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ABSTRACT

A retrospective rating plan, whose insurance premium depends upon an
insured’s actual loss during the policy period, is a special insurance agreement
widely used in liability insurance. In this paper, the design of an optimal retro-
spective rating plan is analyzed from the perspective of the insured who seeks to
minimize its risk exposure in the sense of convex order. In order to reduce the
moral hazard, we assume that both the insured and the insurer are obligated
to pay more for a larger realization of the loss. Under the further assumptions
that the minimum premium is zero, the maximum premium is proportional to
the expected indemnity, and the basic premium is the only free parameter in the
formula for retrospective premium given by Meyers (2004) and that the basic
premium is determined in such a way that the expected retrospective premium
equates to the expected indemnity with a positive safety loading, we formally
establish the relationship that the insured will suffer more risk for a larger loss
conversion factor or a higher maximum premium. These findings suggest that
the insured prefers an insurance policy with the expected value premium princi-
ple, which is a special retrospective premium principle with zero loss conversion
factor. In addition, we show that any admissible retrospective rating plan is
dominated by a stop-loss insurance policy. Finally, the optimal retention of a
stop-loss insurance is derived numerically under the criterion of minimizing
the risk-adjusted value of the insured’s liability where the liability valuation is
carried out using the cost-of-capital approach based on the conditional value
at risk.
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1. INTRODUCTION

Insurance has become an indispensable tool for an individual or a corporation
to manage its risk. An income earner who wishes to protect his/her surviving
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family’s income in the event of his/her death can achieve the aim by purchas-
ing a life insurance policy. Similarly, car insurance can be used to recover some
of the losses incurred to the driver in the event of a car accident. Other insur-
ance policies such as unemployment insurance, health and dental insurance, and
product liability, are typically available to a corporation to provide some form
of protection to its employees and the corporation itself.

By transferring all or part of its risk to an insurance company (i.e. the in-
surer), the individual or the corporation (i.e. the insured) incurs an additional
cost in the form of the insurance premium. The insurance premium is expected
to increase with higher expected risk that is ceded to the insurer. This implies
that the insured can transfer more of its risk to the insurer at the expense of a
higher insurance premium. If the insuredwere to reduce the cost of insurance, its
risk exposure will bemuch higher. This classical tradeoff implies that there exists
an optimal strategy between risk retaining and risk transferring. By formulating
as an optimization problem with an appropriate objective and constraints, this
allows the insured to optimally determine the best strategy to insure its risk.

The pioneering work on optimal insurance is attributed to Borch (1960)
who shows that the stop-loss insurance is optimal under the criterion of
minimizing the variance of the insured’s retained risk when the insurance
premium is calculated by the expected value premium principle. By maxi-
mizing the expected utility of the final wealth of a risk-averse insured, Ar-
row (1963) derives a similar result justifying the optimality of stop-loss in-
surance. These classical results have been extended in a number of inter-
esting directions. One generalization is to consider more complicated pre-
mium principles, as opposed to the standard expected value premium prin-
ciple. These results can be found in Raviv (1979), Young (1999), Kaluszka
(2001), Gajek and Zagrodny (2004), Kaluszka and Okolewski (2008), Bernard
and Tian (2009), and references therein. Due to the popularity of risk mea-
sures such as value at risk(VaR) and conditional value at risk(CVaR) in
quantifying the financial and insurance risks, the risk measure based opti-
mal insurance/reinsurance problems have been studied by many researchers
in the past ten years. See, for example, Cai and Tan (2007), Cai et al. (2008),
Balbás et al. (2009), Cheung (2010), Chi and Tan (2011), Chi (2012), Asimit et
al. (2013), Cong and Tan (2014), and references therein. In the afore-mentioned
studies, most of the optimization criteria have a common property of preserv-
ing the convex order, which enables us to use a unified approach to tackle op-
timal insurance problems. For unified treatments of the problems, we refer to
Van Heerwaarden et al. (1989), Gollier and Schlesinger (1996) and Chi and Lin
(2014) .

The existing literature typically assumes that the insurance premium is
known at the inception of the insurance contract and is calculated based on the
distribution of indemnity about which the insured and the insurer have sym-
metric information. However, in some insurance practice, not only the indem-
nity distribution but also its actual realization are used to compute the insur-
ance premium. A special example is the retrospective rating plan which is widely
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used in liability insurance and is summarized in Meyers (2004). More precisely,
let π(.) denote a premium principle of a retrospective rating plan, then for any
non-negative risk Y,

π(Y) = min {max {(B(Y) + L(Y) × Y)T, G(Y)} , H(Y)} , (1.1)

where B(Y) ≥ 0 is the basic premium, L(Y) ≥ 0 is the loss conversion factor
that covers the loss adjustment expenses, T > 1 is the tax multiplier including
premium tax, and G(Y) ≥ 0 and H(Y) ≥ 0 represent the minimum premium
and the maximum premium, respectively. Compared to other well-known pre-
mium principles such as the expected value premium principle and the standard
deviation premium principle, the retrospective rating plan based premium prin-
ciple (1.1) is considerably more complicated. First, it requires five parameters
in order to fully specify the above premium principle. Second, while the param-
eters B, L,G, H depend explicitly on the non-negative risk Y as indicated in
(1.1), in practice some of these parameters could be related to Y implicitly. The
complexity of the premium principle also implies that some simplifying assump-
tions are typically imposed to fully specify the premium principle. For example,
as discussed inMeyers (2004), in practice four of the parameters are agreed upon
between the insured and the insurer at the inception of the insurance agreement.
In this case, the agreed upon parameters may depend explicitly on, implicitly on,
or even be independent of Y. Once these four parameters are well-specified, the
remaining “free” fifth parameter is then implied by a desired expected retrospec-
tive premium so that the fifth parameter depends explicitly onY. The parameter
L(Y) or B(Y) is often set to be the free parameter. Consequently, all these five
parameters have deterministic values when the insurance contract is in effect.
Another distinctive feature of the above retrospective rating plan is that the re-
sulting insurance premium depends on the insured’s actual loss. This implies
that the actual insurance premium is not known until the insurance policy has
matured. This feature is also well suited for the above mentioned optimal insur-
ance/reinsurance models since the underlying problems are typically formulated
as one-period optimization problems. For these reasons, it is very interesting to
develop the optimal strategy for the above retrospective rating plan. However, to
the best of our knowledge, there is hardly any paper that studies its optimality.

In this paper, the design of an optimal retrospective rating plan is studied
from the perspective of an insured who seeks to minimize its risk exposure in
the sense of convex order, where the insurance premium is calculated by a ret-
rospective premium principle (1.1). For simplicity, the minimum premium and
the maximum premium are assumed to be

G(Y) = 0 and H(Y) = (1 + ϑ)E[Y] (1.2)

for some loading coefficientϑ > 0.Moreover, we assume that the basic premium
B(Y) is the only free parameter which is the minimal solution to the following
equation:

E[π(Y)] = (1 + ρ)E[Y], (1.3)
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where ρ ∈ (0, ϑ) is the safety loading coefficient. In order to reduce the moral
hazard, we further assume that both the insured and the insurer are obligated
to pay more for a larger realization of loss. The design of an optimal retrospec-
tive rating plan is analyzed from two aspects. On one hand, we analyze the ef-
fects of the changes in the parameters of retrospective premium principle on
the insured’s risk exposure. More specifically, by a comparative static analysis,
we find that the insured will suffer more risk for a larger loss conversion factor
or a higher ϑ . These findings suggest that the insured will prefer an insurance
contract with the expected value principle which is a special retrospective pre-
miumprinciple with zero loss conversion factor. On the other hand, by fixing the
retrospective premium principle we discuss the optimal ceded strategies. More
precisely, we show, via a constructive approach, any admissible retrospective
rating plan is dominated by a stop-loss insurance contract. Noting that the ex-
pected value premium principle is a special case, our result generalizes Theorem
6.1 of Van Heerwaarden et al. (1989). Finally, to illustrate the applicability of
our results, we derive numerically the optimal retention of stop-loss insurance
under the criterion of minimizing the risk-adjusted value of the insured’s liabil-
ity where the liability valuation is carried out using a cost-of-capital approach
based onCVaR, and analyze the effects of loss conversion factor and the loading
coefficient ϑ on the optimal retention.

The rest of this paper is organized as follows. In Section 2, we describe a
retrospective rating plan. Under such a plan, the effects of loss conversion fac-
tor and the loading coefficient in the maximum premium on the insured’s total
risk exposure are analyzed in Section 3. Section 4 shows that any admissible in-
surance policy is dominated by a stop-loss insurance contract. To illustrate the
applicability of the results established in Section 4, we derive the optimal reten-
tion of stop-loss insurance under the criterion of minimizing the risk-adjusted
value of an insured’s liability in Section 5. Finally, some concluding remarks are
provided in Section 6.

2. A RETROSPECTIVE RATING PLAN

Suppose X denotes the amount of loss an insured is facing over a given time
period.We assume X is a non-negative random variable defined on a probability
space (�,F , P) with cumulative distribution function (cdf) FX(x) = P(X ≤
x), x ≥ 0 and 0 < E[X] < ∞. A retrospective rating plan is concerned with
a partition of X into two parts: f (X) and Rf (X), where f (X), satisfying 0 ≤
f (X) ≤ X, represents the portion of the loss that is ceded to an insurer, while
Rf (X) = X − f (X) represents the loss retained by the insured. The functions
f (x) and Rf (x) are known as the ceded and retained loss functions, respectively.
As pointed out earlier, we assume both the insured and the insurer are obligated
to pay more for a larger realization of loss in order to reduce the moral hazard.
In other words, both the ceded loss function f (x) and the retained loss function
Rf (x) should be increasing. As shown in Chi and Tan (2011), it is equivalent to
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that the ceded loss function is increasing and Lipschitz continuous, i.e.

0 ≤ f (x2) − f (x1) ≤ x2 − x1, ∀ 0 ≤ x1 ≤ x2. (2.1)

Thus, the set of admissible ceded loss functions is given by

C �
{
0 ≤ f (x) ≤ x : both f (x) and Rf (x) are increasing functions

}
. (2.2)

Under a retrospective rating plan, the insurance premium is calculated ac-
cording to (1.1). However, it was also pointed out that the general form of the
retrospective premium principle can be very complicated and hence some sim-
plifying assumptions are often made to ensure tractability and ease of analysis.
The assumptions are collected in Assumption 2.1:

Assumption 2.1. (1) The maximum premium H(Y) and the minimum premium
G(Y) are set as in (1.2); (2) the loss conversion factor L(Y) is independent of
Y and is rewritten by L for brevity; (3)the basic premium B(Y) is the only free
parameter determined by (1.3).

Under the above assumptions, the retrospective premium principle π(.) can
be rewritten by

π(Y) = min {(B(Y) + L× Y)T, (1 + ϑ)E[Y]} (2.3)

for any non-negative randomvariableY. It is easy to see from the above equation
and (1.3) that

(1 + ϑ)E[Y] > B(Y) × T if and only if E[Y] > 0. (2.4)

In particular, when L = 0, it follows from the above equation that

π(Y) = (1 + ρ)E[Y], (2.5)

which is exactly the expected value principle. Moreover, both (1.3) and (2.3) en-
sure the free parameter B(Y) can be easily derived from the following equation:

(ϑ − ρ)E[Y] = E
[
((1 + ϑ)E[Y] − (B(Y) + LY)T)+

]
, (2.6)

where (x)+ = max(x, 0).
In the presence of a retrospective rating plan f (x), the risk the insured is

facing is no longer X; it is the total risk exposure Tf (X) which is defined as

Tf (X) = Rf (X) + π( f (X)). (2.7)

Recall that the insurance premium depends on the actual loss. Thus, in order
to mitigate the moral hazard, we should assume T

′
f (x) ≤ 1, a.s. for any f ∈ C,

which is equivalent to
TL ≤ 1. (2.8)

To quantify the insured’s total risk exposure Tf (X), a number of risk mea-
sures, including those that are coherent and convex, can be used. For a detailed
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discussion of risk measures, see Artzner et al. (1999) and Föllmer and Schied
(2004). It is well-known that most risk measures, including the CVaR, have a
common property of preserving the convex order. To ensure that our results
are as general as possible so that our results are applicable to a wide range of
insured’s risk preferences, in this paper we only assume that the adopted risk
measure preserves the convex order. Specifically, let �(·), a mapping from the
set of non-negative random variables to R, be the risk measure the insured uses,
then

�(Y) ≤ �(Z), if Y ≤cx Z.1

The assumption of convex order preservation is quite reasonable as the convex
order is frequently used to compare the risks in finance and insurance. More-
over, such an assumption is quite general, as it is not only satisfied by the well-
known coherent riskmeasures that are law-invariant and continuous fromabove
but also followed by the expected utility of the final wealth of a risk-averse in-
sured.

Note that Tf (X) depends on the retrospective premium principle π(.) and
the ceded loss function f (x). We will analyze the effects of these two factors on
the insured’s risk measure �(Tf (X)) in the next two sections respectively.

3. THE EFFECTS OF RETROSPECTIVE PREMIUM PRINCIPLE

Recall that the retrospective premium principle defined in this paper has four
non-free parameters, namely the loss conversion factor L, the loading coeffi-
cient ϑ for the maximum premium, the loading coefficient ρ in (1.3) and the tax
multiplier T. In this section, we will study the effects of these parameters on the
insured’s risk exposure Tf (X). In particular, we will only focus on L and ϑ , since
the tax rate is usually set by the government and is beyond our control and we
also fix ρ such that the expected retrospective premium is a constant. The main
result of this section is obtained in the following theorem.

Theorem 3.1. Under Assumption 2.1, given a ceded strategy f (x) ∈ C, the in-
sured’s total risk exposure Tf (X) is increasing in the loss conversion factor L and
the loading coefficient ϑ in the sense of convex order.

Proof. As Tf (X) is a function of the loss conversion factor L, we rewrite
Tf (X) by Tf (X; L) to emphasize this dependence. We first show that

Tf (X; L1) ≤cx Tf (X; L2), ∀0 ≤ L1 < L2 ≤ 1
T

. (3.1)

Specifically, we rewrite the basic premium by Bif for Li , then it follows from
(1.3) and (2.3) that

Tf (X; Li ) = Rf (X) + (1 + ϑ)E[ f (X)] − ψi (X), i = 1, 2, (3.2)

https://doi.org/10.1017/asb.2015.19 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.19


THE DESIGN OF AN OPTIMAL RETROSPECTIVE RATING PLAN 147

where
ψi (x) �

(
(1 + ϑ)E[ f (X)] − Bif T − LiT f (x)

)
+ , x ≥ 0.

The following proof is divided into two cases: E[ f (X)] = 0 and E[ f (X)] > 0.

• If E[ f (X)] = 0, we have f (X) = 0, a.s. and ψi (x) = 0 for i = 1, 2, then we
can see from (3.2) that Tf (X; Li ) = X, a.s.. Thus, the result is obtained.

• Otherwise, if E[ f (X)] > 0, it follows from (2.6) that

E[ψi (X)] = (ϑ − ρ)E[ f (X)], (3.3)

then we have B1
f ≥ B2

f . By defining

xi � sup {x ≥ 0 : ψi (x) > 0} , i = 1, 2, (3.4)

it follows from (2.1) and (2.4) that xi > 0. Moreover, we must have x2 ≤ x1;
otherwise, if x2 > x1, we have

ψ2(x) − ψ1(x) =
⎧⎨
⎩

(B1
f − B2

f )T + (L1 − L2)Tf (x), x ∈ [0, x1];
ψ2(x) > 0, x ∈ (x1, x2);
0, x ≥ x2.

From the above equation, it is easy to see that ψ2(x) − ψ1(x) is decreasing
and continuous over [0, x1], then it is positive over [0, x2) and is equal to zero
for x ≥ x2. Since it is assumed that E[ f (X)] > 0, then using (3.3) and (3.4),
we must have E[ψ2(X)] > E[ψ1(X)], which contradicts (3.3).
Now, using the similar arguments, it is easy to see that over [0, x2], ψ2(x) −
ψ1(x) is a decreasing continuous functionwithψ2(0)−ψ1(0) = (B1

f−B2
f )T ≥

0.Moreover, for any x > x2, we haveψ2(x)−ψ1(x) = −ψ1(x)which is a non-
positive increasing function. As a consequence, we get that ψ1(x) up-crosses
ψ2(x).2 Using Lemma 3 in Ohlin (1969) and (3.3), we get

(1 + ϑ)E[ f (X)] − ψ1(X) ≤cx (1 + ϑ)E[ f (X)] − ψ2(X).

Moreover, it is easy to see from (2.1) that the retained loss function Rf (x)
is comonotonic with (1 + ϑ)E[ f (X)] − ψi (x), then (3.1) can be obtained by
using Corollary 1 in Dhaene et al. (2002).

Next, we similarly rewrite Tf (X) by Tϑ
f (X) and B( f (X)) by Bϑ

f to emphasize
their dependence on the loading coefficient ϑ . We demonstrate that

Tϑ1
f (X) ≤cx T

ϑ2
f (X), ∀ρ < ϑ1 < ϑ2.

More specifically, if E[ f (X)] = 0, the similar analysis leads to Tϑi
f (X) = X, a.s.

so that the above equation holds. Otherwise, if E[ f (X)] > 0, as in (3.2), we have

Tϑi
f (X) = Rf (X) + φi (X), i = 1, 2,
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where

φi (x) � min
{
Bϑi
f T + LTf (x), (1 + ϑi )E[ f (X)]

}
, x ≥ 0.

The definition of φi (x) together with (1.3) implies Bϑ1
f ≥ Bϑ2

f and

E[φi (X)] = (1 + ρ)E[ f (X)], i = 1, 2.

By defining

x̃i � sup

{
x ≥ 0 : f (x) ≤ (1 + ϑi )E[ f (X)] − Bϑi

f T

LT

}
,

we obviously have 0 < x̃1 ≤ x̃2 and

φ1(x) − φ2(x) =

⎧⎪⎪⎨
⎪⎪⎩

(Bϑ1
f − Bϑ2

f )T ≥ 0, 0 ≤ x ≤ x̃1;
(1 + ϑ1)E[ f (X)] − Bϑ2

f T − LTf (x)
is decreasing, x̃1 < x ≤ x̃2;

(ϑ1 − ϑ2)E[ f (X)] < 0, x > x̃2.

Thus, φ2(x) up-crosses φ1(x). Using Lemma 3 in Ohlin (1969), we have
φ1(X) ≤cx φ2(X). Moreover, it follows from (2.1) that Rf (x) and φi (x) are
comonotonic, then using Corollary 1 in Dhaene et al. (2002) again, we get the
final result. The proof is thus complete.

From the above theorem, we know that the insured who buys a retrospec-
tive rating plan pays less basic premium but suffers more risk for the premium
principle with the larger loss conversion factor or the larger loading coefficient
for maximum premium in the sense of convex order. As a result, a risk-averse
insured will choose a retrospective rating plan with the premium principle in-
cluding smaller loss conversion factor or lower loading coefficient. In the ex-
treme case the insured will prefer the insurance contract with expected value
premium principle as it is a special retrospective premium principle with zero
loss conversion factor. Moreover, these findings are available for all the insureds
whose risk preferences preserve the convex order. In the next section, we will fix
the retrospective premium principle and study an optimal ceded strategy.

4. AN OPTIMAL CEDED STRATEGY

In this section, we will investigate optimal retrospective rating plans for an in-
sured under a retrospective premium principle. More specifically, we attempt to
solve the following optimal insurance problem:

min
f∈C

�(Tf (X)). (4.1)
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Recall that the basic premium B( f (X)) is an implicit functional of the ceded
loss f (X). It becomes very challenging to solve the above infinite-dimensional
minimization problem. However, using a constructive approach, we obtain the
main result of this section in the following theorem.

Theorem 4.1. Under the retrospective premium principle π(.) in (2.3), any admis-
sible insurance contract is dominated by a stop-loss insurance policy. More specif-
ically, for any f ∈ C, there exists a stop-loss insurance fd(x) = (x−d)+ for some
d ≥ 0 such that

E[ fd(X)] = E[ f (X)] and Tfd (X) ≤cx Tf (X). (4.2)

As a result, the optimal insurance model (4.1) is equivalent to

min
d≥0

�(Tfd (X)). (4.3)

Proof. When L = 0, π(.) is the expected value principle and the result has
been obtained by Theorem 6.1 in Van Heerwaarden et al. (1989). Therefore, we
will assume L > 0 in the following proof.

For any f ∈ C, if E[ f (X)] = 0, we have f (X) = 0, a.s. and hence Tf (X) =
X, a.s., then the result is trivial. Thus, we assume E[ f (X)] > 0. To proceed, we
define

xf � sup
{
x ≥ 0 : f (x) ≤ (

(1 + ϑ)E[ f (X)]/T − Bf
)
/L

}
, (4.4)

where Bf is an abbreviation of B( f (X)). It is easy to see from (2.4) that xf > 0.
We first show that f (x) is dominated by a two-layer insurance policy, and

the proof is divided into two cases: xf = ∞ and xf < ∞.

(i) For the case xf = ∞, we denote

w(t) � E[L(t,t+((1+ϑ)E[ f (X)]/T−Bf )/L](X)], ∀t ≥ 0,

where L(a,b](Y) represents a layer (a, b] of a non-negative risk Y and is for-
mally defined as

L(a,b](Y) � min {(Y− a)+, b − a} , 0 ≤ a ≤ b.

It is easy to see thatw(t) is a decreasing continuous function withw(∞) = 0.
Moreover, we have

w(0) = E
[
min{X,

(
(1 + ϑ)E[ f (X)]/T − Bf

)
/L}]

≥ E
[
min{ f (X),

(
(1 + ϑ)E[ f (X)]/T − Bf

)
/L}] = E[ f (X)],

where the last equality is derived by (4.4) and the assumption of xf = ∞.
Consequently, there must exist a t0 ∈ [0, ∞) such that w(t0) = E[ f (X)].
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Further, since it is assumed that xf = ∞, we have

π( f (X)) = T × (Bf + L× f (X)),

then it follows from (1.3) that

Bf × T = (1 + ρ − LT)E[ f (X)],

which in turn implies

Tf (X) = LTX+ (1 − LT)Rf (X) + (1 + ρ − LT)E[ f (X)].

Now, we introduce a layer insurance policy with ceded loss function

f̃ (x) � L(t0,t0+((1+ϑ)E[ f (X)]/T−Bf )/L](x), x ≥ 0. (4.5)

Then we have
E[ f̃ (X)] = w(t0) = E[ f (X)].

Furthermore, it follows from (2.6) that

(ϑ − ρ)

LT
w(t0) = E

[(
(1 + ϑ)w(t0) − Bf̃ T)/TL− f̃ (X)

)
+

]
= ((1 + ϑ)w(t0) − Bf̃ T)/TL

−
∫ ((1+ϑ)w(t0)−Bf̃ T)/TL

0
Sf̃ (X)(x)dx, (4.6)

where SY(t) = 1− FY(t) is the survival function of random variable Y. Sim-
ilarly, we have

ϑ − ρ

LT
w(t0) = (

(1 + ϑ)w(t0) − Bf T
)
/TL−

∫ ((1+ϑ)w(t0)−Bf T)/TL

0
Sf (X)(x)dx

= (
(1 + ϑ)w(t0) − Bf T

)
/TL− w(t0)

= ((1 + ϑ)w(t0) − Bf T)/TL−
∫ ((1+ϑ)w(t0)−Bf T)/TL

0
Sf̃ (X)(x)dx,

where the second equality follows from the assumption xf = ∞ and the last
equality is derived by the fact f̃ (x) ≤ ((1 + ϑ)w(t0) − Bf T)/TL for any
x ≥ 0. By comparing the above equation with (4.6), since it is assumed that
E[ f (X)] > 0, then it is easy to get

Bf̃ = Bf ,

which in turn implies xf̃ = ∞. As a result, we have

Tf̃ (X) = LTX+ (1 − LT)Rf̃ (X) + (1 + ρ − LT)w(t0).
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From (2.1), we know that the retained loss function is increasing and Lip-
schitz continuous, then using (2.8), it is easy to show that the function
LTx+ (1− LT)Rf (x) up-crosses LTx+ (1− LT)Rf̃ (x). Further, note that
E[Tf (X)] = E[Tf̃ (X)], then it follows from Lemma 3 in Ohlin (1969) that
Tf̃ (X) ≤cx Tf (X).

(ii) Now, we consider the case 0 < xf < ∞. Building upon f , we define

f1(x) �
{
f (x), 0 ≤ x ≤ xf ;
f (xf ) + (x− d f )+, x > xf ,

where d f ≥ xf is determined by E[ f1(X)] = E[ f (X)]. Using (2.6), we obtain

(ϑ − ρ)E[ f (X)] = E
[(

(1 + ϑ)E[ f (X)] − (Bf + Lf (X))T
)
1{X≤xf }

]
= E

[(
(1 + ϑ)E[ f1(X)] − (Bf + Lf1(X))T

)
+
]
,

where 1A is an indicator function of the event A. By comparing the above
equation with (2.6) for Y = f1(X), it is easy to get

Bf1 = Bf . (4.7)

Moreover, according to the definition of Tf (X), we have

Tf (x) =
{
Bf T + x− (1 − LT) f (x), 0 ≤ x ≤ xf ;
Rf (x) + (1 + ϑ)E[ f (X)], x > xf .

(4.8)

By (2.1) and (4.7), it is easy to see that Tf (x) up-crosses Tf1(x). Moreover, we
can get from (1.3) that

E[Tf (X)] = E[Rf (X)]+E[π( f (X))] = E[X]+ρE[ f (X)] = E[Tf1(X)]. (4.9)

Consequently, using Lemma 3 in Ohlin (1969) again, we get

Tf1(X) ≤cx Tf (X).

Further, building upon f1, it follows from (2.1) that there must exist an a
satisfying 0 ≤ a ≤ xf − f (xf ) such that E[ f1(X)] = E[ f2(X)], where f2(x)
is a ceded loss function defined as

f2(x) = L(a,a+ f (xf )](x) + (x− d f )+, x ≥ 0.

Using (2.1) again, it is easy to verify that f2(x) up-crosses f1(x), then it fol-
lows from Lemma 3 in Ohlin (1969) that f1(X) ≤cx f2(X), which together
with (2.6) implies

Bf1 ≤ Bf2 .

If Bf1 = Bf2 , let
f̂ (x) = f2(x), x ≥ 0, (4.10)
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then we have xf̂ = xf1 = xf2 = d f and f̂ (xf̂ ) = f (xf ). For this case, it is
easy to see from (4.8) that Tf1(x) up-crosses Tf̂ (x). Moreover, (4.9) implies
E[Tfi (X)] = E[X] + ρE[ f (X)] for i = 1, 2, then it follows from Lemma 3 in
Ohlin (1969) that

Tf̂ (X) ≤cx Tf1(X) ≤cx Tf (X).

Otherwise, if Bf1 < Bf2 , then f2(xf2) < f (xf ) such that

a < xf2 ≤ a + f (xf ) < xf ≤ d f = xf1 .

For any 0 ≤ x ≤ a, we have f2(x) = 0, then it follows from the Lipschitz-
continuous property of f1(x) and (4.8) that

Tf1(x) − Tf2(x) ≤ 0.

For any x ∈ (a, a + f (xf )], (4.8) implies T
′
f2(x) = 0 or LT but T

′
f1(x) ≥

LT. Thus, over this interval, Tf1(x) − Tf2(x) is increasing. Over the interval
(a + f (xf ), d f ], we have

Tf1(x) − Tf2(x) = Bf1T − (1 + ϑ)E[ f (X)] + f (xf ) − (1 − LT) f1(x),

which is decreasing in x and is equal to 0 when x = d f . Moreover, it is easy to
see from (4.8) thatTf1(x)−Tf2(x) = 0 for any x > d f . Collecting the above ar-
guments yields that Tf1(x) up-crosses Tf2(x). Thus, Lemma 3 in Ohlin (1969)
leads to

Tf2(X) ≤cx Tf1(X).

Similar to the construction of f1 from f and based on f2, we can construct
a ceded loss function of the form

f̂ (x) = L(a,a+ f2(xf2 )]
(x) + (x− d f2)+, (4.11)

for some xf2 ≤ d f2 ≤ d f such that

E[ f2(X)] = E[ f̂ (X)], xf̂ = d f2 , f̂ (xf̂ ) = f2(xf2) and Tf̂ (X) ≤cx Tf2(X) ≤cx Tf (X).

In summary, any admissible insurance contract f (x) is dominated by a layer
insurance policy f̃ (x) or a two-layer insurance policy f̂ (x). Moreover, from
(4.5), (4.10) and (4.11), we find that f̃ (x) and f̂ (x) have a similar structure and
can be written in a unified form as

h(x) = L(a,a+((1+ϑ)E[h(X)]−BhT)/TL](x) + (x− xh)+.

Furthermore, for any ceded loss function h with the above structure, there
must exist a stop-loss insurance policy fd(x) with a ≤ d ≤ xh −
((1 + ϑ)E[h(X)] − BhT) /TL such that E[ fd(X)] = E[h(X)]. It is easy to see
from (2.1) that fd(x) up-crosses h(x), then we have h(X) ≤cx fd(X), which to-
gether with (2.6) imply Bh ≤ Bfd . As a consequence, we can see from Figure 1
that

d < xfd ≤ d + ((1 + ϑ)E[h(X)] − BhT) /TL ≤ xh .
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FIGURE 1: The ceded loss functions h(x) and fd (x). (Color online)

We now demonstrate that Th(x) up-crosses Tfd (x). Specifically, for any x ≥
xfd , it is easy to see that Tfd (x) = d+(1+ϑ)E[h(X)] and that Th(x) is increasing
with Th(xh) ≥ Tfd (xh). Furthermore, for any 0 ≤ x < xfd , it follows from (4.8)
that

Tfd (x) − Th(x) = T × (Bfd − Bh) + (1 − LT)(h(x) − fd(x)) ≥ 0.

Collecting the above arguments leads to the result.
Finally, we know from (4.9) thatE[Tfd (X)] = E[X]+ρE[ fd(X)] = E[Th(X)],

then Lemma 3 in Ohlin (1969) implies Tfd (X) ≤cx Th(X). Hence, any admissi-
ble insurance policy is suboptimal to a stop-loss insurance contract and this
completes the proof.

By the above theorem, we know that any admissible insurance policy is dom-
inated by a stop-loss insurance contract under the retrospective premium prin-
ciple (2.3), and hence the study of the infinite-dimensional optimal insurance
model (4.1) is simplified to analyzing a minimization problem of just one vari-
able (4.3), once, by hypothesis, the risk measure preserves the convex order. It
seems impossible to solve this minimization problem without the specification
of the objective functional �(.). In the next section, we will derive the opti-
mal retention of stop-loss insurance under the criterion of minimizing the risk-
adjusted value of an insured’s liability where the liability valuation is carried out
by using a cost-of-capital approach based on the CVaR risk measure.
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5. MINIMIZING THE INSURED’S RISK-ADJUSTED LIABILITY

In this section, we will investigate the optimal insurance model (4.1) under the
criterion of minimizing the risk-adjusted value of an insured’s liability. The li-
ability valuation is carried out using a cost-of-capital approach which was in-
troduced by the Swiss insurance supervisor (see Swiss Federal Office of Private
Insurance, 2006) and was accepted by the EuropeanUnion insurance regulation
(See European Commission, 2009). Under such an approach, the risk-adjusted
value of the insured’s liability is composed of two components: best estimate
and risk margin. The best estimate is usually represented by the expected liabil-
ity, E[Tf (X)]. In addition, some capital is required to hold for partly covering
the unexpected loss, Tf (X) − E[Tf (X)], the difference between the risk and its
expectation. The unexpected loss is usually quantified by the VaR or CVaR risk
measure, which can be defined formally as follows:

Definition 5.1. The VaR of a random variable Z at a confidence level 1− α where
0 < α < 1 is defined as

VaRα(Z) � inf{z ∈ R : P(Z> z) ≤ α}. (5.1)

Based upon the definition of VaR, CVaR of Zat a confidence level 1−α is defined
as

CVaRα(Z) � 1
α

∫ α

0
VaRs(Z)ds. (5.2)

From the above definition of VaRα(Z), we have

VaRα(Z) ≤ z if and only if SZ(z) ≤ α (5.3)

for any z ∈ R. Moreover, for any increasing continuous function g(x), we have
(see Theorem 1 in Dhaene et al., 2002)

VaRα(g(Z)) = g(VaRα(Z)). (5.4)

It is well-known that VaR is not a coherent riskmeasure as it does not satisfy the
sub-additive property. On the other hand, CVaR is a coherent risk measure and
is recommended by Swiss Federal Office of Private Insurance (2006) to quantify
insurance risk. We refer to Artzner et al. (1999) and Föllmer and Schied (2004)
for more detailed discussions on the properties of VaR and CVaR.

Due to its desirable properties, in this paper we adopt CVaR to calculate the
capital at risk, i.e.

CVaRα

(
Tf (X) − E[Tf (X)]

)
.

The return from a capital investment is much smaller than that required for
shareholders in practice. We denote by δ ∈ (0, 1) the return difference, which is
known as the cost-of-capital rate. The risk margin is now set to be the product
of the cost-of-capital rate and the capital at risk. Consequently, let L (Tf (X))
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represent the risk-adjusted value of the insured’s liability, then we have

L (Tf (X)) = E[Tf (X)] + δ × CVaRα

(
Tf (X) − E[Tf (X)]

)
. (5.5)

Thus, the optimal insurance model in this section is formulated by

min
f∈C

L (Tf (X)). (5.6)

As pointed out earlier, the CVaR risk measure preserves the convex order;
so does the objective functionalL (.). According to Theorem 4.1, we know that
the stop-loss insurance is optimal, and hence the study of optimal insurance
model (5.6) is simplified to analyzing the following one-parameter minimization
problem

min
d≥0

L (Tfd (X)). (5.7)

Recall that the basic premium is an implicit functional of the ceded loss. Con-
sequently, the expression for L (Tfd (X)) can be quite involved, as shown in the
following proposition.

Proposition 5.1. For any d ≥ 0, we have

L (Tfd (X)) − (1 − δ)E[X]

=

⎧⎪⎪⎨
⎪⎪⎩

δd + (δ + ρ + δ(ϑ − ρ)) E[(X− d)+], ν(d)

LT + d ≤ VaRα(X);
δ(1 − LT)d + γE[(X− d)+] + δ( 1

α
− 1)ν(d)

+δLT × CVaRα(X), d ≤ VaRα(X) < ν(d)

LT + d;
κE[(X− d)+] + δ(1−α)

α
ν(d) + δCVaRα(X), d > VaRα(X),

where γ � (1− δ)ρ + δ(1+ ϑ) − δ
LT+ϑ−ρ

α
, κ � ρ − δ(1/α − 1)(1+ ϑ − ρ) and

ν(d) � (1 + ϑ)E[(X− d)+] − Bfd T. (5.8)

Proof. The translation invariant property of CVaR implies that

L (Tfd (X)) = (1 − δ)E[Tfd (X)] + δCVaRα(Tfd (X))

= (1 − δ)E[X] + ρ(1 − δ)E[(X− d)+] + δCVaRα(Tfd (X)) (5.9)

for any d ≥ 0, where the last equality is derived by (4.9). Further, it follows from
(2.3) and (2.7) that

Tfd (x) = min{x, d} + (1 + ϑ)E[(X− d)+] −
(
ν(d) − LT (x− d)+

)
+ ,
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which is an increasing continuous function over R+. Thus, (5.4), together with
the translation invariant property of CVaR risk measure, implies

CVaRα(Tfd (X)) = (1 + ϑ)E[(X− d)+]

+ 1
α

∫ α

0
min{VaRs(X), d} − (

ν(d) − LT (VaRs(X) − d)+
)
+ ds.

(5.10)

If d ≥ VaRα(X), it follows from the above equation that

CVaRα(Tfd (X))

= (1 + ϑ)E[(X− d)+] + CVaRα(X)

− 1
α

∫ α

0
(VaRs(X) − d)+ + (

ν(d) − LT (VaRs(X) − d)+
)
+ ds

= (1 + ϑ)E[(X− d)+] − 1
α

∫ 1

0
(VaRs(X) − d)+ + (

ν(d) − LT (VaRs(X) − d)+
)
+ ds

+1 − α

α
ν(d) + CVaRα(X)

= (1 + ϑ)E[(X− d)+] − 1
α

(
E[(X− d)+] + E[(ν(d) − LT(X− d)+)+]

)

+1 − α

α
ν(d) + CVaRα(X)

=
(
1 + ϑ − 1 + ϑ − ρ

α

)
E[(X− d)+] + 1 − α

α
ν(d) + CVaRα(X),

where the third equality is derived by the fact that X and VaRU(X) are equal
in distribution and the last equality is derived by (2.6). Here, U is a random
variable uniformly distributed on [0, 1].

Otherwise, if d ≤ VaRα(X), we have

1
α

∫ α

0
min{VaRs(X), d}ds = d

and
1
α

∫ α

0

(
ν(d) − LT (VaRs(X) − d)+

)
+ ds = LT

α

∫ α

0
(ν(d)/LT + d − VaRs(X))+ ds.

Further, if ν(d)/LT + d ≤ VaRα(X), we have

1
α

∫ α

0

(
ν(d) − LT (VaRs(X) − d)+

)
+ ds = 0,

then by simple algebra, (5.10) can be rewritten by

CVaRα(Tfd (X)) = d + (1 + ϑ)E[(X− d)+].
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Otherwise, if ν(d)/LT + d > VaRα(X), we have

1
α

∫ α

0

(
ν(d) − LT (VaRs(X) − d)+

)
+ ds

= ν(d) + dLT − LT × CVaRα(X) + LT
α

∫ α

0
(VaRs(X) − (ν(d)/LT + d))+ ds

= ν(d) + dLT − LT × CVaRα(X) + LT
α

∫ 1

0
(VaRs(X) − (ν(d)/LT + d))+ ds

= ν(d) + dLT − LT × CVaRα(X) + LT
α

E[(X− (ν(d)/LT + d))+].

It also follows from (2.6) that

(ϑ − ρ)E[(X− d)+] = LT
∫ ν(d)

LT +d

d
FX(t)dt, (5.11)

then we have

E[(X− (ν(d)/LT + d))+] =
(

ϑ − ρ

LT
+ 1

)
E[(X− d)+] − ν(d)

LT
.

As a consequence, by simple algebra, CVaRα(Tfd (X)) in (5.10) could be rewrit-
ten as

CVaRα(Tfd (X)) = (1 − LT)d +
(
1 + ϑ − ϑ − ρ + LT

α

)
E[(X− d)+]

+
(
1
α

− 1
)

ν(d) + LT × CVaRα(X).

Substituting the above expression into (5.9), we obtain the final result and this
completes the proof.

In the above proposition, L (Tfd (X)) is expressed in term of an auxiliary
function ν(d)which can be derived from (5.11). Before solving theminimization
problem (5.7), we explore some properties of ν(d) in the following proposition.

Proposition 5.2. For ν(d) defined in (5.8), we have ν ′(d) ≤ 0 and

ν ′(d) ≥ −LT if and only if d ≥ VaR 1

1+ ϑ−ρ
LT

(X).

Proof. From (2.4), it is easy to see that ν(d) ≥ 0 and that ν(d) > 0 if and
only if E[(X − d)+] > 0. For any d ≥ 0 with E[(X − d)+] > 0, taking the
derivatives of (5.11) with respect to d yields

ν ′(d)FX

(
ν(d)

LT
+ d

)
+ LT

(
FX

(
ν(d)

LT
+ d

)
− FX(d)

)
+ (ϑ − ρ)SX(d) = 0.
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Thus, we must have ν ′(d) ≤ 0. Moreover, we can see from the above equation
that (

ν ′(d)/LT + 1
)
FX

(
ν(d)

LT
+ d

)
= 1 −

(
1 + ϑ − ρ

LT

)
SX(d),

which together with (5.3) implies

ν ′(d)/LT + 1 ≥ 0 if and only if d ≥ VaR 1

1+ ϑ−ρ
LT

(X).

The proof is thus complete.

By using Propositions 5.1 and 5.2, we are now ready to solve the optimal
insurance problem (5.7). We illustrate this by resorting to two numerical exam-
ples so that the optimal retrospective rating plan can be identified explicitly and
the effects of the loss conversion factor L and the loading coefficient ϑ can be
assessed in turn. As in Chi and Lin (2014), we consider two loss distributions
with the samemean and variance. Example 5.1 examines the heavy tailed Pareto
distribution while Example 5.2 analyses the light tailed Gamma distribution. In
both cases, we assume the following values for the retrospective rating plan: the
tax multiplier T = 1.025, δ = 3%, α = 20% and the safety loading coefficient
ρ = 0.1.

Example 5.1 (Pareto loss distribution). Suppose a loss random variable X follows
a Pareto distribution with probability density function (pdf)

p1(x) = 3 × 106

(x+ 100)4
, x > 0, (5.12)

then we have

SX(t) = 106/(t + 100)3, E[X] = 50, var(X) = 7500, VaRα(X) = 100(α−1/3 − 1) = 71,

where var(X) is the variance of the random variable X, and

CVaRα(X) = 150α−1/3 − 100, E[(X− d)+] = 5 × 105 × (100 + d)−2.

For this case, (5.11) is rewritten as

ν(d)+5×105×LT×
(

ν(d)

LT
+ d + 100

)−2

−5×105×(ϑ−ρ+LT)(d+100)−2 = 0.

Recall that Proposition 5.2 establishes ν(d) is a decreasing function in d. For each
d ≥ 0, it is very easy to derive ν(d) from the above equation and L (Tfd (X)) by
using Proposition 5.1. Consequently, we can obtain the solution d∗ by comparing
the risk-adjusted value of the insured’s liability with different retention levels.

First, we set the loading coefficient ofmaximumpremium toϑ = 0.3 and derive
the optimal retention levels for loss conversion factor L = 0.1, 0.3, 0.5, 0.7, 0.9.
The numerical results are reported in Table 1. It follows from the table that as L
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TABLE 1

OPTIMAL RETENTION LEVEL FOR DIFFERENT L UNDER PARETO LOSS DISTRIBUTION WHEN ϑ = 0.3.

L d∗ ν(d∗)
LT + d∗ mind≥0 L (Tfd (X))

0.1 66.54 108.21 52.9190
0.3 67.83 82.04 52.9399
0.5 67.71 76.35 52.9451
0.7 66.79 73.08 52.9472
0.9 66.03 71.00 52.9476

TABLE 2

OPTIMAL RETENTION LEVEL FOR DIFFERENT ϑ UNDER PARETO LOSS DISTRIBUTION WHEN L = 0.5.

ϑ d∗ ν(d∗)
LT + d∗ mind≥0 L (Tfd (X))

0.15 63.66 66.00 52.8646
0.2 64.28 68.89 52.8925
0.25 65.39 72.15 52.9200
0.3 67.71 76.35 52.9451
0.35 69.69 80.11 52.9678
0.4 72.85 84.73 52.9883

increases, the minimal risk-adjusted value of the insured’s liability also increases
although the same property does not apply to the optimal retention level.

Next, we analyze the sensitivity of d∗ andL (Tfd∗ (X))with respect to the load-
ing coefficient ϑ . We set L = 0.5 and choose ϑ = 0.15, 0.2, 0.25, 0.3, 0.35, 0.4.
The numerical results are depicted in Table 2. In this case, both L (Tfd∗ (X)) and
d∗ increase with ϑ . This suggests that for a larger maximum premium, the insured
would retain more risk and expose to a higher risk-adjusted liability. Exactly, this
result could be explained by using Theorem 3.1. More precisely, it follows from
Theorem 3.1 that as the maximum premium increases, the retrospective premium
becomes more risky and the insured is facing more risk exposure. As the retrospec-
tive rating plan becomes less efficient to transfer risk, the insured would cede less
risk for a larger ϑ .

Example 5.2 (Gamma loss distribution). In this example we assume that the loss
random variable X has a light tailed Gamma distribution with pdf

p2(x) = 1

150
1
3 �( 13 )

x− 2
3 e− x

150 , x > 0,

where �(t) = ∫ ∞
0 xt−1e−xdx, t ≥ 0. The parameter values for the above Gamma

distribution are selected so that it has the same mean and variance as the Pareto
distribution discussed in Example 5.1.
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TABLE 3

OPTIMAL RETENTION LEVEL FOR DIFFERENT L UNDER GAMMA LOSS DISTRIBUTION WHEN ϑ = 0.3.

L d∗ ν(d∗)
LT + d∗ mind≥0 L (Tfd (X))

0.1 71.37 123.98 53.6748
0.3 72.62 90.57 53.6979
0.5 71.80 82.78 53.7029
0.7 70.46 78.47 53.70396
0.9 69.99 76.28 53.70403

The survival function and the stop-loss premium could be calculated via the
function

Ga,b(t) =
∫ t

0

1
ba�(a)

xa−1e− x
b dx, t ≥ 0

for a > 0, b > 0. Many softwares including Excel and Matlab have a package for
Ga,b(t). Then, we have VaRα(X) = G−1

1
3 ,150

(1 − α) = 78.47 and

E[(X− d)+] = 50(1 − G 4
3 ,150(d)) − d(1 − G 1

3 ,150(d)).

For Gamma loss distribution, (5.11) can be written by

(50 − d)(ϑ − ρ) + d(ϑ − ρ + LT)G 1
3 ,150(d) + 50LT × G 4

3 ,150

(
d + ν(d)

LT

)

= (ν(d) + d × LT)G 1
3 ,150

(
d + ν(d)

LT

)
+ 50 × (ϑ − ρ + LT)G 4

3 ,150(d).

Similarly, for each d ≥ 0, we can derive ν(d) from the above equation and
L (Tfd (X)) with the help of Proposition 5.1. The optimal retention and other re-
lated quantities are listed in Tables 3 and 4.

Similar to the Pareto example, the risk-adjusted value of liability increases with
the loss conversion factor L while both the risk-adjusted value of liability and the
optimal retention level increase with the loading coefficient ϑ for the Gamma loss
distribution. It is also of interest to study the effect of the tail behavior of a loss
distribution on the optimal insurance model. In particular,L (Tfd∗ (X)) and d∗ for
Gamma distribution are larger than the corresponding values for the heavy tailed
Pareto distribution although both distributions have samemean and variance. This
suggests that when an insured faces a risk that has a heavy tail, it would cede more
risk to an insurer and result in a lower risk-adjusted value of liability.

6. CONCLUDING REMARKS

In this paper, we study the design of an optimal retrospective rating plan from
the perspective of an insured under a criterion that preserves the convex order.
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TABLE 4

OPTIMAL RETENTION LEVEL FOR DIFFERENT ϑ UNDER GAMMA LOSS DISTRIBUTION WHEN L = 0.5.

ϑ d∗ ν(d∗)
LT + d∗ mind≥0 L (Tfd (X))

0.15 67.15 70.10054 53.5999
0.2 68.1 73.90 53.6349
0.25 69.05 77.60851 53.6696
0.3 71.80 82.78 53.7029
0.35 74.71 87.91027 53.7331
0.4 77.29 92.60 53.7605

We find that the insured would suffer more risk exposure for a larger loss con-
version factor or a higher loading coefficient in maximum premium. Moreover,
it is shown that any admissible insurance contract is dominated by a stop-loss
policy. Further, the optimal retention of stop-loss insurance is derived numeri-
cally under the criterion of minimizing the risk-adjusted value of the insured’s
liability where the liability valuation is carried out by a cost-of-capital approach
based on the CVaR risk measure.

To simplify the analysis, we make some rather stringent assumptions on
the retrospective premium principle in this paper. For example, we set the
minimum premium to be zero and the maximum premium to be propor-
tional to the expected indemnity. Moreover, the basic premium is assumed
to be a solution to (1.3). In practice, the retrospective rating plan may have
a much more complicated pricing mechanism. Therefore, it will be of signif-
icant interest to study the optimal design of a retrospective rating plan with
more general retrospective premium principle. We leave this for future research
exploration.
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NOTES

1. Here, Y ≤cx Z is equivalent to

E[Y] = E[Z] and E[(Y− d)+] ≤ E[(Z− d)+], ∀d ∈ R, (2.9)
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provided that the expectations exist. See Shaked and Shanthikumar (2007) for more details on the
theory of stochastic orders.

2. A function g(x) is said to up-cross a function h(x), if there exists an x0 ∈ R such that

{
g(x) ≤ h(x), x < x0;
g(x) ≥ h(x), x > x0.
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