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Boundary layer structure in turbulent
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The structure of the boundary layers in turbulent Rayleigh–Bénard convection is
studied by means of three-dimensional direct numerical simulations. We consider
convection in a cylindrical cell at aspect ratio one for Rayleigh numbers of
Ra= 3×109 and 3×1010 at fixed Prandtl number Pr = 0.7. Similar to the experimental
results in the same setup and for the same Prandtl number, the structure of the
laminar boundary layers of the velocity and temperature fields is found to deviate
from the prediction of Prandtl–Blasius–Pohlhausen theory. Deviations decrease when
a dynamical rescaling of the data with an instantaneously defined boundary layer
thickness is performed and the analysis plane is aligned with the instantaneous
direction of the large-scale circulation in the closed cell. Our numerical results
demonstrate that important assumptions of existing classical laminar boundary layer
theories for forced and natural convection are violated, such as the strict two-
dimensionality of the dynamics or the steadiness of the fluid motion. The boundary
layer dynamics consists of two essential local dynamical building blocks, a plume
detachment and a post-plume phase. The former is associated with larger variations
of the instantaneous thickness of velocity and temperature boundary layer and a
fully three-dimensional local flow. The post-plume dynamics is connected with the
large-scale circulation in the cell that penetrates the boundary region from above. The
mean turbulence profiles taken in localized sections of the boundary layer for each
dynamical phase are also compared with solutions of perturbation expansions of the
boundary layer equations of forced or natural convection towards mixed convection.
Our analysis of both boundary layers shows that the near-wall dynamics combines
elements of forced Blasius-type and natural convection.
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1. Introduction
Turbulent Rayleigh–Bénard convection can be initiated in a fluid which is confined

between a cold isothermal plate at the top and a hot isothermal plate at the bottom,
provided that a sufficiently strong temperature difference is sustained. In the turbulent
regime, the majority of the heat is carried by convective transport through the layer
or cell. It is only in the vicinity of the top and bottom plates, where the fluid

† Email address for correspondence: mohammad.emran@tu-ilmenau.de
‡ The first two authors contributed equally to this work.
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6 N. Shi, M. S. Emran and J. Schumacher

velocities are small, that conductive transport takes over and becomes important. As
in all other wall-bounded flows, boundary layers form. In the present system these are
boundary layers of the velocity and temperature fields. The structure of these boundary
layers turns out to be crucial for a deeper understanding of the local and global
transport processes, as discussed for example in a recent review (Ahlers, Grossmann
& Lohse 2009b). Furthermore, the boundary layers interact with a so-called large-scale
circulation (LSC) that is always established in a closed turbulent convection cell. This
LSC can take the form of a single roll for aspect ratios of order unity or multiple
roll patterns for larger ones (du Puits, Resagk & Thess 2007b; van Reeuwijk, Jonker
& Hanjalić 2008a; Bailon-Cuba, Emran & Schumacher 2010; Mishra et al. 2011). On
the one hand, the LSC is triggered by packets of thermal plumes: fragments of the
thermal boundary layers which detach randomly from the top and bottom plates into
the bulk of the cell. On the other hand, the fully established LSC with its complex
three-dimensional dynamics can be expected to affect and partly even drive the laminar
flow dynamics close to the walls. This interplay has not yet been studied in detail for
cylindrical convection cells and provides one central motivation for the present work.

From a global perspective the heat transport in a turbulent convection cell, which
is measured by the dimensionless Nusselt number Nu, is a function of the three
dimensionless control parameters in Rayleigh–Bénard convection, namely the Rayleigh
number Ra, the Prandtl number Pr and the aspect ratio Γ of the convection
cell, i.e. Nu = f (Ra,Pr, Γ ). Two scaling theories yield different predictions for
the turbulent heat transport in convection based on different assumptions on the
boundary layer structure. While the scaling theory of Shraiman and Siggia (Siggia
1994) is based on a turbulent boundary layer with a logarithmic profile for the mean
streamwise velocity, Grossmann & Lohse (2000) assume laminar boundary layers of
Prandtl–Blasius–Pohlhausen type (Prandtl 1905; Blasius 1908; Pohlhausen 1921) in
order to estimate the boundary layer contributions to the thermal and kinetic energy
dissipation rates. Such a laminar boundary layer evolves in purely forced convection,
i.e. for a laminar flow over a flat plate. The temperature is treated as a passive scalar
(Pohlhausen 1921).

Measuring the boundary layer structure is, however, difficult in laboratory
experiments for high-Rayleigh-number convection. The reason is that the thickness
of the thermal boundary layer, δT , decreases as the Rayleigh and thus the Nusselt
number grow. This thickness is given by

δT = H

2Nu
, (1.1)

where H is the height of the convection cell. For a convection flow at Pr ∼ O(1),
the corresponding velocity boundary layer will have a similar thickness of δv ∼ δT

and will thus decrease similarly with increasing Rayleigh number (see e.g. Shishkina
et al. 2010). Detailed measurements of boundary layer profiles at higher Rayleigh
numbers (Ra > 109) thus require large devices such as the ‘Barrel of Ilmenau’ for the
convection in air (du Puits, Resagk & Thess 2007a, 2010) or high-resolution particle
image velocimetry, as is possible for convection in water (Sun, Cheung & Xia 2008;
Zhou & Xia 2010a). Statistical time series analyses of the mean temperature and
velocity profiles in the boundary layer yielded deviations from the predicted laminar
Blasius profiles (du Puits et al. 2007a; Zhou & Xia 2010a). A dynamic rescaling
of the data with respect to an instantaneous boundary layer thickness (which will be
explained further below in the text) tends to bring it closer to the Blasius prediction in
the water experiment by Zhou & Xia (2010a). The latter result was also confirmed by
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Boundary layer structure in turbulent Rayleigh–Bénard convection 7

a series of two-dimensional direct numerical simulations by Zhou et al. (2010, 2011).
However, in both cases, the large-scale circulation is a (quasi-) two-dimensional flow
which cannot fluctuate in the third direction.

Du Puits et al. (2007a) concluded from their work that the deviations from the
Blasius shape arise due to the characteristic near-wall coherent structures – so-called
thermal plumes – which permanently detach from the thermal boundary layer. Direct
numerical simulation (DNS) by van Reeuwijk, Jonker & Hanjalić (2008b) for Rayleigh
numbers up to 108 supports systematic deviations from a laminar boundary layer
on the basis of an analysis of the friction factor and the Reynolds stress budgets.
Their DNS showed that the integral of the streamwise pressure gradients have a
large magnitude compared to Reynolds stresses and are not zero as in the Blasius
case. Recall also that the active nature of the temperature field is not incorporated in
Prandtl–Blasius–Pohlhausen theory.

Similarity solutions for natural convection, complementary to Prandtl–Blasius–
Pohlhausen theory for forced convection, are well known (see e.g. Stewartson 1958;
Rotem & Claassen 1969). Here the buoyancy term remains in the momentum equation
(see below) and is balanced by a wall-normal pressure gradient. The temperature
differences now initiate fluid motion. Both purely forced and natural convection were
subject to perturbation expansions towards mixed convection, which combines forced
and natural convection (Sparrow & Minkowycz 1962). This means that either the
active role of temperature is included as a small-size effect in forced convection
or a weak outer flow is imposed in natural convection. Hieber (1973) solved
numerically the equations which arise from perturbative expansions of forced and
natural convection. These classical studies are combined with more recent efforts to
develop two-dimensional boundary layer models for the plume detachment (Fuji 1963;
Theerthan & Arakeri 1998; Puthenveettil & Arakeri 2005; Puthenveettil et al. 2011).
The models assume two-dimensional line-like thermal plumes with no significant
variation perpendicular to the flow plane.

In this work, we want to resolve the boundary layer structure and its relation to
the large-scale circulation for Ra > 109 by means of three-dimensional DNS. We aim
at better understanding of the physical reasons for the deviations of the boundary
layer profiles from the classical Prandtl–Blasius–Pohlhausen and Stewartson theories
for forced and natural convection, respectively. We therefore conduct two long-time
direct numerical simulations of turbulent Rayleigh–Bénard convection in a cylindrical
cell at an aspect ratio Γ = 1. Step by step we test which assumptions of the original
derivations of the similarity solutions are satisfied. Our studies will include analyses
of the LSC, the pressure gradient fluctuations, the importance of violations of the
two-dimensionality of the flow and the active role of the temperature at the isothermal
walls. The coupling between the two boundary layers is also analysed. We will show
that in fact most of the original assumptions of all boundary layer theories are not
established in the present cellular flow. Furthermore, we relate locally measured
turbulence profiles with the results from idealized mixed convection boundary layers.

The outline of the paper is as follows. In the next section, we summarize the
numerical model and the equations of motion. We then present the boundary layer
profiles from the classical time series analysis and the dynamical rescaling procedure.
The studies are followed by investigations of the large-scale circulation, the pressure
fluctuations, and time variations of the local boundary layer structure. In § 4 we
resolve the dynamics in the boundary layer in a small observation window and relate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.207


8 N. Shi, M. S. Emran and J. Schumacher

the findings to results of the boundary layer theory of mixed convection. We conclude
our work with a summary and an outlook.

2. Numerical model
The three-dimensional Navier–Stokes equations in the Boussinesq approximation are

solved in combination with an advection–diffusion equation for the temperature field.
The system of equations is given by

∂ui

∂t
+ uj

∂ui

∂xj
=− ∂p

∂xi
+ ν ∂

2ui

∂x2
j

+ αgTδiz, (2.1)

∂ui

∂xi
= 0, (2.2)

∂T

∂t
+ uj

∂T

∂xj
= κ ∂

2T

∂x2
j

, (2.3)

where i, j = x, y, z. Here p(x, y, z, t) is the kinematic pressure, ui(x, y, z, t) the velocity
field, T(x, y, z, t) the total temperature field, ν the kinematic viscosity, and κ the
diffusivity of the temperature. The dimensionless control parameters, the Rayleigh
number Ra, the Prandtl number Pr , and the aspect ratio Γ are defined by

Ra= gα1TH3

νκ
, Pr = ν

κ
, Γ = 2R

H
. (2.4)

Our studies are conducted for Γ = 1, Pr = 0.7 and Ra = 3 × 109 and 3 × 1010.
Constant α is the thermal expansion coefficient, g the gravitational acceleration, 1T
the outer temperature difference, R the radius and H the height of the cylindrical
cell. The characteristic length is H, the characteristic velocity is the free-fall velocity
Uf =√gα1TH. Times are consequently given in units of the free-fall time Tf = H/Uf .
The cylindrical geometry requires a switch from Cartesian to cylindrical coordinates,
(x, y, z)→ (r, φ, z). No-slip boundary conditions for the velocity field components,
i.e. ui ≡ 0, hold at all walls. The top and bottom plates are held isothermal at fixed
temperatures Tbottom and Ttop, respectively. The sidewalls are adiabatic with ∂T/∂r = 0.
The grid resolutions are Nr × Nφ × Nz = 301 × 513 × 360 for Ra = 3 × 109 and
513 × 1153 × 861 for Ra = 3 × 1010, where Nr, Nφ and Nz are the number of grid
points in the radial, azimuthal and axial directions respectively.

The equations are discretized on a staggered grid with a second-order finite
difference scheme (Verzicco & Orlandi 1996; Verzicco & Camussi 2003). The
pressure field p is determined by a two-dimensional Poisson solver after applying
a one-dimensional fast Fourier transform (FFT) in the azimuthal direction. The time
advancement is done by a third-order Runge–Kutta scheme. The grid spacings are
non-equidistant in the radial and vertical directions. In the vertical direction, the grid
spacing is close to Chebyshev collocation points. The grid resolutions are chosen such
that the criterion by Grötzbach (1983) is satisfied plane by plane. We therefore define
a height-dependent Kolmogorov scale as

ηK(z)= ν3/4

〈ε (z)〉1/4A,t

, (2.5)

where the symbol 〈·〉A,t denotes an average over a plane at a fixed height z and
an ensemble of statistically independent snapshots. Following Emran & Schumacher
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Boundary layer structure in turbulent Rayleigh–Bénard convection 9

(2008) and Bailon-Cuba et al. (2010), we define the maximum of the geometric
mean of the grid spacing at height z by 1̃(z) = max[ 3

√
r1φ1r(r)1z(z)]. The thermal

boundary layer is resolved with 18 grid planes for Ra = 3 × 109 and with 23 grid
planes for Ra = 3 × 1010. Thus the recently discussed resolution criterion (Shishkina
et al. 2010), which would result in 9 and 13 grid planes for the thermal boundary
layer, is satisfied and over-resolved by almost a factor of 2 in both cases.

The Nusselt number is found to be Nu = 90.32 ± 0.63 for Ra = 3 × 109 with
a standard deviation of 0.7 %. The second run at Ra = 3 × 1010 resulted in
Nu = 189.65 ± 1.5, which gives a standard deviation of 0.8 %. The standard deviation
is determined in the same way as in Bailon-Cuba et al. (2010). We take the Nusselt
number plane by plane and determine the fluctuation about the global mean.

Figure 1 displays instantaneous three-dimensional velocity fields viewed from the
top to the edge of the boundary layer close to the bottom plate for two Rayleigh
numbers. Although a preferential mean flow direction is observable, we see significant
deviations from two-dimensionality as visible by the wavy streamlines. With increasing
Rayleigh number the streamline plot shows more and more textures on an ever finer
scale.

3. Boundary layer analysis
3.1. Vertical mean profiles from time series analysis

Our numerical approach follows the experimental procedure. The latter consists of
measuring time series of the three velocity components or temperature at a given
point (r, φ, z) in the cell, computing time-averages and repeating the measurement
for different values of z. The results of such procedures are mean profiles of
temperature or velocity. In our direct numerical simulation we compute such time
series simultaneously for an array of 40 (and 100) points starting from z = H. Probe
array 1 is at the centreline. Probe arrays 2, 3 and 4 are at r = 0.88R and φ = 0,π/2
and π, respectively (see figure 2a). We compare the one-dimensional mean profiles for
the horizontal velocity V (as defined in du Puits et al. 2007a), which is given by

V(r, φ, z, t)=
√

u2
r (r, φ, z, t)+ u2

φ(r, φ, z, t), (3.1)

the vertical velocity component uz and the normalized temperatures Ξ from the top (t)
and bottom (b) plates, which are defined by

Ξ t(r, φ, z, t)= T(z= H/2)− T(r, φ, z, t)

T(z= H/2)− Ttop
, (3.2)

Ξ b(r, φ, z, t)= T(r, φ, z, t)− T(z= H/2)
Tbottom − T(z= H/2)

, (3.3)

with the corresponding profiles arising from Prandtl–Blasius–Pohlhausen theory (see
figure 2b–d). Here η is the similarity variable defined in the Appendix in (A 1). The
time series contains 57 000 data points for Ra= 3× 109 (and 23 000 for Ra= 3× 1010)
at each position of the probe array. This corresponds to 122 (and 58 for Ra= 3× 1010)
free-fall time units Tf . Similar to the laboratory experiments by du Puits et al. (2007a)
and Zhou & Xia (2010a), we detect clear deviations from the Blasius and Pohlhausen
solutions, which are also shown in the figures. Furthermore, significant differences can
be seen between the four profiles, which are caused by the existing large-scale flow
in the cell. Our profiles at Ra = 3 × 109 suggest that probe array 4 (and probably
array 3 as well) are significantly altered by a mean downward motion, while probe
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10 N. Shi, M. S. Emran and J. Schumacher

(a)

(b)

FIGURE 1. Snapshot of three-dimensional streamlines in a turbulent convection cell viewed
from the top of the boundary layer plane. The lines are seeded in a horizontal plane inside the
thermal boundary layer. (a) Ra= 3× 109, (b) Ra= 3× 1010.

array 2 is the region of mean upward motion. The mean downward motion seems to
be connected with an increase of the boundary layer thickness as the data relax much
more slowly to the Blasius profile. In § 3.4 we will show that the LSC is on average
almost perfectly aligned with the x-axis (φ = 0) for the time interval considered in this
particular run. In figure 3, we compare the data for the two Rayleigh numbers at the
centreline. The differences between the two data sets are very small.

3.2. Dynamical rescaling and fluctuations of the boundary layer thickness
In the next step, we follow the idea of Zhou & Xia (2010a), which was applied
in their convection experiment in a narrow rectangular cell, and investigate whether
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Mean profiles of velocity
and temperature at Ra = 3 × 109. (a) Sketch of the four probe arrays with measurement
locations. Probe array 1 is mounted at (r, φ) = (0, 0), array 2 at (0.88R, 0), array 3 at
(0.88R,π/2) and array 4 at (0.88R,π). (b) Mean profile of the horizontal velocity V(η)
as defined in (3.1). (c) Mean profile of the vertical velocity component uz(η). (d) Mean profile
of the rescaled temperature Ξ t(η) which is given by (3.3). The solid lines in (b) and (d)
correspond to the classical Blasius and Pohlhausen solutions (Schlichting 1957).
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FIGURE 3. Mean profiles of (a) velocity and (b) temperature at probe array 1 for two
different Rayleigh numbers. Quantities are the same as in figure 2. The solid lines in each
figure correspond to the classical (a) Prandtl–Blasius and (b) Pohlhausen solutions.

a so-called dynamic rescaling of the boundary layer results in mean profiles that
come closer to the Prandtl–Blasius–Pohlhausen predictions. As in the particle image
velocimetry in the experiment, we analyse the fields in a small planar window. We
take this window to be in the centre of the cylindrical cell. Zhou et al. (2011) found
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12 N. Shi, M. S. Emran and J. Schumacher

that the boundary layer profiles come closer to the Prandtl–Blasius–Pohlhausen case
downstream of the LSC. This plane is in our case also aligned for each snapshot with
the direction of the instantaneous large-scale wind. This direction is determined by the
angle φLSC defined in (3.8). The window has a width of 0.02R, 0.1R or 0.4R starting
from the centreline of the cell. In order to improve the statistics, we conduct this
analysis at the top and bottom plates independently for each snapshot. This implies
that the large-scale flow direction has to be determined separately at each plate. It is
known that the large-scale circulation obeys a slightly twisted roll shape (Xi & Xia
2008a).

The instantaneous velocity boundary layer thickness δv(t) is determined to be the
intersection point of the horizontal line through the first local maximum of the velocity
profile and the tangent to the profile at the plates. The same procedure is repeated for
the instantaneous thermal boundary layer thickness δT(t). Vertical distances have to be
rescaled with

z∗v(t)=
z

δv(t)
and z∗T(t)=

z

δT(t)
. (3.4)

The resulting velocity or temperature profiles follow by (Zhou & Xia 2010a)

V∗(z∗v)= 〈V(r, φLSC , z, t)|z= z∗vδv (t)〉r, (3.5)

Ξ ∗(z∗T)= 〈Ξ(r, φLSC , z, t)|z= z∗TδT (t)〉r . (3.6)

Here 〈·〉r indicates an averaging with respect to r in the plane that is aligned in
φLSC and the rescaled temperature Ξ is taken at the bottom and top, respectively.
The corresponding profiles are shown in figure 4(a–c). Contrary to the experiments
by Zhou & Xia (2010a) and the two-dimensional DNS by Zhou et al. (2010, 2011),
deviations from the Prandtl–Blasius–Pohlhausen profiles remain for all window widths
and velocities used. A better agreement is, however, observable when the window is
chosen to be narrower in radial extension. A further improvement for the width 0.4R
is found when the radial component ur is used instead of V defined in (3.1). For
smaller windows, however, the agreement with respect to V was again better than for
ur. The deviations for the temperature are more persistent, which is caused by the
plume detachments as we will see in § 4. We verified that the results are statistically
converged by varying the number of samples. A shift of the window away from the
centre of the plate or a combination of neighbouring windows with angles around φLSC
did not lead to a better agreement with the predictions of Prandtl–Blasius–Pohlhausen
theory. The same holds for window sizes smaller than 0.02R.

A first significant difference to the previous analysis can, however, be identified
immediately. In figure 4(d) we compare the mean of the velocity (ur) in the
analysis plane with the mean of the velocity (uφ) perpendicular to the analysis
plane with a window of width 0.4R. It can be seen that the ratio takes a significant
non-negligible value, in contrast to the two-dimensional and quasi-two-dimensional
situations, respectively. At z∗v = 0.5, the height for which the measured data start
to differ from the theoretical profile, the ratio has increased to a value of 0.42.
This is one important difference from the two-dimensional DNS and the quasi-two-
dimensional laboratory measurements, and it gives a first hint as to why the deviations
from the Blasius prediction persist in our geometry.

3.3. Fluctuating boundary layer thickness
Figure 5 shows time series of both thermal and velocity boundary layer thicknesses
obtained from the time series at probe array 1. Shorter sequences of the same type
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FIGURE 4. (Colour online) Dynamic rescaling of the mean profiles. (a) Dynamically
rescaled mean velocity profile for different widths of the analysis plane. For comparison
the Blasius profile and the profile without rescaling are added. (b) Dynamically rescaled
mean temperature profile. Again, the Pohlhausen solution and the mean profile without
rescaling are also shown. (c) Comparison of the rescaling of V∗ as defined in (3.5) with
U∗r (z

∗
v) = 〈ur(r, φLSC , z, t)|z = z∗vδv (t)〉r for a window of width 0.4R. (d) Ratio of the mean

velocities in the plane ur and perpendicular to the plane uφ for a window of width 0.4R.

are obtained from the analysis in the planar observation window which is aligned with
the instantaneous wind. We can see that both thicknesses fluctuate strongly for both
Rayleigh numbers. Similar to the two-dimensional DNS of Zhou et al. (2010), the
fluctuations of the velocity boundary layer thickness are slightly stronger than those
of the thermal boundary layer. In particular, we observe rare large thickness events
for the velocity which can be related to profiles that grow gradually from z = 0. We
performed a Fourier analysis of both time series and could not detect a characteristic
time scale, but a slowly decaying continuous spectrum which indicates a chaotic signal.
The cross-correlation ratio, defined by (Zhou et al. 2010)

g(τ )= 〈[δv(t)− 〈δv〉t] [δT(t + τ)− 〈δT〉t]〉t√
〈[δv(t)− 〈δv〉t]2〉t

√
〈[δT(t)− 〈δT〉t]2〉t

, (3.7)

is plotted in figure 6 for the fluctuating boundary layer thicknesses at the bottom
plate. The symbol 〈·〉t denotes a time average. Compared to two-dimensional DNS at
Pr = 0.7 (Zhou et al. 2010), the variation of the function g(τ ) is much less regular. In
both of our cases the peak is slightly shifted to the left of zero, which would indicate
that variations of the thermal boundary layer cause variations of the velocity boundary
layer. The lead time is, however, shorter than the time that we will identify as the
time span for a plume detachment. The correlations between both fluctuating boundary
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FIGURE 5. (Colour online) Fluctuation of the instantaneous thickness of the velocity and
thermal boundary layers as formed at the centre of the top plate of the cell. (a) Ra = 3 × 109,
(b) Ra= 3× 1010. The dashed lines in both figures mark the end of probe array 1 at which the
data are taken for both Ra. Thickness values that exceed this height are related with velocity
profiles that grow gradually from z= 0 and therefore an intersection point with the horizontal
line through the first local maximum that lies beyond the end of the probe array.
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FIGURE 6. Cross-correlation ratio as given in (3.7) for the time series of the instantaneous
boundary layer thickness at the bottom plate. (a) Ra= 3×109 with approximately 57 000 data
points. (b) Ra = 3 × 1010 with approximately 23 000 data points. The outliers from figure 5,
i.e. the points that exceed the dashed lines, have been excluded from the analysis.

layers are less pronounced than in the two-dimensional studies. We conclude that such
behaviour is due to the three-dimensional nature of the boundary layer dynamics. We
also tried to conduct a similar analysis for the data in the small planes which are
aligned with the instantaneous large-scale wind. The number of samples was, however,
too small for a reliable cross-correlation analysis.

To extract a characteristic time scale from the time series data, we analyse the
variations of boundary layer thicknesses about their means, to determine the average
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FIGURE 7. (Colour online) Direction, magnitude and r.m.s. of the velocity perpendicular to
the instantaneous large-scale circulation. Quantities are denoted by φLSC , VLSC and V⊥,rms.
(a) Top plate, (b) bottom plate. Data correspond to the analysis in figure 4 and are determined
at z = δT for the bottom plate and at z = H − δT for the top plate, respectively. Data are for
Ra= 3× 109. The solid horizontal lines indicate the means of the time series.

time intervals of δv(t) or δT(t) to cross their corresponding means. Our data for
Ra = 3 × 109 indicate that this interval for each boundary layer is about Tcross ≈ 0.5Tf ,
which will turn out to be the time lag for a plume detachment in a local region close
to the plate. We also repeated the analysis independently for the top boundary layers
and reproduced this result. A characteristic variation time of the boundary layer is
thus 2Tcross ≈ Tf . This time can be interpreted as the time at which plumes detach
in a local region close to the plates (see also our analysis in the next section). It
is short when compared to the average loop time of Lagrangian tracers in such a
cell of approximately 20 Tf (as found in Emran & Schumacher 2010), which is a
characteristic loop time of the LSC.

3.4. Fluctuations of the large-scale circulation in the convection cell

Figure 7 displays the direction (or the angle of orientation) and magnitude of the
LSC. The orientation of the LSC is used for the dynamical rescaling of the boundary
layer profiles. One can see that the orientation of the mean flow at the same instant
is different at the bottom plate compared to the top plate, supporting the idea of
a twisted circulation roll (Funfschilling & Ahlers 2004; Xi & Xia 2008a,b). The
instantaneous direction, φLSC , and the magnitude of the large-scale circulation, VLSC ,
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are determined by

φLSC(t0)=
〈

arctan
uy(x, y, z0, t0)

ux(x, y, z0, t0)

〉
Ar

, (3.8)

VLSC(t0)=
〈√

ux (x, y, z0, t0)
2+uy (x, y, z0, t0)

2

〉
Ar

, (3.9)

where the subscript Ar denotes the average over a circular cross-section with r 6 0.88R
at z0 = δT for the bottom or z0 = H − δT for the top plate. Furthermore we show
the root-mean-square of the velocity vector, which is perpendicular to v = uxex + uyey.
This cross-flow velocity vector is determined by the relation v⊥ · v = 0 at each point
(x, y, z0) ∈ Ar. The quantity is given by

V⊥,rms(t0)=
√
〈v2
⊥(x, y, z0, t0)〉Ar

. (3.10)

It is seen that the circulation varies strongly in both amplitude and angle. In the
case of the angle we do observe a fast variation of the orientation over a range of
approximately 50◦. On average the LSC is almost perfectly aligned with the x-axis
(φ = 0) along which we have positioned the probe arrays 1, 2 and 4. The amount
of fluctuation perpendicular to the large-scale wind velocity is also significant, and
reaches up to 50 % of VLSC . The mean magnitude of VLSC can be used to estimate
an LSC turnover time by τLSC = V

−1
LSC × 2π(H/2) ≈ 21Tf , which is close to the

estimate from previous Lagrangian studies, as mentioned at the end of § 3.3 (Emran
& Schumacher 2010). It is also consistent with an LSC turnover time of 18 Tf (which
corresponds to 35 s) in the Barrel of Ilmenau. Furthermore, Ahlers et al. (2009a)
report a time scale of 25 s from their helium experiment at Γ = 1/2, which can be
converted into 33 s by multiplication with 4/3 for a unit aspect ratio cell.

Superimposed on the fast oscillation is a very slow drift of the angle (see panels
in the upper row of figure 7). This indicates that a small fraction of a very slow
precession of the large-scale circulation is being observed. This slow mode can be
present since the mean orientation of the roll is not locked in one particular direction,
as is frequently observed in experiments. We are, however, not able to study this slow
mode of motion in our DNS since it would exceed our present numerical capabilities
in terms of the length of the simulation. Better access to this very slow large-scale
dynamics would require investigation with low-dimensional models (Brown & Ahlers
2009) or models obtained by proper orthogonal decomposition of the turbulence fields
(Bailon-Cuba & Schumacher 2011).

3.5. Pressure gradient and temperature fluctuations in the boundary layer
Figure 8 shows the temperature, the related temperature fluctuations, which are given
by

T ′(x, t)= T(x, t)− 〈T (z)〉A,t, (3.11)

and the magnitude of the horizontal pressure gradient (figure 8c), which is given by

Π =
√(

∂p

∂r

)2

+
(

1
r

∂p

∂φ

)2

. (3.12)

Data are taken at the edge of the boundary layer in the plane at z = δT at a time
instant of the DNS run at Ra= 3× 109. The contours of Π , which are plotted in units
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FIGURE 8. Spatial correlation between the horizontal pressure gradient and temperature. (a)
A horizontal cross-section of temperature T . The three contour plots below show (b) the
thresholded temperature fluctuations T ′c, (c) the pressure gradient magnitude Πc, and (d) the
product of both. Data are for Ra = 3 × 109 and taken at z = δT . Pressure gradient magnitude
and product are shown in logarithmic units.

of the logarithm to the base of 10, imply that the pressure field varies strongly in the
horizontal plane at this height. In more detail, we display in figure 8 the quantity

Πc(x, t)=Π(x, t)Θ(Π − C), (3.13)

with the Heaviside function Θ and a threshold C. The pressure field in the
incompressible flow limit is directly connected with the flow, and thus reflects the
high spatial (and temporal) variability of the flow, including the large-scale circulation
as analysed in figure 7.

Theerthan & Arakeri (1998) and Puthenveettil & Arakeri (2005) have discussed
in detail that the horizontal pressure differences are an essential driver of the
velocity inside the boundary layer. In figure 9 we compare vertical profiles taken
with respect to time and different horizontal cross-sections A = πr2. Averages of the
radial component of the pressure gradient 〈∂p/∂r〉A,t and the Reynolds stress 〈u′ru′z〉A,t
are shown as examples. The pressure gradient component is non-negligible in the
boundary layer. As in van Reeuwijk et al. (2008b), we compare here the ratio

γ =

∣∣∣∣∫ δv

0
〈∂p/∂r (z)〉A,t dz

∣∣∣∣
| 〈u′ru′z〉A,t |δv

. (3.14)

Note that both terms contribute to the friction factor. Values of γ = 1.16, 1.77 and
5.21 were obtained for cross-sections A with radius R, R/2 and R/5. We thus confirm
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FIGURE 9. Vertical mean profiles of (a) the Reynolds stress, and (b) the radial derivative of
pressure obtained over different horizontal cross-sections. The full circular cross-section A of
the cylindrical cell with r = 0.5 (or r = R) is compared with smaller cross-sections A that
have half and one-fifth of the radius, all of which are concentric with respect to the centreline.
Data are for Ra= 3× 109 and in units of U2

f and U2
f /H.

their finding that this ratio is significant even in a central region where the data come
closest to the Blasius profiles. We recall that the pressure gradient would be zero in
the Blasius case.

When the spatial support of Πc is compared with the temperature distribution in
the same horizontal plane (see figure 8b–d), we observe that maxima of Π are found
mostly in the low-temperature voids between the skeleton of plumes, i.e. in regions
which are given by T ′ < 0 (see figure 8b) or

T ′c(x, t)= T ′(x, t)Θ(−T ′). (3.15)

Again, we use the Heaviside function Θ . In regions of high pressure gradient the
horizontal flow will be accelerated, and piles up local plumes that eventually detach
from the boundary layer. The spatial correlation becomes directly visible when both
thresholded fields Πc and T ′c are multiplied as shown in figure 8(d). The area covered
by these correlated regions is ∼11 % of the total area, and remained nearly constant in
time, which we verified by a pressure field snapshot analysis over a few free-fall time
units in the case of Ra= 3× 109.

It is also observed from figure 8(a) that the plumes are line-like, but with significant
thickness modulations along their stems. At Prandtl number 0.7 and for the present
Rayleigh numbers, diffusion still plays an important role in the plume formation.
This will, in our view, also result in limited applicability of two-dimensional plume
models, in which spatial variations in the third direction are assumed to be small
(e.g. Puthenveettil & Arakeri 2005). Similar temperature patterns have been found in
Zhou, Sun & Xia (2007), Shishkina & Wagner (2008), Zhou & Xia (2010b) and
Puthenveettil et al. (2011), where length, width and aspect ratio of the filaments in this
skeleton of plumes have been quantified in detail.

Figure 10 displays the probability density function (p.d.f.) of the two components of
the pressure gradient in two planes parallel to the bottom plate. This figure underlines
the findings from figure 8. The fluctuations of the pressure gradient across the
boundary layer are highly intermittent, as shown by the stretched exponential p.d.f.s of
the both components. Emran & Schumacher (2008) have studied the statistics of the
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FIGURE 10. Probability density functions of the two horizontal components of the pressure
gradient. (a,c) ∂p/∂r in the centre plane of the cell and at the top of the boundary layer, (b,d)
r−1∂p/∂φ. Data are for Ra= 3× 109.

temperature field and its gradients in detail. The spatial variations of the temperature,
as quantified by the statistics of the temperature gradient components as well as the
thermal dissipation rate, were found to obey the strongest spatial intermittency in the
boundary layer. The intermittency of the pressure gradient field shows qualitatively the
same behaviour: it is enhanced in the boundary layer.

We summarize our boundary analysis at this point. The numerical data demonstrate
that significant differences from the classical Prandtl–Blasius–Pohlhausen theory are
present in comparison to the two-dimensional case and the quasi-two-dimensional
experiments. The near-wall flow and temperature structures are three-dimensional and
unsteady, as is the large-scale circulation to which the boundary layer dynamics is
coupled. This is in line with a fluctuating large-scale circulation and the horizontal
pressure gradient in the cylindrical cell.

4. Comparison with laminar boundary layers of mixed convection
4.1. Two-dimensional boundary layer theory of mixed convection

As already discussed in the Introduction, the boundary layer in turbulent convection
can be considered as mixed type, i.e. driven by the natural convection and also
by the LSC. In classical boundary layer theory, both limiting cases have been
studied to some extent. These are the purely forced convective flow, also known as
the classical Prandtl–Blasius–Pohlhausen case (Blasius 1908; Pohlhausen 1921), and
the purely natural convective flow (Stewartson 1958; Rotem & Claassen 1969). For
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mixed convection, the Boussinesq equations of motion (2.1)–(2.3) are reduced to the
following set of two-dimensional and steady boundary layer equations (Schlichting
1957):

ux
∂ux

∂x
+ uz

∂ux

∂z
=−∂p

∂x
+ ν ∂

2ux

∂z2
, (4.1)

0=−∂p

∂z
+ αgT, (4.2)

∂ux

∂x
+ ∂uz

∂z
= 0, (4.3)

ux
∂T

∂x
+ uz

∂T

∂z
= κ ∂

2T

∂z2
. (4.4)

The corresponding dimensionless parameters are the Reynolds and Grashof numbers of
the problem, which are given by

Rex = V∞x

ν
, Grx = gα(Tw − T∞)x3

ν2
. (4.5)

At the plate (z = 0), the boundary conditions are T = Tw and ux = uz = 0. Far away
from the plate (z→∞), it follows that T = T∞ and

ux(z→∞)=
{

V∞ for forced convection,
0 for natural convection.

(4.6)

In both cases one can define similarity variables η and parameters ε for the
perturbation expansion of mixed convection. In agreement with the definitions
(3.1)–(3.3) we can proceed as follows. Starting from purely forced convection, the
expansion reads (Sparrow & Minkowycz 1962)

ur(x, z)

V∞
= f ′0(η)+ εf ′1(η)+ · · · , (4.7)

Ξ(x, z)= T(x, z)− T∞
Tw − T∞

= θ0(η)+ εθ1(η)+ · · · , (4.8)

while starting from purely natural convection, it reads (Stewartson 1958)

ur(x, z)

Vn(x)
= g′0(η)+ εg′1(η)+ · · · , (4.9)

Ξ(x, z)= T(x, z)− T∞
Tw − T∞

= χ0(η)+ εχ1(η)+ · · · , (4.10)

where functions with index 0 represent the unperturbed velocity components or
temperature. Furthermore Vn(x) = (νg2α2 (Tw − T∞)

2 x)
1/5

. More details are provided
in the Appendix for completeness. The resulting systems of perturbation equations for
the boundary value problems can be solved by a shooting method using a fourth-order
Runge–Kutta scheme (Hieber 1973).

Figure 11 shows the resulting mean streamwise flow and temperature profiles for
the case of Pr = 0.7. The perturbation expansion has been carried out to first order
only, and curves are plotted for different magnitudes of ε as given in (A 2). Several
aspects can be observed. The boundary layer flow is accelerated if buoyancy effects
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FIGURE 11. Vertical profiles of the normalized downstream velocity and temperature
resulting from a first-order perturbative expansion of (a,c) forced, and (b,d) natural
convection. The values of the expansion parameter ε are indicated in the legend. The
similarity variables are given by (A 1). We also show examples for ε unrealistically large,
in order to indicate the deviations better.

are added to the classical Blasius case, as seen in figure 11(a). The same holds if a
purely natural convection layer is also driven by an outer flow such as the large-scale
circulation in the present system (seen figure 11b). The imposed outer flow causes a
significant variation in the velocity profile. The modifications in the temperature are
less pronounced. In both cases the resulting mean temperature profiles deviate slightly
from the unperturbed results.

Let us now estimate the Rayleigh number dependence of the boundary layer
thicknesses in both limiting cases of laminar boundary layers. The dependence of
the thickness on the Reynolds number in forced convection is given by (Schlichting
1957)

δv ∼ x

Re1/2
x

. (4.11)

By using a scaling relation between Reynolds and Rayleigh numbers for convection
at Pr ≈ 1 and Γ = 1, which is taken from Ahlers et al. (2009b), namely Re ∼ Ra0.45,
this results in a Rayleigh number dependence δv ∼ δT ∼ Ra−0.22 in the purely forced
convection case. In a natural convection boundary layer, the Grashof number is
substituted by the Reynolds number, and with the similarity variable η = zGr1/5

x /x
one obtains

δT ∼ x

Gr1/5
x

. (4.12)

Again, we are interested in convection with Prandtl numbers around one such that
Grx ≈ Ra. It follows that δv ∼ δT ∼ Ra−0.2, which is very close to the forced case. Both
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scaling estimates suggest that the differences in the Rayleigh number dependence of
the boundary layer thicknesses are rather small when both limits – natural and forced
convection – are compared. With only two runs at different Rayleigh numbers, we are
not able to conduct scaling laws of the thicknesses with respect to Ra.

4.2. Boundary layer dynamics in a small observation window
The present direct numerical simulations give us the opportunity to zoom into the
boundary layer dynamics at higher Rayleigh numbers, and to test how closely the local
profiles match the results of the classical boundary layer theories that we have just
discussed. Out of the comprehensive data record, we have picked two characteristic
dynamic sequences of the boundary layer structures: a plume detachment event and
the post-plume-detachment phase for which the boundary layer relaminarizes. Each
of these typical sequences covers a time lag of ∼0.45Tf for our data at each
Rayleigh number. We consider them to be the two essential building blocks of the
boundary layer dynamics. In order to connect with classical boundary layer theory, we
analyse the fields again in a small vertical observation plane that is aligned with the
instantaneous large-scale circulation. Our observation window has a size of length ×
height equal to 9δT×9δT for Ra= 3×109 and 19δT×19δT for Ra= 3×1010. The dense
temporal output of the data spans 35Tf for Ra = 3 × 109 and 5Tf for Ra = 3 × 1010

with a time interval of 0.05Tf in each run.
A typical plume detachment event is seen in figure 12, where the temperature

is shown in figure 12(a,d,g), the velocity field (ur, uz) projected into the plane
in figure 12(b,e,h) and the out-of-plane velocity component uφ in figure 12(c,f,i),
respectively. The rise of the hot fluid causes strong upward outflow that is connected
with the plume detachment. This is in line with a strong inflow in the back of
the plume due to the incompressibility of the flow. The whole detachment process
is accompanied by a cross-wind underlining the three-dimensionality of the whole
dynamical process. The magnitude of the azimuthal velocity is comparable with the
amplitudes of V⊥,rms in figure 7. Furthermore, the largest amplitudes of the azimuthal
velocity component are found to be in line with the largest values of δv(t) and
δT(t). The plume detachment is thus one of the dynamical processes that cause the
fluctuations of the boundary layer thicknesses. Our snapshot analysis also showed that
the thickness variations are not significantly delayed with respect to each other, which
is in line with the short lead time for g(τ ) which we discussed in § 3.3. The significant
azimuthal velocity component confirms previous observations by Shishkina & Wagner
(2008) that a strong local vorticity vector field is aligned with a line-like plume ridge.

The corresponding mean profiles of all velocity components and the temperature are
shown in figure 13(a). They are obtained by averaging in the observational window
with respect to the radial direction. The detachment is accompanied by a deceleration
of the radial velocity and strong upward and downward flows into the bulk region
as already described above. The temperature profiles deviate significantly from the
classical laminar boundary layer profile (see figure 11) as the hot fluid parcel leaves
the observation area.

The ambient post-plume-detachment phase is illustrated in figure 14. At first glance
the flow and temperature fields seem to agree much better with the predictions
from the laminar boundary layer theory. However, not too far away from the wall,
non-negligible upward and downward flows are still present. The stratification of
the temperature field is nearly unperturbed and the azimuthal component is more
homogeneously distributed over the window in comparison to the detachment phase.
This also becomes obvious from the plots in figure 13(b), where the temperature
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FIGURE 12. Sequence of three vertical planar cut snapshots to illustrate the detachment
of a plume. (a,d,g) Contours of the temperature T , (b,e,h) vector plot of (ur, uz), and
(c,f,i) contours of uφ . Images (d–f ) and (g–i) lag behind images (a–c) by 0.2Tf and 0.4Tf ,
respectively. The colour legend (not shown here) for the temperature in (a,d,g) corresponds
to an equidistant colour scale between zero and one. Scalar magnitudes for the azimuthal
velocity component are indicated by the colour bar in (c,f,i). The three time instants are
numbers 1, 5 and 9 out of a sequence of nine equidistant snapshots. Data are for Ra= 3× 109,
where δT/H = 0.0057.

profiles are much less perturbed than in a plume detachment phase. Nevertheless, even
in this phase the flow is three-dimensional, as we can see from the profiles of the
azimuthal velocity component. Recall that the observational window in figures 12 and
14 has a height of 0.05H. Up to this distance from the wall, the maximum magnitude
of the mean vertical velocity component is much smaller.

The radial velocity and temperature profiles in both sequences indicate that the
profiles vary strongly, even over such a short dynamic sequence. The velocity is
strongly enhanced in the boundary layer, as it also results from the two-dimensional
perturbative analysis, such as in the forced case (see figure 11a). Furthermore, the
presented data indicate that the large-scale circulation is always strong enough such
that pure natural convection with a streamwise velocity that goes to zero is not
established (see figure 11b).

We repeated this analysis for the second run at Ra= 3×1010. The qualitative picture
remains unchanged for each phase, the plume detachment period and the post-plume
phase. Note that the mean advection direction of the plumes is now opposite. The data
are shown in the same way as for the lower Rayleigh number in figures 15 and 17.
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FIGURE 13. Sequence of nine profiles that correspond to (a) the data of figure 12 for the
plume detachment phase and (b) the data of figure 14 for the post-plume phase. They are
obtained by an averaging in radial (or x-) direction over the window that is shown in figure 12.
From top to bottom: radial velocity component ur/Uf , vertical velocity component uz/Uf ,
azimuthal velocity component uφ/Uf , and temperature T .

As expected, the detaching plumes are more filamented and the boundary layer in
the post-plume phase is thinner. The amplitude of the azimuthal velocity component
remains significant, as seen in figure 16.

In both runs the profiles of uφ show the following behaviour in the vicinity of
the wall. In the plume detachment phase this velocity component changes sign when
moving forward in time from snapshot one to nine. This is not the case in the
post-plume phase. The differences between the temperature profiles for each phase are
even more pronounced in comparison to the lower Rayleigh number run.

The time lags of the plume detachment and post-plume phases have been calculated
as follows. We take the radially averaged temperature field at z ≈ 5δT for each
snapshot in the window. If this value exceeds the mean bulk temperature, it is assigned
with a detachment event; otherwise it belongs to the post-plume phase. By applying
this simple procedure, the time series is digitalized. The resulting step function has
shorter and longer time periods for each dynamical building block. The mean time
of plume detachment and post-plume is about the same, and gives about 0.45Tf for
Ra = 3 × 109 where we had a sufficiently long time series. Combining both gives
a typical cycle time of Tf , which is consistent with the 2Tcross from the fluctuating
boundary layer thickness in § 3.4.
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FIGURE 14. Sequence of three vertical planar cut snapshots to illustrate the phase after the
detachment of a plume. (a,d,g) Contours of the temperature T , (b,e,h) vector plot of (ur, uz),
and (c,f,i) contours of uφ . Images (d–f ) and (g–i) lag behind images (a–c) by 0.2Tf and 0.4Tf ,
respectively. The colour legend (not shown here) for the temperature in (a,d,g) corresponds
to an equidistant colour scale between zero and one. Scalar magnitudes for the azimuthal
velocity component are indicated by the colour bar in (c,f,i). The three time instants are
numbers 1, 5 and 9 out of a sequence of nine equidistant snapshots. Data are again for
Ra= 3× 109.

In figures 18 and 19 we try to match the time-averaged profiles obtained from the
short dynamic sequences with the predictions from the mixed convection boundary
layer theory including the first-order perturbation. Our profiles again display the
features we detected in the original time series analysis over much longer time
intervals (see figure 3). However, we can now trace the slower increase of the
temperature profile clearly back to the plume detachment events. Similar connection
holds for the velocity profile in the post-plume-detachment phase. The local dynamical
behaviour suggests that the three-dimensional large-scale circulation is now connected
to the boundary layer section. Inflows from the top of our observation window are
observed, which cause large variations in the velocity profiles. These variations reach
the same magnitude as in the plume detachment phase and manifest in the deviations
for velocity profile 〈ur〉r in the observation plane (see figure 19). We have thus shown
that the simulation data combine elements of forced and natural convection. Neither in
the plume detachment nor in the post-plume phase can the theoretical profiles of both
the temperature and velocity fields be perfectly matched to the data. The dynamics
close to the walls is always three-dimensional.
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FIGURE 15. The same sequence of contour plots as in figure 12 for Ra= 3× 1010, where
δT/H = 0.0026.

5. Summary and outlook
We have studied the boundary layer dynamics of three-dimensional turbulent

Rayleigh–Bénard convection in a cylindrical cell of aspect ratio one for Rayleigh
numbers larger than 109. Our studies are focused on the convection in air with
Pr = 0.7. The simulations provide access to the full spatial and temporal information
inside and outside the thermal and velocity boundary layers.

The large-scale circulation in the cell varies significantly in direction and amplitude,
providing time-dependent driving of the boundary layer dynamics. The fluctuating
LSC is in line with a strongly fluctuating thickness of both boundary layers which can
be defined from instantaneous snapshots, as suggested by Zhou & Xia (2010a). When
these fluctuations are incorporated into a dynamical rescaling, the matching of the
mean profiles to Prandtl–Blasius–Pohlhausen theory improves. However, in the present
cylindrical cell, deviations from the classical Prandtl–Blasius–Pohlhausen profiles will
remain, in particular for temperature. Further, the profiles do not fit the other limiting
case of natural convection.

In the present DNS we aimed at connecting dynamical behaviour in the boundary
layer with the observed statistics. Our analysis found that the boundary layers follow
a three-dimensional dynamics in all dynamical phases. This conclusion results from
investigations of the pressure, the LSC and local dynamic sequences. Pressure gradient
components and temperature fluctuate strongly and follow non-Gaussian statistics. A
significant flow perpendicular to a two-dimensional analysis plane is present during
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FIGURE 16. Sequence of nine profiles that correspond to (a) the data of figure 15 and (b) the
data of figure 17. All data are given in the same units as discussed in figure 13.

detachment; it is also observed in the post-detachment phase. These plumes form
a line-like skeleton, but are not found to be aligned in parallel. Their detachment
is accompanied with a significant variation of the boundary layer thicknesses and a
cross-wind (azimuthal velocity) with a significant amplitude.

All these observational outcomes violate the assumptions made in deriving the
similarity solutions in the classical boundary layer theories. Analyses in a pointwise
probe array as well as in a observational window support our findings. This also
limits the applicability of two-dimensional plume models and, in our view, causes the
deviations from both the classical Prandtl–Blasius–Pohlhausen and natural convection
cases. It can be expected that the dynamics in the boundary layer will become
increasingly intermittent when the Rayleigh number grows, a point that needs to
be investigated further. Such increasingly intermittent behaviour would be typical for
a transitional boundary layer which is ultimately evolving towards a turbulent one
at larger Rayleigh numbers. This interpretation would also be in line with the DNS
results of the currently highest achievable Rayleigh numbers by Stevens et al. (2012).
They found that agreement of a dynamically rescaled thermal boundary layer with the
Pohlhausen prediction worsens when Ra grows.

One more point: the previous studies by Puthenveettil et al. (2011) as well as
the recent experiments by Zhou & Xia (2010a) suggest that the velocity boundary
layer is much less perturbed when the Prandtl number is increased. In this case,
the thermal boundary layer thickness becomes much smaller than the thickness of
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FIGURE 17. The same sequence of data as in figure 14 for Ra= 3× 1010.

the velocity boundary layer. Plumes which detach will have a much narrower stem
due to decreased thermal diffusion. We therefore expect that agreement with results
from the laminar boundary layer theory will improve. This trend might, however, be
compensated by an increasing number of fine-scale textures of the turbulent fields
for increasing Rayleigh number. Our two streamline plots in figure 1 suggest this
trend. Further comprehensive numerical and experimental studies are thus necessary to
answer these questions.
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FIGURE 18. (Colour online) Matching of the time-averaged profiles of the plume detachment
phase with the predictions from boundary layer analysis. The profiles are obtained as time
averages from figure 13(a). Data are compared with purely forced and natural convection as
well as with corresponding first-order perturbative expansions. (a) Radial velocity in units of
Uf for forced convection. (b) Rescaled temperature for forced convection. (c) Radial velocity
in units of Uf for natural convection. (d) Rescaled temperature for natural convection. Data
are the same as in figures 12 and 13(a).

Appendix. Perturbative expansion of the boundary layer equations
We briefly review here the results reported in Stewartson (1958), Sparrow &

Minkowycz (1962) and Hieber (1973). The similarity variable is given by

η =
{

zRe1/2
x /x for forced convection,

zGr1/5
x /x for natural convection,

(A 1)

and the expansion parameter is given by

ε =
{
Grx/Re

5/2
x for forced convection,

Rex/Gr
2/5
x for natural convection.

(A 2)

Since the problem at hand is two-dimensional, one uses the stream function instead of
the velocity components, which automatically satisfies the incompressibility condition
(4.3). In the forced convection case the following expansions are taken,

ψ(x, z)=√νxV∞

[ ∞∑
m=0

εmfm(η)

]
, (A 3)

T(x, z)= T∞ + (Tw − T∞)

[ ∞∑
m=0

εmθm(η)

]
, (A 4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.207


30 N. Shi, M. S. Emran and J. Schumacher

Mean
Mean

Mean

Mean

0

0.05

0.10

0.15

0.20(c)

0.005 0.010 0.015 0.020 0.025 0 0.005 0.010 0.015 0.020 0.025

0

0.2

0.4

0.6

0.8

1.0
(d)

0

0.05

0.10

0.15

0.20(a)

0.005 0.010 0.015 0.020 0.025 0 0.005 0.010 0.015 0.020 0.025

0

0.2

0.4

0.6

0.8

1.0
(b)

FIGURE 19. (Colour online) Matching of the time-averaged profiles of the post-plume-
detachment phase with the predictions from boundary layer analysis. The profiles are
obtained as time averages from figure 13(b). Panels (a)–(d) are as in figure 18. Data
correspond to figures 13(b) and 14.

resulting for example in the following expressions for the velocity components,

ux(x, z)= V∞

[ ∞∑
m=0

εmf ′m(η)

]
, (A 5)

uz(x, z)= V∞
2
√
Rex

[
(ηf ′0(η)− f0(η))+

∞∑
m=1

εm
(
ηf ′m(η)+

(m

2
− 1
)

fm(η)
)]
, (A 6)

where primes denote derivatives with respect to η. The expansion generates in order ε0

the classical Prandtl–Blasius–Pohlhausen equations

f ′′′0 +
1
2

f ′′0 f0 = 0, (A 7)

θ ′′0 +
Pr

2
f0θ
′
0 = 0. (A 8)

The boundary conditions are f0(0) = f ′0(0) = 0, θ0(0) = 1 and f ′0(∞) = 1, θ0(∞) = 0.
The order ε1 then reads

f ′′′1 + f ′′0 f1 + 1
2

f0f ′′1 −
1
2

f ′0f ′1 −
1
2

h0 + η2 h′0 = 0, (A 9)

h′0 = θ0, (A 10)

θ ′′1 +
Pr

2
f0θ
′
1 −

Pr

2
f ′0θ1 + Pr θ ′0f1 = 0. (A 11)
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The additional boundary conditions are f1(0) = f ′1(0) = θ1(0) = 0 and f ′1(∞) =
θ1(∞) = h0(∞) = 0. The last two terms of (A 9) containing h0 and h′0 as well
as (A 10) arise from the pressure term. In natural convection, the expansions are
adapted to

ψ(x, z)= 5
√
ν3gα(Tw − T∞)x3

[ ∞∑
m=0

εmgm(η)

]
, (A 12)

T(x, z)= T∞ + (Tw − T∞)

[ ∞∑
m=0

εmχm(η)

]
. (A 13)

The order ε0 was first discussed by Stewartson (1958) and given by

g′′′0 +
3
5

g′′0g0 − 1
5

g′0g′0 −
2
5

k0 + 2
5
ηk′0 = 0, (A 14)

k′0 = χ0, (A 15)

χ ′′0 +
3Pr

5
g0χ

′
0 = 0. (A 16)

The boundary conditions are g0(0) = g′0(0) = 0, χ0(0) = 1 and g′0(∞) = χ0(∞) =
k0(∞)= 0. The perturbative expansion to mixed convection with order ε1 reads

g′′′1 +
3
5

g′′1g0 − 1
5

g′1g′0 +
2
5

g′′0g1 − 1
5

k1 + 2
5
ηk′1 = 0, (A 17)

k′1 = χ1, (A 18)

χ ′′1 +
3Pr

5
g0χ

′
1 +

Pr

5
g′0χ1 + 2Pr

5
χ ′0g1 = 0, (A 19)

with g1(0) = g′1(0) = χ1(0) = χ1(∞) = k1(∞) = 0 and g′1(∞) = 1. Again, k0 and k1

arise from the pressure term. Equations (A 7)–(A 11) and (A 14)–(A 19) were solved in
order to obtain the results displayed in figure 11.
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POHLHAUSEN, E. 1921 Der Wärmetausch zwischen festen Körpern und Flüssigkeiten mit kleiner
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