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Abstract

Tribolium castaneumHerbst 1797 (Coleoptera: Tenebrionidae), an important pest of
stored grains and byproducts, is naturally infected by Gregarina cuneata Stein 1848
(Apicomplexa: Gregarinidae). Changes in the life cycle of insects caused by the para-
site development in the midgut were studied. Trophozoites, gamonts (solitary and
associated), and gametocysts were present in the midgut of the insects. In young tro-
phozoites, the apical region differentiated into an epimerite that firmly attached the
parasite to the host epithelial cells. With maturation, trophozoites developed in ga-
monts that were associated with the initiation of sexual reproduction in the cell cycle,
culminating in the formation of the spherical gametocyst. Morpho-functional ana-
lyses indicated that gregarines absorb nutrients from infected cells and can occlude
the midgut as they develop. Consequently, nutritional depletion may interfere with
the host’s physiology, causing decreased growth, delayed development, and high
mortality rates of the parasitized insects. These results suggest G. cuneata could be
an important biological agent for controlling T. castaneum in integrated pest manage-
ment programs.
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Introduction

Gregarines (Apicomplexa) are parasites of invertebrates,
specifically annelids and arthropods. The life cycle includes
oocyst ingestion, sporozoite release, trophozoite and gamont
development, and gametocyst formation, which are released
into the environment through feces (Clopton & Janovy, 1993).

These parasites can infect the fat body,Malpighian tubules,
reproductive organs, hemolymph, and digestive system of
various insect species (Schreurs & Janovy, 2008) and may
cause adverse effects on the host’s physiology, reproduction,
longevity, and life cycle (Harry, 1970; Bouwma et al., 2005;

Er & Gokce, 2005; Schreurs & Janovy, 2008; Lange & Lord,
2011; Lantova et al., 2011; Lord & Omoto, 2012).

Gregarina cuneata Stein 1848 (Eugregarinorida:
Gregarinidae) naturally infects populations of Tribolium casta-
neum (Coleoptera: Tenebrionidae) as described by Ishii (1914),
Hoshide (1979) and Gigliolli et al. (2015). This insect infests
stored grains and by-products, causing quantitative and quali-
tative production losses (Smiderle, 2007).

The most common method used to control this insect is
insecticide application; however, indiscriminate use has re-
sulted in environmental bioaccumulation, development of
insecticide-resistant insects, and toxic residue retention in
stored grains and products. Given the economic impact of
this insect in agriculture and commerce, the aim of this
study was to analyze the morphofunctional features of G. cu-
neata development in the midgut of T. castaneum and its effect
on the life cycle of parasitized insects, with the possibility of
employing the parasite for the biological control of this pest,
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minimizing the impacts of chemical control agents on the en-
vironment and human health.

Material and methods

Insects

Adults of T. castaneum (60 female and 60 male >3 days
old) naturally infected with G. cuneata, were obtained from
breeding stocks of the Laboratory of Biological Control,
Morphology and Cytogenetic of Insects at the Universidade
Estadual de Maringa (23°25′30′′S and 51°56′20′′O), Parana,
Brazil. The insects were kept at 30 ± 1°C, relative humidity of
70 ± 10%, 12 h photoperiod and fed on wheat flour.

Identification and characterization of gregarines in midgut

The insect hosts were cold anaesthetized, dissected in
saline solution (0.1 M NaCl, 0.1 M Na2HPO4, and 0.1 M
KH2PO4), and the alimentary canal was exposed. The organ
was observed under a stereomicroscope (Zeiss) and the mid-
gut was isolated and removed for anatomical characterization
of gregarines located in this region.

For whole mount, the isolated midgut was stained using
iodinated zinc chloride, then transferred to a glass slide and
examined under a stereomicroscope (Zeiss) and light micro-
scope (Olympus). Gregarines were photographed using a
digital camera Sony Cyber Shot DSC 180.

Light microscopy

For histological characterization, the midguts of parasitized
insects was fixed in aqueous Bouin’s solution for 8 h. After
dehydration in a series of increasing alcohol concentrations
(70, 80, 90 and 100%), cleared in xylol, embedded in histological
paraffin and cut into 6-μm-thick sections on Leica RM 2250
microtome. These sections were collected on glass slides,
rehydrated, and stained with hematoxylin and eosin (H/E)
and Periodic acid-Schiff (PAS) (Junqueira & Junqueira, 1983).
Analyses were performed using a light microscope (Olympus),
followed by photographic documentation.

Scanning electron microscopy (SEM)

For SEM, the midguts of insect parasitized were fixed in
2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.3) for
48 h. Theywere then post-fixed in 1% osmium tetroxide in dis-
tilled water for 30 min and dehydrated in a series of increasing
alcohol concentrations (Scudeler & Santos, 2013). The samples
were critical-point dried (Leica CPD 030), coated with gold
using a Shimadzu IC-50 coater, and observed using a
Shimadzu SS-550 scanning electron microscope. The analyses
of SEM were carried out in Microscopy Center of Complex
Centers of Research Support (COMCAP) of the State
University of Maringa, Parana, Brazil.

Transmission electron microscopy (TEM)

For TEM, portions of the midguts of parasitized insects
were fixed in 2.5% glutaraldehyde and 4% paraformaldehyde
in a 0.1 M phosphate buffer (pH 7.3) for 24 h. It was then post-
fixed for 2 h without 1% osmium tetroxide in the same buffer,
washed in distilled water and stained in 0.5% uranyl acetate
for 2 h. Next, the sample was dehydrated in a series of

increasing acetone concentrations and embedded in
Araldite® resin. The ultrafine sections were stained in an alco-
holic solution saturated with uranyl acetate and lead citrate
(Scudeler & Santos, 2013) and observed under a JEOL
JEM-1400 TEM. The analyses of TEM were carried out in
Microscopy Center of Complex Centers of Research Support
(COMCAP) of the State University of Maringa, Parana, Brazil.

Voucher specimens

Voucher specimens and the material analyzed were depos-
ited at the Laboratory of Biological Control, Morphology and
Cytogenetic of Insects at the Universidade Estadual de
Maringa, Parana, Brazil.

Data analysis

The mortality and the size of the parasitized and unparasi-
tized larvaewere recorded at 8, 20, 31, 40, 48, and 59 days after
hatching. χ2 was used for independence (α = 0.05), without
Yates correction, and bilateral analysis was performed by ana-
lyzing differences in survival throughout the life cycle of T.
castaneum individuals, for the control (unparasitized) and the
parasitized groups. The normality of the lengths of the
third-instar control and parasitized larvae were verified
using the Shapiro–Wilk test (α = 0.05). In the analysis of differ-
ences in length between third-instar control and parasitized
larvae, the lengths were ranked for the Wilcoxon–Mann–
Whitney test. All tests and graphics were generated using
the software R version 3.0.2 with the stats package (R Core
144 Team, 2013).

Results

Morphology and development of G. cuneata in the midgut of
T. castaneum

Trophozoites, gamonts (solitary and associated), and ga-
metocysts were present in the midgut of the dissected insects
(fig. 1).

In young trophozoites, the apical region was differentiated
into an epimerite that firmly attached the parasite to the epi-
thelial cells of the midgut during the extracellular develop-
ment phase (fig. 2a, b).

The surface of the parasite’s body was covered with
straight or slightly undulated longitudinal pellicular folds
known as epicytic folds (fig. 2a, b). Thesewere formed by a tri-
membrane pellicle, which consists of the plasma membrane
and the inner membrane complex formed by two adjacent cy-
tomembranes (fig. 2c). There are electron-dense structures
within apical parts of the epicytic folds called apical arcs and
apical filaments (fig. 2c). Micropores are located between the
epicytic folds and lead into invaginations of the plasma mem-
brane inside the cytoplasm (fig. 2d, e). With development,
there were changes in the density, size, and organization of
the epicytic folds (figs 2a, b and 3a, b).

A septum divided the body into two segments: the proto-
merite and the deutomerite (fig. 2b). The protomerite, located
above, remained in contact with the host’s microvilli (fig. 3a).
It varied from a cylindrical to an ovoidal shape and exhibited a
slightly rounded anterior (fig. 3b–c). The anterior region pre-
sented a granular cytoplasm composed of amylopectin, awell-
developed Golgi region, fibrils, and numerous electron-dense
inclusions (fig. 3c–e). Maturing trophozoites and gamonts
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Fig. 1. Photomicrographs ofG. cuneata in T. castaneum stained usingH/E. Anterior region of themidgut (Ma); posterior region of themidgut
(Mp); trophozoites and gamonts in the midgut (arrows); gametocyst in the posterior region of the midgut (G); regenerative crypts (Cr);
epithelium (E). Scale bar = 20 µm.

Fig. 2. Electronmicrographs of development ofG. cuneata in the midgut of adult T. castaneum. (a) SEM of non-segmented young trophozoite
adhering to the epithelial cell (arrow). Host tissue (h); epicystic folds (Ef). Scale bar = 2 µm. (b) SEM of segmented young trophozoite.
Epimerite (E); protomerite (P); deutomerite (D); epicystic folds (Ef); septum (arrow); host tissue (h). Scale bar = 5 µm. (c) TEM of epicystic
folds (Ef). Plasma membrane (pm); cytomembranes (c); apical filaments (af); apical arcs (aa). Scale bar = 0.2 µm. (d) Micropore (circle);
deutomerite (D); microvilli (mv); epicystic folds (Ef). Scale bar = 0.2 µm (e) Invaginations in internal lamina (circle); deutomerite (D);
microvilli (mv); epicystic folds (Ef). Scale bar = 0.2 µm.
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developed projections similar to digitations in the protomerite
(fig. 3f). It was noted the absence of epicytic folds and the pres-
ence of amorphous material of unknown origin in the contact
zone between the host and the parasite (fig. 3g).

The elongated cylindrical deutomerite extended from the
septum to the posterior region of the body; it increased in
thickness and ended in a rounded extremity that abutted in-
side the midgut lumen (figs. 2a, b and 3a, b, f). A spherical

Fig. 3. Electronmicrographs of mature trophozoites and gamonts ofG. cuneata. (a) Trophozoites adhering to epithelial cells and detail of the
invaginations formed in themicrovilli after the release of trophozoites from the tissue (arrows). Microvilli (mv) deutomerite (D); protomerite
(P). Scale bar = 2 µm. (b) SEM of trophozoites indicating protomerite (P) and deutomerite (D); septum (arrow); host cell (h). Scale bar = 2 µm.
(c) Ultrastructure of maturing trophozoite. Septum (arrow); protomerite (P); deutomerite (D); microvilli (mv); epicytic folds (Ef);
mitochondria (m); amylopectin granules (asterisk); nucleus (n). Scale bar = 5 µm. (d, e) Ultrastructure of the protomerite of maturing
trophozoites. Electron-dense structure (arrowhead); Golgi region and vesicles (G); fibrils (Fi); amylopectin granules (asterisk). Scale
bar = 0.2 µm. (f) SEM of the gamont. Deutomerite (D); projections in the protomerite (arrow); microvilli (mv). Scale bar = 2 µm. (h) TEM
indicating deposition of amorphous material (x) between protomerite and microvilli (mv) of the host cell. Scale bar = 2 µm. (i) Lipid
drops (L) and amylopectin granules (asterisk) in deutomerite. Scale bar = 0.2 µm.
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nucleuswithadefinednucleolus, amylopectingranules (fig. 3c),
and lipid droplets were located in this region (fig. 3h).

The amylopectin observed in both the protomerite and
deutomerite were positively marked by PAS staining (fig. 4a).
The number of granules deposited increased with maturation
(fig. 4b, d).

Recognition between sexual cells initiated the reproduction
phase (fig. 5a). In a biassociative and caudofrontal association,
the anterior cell (primite) morphologically differed from the

posterior cell (satellite). The primite exhibited a spatulate pro-
tomerite and an elongate cylindrical deutomerite; it became
thicker furthest from the septum and had a rounded posterior
extremity. The satellite had a hemispheric protomerite, and
the deutomerite differed from the anterior cell only in length
(fig. 5b, c).

Rotational movements and the morphological alterations
observed in the associated gamonts (fig. 5c) resulted in
the formation of spherical gametocysts (fig. 5d, e). These

Fig. 4. Deposition of amylopectin granules during development of G. cuneata. (a) PAS positive gamonts (G) evident by the presence of
amylopectin (asterisk); nucleus in the deutomerite (arrowhead); lumen (L); epithelium (E). Scale bar = 20 µm. (b–d) Total preparation of
maturing trophozoites, stained with iodinated zinc chloride. Protomerite (P); deutomerite (D). Increased number of amylopectin
granules deposited in the protomerite and deutomerite (asterisk); collar-like modified apical part of protomerite of the rather a detached
satellite (arrows); nucleus (arrowhead); Scale bar = 20 µm.

Fig. 5. Association of gamonts and gametocysts. (a) Recognition between sexual cells (arrow): primite (Pr) and satellite (S), stained with
iodinated zinc chloride. Nucleus (arrowhead); protomerite (P); deutomerite (D). Scale bar = 20 µm. (b) SEM of associated primite (Pr)
and satellite (S) gamonts adhering to the host tissue (h); Syzygy junction (arrow). primite (Pr); satellite (S); protomerite (P); deutomerite
(D). Scale bar = 10 µm. (c) Satellite gamonts (S) and primite gamonts (Pr) initiating rotation movement, stained with H/E. Junctional
complex (arrow); nucleus (arrowhead); epithelium (E). Scale bar = 20 µm. (d) Initial stage of gametocyst formation in which individual
gamonts associate (arrow) to form a spherical structure, stained with iodinated zinc chloride. Nucleus (arrowhead), envelope and
hyaline space (asterisk). (e) SEM of spherical gametocyst (G) located in the posterior region of the midgut (h). Trophozoite (T). Scale
bar = 10 µm.
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structures were found in the posterior extremity of the mid-
gut and in the proctodeum, from which they were released
through the feces.

Development of T. castaneum parasitized and unparasitized by
G. cuneata

We assessed the life cycle T. castaneum, parasitized and
unparasitized (control) by G. cuneata. In both groups, the re-
maining eggs were incubated for 4 days; 42 parasitized and
40 unparasitized larvae hatched, and larval development
was evaluated at 8, 20, 31, 40, 48, and 59 days after hatching.

The parasitized larvae showed blackened bodies and re-
duced size compared with unparasitized larvae (fig. 6).

This difference in length of parasitized (W = 0.8496,
P = 0.02814) and unparasitized (W = 0.6186, P = 9, 513 × 10 − 5)
larvae at 31 days of development was initially assessed using
the Shapiro–Wilk test (fig. 7). The results were not normally
distributed and, thus, the non-parametric Wilcoxon–Mann–
Whitney test was performed, showing a significant difference
in the larval size in both groups (W = 169, P = 9,825 × 10 − 6,
IC 95%: 1.999993–4.000041). The unparasitized larvae (5.2 mm
average length) were larger than the parasitized larvae (3.7 mm
average length) of the same age (fig. 8).

Using χ2 independence, it was observed that the mortality
of the parasitized larvae started after 8 days of development,
and increased considerably at 20, 31, 40, 48, and 59 days, and it
was significantly different to the unparasitized larvae (table 1,
fig. 9a–f).

While 47.5% of the unparasitized larvae became pupae at
31 days, only one parasitized larvae reached this stage in the
same period (fig. 9c). This was the only parasitized individual
that reached the pupal stage in the whole period examined;
however, it did not complete metamorphosis, dying 9 days
after pupation (fig. 9d).

Therewas no insect emergence adult parasitized (fig. 9d–f).
At 48 days of development, the mortality in this group
reached 100% (fig. 9e). However, the unparasitized insects
completed the cycle between 40 and 59 days after hatching,

and only 2.5% mortality was recorded in this period (table 1,
fig. 9d–f).

Discussion

Tribolium castaneum is infected byG. cuneata after the inges-
tion of food containing oocysts and through cannibalism.
Activation and excystation occur in the lumen of the midgut,
in response to physiological stimuli such as the pH of intestinal
contents, as observed in Tenebrio molitor infected by G. cuneata
and Gregarina polymorpha (Clopton & Gold, 1995). The sporo-
zoites, which were not assessed in this study, bind to midgut
epithelial cells and develop into trophozoites.

At this stage, the parasites remained attached to the cells by
an epimerite. In addition to attaching to the host, this structure
is thought to bemetabolically active and involved in gregarine
feeding (Baudoin, 1969; Schrevel & Philippe, 1993; Valigurová
et al., 2009). The occurrence of endoplasmic reticulum and a
large number of mitochondria in the apical region of infected
cells suggests an interaction between the epimerite ofG. cunea-
ta and the epithelium of T. castaneum, as observed in
Didymorphyes gigantea byHildebrand (1976) and Leidyana cana-
densis by Lucarotti (2000).

When fixed to the host cell, the epimerite and protomerite
cause deep invaginations in the plasma membrane of midgut

Fig. 6. Larvae of the T. castaneum with 31 days of the
developmental. (a) Unparasitized, (b) parasitized. Scale bar = 1 mm.

Fig. 7. Normal distribution of lengths T. castaneum larvae in third
instar. (a) Unparasitized, (b) parasitized by G. cuneata.
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epithelial cells in T. castaneum during larval development,
similar to those observed in Gregarina garnhami infections of
Schistocerca gregaria (Valigurová & Koudela, 2008) andG. poly-
morpha invasions of T. molitor larval intestines (Valigurová
et al., 2009).

According to Lucarotti (2000) and Valigurová et al. (2009),
trophozoites can detach from senescent cells at any point and
reattach to young cells, exhibiting better physiological condi-
tions for the completion of their development. This is an active,
self-regulated process involving gregarine motility (Walker
et al., 1979) and epimerite retraction, facilitated by contractile
fibrils located in the epimerite itself and in the apical region of
the protomerite (Lucarotti, 2000; Valigurová & Koudela, 2008;
Valigurová et al., 2009; Valigurová, 2012).

In the protomerite of G. cuneata, the presence of a fibril-rich
region covered by an intact membrane, and the absence of epi-
merite remnants in the host tissue,may indicate the occurrence
of the retraction mechanism observed previously in G. cuneata
infections of T. molitor larvae by Valigurová (2012), in G. garn-
hami by Valigurová & Koudela (2008), in G. polymorpha by
Valigurová et al. (2009), and in other parasitic species
(Lucarotti, 2000; Heintzelman, 2004; Lange & Cigliano, 2004).

At the end of the growth period, the epimerite usually dis-
appears and the gregarine cells acquire a dicystid-like morph-
ology (protomerite and deutomerite). Projections similar to
the digitations in the G. cuneata protomerite emerged and
amorphous material accumulated at the interface between
the parasitic anterior region and the microvilli of the host
cell. The presence of a well-developed Golgi region and a
large number of electron-dense vesicles in the protomerite
must be related to the secretion of the amorphous, probably
adhesive, substance (Valigurová et al., 2007, 2008, 2009;
Valigurová & Koudela, 2008; Valigurová, 2012).

Changes in the protomerite allowed mature trophozoites
and gamonts to remain attached to the host where they
possibly absorbed nutrients through a process based on mem-
brane permeability (MacMillan, 1973; Valigurová & Koudela,
2008; Valigurová et al., 2009; Valigurová, 2012).

The increasing deposition of amylopectin granules
throughout G. cuneata development suggests an active meta-
bolic interaction between the parasite and infected cells.

Gregarines must employ carbohydrates enzymatically de-
graded by the host to fuel energetically costly processes such
as reproduction or motility (Schreurs & Janovy, 2008).

Gliding motility is driven by lateral undulations in the
epicystic folds, through the action of either contractile proteins
(Vivier, 1968; Valigurová et al., 2013) or systems that antagon-
ize fold filaments (Ruhl, 1976). Motility is alternatively
achieved through the release of lubricating mucus
(Schewiakoff, 1894; Valigurová et al., 2013). In G. cuneata,
micropore-like structures that interrupt the pellicle region
may be involved in the secretion of mucus that facilitates
motility (Schrevel, 1972; Talluri & Dallai, 1983).

In addition to their role in motility, fibrillar filaments in the
apical extremity of the epicystic folds may be involved in mor-
phological transformations that occur during gregarine devel-
opment and culminate with the initiation of the sexual phase
of the cycle (syzygy) and gametocyst formation (Toso &
Omoto, 2007). These transformations are influenced by exter-
nal factors such as temperature and humidity (Smith et al.,
2007), but mainly by the efficacy of the immune system
(Thomas & Rudolf, 2010), diet, nutritional status (Rodriguez
et al., 2007; Schreurs & Janovy, 2008), and host physiology
(Schawang & Janovy, 2001; Thomas & Rudolf, 2010).

Several studies have shown that physical andmetabolic in-
teractions established between parasites and their hosts are
fundamental to the completion of their life cycle (Schawang
& Janovy, 2001; Schreurs& Janovy, 2008). However, the patho-
genicity of gregarines is still unknown and studies describing
the effects of infection on reproduction, development, growth,
longevity, and mortality of infected insects are limited (Harry,
1967; Dunkel & Boush, 1969; Schwalbe & Baker, 1976; Brooks
& Jackson, 1990; Ball et al., 1995; Johny et al., 2000; Er & Gokce,
2005).

In the present study, parasitized larvae of T. castaneum de-
creased in size compared with unparasitized larvae of the
same age, which may be indicate delayed growth. This impact
may be associated with a reduction in food availability caused
by occlusion of the midgut by the parasites during develop-
ment, as seen in Blattella germanica (Lopes & Alves, 2005)
and Dermestes maculatus (Lord & Omoto, 2012). Similarly, it
may be associated with physical damage in the microvillis to
the digestive cells which reduces absorption and excretion,
causing host malnutrition as observed in T. castaneum adults
parasitized by G. cuneata (Gigliolli et al., 2015).

In addition to nutritional deficiencies, it is likely that other
cell types as renegerative and endocrine cells are damaged, af-
fecting hormone production and the regeneration of damaged
tissue, as previously observed in T. castaneum parasitized by
G. cuneata (Gigliolli et al., 2015).

Table 1. Differences in survival T. castaneum parasitized and un-
parasitized by G. cuneata throughout its life cycle.

Developmental (days) χ2 df P-value

8 7.2889 1 0.006938
20 17.484 1 2.897 × 10 −5

31 40.4938 1 1.972 × 10 −10

40 63.58 1 1.54 × 10 −15

48 70.7933 1 <2.2 × 10 −16

59 70.7933 1 <2.2 × 10 −16

Note: The results of 48 and 59 days are alike because no differences
inmortality between unparasitized insects and parasitized insects,
however, differences in the development stages were observed
(see fig. 9e, f), df, degrees of freedom.

Fig. 8. Length of T. castaneum unparasitized and parasitized by G.
cuneata. The y-axis is generated for ranking the Wilcoxon–Mann–
Whitney test created with larval lengths, where 1 = 2.5, 2 = 3,
3 = 3.5, 4 = 4, 5 = 4.5, 6 = 5, 7 = 5.5, 8 = 6 cm.

A.A.S. Gigliolli et al.264

https://doi.org/10.1017/S0007485315001121 Published online by Cambridge University Press

https://doi.org/10.1017/S0007485315001121


These functional alterations in the midgut should be re-
flected in the insect physiology, interfering with metamor-
phosis or the ability of the larvae to molt, thereby hindering
larval development and survival of the infected insects
(Lucarotti, 2000; Valigurová & Koudela, 2005). As gregarine
rapidly proliferate and frequently reinfect the same tissue, the
insects lose their ability to repair damaged tissue and develop
septicemia. This was observed in the high mortality rate of
B. germanica parasitized byGregarina sp. (Lopes & Alves, 2005).

Our results contradict those of Valigurová (2012) for studies
on T. molitor parasitized byG. cuneata.While inT. castaneum, the
infection resulted in morphological and physiological changes
in the host (Gigliolli et al., 2015), with negative impacts on their
development and survival, in T. molitor, the same parasite
might have favored the development, fitness, and survival of
the parasitized insects (Valigurová, 2012).

Although T. castaneum and T. molitor are phylogenetically
related species, and both can be infected by G. cuneata, the dif-
ferent pathogenic effects observed may be associated with the
co-evolution of host and parasite. Although T. castaneum and
T. molitor are phylogenetically related species, and both can be
infected by G. cuneata, the different pathogenic effects ob-
served may be associated with the co-evolution of host and

parasite (Agnew et al., 2000; Gourbal et al., 2001; Lefèvre
et al., 2009).

In this evolutionary process, the parasite might have al-
tered its morphophysiology and the host’s (T. molitor) behav-
ior to eliminate harmful relationships between members, thus
encouraging the spread and survival of the parasite (Lefèvre
et al., 2009). The parasite may also have adapted to environ-
mental conditions and other hosts physiochemical (T. casta-
neum), thereby establishing new evolutionary relationships.

For G. cuneata invasions, external environmental condi-
tions, as well as morphological and physiological conditions
of the host, can interfere with established relationships and
have pathogenic effects on insects. This information allows
us to evaluate new integrated pest management strategies
and techniques that use natural enemies in storage units to re-
duce the proliferation of insects and, at the same time, resolve
some of the environmental and health problems caused by
conventional control methods.
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