Random Boolean Networks and
Evolutionary Game Theory

J. McKenzie Alexanderf

Recent years have seen increased interest in the question of whether it is possible to provide
an evolutionary game-theoretic explanation for certain kinds of social norms. I sketch a proof
of a general representation theorem for a large class of evolutionary game-theoretic models
played on a social network, in hope that this will contribute to a greater understanding of the
long-term evolutionary dynamics of such models, and hence the evolution of social norms.

1. Introduction. Recent years have seen increased interest in the question
of whether it is possible to provide an evolutionary game-theoretic
explanation for certain kinds of social norms (see, for example, Skyrms
1994; Skyrms 1996; D’Arms et al. 1998; Alexander and Skyrms 1999;
and Alexander 2000). Those who seek to provide such an account
typically proceed as follows: first, one identifies a particular norm of
interest—the explanandum—as well as a game representing the choice
problem in which that norm is typically invoked. Second, interpreting the
evolutionary game-theoretic account as a model of cultural evolution,' one
constructs a model of the process in which boundedly rational individuals
interact, learn, and change their beliefs or behaviors. The goal is to
demonstrate that the formal strategy or strategies corresponding to the
social norm under study exist in some kind of equilibrium under the
associated dynamics. If such an equilibrium exists, and the population
converges to that equilibrium often enough, it is then argued that this
provides, as Skyrms said regarding the concept of justice, “a beginning of
an explanation of the origin” of the norm in question (Skyrms 1994, 320).

1To contact the author, please write: Department of Philosophy, London School of
Economics, Houghton Street, London WC2A 2AE, UK; e-mail: jalex@lse.ac.uk.

1. This need not commit one to talk of “memes” or sociobiological explanations. See
Bogers and Sarin (1993) for a model of imitative learning that leads to the replicator
dynamics and Lachapelle (2000) for an argument on why cultural evolution may be viewed
as a process independent of biological evolution.
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In this kind of explanatory account, it is important to note the respective
roles played by (1) the fact that the strategies representing a social norm
exist in some kind of equilibrium under the associated dynamics, and (2)
the fact that the population converges to that equilibrium “often enough.”
The first point explains the stability and (perhaps) the normativity attached
to that norm: The reason why people continue to follow it is that, once
arrived at, that norm provides a reasonably successful solution to the
interdependent decision problem at hand, such that no individual can
expect to do better by deviating from it.? Under the assumption that a
person will not deliberately choose to follow a course of action that makes
himself or herself worse off than before, the norm is “fixed” in the
population since attempts to depart from it are not fruitful and conse-
quently eliminated.* The second point explains why, in fact, we actually
find ourselves following that norm rather then some other norm. In the
ideal case,* one finds that the population always arrives at the equilibrium
corresponding to the norm we actually follow, no matter how it may have
started. In this case it is clear why we find that norm present in society: The
dynamics of boundedly rational interaction inevitably drive populations
towards adopting that norm.?

In this paper I will not engage the question of whether this explanatory
strategy succeeds or fails. My concern here lies with the question of how
one establishes the second claim above, namely, that populations converge
to certain equilibria “often enough.” In general, this is the problem of
calculating the basins of attraction for a given dynamical system and of
determining their relative size.® This question points out an inherent
difficulty at the heart of the evolutionary game-theoretic approach. While
one should take the results from a purported evolutionary game-theoretic

2. Notice that this explanation of why people continue to follow norms does not imply that
it is impossible for norms to change. If the arena in which social interaction occurs changes
sufficiently, the game used to represent the original social context will no longer be an ac-
curate representation. A new game representing the new social context would need to be in-
troduced, and it would be an open question whether strategies in equilibrium in the original
game would also be in equilibrium in the new game.

3. 1 do not intend the talk of “eliminating” strategies, attempts, or individuals from a pop-
ulation to be taken literally. As I am primarily interested in discussing cultural evolutionary
game-theoretic models, these phrases should be interpreted as saying only that no one in the
population follows the strategy.

4. Which may exist for certain cases of dividing resources between perfectly symmetric
individuals. For further discussion, see Alexander (2000).

5. This claim, of course, is subject to the qualification that the model of the interactive dy-
namics is reasonably accurate.

6. In what follows, I shall assume that the dynamical systems under consideration are
deterministic.
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explanation of social norms seriously to the extent that the underlying
model accurately represents the relevant aspects of social interaction
among members of the population, the construction of a more accurate
model often requires rejecting certain simplifying assumptions that facil-
itate calculating basins of attraction of a given equilibrium. That is, as the
empirical adequacy of the evolutionary model increases (thus giving us
more reason to take its results seriously), it becomes harder to establish the
formal results that underwrite the explanation.

For example, Skyrms (1994) uses the replicator dynamics to develop an
evolutionary game-theoretic model of a population of boundedly rational
individuals playing the game of “divide-the-dollar.” In order to justify the
use of the replicator dynamics, one must assume (in part) that the
population is essentially infinite and perfectly mixed, such that all pairwise
interactions are equally likely. These assumptions appear inaccurate for
describing real human societies. As D’Arms et al. (1998) note, one finds
important differences in the frequencies with which certain equilibria arise
when considering a finite population model. In a previous paper, I argued
that considering finite populations in which interactions are constrained by
an underlying social network also produces interesting differences in the
kinds of equilibria that emerge. This illustrates the problem described
above. Moving from Skyrms’s replicator dynamic model to a finite
population, social-network model involves moving from a continuous
dynamical system described by a set of differential equations to a discrete
dynamical system described by a set of transition rules, and, generally
speaking, analyzing discrete systems is a more difficult problem than an-
alyzing continuous systems. If we need to consider finite-population social
network models in order to construct an empirically adequate model of the
evolution of social norms, we must improve our ability to determine the
basins of attractions of such models. This paper seeks to establish one
result that, it is hoped, will contribute to the general solution of this
problem.

In what follows, I sketch a proof of a general representation theorem for
a large class of evolutionary game-theoretic models played on a social
network, in hope that this will contribute to a greater understanding of the
long-term evolutionary dynamics of such models. More precisely, I show
how many kinds of social networks can be translated into random Boolean
networks. The interesting and useful part of the theorem consists of the
demonstration that, for many social networks, there is a bijection f be-
tween the state space of the social network and the state space of the
random Boolean network, such that the state S’ follows the state S under
the dynamical laws of the social network if and only if f(S’) follows the
state f(S) under the dynamics of the random Boolean network. In some
cases, it is not possible to find such a bijection; in these cases, one can find
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an injection f'with the property that if S” follows S under the dynamics of
the social network, then f(S”) follows f(S) under the dynamics of the
random Boolean network. I then use this method to catalog all the basins
of attraction for some simple two-strategy games played on social net-
works using the algorithm of Wuensche and Lesser (1992).

2. Random Boolean Networks and Social Network Models. Informally,
a random Boolean network (hereafter, RBN) consists of a number of
nodes, each node having some number (possibly zero) of input and output
“wires” connecting it to other nodes in the network. If a wire connects
nodes u and v, and the wire is an output of u, the wire is an input of v. The
set of nodes, along with the input and output wires, are assumed to form a
connected network. At any time #, each node in the network is either on or
off, and whether a node u is on or off at time 7 + 1 is given by a Boolean
function of the state of the nodes on u s input wires. More precisely, a RBN
consists of a set of nodes N= {1, ..., n}, a directed graph G= (N, E), and a
sequence of Boolean functions (fi, . . ., f,), such that the arity of f; equals
the number of edges entering node i, plus one (since the state of a node
always influences its future state).”

Denote the state of the network at time 7 by S, & {0,1}”, and let S; be the
state of node 7 at time #, which is simply the ith component of the n-tuple
S;. Let N;= {iy, . . ., iy} denote the subset of nodes of N connected by an
edge pointing to 7. (N; is the neighborhood of 7, or, alternatively, the set of
input nodes for i.) If the initial state S, of the network is given, one can
calculate any future state of the network according to the following rule:

g {ﬁ(Sjll,...,St’kl) if t>0andi,...,iy €N;
! S otherwise.

The Boolean functions are often referred to as transition rules because they

fix the state transitions for each node in the network. A random Boolean

network is essentially a generalized cellular automata, obtained by lifting

the assumption that each node has the exact same transition rule and

neighborhood.

A social network model consists of a population of agents, each of whom
has a particular strategy; a network of relations defined on the population,
specifying the set of possible interactions among members; and a set of
update rules for each agent, specifying how she switches strategies at the

7. Strictly speaking, since the set of edges entering node i is unordered, one needs to specify
which argument of f; corresponds to each node incident on one of i’s input wires. As includ-
ing this level of detail would increase the complexity of exposition with no corresponding
gain in perspicuity, I leave it to the reader to fill in these details if desired.
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end of each round of play. More precisely, let N = {1, . . ., n} denote the
population of agents, and let G = (&, U) be an undirected graph defined on M.
Let v(a) denote the set of agents from the population immediately connected
to a in G (this is also known as the neighborhood of ). In each round, every
agent « interacts with her neighbors, playing some game using strategy o,,.
At the end of each round of play, an agent’s score equals the sum of the
payoffs from each pairwise interaction, and each agent has the opportunity to
change her strategy. It is assumed that an agent will only elect to change her
strategy if she has an appropriate incentive—e.g., if at least one of her
neighbors received a higher score than she did. The specific way in which the
agent a chooses a new strategy corresponds to a particular learning rule L,
which may or may not be the same for all agents.

Since the general proof of the representation theorem consists of
showing how, given an arbitrary social network model with a finite number
of individual strategies and deterministic update rules, one would go about
constructing a RBN having the desired properties,® I will first present two
examples showing how to construct a RBN whose dynamics and state space
are isomorphic to that of a given social network model. I will then consider
a case where one cannot construct a RBN whose state space and dynamics
are isomorphic to the social network, but where one can construct a RBN in
which a representation of the state space and dynamics of the social network
is embedded. I then generalize this general procedure (thus sketching the
proof). In these examples, I assume agents in the social network employ the
following learning rule:

Imitate best neighbor, conservatively. An agent a switches strategies if
and only if at least one agent in v(a) received a score higher than a.
The strategy adopted by a is the strategy closest to her present one,
according to some suitable metric.’

As two of the examples are simple two-strategy versions of the pris-
oner’s dilemma and the stag hunt, in these cases, this learning rule col-
lapses into: switch strategies if and only if every person receiving the
maximum highest score in your neighborhood followed the opposite
strategy.'® Note, though, that nothing regarding the statement or proof of

8. The “desired properties” being that either (1) one can find a bijection between the state
spaces of the two networks which preserves the dynamics, or that (2) one can find an
injection from the state space of the social network into the state space of the RBN which
preserves the dynamical relations of the social network.

9. This update rule differs slightly from more commonly used ones to insure that the update
rule be deterministic.

10. This can intuitively be thought of as a highly risk-adverse learning rule where one
adopts a new strategy only in the face of strong evidence that one’s current strategy is
inadequate.
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TABLE 1. PAYOFF MATRIX FOR THE PRISONER’S DILEMMA

Cooperate Defect
Cooperate 3 1
Defect 4 2

the representation theorem depends upon this particular assumption as to
the learning rule—what is crucial is only that there be a deterministic
update rule specifying how future strategies are selected.

2.1. The Prisoner’s Dilemma. Consider a simple network model of the
prisoner’s dilemma where seven agents play the prisoner’s dilemma on a
ring and all agents use the “imitate best neighbor, conservatively”’ update
rule as described above.

Take the payoffs for this prisoner’s dilemma to be those in Table 1. This
social network, then, has the population N = {1, ..., 7}, the graph G =
(N, U) as illustrated in Figure 1, and a common update rule L for all
individuals in this population. Constructing a random Boolean network
equivalent to this social network requires specifying a set of nodes N/,
a graph G'= (N’, E), and a sequence of transition rules f; for each node
in N'.

To begin, since there are only two possible strategies in the game,
Cooperate and Defect, we may simply let N be a set of seven nodes,
where each node represents one agent in the original social network, and
the strategies Cooperate and Defect are represented by having the node be
on or off, respectively. (In the third example I will present a case where
more complicated representations are required, but such is unnecessary
here.)

We now need to construct a graph G’ specifying the inputs for each node
in N’. Since these inputs are the only source of new “information” that a
node may refer to when changing state, the graph G’ needs to represent all
of the relevant connections between agents in the social network. If

©
D ©

Figure 1. Prisoner’s dilemma played on a seven-person ring.
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whether an agent a adopts a strategy in the next round of play depends
on an agent b, G’ must include a connection between the node represen-
ting a and the node representing b.

One minor complication occurs because the edges in a social network
are undirected whereas the edges in a RBN are directed. The reason for this
is simply that in a social network the relations of interaction and updating
are symmetric: If 4 interacts with B, then B interacts with 4, and if 4
inspects B’s strategy when updating, then B inspects A’s strategy when
updating. Though RBNs do not require such symmetry, it is easily
represented. For each undirected edge {4, B} € G, we need to introduce
a pair of directed edges in G’ between the node representing A and the
node representing B.

It is important to realize that the dependency relations between agents in
a social network extend beyond the immediate connections specified in G.
Given a ring configuration as in Figure 1, consider the immediate and
surrounding neighbors of a typical agent 4, as illustrated in the ring
segment of Figure 2.

Although the score of 4 depends only on the strategies held by @ and O,
whether 4 changes strategies according to the rule L depends not just on A’s
score, but on the score of players @ and ® as well. In turn, the scores of @
and @ depend on the strategies held by @ and @. That is, the strategy 4
adopts at the end of the round depends not only on the strategies held by
immediate neighbors @ and @, but implicitly on the strategies held by the
“neighbors once removed,” @ and @. Social networks with imitative
learning rules generally have an implicit radius of influence for each agent
reaching one step beyond the immediate connections in the interaction
graph. Consequently, additional edges representing these dependencies
must be included in G’ Figure 3 illustrates the additional edges that must be
added to the network in order to take the implicit radius of influence into
consideration. Because of the symmetry of social networks, each undi-
rected edge will need to be replaced by a pair of directed edges, which are
omitted in Figure 3 for purposes of clarity.

At this point, all of the relevant dependencies have been incorporated in
G’ The remaining task is to construct the transition rules for the random
Boolean network. The symmetries present in the original social network
mean that each node in the RBN will have the same transition rule. Before
we can construct this transition rule, we must first impose an ordering on
the input wires for each node in the network. Using the illustration of

Figure 2. Segment of the seven-person prisoner’s dilemma ring.
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Figure 3. The graph G’ for the constructed RBN. Solid edges correspond to edges present
in the original social network. Dashed edges represent dependencies between agents in the
original social network who did not have explicit edges connecting them. All edges are
shown as undirected for clarity, but will need to be replaced by a pair of directed edges to
obtain the real graph G’'.

Figure 4 as a reference, let us represent the state of a node 4 and her
neighbors @, @, @, and @ by a five-bit string B,B,B,B3B4 where bit B, is 0
if x is off and 1 if x is on. Thus the state where @ is on, @ is off, 4 is off, ®
is on, and @ is on will be represented by 10011. In this state, since 4 defects
on one cooperator and one defector (@ and @, respectively), A’s score will
be six. Since @ defects on one cooperator and one defector (O and 4,
respectively), @’s score is six as well. @’s score is only four since @
cooperates with one defector and one cooperator (4 and @, respectively).
Thus 4 will continue to defect in the next generation. We may represent this
transition rule for 4 as 10011 — 0, indicating that, when given inputs 10011,
the future state of node 4 will be 0.

Table 2 lists the remainder of the transition rules for the node 4 of
Figure 4; these transition rules are used by all of the other nodes in the
RBN as well. At this point we are finished: We have a RBN equivalent to
the original social network, and we know that the RBN is equivalent by the
process of construction used to obtain it. If the future strategy of A4
depends, in some way, upon the strategy held by B, there is an input wire
connecting the node representing B to the node representing 4 in the RBN.
Additionally, the transition rule assigned to the node representing 4 has
taken the precise nature of these dependencies into account.

2.2. The Stag Hunt. Consider a social network model in which seven

people situated on a ring are playing the stag hunt with their neighbors, and
assume that the specific form of the stag hunt be that of Table 3.

Figure 4. Dependencies for node 4 in the constructed RBN.
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TABLE 2. TRANSITION RULE REPRESENTING THE “IMITATE BEST NEIGHBOR,
CONSERVATIVELY” UPDATE RULE FOR AN AGENT PLAYING
THE PRISONER’S DILEMMA ON A RING

11111 — 1 10111 — 0 01111 — 1 00111 — 1
11110 — 1 10110 — 0 01110 — 1 00110 — 0
11101 — 0 10101 — 0 01101 — 0 00101 — 0
11100 — 1 10100 — 0 01100 — 0 00100 — 0
11011 — 0 10011 — 0 01011 — 0 00011 — 0
11010 — 0 10010 — 0 01010 — 0 00010 — 0
11001 — 0 10001 — 0 01001 — 0 00001 — 0
11000 — 0 10000 — 0 01000 — 0 00000 — 0

TABLE 3. PAYOFF MATRIX FOR THE STAG HUNT

Hunt stag Hunt rabbit
Hunt stag 3 0
Hunt rabbit 1 2

TABLE 4. TRANSITION RULE REPRESENTING THE “IMITATE BEST NEIGHBOR,
CONSERVATIVELY” UPDATE RULE FOR AN AGENT PLAYING THE
STAG HUNT ON A RING

11111 — 1 10111 — 1 01111 — 1 00111 — 1
11110 — 1 10110 — 1 01110 — 1 00110 — 1
11101 — 1 10101 — 0 01101 — 0 00101 — 0
11100 — 1 10100 — 0 01100 — 0 00100 — 0
11011 — 0 10011 — 0 01011 — 0 00011 — 0O
11010 — 0 10010 — 0 01010 — 0 00010 — 0
11001 — 0 10001 — 0 01001 — 0O 00001 — O
11000 — 0 10000 — 0 01000 — 0 00000 — 0
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Figure 5. Encoding complex strategies using several nodes in a RBN.

Constructing a RBN equivalent to this social network would proceed
exactly as above, with only two exceptions. First, the on and off states of
nodes in the RBN represent the strategies ‘““Hunt stag” and “Hunt rabbit”
instead of “Cooperate” and “Defect.”” Second, the particular transition
rules assigned to each node will differ from those for the prisoner’s di-
lemma. Table 4 lists the transition rule for each node in the resulting RBN.
Interestingly, for all of the strategic differences between the prisoner’s
dilemma and the stag hunt, note the relatively little difference between the
two transition rules.

2.3. The Nash Bargaining Game. Consider, as before, the Nash bargain-
ing game played on a seven-person ring, with similar assumptions as
above.!" Suppose that the good is divided into seven equal slices and that
each player’s strategy is restricted to an integral number of slices. This
particular social network poses a greater challenge in constructing an
equivalent RBN than the previously considered cases because there are
more than two possible strategies in the game.

The solution employs the fact that we can use several nodes in the RBN to
represent a single player, using the aggregate state of those nodes to
represent the player’s strategy. Figure 5 illustrates one way this may be done.

11. In the Nash bargaining game, players have strategies indicating how much of a divisible
good they want. Without being able to communicate with each other, both players submit
their strategy to a referee. The referee compares the total amount of the good available with
the sum of the players’ requests. If the sum of their requests does not exceed the total amount
of the good available, each person receives what he asked for; otherwise, neither player
receives anything. See Skyrms (1996) for a discussion of this game.
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Figure 6. Complete input wiring diagram for the center block of three nodes.

Since there are eight possible strategies,'? we may represent a player’s
strategy by a block of three nodes, using the “on” and “off™ states as bits
to denote the strategy in binary. The one trade-off with representing
complex strategies in this way appears when we proceed to construct the
network G’ of inputs to each node. In the previous examples, the network
of the RBN simply needed to mirror the network of the original model,
with some extra edges added to capture some subtle dependencies created
by the nature of the learning rule. Here, though, the wiring of the RBN will
be considerably more complex. Each node used to represent a player 4
(and there will be more than one) will have to be connected to every node
used to represent those players that A’s future strategy depends on. Figure 6
illustrates all of the input wires that must be introduced in order to capture
the dependency of the middle player’s strategy on his immediate neigh-
bors. Additional input wires would have to be included to capture the
implicit dependency of the middle player’s strategy on his neighbor’s
neighbors, as discussed above.

Using multiple nodes to represent a single player allows arbitrarily
complex strategies in a social network to be represented in a RBN. The
primary drawback, aside from the rapid increase in the complexity of the
wiring scheme, is that in some cases it is not possible to construct a RBN
whose state space is isomorphic to the original social network. For
example, consider the Nash bargaining game where the good to be divided
is sliced into ten equal pieces. If we were to use the method of repre-
sentation described above, we would have to use at least four nodes to rep-
resent each player, since fewer than four nodes would be unable to
represent all of the possible strategies. Yet using four nodes to represent
each player introduces spurious states into the RBN that do not naturally

12. Ask for no cake, ask for one slice of the cake, . . ., ask for seven slices of the cake.
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correspond to any possible state in the original social network. Although
inconvenient, the solution is to assign an arbitrary interpretation to these
spurious states, using this interpretation consistently when constructing the
transition rules. In this case, the state space and dynamics of the RBN will
contain an embedded representation of the state space and dynamics of the
social network.

3. The Construction Method. Here is a summary of the construction
method employed in the previous section.

Given: A social network consisting of a population N, a graph G =
(N, U), a game I, and for each agent ¢ = N, a learning rule L, and a
set of strategies S,,.

1. Let |S;| be the number of strategies available to player i € N. One
must use at least [log, (|S;])] nodes in the RBN to represent player i.
If the update rule L, is not memoryless,'* one additional node will
need to be used for each bit of memory required by the update rule.
Let il denote the set of all nodes used in the RBN to represent
player i.

2. Ifj is a neighbor of 7, add input wires from each node in Ll to each
node in [, and vice versa.

3. If the future strategy of player i implicitly depends on another player
k who is not a neighbor of i (as discussed in Section 2.1), add input
wires from each node in [K to each node in [il.

4. Note that, by construction, each node inli!is connected by input wires
to every node used to represent a player in the original social net-
work that i’s future strategy may depend on. Therefore, it is possible
to define the transition rules for each node inli] such that the next state
of il represents the next strategy adopted by i.

4. Conclusion. By using the method described above, one may construct a
random Boolean network representing a social network. In many cases, the
state space and dynamics of the resulting RBN will be isomorphic to those
of the original social network; in the remainder of the cases, there is an
embedding of the state space of the original social network into the RBN
which preserves the dynamical relations between states. It is hoped that
this result will contribute towards our understanding of RBNs and social
network models of cultural evolution.

This result may do so in three different ways. First, since random Bool-
ean networks have a simpler structure than social networks, it should be

13. For example, in the prisoner’s dilemma the well-known strategy tit-for-tat is not
memoryless.
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easier to prove theorems regarding the long-term limit behavior of random
Boolean networks than social networks. Since social networks can be
viewed as a subclass of RBNs, any theorems proved for all random
Boolean networks automatically apply to social networks.

Second, Wuensche (1994) showed how to generate computationally all
the basins of attraction for RBNs of reasonably small sizes.'* The ability to
catalog all the basins of attraction for social network models should aid in
formulating theorems about the basins of attraction for particular social
networks. Given that one needs a reasonable amount of data in order to form
a conjecture, the ability to catalog basins of attraction for particular social
networks allows one to generate, relatively rapidly, data regarding basins of
attraction for social networks that was previously difficult to obtain. The
appendix to this paper illustrates the complete basins of attraction (up to
rotational equivalence) for three different social network models.

Finally, the technique developed by Wuensche and Lesser for display-
ing the basins of attraction for RBNs raises several interesting questions
for future research. For example, how does adding new edges to a social
network affect the basin of attraction? Does gradually increasing the
number of edges between agents in the population gradually change the
shape of the basin of attraction? Is there a critical point at which something
akin to a “phase transition” occurs, where a slight change in the number of
edges in the network leads to a dramatic change in the basin of attraction?
What difference does it make if all agents in the population employ the
same learning rule? Since it is possible to automatically map the basins of
attraction for RBNs, we can now automatically map the basins of attraction
for social networks. Since changes in the basin of attraction correspond to
immediately recognizable visible differences in the map (i.e., compare
Figures 9 and 10, showing the difference in the basin of attraction between
the stag hunt and prisoner’s dilemma played on an eight-person ring), we
can, quite literally, see how changing a social network model changes its
basins of attraction. It is hoped that this method of analyzing social
networks will lead to the identification of regularities between the nature
of social network models and their basins of attraction, and perhaps more.

Appendix: Basins of Attraction

Figures 7—10 illustrate complete basins of attraction for random Boolean
networks equivalent to a social network in which agents play the

14. Wuensche and Lesser (1992) describes an algorithm capable of calculating the basins of
attraction for cellular automata, which suffices for all of the figures contained in Appendix
A. In general, though, one will need to use the algorithm described in Wuensche (1994),
which is capable of handling arbitrary random Boolean networks.
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Figure 7. Basins of attraction for five-person prisoner’s dilemma played on a ring.

prisoner’s dilemma or the stag hunt. In these figures, a row of squares
represents a state of the RBN. Darkly shaded squares represent nodes in
the “off” state, lightly shaded squares represent nodes in the “on” state.
The interpretation of these nodes depends on the game: For the prisoner’s
dilemma, “on” and “off” should be read as “cooperate” and “defect,”

Figure 8. Basins of attraction for six-person prisoner’s dilemma played on a ring.
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Figure 10. Basins of attraction for eight-person stag hunt played on a ring.
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respectively; for the stag hunt, “on” and “off”” should be read as “hunt
stag” and “hunt rabbit,” respectively. In all cases, the topology of the
original social network was a ring. The line of squares rearranges the
nodes from a ring-shape into a line shape, so the leftmost and rightmost
squares are, strictly speaking, adjacent.

The center of each diagram represents a fixed point of the dynamics
(for these RBNs, there are no cycles). Given a particular state S, its
successor state S’ is located closer toward the center of the diagram; a
single evolutionary trajectory thus begins from the initial state and
moves toward the center of the figure, continuing to loop once it has
reached the fixed point.

In listing the basins of attraction, I have suppressed basins of attraction
rotationally equivalent to those displayed. Notice that in the prisoner’s
dilemma played on a five-person ring, the state with two adjacent defectors
is stable. Because there are five such attracting states'> equivalent under
rotation, I omit these since they do not count as a qualitatively different
basin of attraction. Hence, the number of states included in each figure
does not equal the total number of possible states for the RBN.
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15. 1 and 2 defect, all others cooperate; 2 and 3 defect, all others cooperate; 3 and 4 defect,
all others cooperate; 4 and 5 defect, all others cooperate; and 5 and 1 defect, all others
cooperate.
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