1(t−ti).
The initial velocity difference term is singular at t = ti . Therefore, the force due to this
term cannot be numerically evaluated at t = ti . The infinite force corresponds to the
formation of a thin layer of vorticity when the particle is suddenly introduced into
the flow. However, the initial velocity term is integrable, producing a finite effect on
the particle velocity if it is allowed to move. The upper limit of the history integral is
also singular. Therefore, the modified numerical integration procedure described by
Kim et al. (1998) is used to calculate Fh.

To evaluate the forces in (4.6), the undisturbed fluid velocity at the particle location
must be computed. These velocities and the appropriate time derivatives are obtained
from the unladen turbulent simulation. The particle centre for each overset grid
calculation was a Cartesian grid pressure node. Therefore, the components of velocity
and the computed time derivatives at the neighbouring staggered grid velocity nodes
are averaged to give the required values at the particle centre. These values are
available at the discrete time intervals provided by the unladen turbulent calculation.
The time step for the unladen simulation was chosen so that the turbulence statistics
were not changed by any further reduction in its value. However, this does not
guarantee that evaluation of the forces in (4.6) will not change as the time step is
reduced. To verify that the computed forces were resolved in time, the results from
the unladen simulation with 	t = 0.1 were compared to an unladen simulation with
	t = 0.025. The finer time step caused small changes in the time histories of Fami and
Fh, but the other two forces were virtually identical to the results from the 	t = 0.1
simulation. Since the drag and initial velocity difference forces were much larger than
the other forces, the effect of the reduction of the time step on the total force predicted
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Figure 26. RMS force on particle predicted by terms in the particle equation of motion.

by the particle equation of motion was negligible. Therefore, the forces computed
from the 	t = 0.1 simulation were assumed to be accurately resolved in time and
were used for comparison with the forces from the overset grid simulations.

The RMS force history from the overset grid simulations and the various
components of the RMS force predicted by (4.6) are shown in figure 26, where
the RMS values are computed over all three component directions. The effect of
the initial condition decays very rapidly and after t − ti = 1, the RMS force decays
gradually with the turbulence. The drag force is clearly the dominant term in the
particle equation of motion. The initial velocity difference term is significant at short
times. However, the history force and the added mass and undisturbed fluid stress
force are small fractions of the total force throughout the duration of the simulation.
Bagchi & Balachandar (2003a) found that the added mass and history forces did
not improve predictions of the force on a fixed particle in streaming turbulence
with dp ∼ η and concluded that the standard drag correlation without the added
mass and history forces provided the closest approximation to the DNS result. Kim
et al. (1998) also found that the drag force was the dominant term for high-density
particles injected into a stagnant or oscillating flow. The total RMS force predicted
by the particle equation of motion in figure 26 is less than that calculated from the
results of the overset grid simulations at most times. The total RMS force is also
approximated well by the RMS drag force after the initial velocity difference term
decays. In many simulations that use a particle equation of motion to track point
particles, the particles are introduced into the fluid domain with the same velocity as
the fluid. In those cases, the initial velocity difference term can be ignored.

Time histories of the RMS errors between the force on the particle from the overset
grid simulations and the force predicted by the drag term from the particle equation
of motion are shown in figure 27. Each of the time histories is normalized by the
RMS force over all three component directions from the overset grid simulation set.
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Figure 27. RMS force error considering only the drag term in the particle equation of
motion.

The RMS errors for each of the components of force are all similar to each other
and therefore similar to the RMS error computed over all three components. Initially,
a large error is present because the force due to the initial velocity difference is not
included. When the initial velocity difference force is included, the error at short
times is reduced substantially, as shown in figure 28. The RMS error at later times
and some of the fluctuations in the error time histories are reduced by inclusion of
the added mass and undisturbed fluid stress forces, as shown in figure 29. Finally,
the time histories of the RMS error in the force between the overset grid simulation
and all terms of the particle equation of motion are shown in figure 30. There is no
significant improvement by the inclusion of the history integral term.

Based on the RMS error time histories in figures 27–30, the best estimate of
the force applied to a particle in a turbulent field comes from the combination of
Fd , Fivd and Fami from (4.6). The RMS errors using this combination are between
15 % and 30 % of the correct RMS force on the ensemble of particle locations. By
inserting a particle into the flow domain with the same velocity as the local fluid,
Fivd can be ignored. The history integral term is cumbersome to compute as part of
a point-particle tracking algorithm and the results of this work and those of Bagchi
& Balachandar (2003a) indicate that it does not improve the prediction of the force
on the particle. This result is not surprising as the form of the history kernel used
in this work was developed and optimized in a uniform flow (see Kim et al. 1998).
When the particle diameter is the same order as the Kolmogorov length scale, the
flow over the particle cannot be considered to be uniform.

The deficiency of (4.6) in predicting the correct RMS force on the particle is due
to the particle size considered in this work. Much of the derivation of the particle
equation of motion is based on the assumption that the particle is significantly smaller
than any of the flow scales of interest. However, many particle-laden flows contain
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Figure 28. RMS force considering the drag and initial velocity difference terms in the
particle equation of motion.
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Figure 29. RMS force error considering all terms in the particle equation of motion except
the history integral.

particles with diameters of the same order as the Kolmogorov length scale. Therefore,
some modification to the particle equation of motion is expected in order to simulate
accurately these physically relevant flows. When the particle diameter is of the same
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Figure 30. RMS force error considering all terms in the particle equation of motion.

order as the Kolmogorov length scale, the variation in the flow across the particle can
be significant. Therefore, a drag correlation determined from uniform flow simulations
and experiments will not accurately predict the drag force in this case or any other
where a distorted wake develops as a result of flow variations on the scale of the
particle diameter.

The drag term was shown to be the dominant term in the particle equation of motion
in this work and other studies of the forces on a relatively dense particle (see Kim et al.
1998; Bagchi & Balachandar 2003a). Therefore, efforts to improve predictions by the
particle equation of motion should be focused on the development of a modified drag
term. Any useful correction to the drag term will most likely be stochastic in nature.
The deterministic modification to the drag term derived by Bagchi & Balachandar
(2003b) for axisymmetric and planar straining flows is a complex expression that is
only useful for a relatively simple class of flows. It is doubtful that a similar expression
could be determined for fully turbulent flows. Additionally, many simulations of
turbulent particle-laden flow are done with large-eddy simulation (LES) where the
resolved strain rate and other properties of the velocity field at the particle location
are not readily available. In this type of unresolved simulation, the application of a
deterministic model would require stochastic approximation of subgrid-scale velocity
information. Therefore, a stochastic model for the drag modification would be more
useful for DNS and LES simulations with point-particle tracking. The development
of a suitable stochastic model will require fully resolved simulations over a range of
particle diameters and Taylor microscale Reynolds numbers.

5. Conclusions
An overset grid technique was used to simulate the interaction between a fixed

particle and decaying homogeneous isotropic turbulence with resolution of all scales
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of fluid motion. An ensemble of 64 simulations with the particle inserted into a
different region of the same developed turbulent field was used to determine statistics
for turbulence modification and the forces on the particle. The particle diameter was
approximately twice the Kolmogorov length scale of the unmodified turbulence and
the particle Reynolds numbers due to the turbulent fluctuations had a maximum
value close to 20. The simulation duration for each realization was almost two eddy
turnover times.

During each simulation, radial profiles of the turbulent kinetic energy and
dissipation rate were obtained by volume averaging over spherical shells. Ensemble
averages of the turbulent kinetic energy profiles reveal significant attenuation within
one diameter of the particle surface. The ensemble averages of the turbulent
dissipation rate profiles show an enhanced dissipation rate region with a significantly
decelerated dissipation decay rate within 1.5 diameters of the particle surface. The
ensemble averages showed minor turbulence modification outside 5 diameters from
the particle surface owing to the small volume fraction. These results indicate that
the displacement of fluid by the presence of the particle and the formation of the
boundary layer at the particle surface lead to turbulence modification in a local
region. In order to reproduce the global turbulence modification seen in experiments,
a number of particles of O(1000) are probably required.

The forces applied to the particle during the simulations were recorded and
compared to those predicted by a Lagrangian particle equation of motion. The
drag force in the particle equation of motion was shown to be the dominant term.
The initial velocity difference force was significant at short times, while the added
mass and undisturbed fluid stress term and the history integral term were both small
fractions of the total force. RMS errors between the forces from the overset grid
simulation and the forces predicted by combinations of terms in the particle equation
of motion were computed. The combination of the drag term, added mass and
undisturbed fluid stress term, and the initial velocity difference term produced RMS
errors that were between 15 % and 30 % of the RMS force from the fully resolved
simulation set. The inclusion of the history term did not produce any improvement
in the force prediction by the particle equation of motion. The discrepancy between
the force predicted by the particle equation of motion and the force from the overset
grid simulations is due to the size of the particle relative to the Kolmogorov length
scale. The derivation of the particle equation of motion assumes that the particle
diameter is smaller than any flow scales of interest. Therefore, the assumptions of
flow uniformity in the neighbourhood of the particle are invalid for the particles in
this work.

The drag force was the dominant term in the particle equation of motion. Therefore,
this term should be the focus of efforts to improve the prediction of the forces on a
particle in a turbulent flow by the particle equation of motion. It would be extremely
difficult to develop a deterministic model for the modification to the standard drag
force based on the turbulent flow variation across the particle. Therefore, a stochastic
model for the correction to the standard drag force should be developed. This model
would be dependent on the ratio of the particle diameter to the Kolmogorov length
scale and its effect would vanish as the particle diameter became significantly smaller
than the Kolmogorov length scale. Multiple sets of simulations, similar to those
performed in this work, over a range of Taylor microscale Reynolds numbers and
particle diameters are required in order to develop a suitable stochastic model. This
work has shown that the particle equation of motion underpredicts the RMS force
on the particle. It is unlikely that a stochastic model could significantly reduce the
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RMS error in the prediction of the force by the particle equation of motion. However,
the model could raise the RMS force predicted by the particle equation of motion,
thereby improving estimates of particle dispersion in simulations with point-particle
tracking.

This work was supported by the Department of Energy ASCI ASAP program under
contract B523583 from the Lawrence Livermore Laboratory. Opinions expressed in
this report are those of the authors and not those of Stanford University, the Lawrence
Livermore Laboratory, or the Department of Energy. This work was supported in
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Appendix. Spherical coordinate spatial discretization
A.1. Pole Treatment

The poles of the spherical coordinate system (θ = 0, π) require careful treatment
to guarantee a well-behaved numerical solution to the governing equations. The
staggered grid system places only uθ nodes on the poles. Since the terms in the
spatially discretized uθ equation cannot be evaluated numerically owing to the
coordinate singularity, a different approach is required to determine uθ at the poles.
The relationship between Cartesian and spherical velocity components provides the
following equations for uθ and uφ at the poles:

uθ (φ; r; θ = 0, π) = (w sin φ + v cos φ) cos θ, (A 1a)

uφ (φ; r; θ = 0, π) = w cos φ − v sinφ. (A 1b)

Since the Cartesian velocity components are independent of φ at the poles, (A 1a)–
(A 1b) can be Fourier transformed in the φ-direction to determine the Fourier
coefficients for the non-zero mode (kφ = 1) at the poles. The Fourier coefficients
for uθ and uφ are related at the poles,

ûθ

(
kφ = 1; r; θ = 0, π

)
= −iûφ

(
kφ = 1; r; θ = 0, π

)
cos θ, (A 2)

where i =
√

−1. Therefore, uθ at the poles is determined by interpolating uφ to the
poles with a two-point average, computing the Fourier transform, and then using
(A 2).

The components of the f tensor must be finite in the entire spherical solution
domain since the viscous stresses and the velocity components are finite. Therefore,
the singular terms that make up some of the f tensor components analytically
combine or cancel to ensure that the f tensor components are finite at the poles.
With a numerical treatment, the analytical cancellation of singular terms cannot
occur, and the calculation of the f tensor components at the poles must be handled
differently from the calculation in the rest of the spherical domain. Fortunately, only
the fθφ component,

fθφ =
1

Re

[
1

r

∂uφ

∂θ
− uφ cot θ

r
+

1

r sin θ

∂uθ

∂φ

]
− uθuφ, (A 3)

must be computed at the poles. Taking the limit of (A 3) and using (A 1a)–(A 1b) and
L’Hospital’s rule, the non-singular expression for fθφ at the poles is

lim
θ→0,π

fθφ =
1

Re

[
1

r cos θ

∂2uθ

∂θ∂φ

]
− uθuφ. (A 4)
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The discretized version of (A 4) is obtained using second-order-accurate central
differences and two-point averages. All differencing and averaging across the poles is
done using the procedure described by Mohseni & Colonius (2000).

A.2. Particle surface treatment

The radial derivatives in the spherical coordinate f tensor components cannot be
computed with central differences at the particle surface. One-sided second-order-
accurate finite-difference techniques are used instead to calculate the radial derivatives
in frθi,0,k

and frφi,0,k
. The one-sided difference stencil must be chosen so that the

truncation errors will combine properly with the truncation errors from the central
difference calculations of frθi,1,k

and frφi,1,k
, in order to guarantee second-order accuracy

in the evaluation of terms which are radial derivatives of frθ and frφ . The one-sided
difference stencil for the (∂/∂r) (uθ/r) term in frθ uses values of uθ/r at the particle
surface and the next three radial locations. The same treatment is used for the
evaluation of (∂/∂r)

(
uφ/r

)
in the calculation of frφ at the particle surface.
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