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Enhanced effects from tiny flexible in-wall blips
and shear flow
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Fluid motion at high Reynolds number over a flexible in-wall blip (a compliant bump
or dip in an otherwise fixed wall) is considered theoretically for a very short blip
buried low inside a boundary layer. Only the near-wall shear of the oncoming flow
affects the local motion past the tiny blip. Slowly evolving features are examined
first to allow for variations in the incident flow. Linear and nonlinear solutions
show that at certain parameter values (eigenvalues) intensifications occur in which
the interactive effect on flow and blip shape is larger by an order of magnitude
than at most parameter values. Similar findings apply to the boundary layer with
several tiny blips present or to channel flows with blips of almost any length. These
intensifications lead on to fully nonlinear unsteady motion as a second stage, after
some delay, thus combining with finite-time breakups to form a distinct path into
transition of the flow.

Key words: drag reduction, flow–structure interactions, flow–vessel interactions

1. Introduction
This work is on fluid flow at high Reynolds number over a partly flexible surface.

We are concerned especially with a flexible in-wall blip (a compliant patch forming a
bump or a dip of finite length) which is tiny in the sense that its representative length
scales along and normal to the otherwise fixed solid wall are very small compared
with those of a boundary layer that is flowing over the wall. In fact the blip of
theoretical concern here is so short and buried so low inside the boundary layer that
only the near-wall part of the oncoming shear flow affects the local motion over the
blip. Similar concern applies if several blips are present.

The applications motivating the work originally are in external flows in aerodynam-
ics, sailing and past ice sheets. Carpenter & Garrad (1985), Carpenter & Sen (1990),
Gajjar & Sibanda (1996) and Gad-el-Hak (2000) primarily address perturbations for
a compliant surface on an airfoil and find modes of instability stemming from those
associated with a fixed surface. Fitt & Pope (2001) and Alben & Shelley (2008)
discuss sail and flag flutter on inviscid grounds largely while Forbes (1988) and
Squire (1996) consider and compute surface waves and travelling loads on a model
of an elastic plate. A common aim in aerodynamics and sailing for example is to
promote drag reduction in which the near-surface flow is tripped beneficially causing
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Tiny flexible blips and shear flow 17

transition to turbulence, as reviewed by Gad-el-Hak (2000) and Schlichting & Gersten
(2004). In many racing events (P. Bond, Private communication, 2010) engineering
methods to reduce drag play an increasing part for rigid and flexible winged gliders,
yachts, sails and hulls; the methods range from introducing surface-mounted trips
(fixed bumps) or wall suction to special coatings or compliant surfaces intended
to affect the boundary layer (Gad-el-Hak 2000). The beneficial placing of a fixed
trip depends sensitively however on the imposed pressure gradients and the local
velocity profiles within the boundary layer. We are interested here in whether a
so-called tuneable trip effect using a flexible blip instead may help produce total drag
reduction, given that strong winds alter the oncoming flow and in particular alter the
incident wall shear stress (WSS) significantly.

Previous relevant work tends to centre on periodic assumptions in the theoretical
fluid/surface interaction, as in the pioneering studies of Benjamin (1960), Carpenter
& Garrad (1985) and Gajjar & Sibanda (1996), or on relatively large streamwise
length scales that exceed the boundary-layer thickness to induce Tollmien–Schlichting
instabilities (Smith 1979; Lagrée 2000), or both. Our interest is more in a tiny
finite-length blip or several blips with fixed surface upstream and downstream,
implying that periodicity is absent and the streamwise length scales are relatively
small.

Applications also exist to internal flow such as that within a channel or pipe. See
Hall & Smith (1982) and Green, Ovenden & Smith (2009) on flexible-wall analysis
and the very interesting string of studies by Pedley (2000), Guneratne & Pedley
(2006), Kudenatti, Bujurke & Pedley (2012) and Pihler-Puzović & Pedley (2013),
on collapsible channel flows. The lateral pressure difference across the flexible blip
surface is assumed to be directly related to the blip shape as in the external-flow
references above. Here again the studies to date have tended to focus on length scales
and corresponding time scales substantially larger than those of current concern.

Section 2 considers the incompressible viscous laminar properties due to the blip
shape and the latter’s response to the fluid flow to yield two-way interaction in a
planar setting, the typical blip length l∗ being much less than the typical development
length L∗ of the boundary layer. Slowly evolving features are examined during a first
stage to allow for significant changes in the parameters including the incident WSS.
Linear and nonlinear interactive solutions for a single blip are investigated in §§ 3
and 4 which confirm the occurrence of intensifications, i.e. unduly large effects found
for certain parameter values or eigenvalues. Special interest arises in forcing at low
amplitudes because the intensifications and weakly nonlinear interactions appear to be
unusual and lead on to rapidly evolving features as a second stage. Section 5 finds
linear and nonlinear intensifications in the presence of many blips. These magnified
effects for one or more tiny flexible blips are discussed further in § 6 along with
potential repercussions.

2. Short blips

The typical tiny flexible blip is mounted on a solid surface such as an airfoil or
bluff-body surface but the blip is so localised that the solid part of the surface may
be considered as quasi-flat for most of our purposes. Concerning (first) the fluid
dynamics, far from the surface the fluid is moving with a given constant velocity
parallel to that flat part of the surface. The working below for two-dimensional
flows incorporating short blips is expressed conveniently in terms of non-dimensional
flow velocities (u, v), corresponding Cartesian coordinates (x, y), time t and pressure
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18 L. Pruessner and F. Smith

p, such that the dimensional versions are U∗(u, v), L∗(x, y), L∗t/U∗ and ρ∗U∗
2
p,

respectively. Here U∗ is the representative fluid velocity, taken to be the free-stream
value above for definiteness, while L∗ is the typical length factor introduced in § 1,
ρ∗ is the uniform density of the incompressible fluid and the temporal factor L∗/U∗
taken is the typical transport time. The continuity and Navier–Stokes equations of
momentum balance are then

div u= 0, (2.1a)
ut + (u · ∇)u=−∇ p+ Re−1∇2 u, (2.1b)

in vector form. The velocity vector u = (u, v), pressure p and coordinates x, y are
generally of order unity except near the flat part of the solid surface which is located
along the axis y= 0. In particular u is given by (1, 0) in the far field and the leading
edge of the airfoil can be taken as the origin without loss of generality. The Reynolds
number is given by Re=U∗L∗/ν∗ where ν∗ is the uniform kinematic viscosity of the
fluid. The blip starts at an order-unity distance downstream x0 say from the airfoil
leading edge, the representative length of the blip is now ` which is `∗/L∗ and the
prime concern is with the properties induced for short blips for which ` is small, when
the Reynolds number is comparatively large.

For large values of the Reynolds number Re a thin boundary layer is set-up along
the undisturbed surface ahead of the blip and also downstream of it. The boundary
layer is a classical one having x scale of order unity whereas the y scale is of order
Re−1/2, with u, p variations of O(1) and v being of O(Re−1/2). The time scale there
is of order unity. This boundary layer and its local free stream form the oncoming
and surrounding flow field for the blip-induced motion (see figure 1). The reasoning
below based on estimates of the orders of magnitude present indicates that the main
range of interest is for scaled lengths such that

Re−3/4� `� Re−3/8. (2.2a)

The reasoning supposes the characteristic blip height Re−1/2δ say to be significantly
less than the boundary-layer thickness, which is of order Re−1/2 since x0 is of order
unity (so δ is small), and supposes the major flow response to occur over the same
height O(Re−1/2δ) in general by virtue of invoking a nonlinear response and the
possibility of significant local alterations to the WSS for instance. The oncoming
velocity profile then indicates that the typical velocity u involved near the blip is
small and comparable with δ because of the dominant wall-shear effect near the
oncoming flat surface. The typical streamwise length scale `1 of physical importance
in the sublayer around the blip can then be estimated from balancing the order of
magnitude of the inertial forces uux∼ δ2/`1 against that of the prominent viscous force
Re−1uyy ∼ Re−1δ/(Re−1/2δ)2, bearing in mind that y is of scale Re−1/2δ. The balance
thus imposes `1 as being of order δ3. One would expect `1, ` to be comparable
as the first central interactive case and so obtain a simple relationship between the
fraction δ and the critical length scale with the accompanying scales

δ ∼ `1/3, u∼ `1/3, p∼ `2/3, y∼ `1/3Re−1/2, t∼ `2/3. (2.2b−f )

See Smith (1976a,b), Sobey (1980), Lagrée (1994), Rothmayer & Smith (1998) and
Lagrée (2007) for related discussions of scalings. Longer blips and shorter blips
are mostly subcases: shorter ones for example produce the steepness effect that is
addressed by Smith & Daniels (1981) as regards breakaway separation.
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Tiny flexible blips and shear flow 19
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FIGURE 1. The major parts of the flow/body interaction: the short-scale flow structure
which comprises a viscous–inviscid sublayer surrounded by the main part of the incident
boundary layer. Here (a) is for a single blip and shows the whole boundary layer while
(b) is for the corresponding configuration with several or many blips, shown closer to the
wall where to leading order the incident flow is a uniform shear.

So far we have taken the time scale to respond to the inertial force. In the next
section we will take it to be slower, yielding quasi-steady behaviour; the time scale
l2/3 reasserts itself later however through a process of intensifications.

The lower limitation in (2.2a) corresponds to the sublayer height |y| becoming
comparable with the streamwise scale ` and producing a quite tiny region governed
by the full system (2.1) in normalised form. In contrast the upper limitation in (2.2a)
is associated with the triple deck stage where the thin sublayer around the blip
experiences a substantial feedback of pressure which arises from interaction with
the flow outside the surrounding boundary layer. In between, where the range (2.2a)
applies, the sublayer is controlled by thin-layer dynamics alone. Moreover, the range
of validity in (2.2a) which is verified above is actually quite a large one in terms of
the scales covered.

The flow structure is therefore concentrated primarily in the thin sublayer of
figure 1. The flexible blip of unknown shape in 1(a) occupies the range 0 < X < 1
and has height comparable with the sublayer height, whereas the surface is fixed and
solid outside that range; 1(b) is for several or many blips. The blips can be humps or
dents. The thick dashed line between the sublayer and the rest of the boundary layer
indicates the lack of displacement over these short length scales. In the sublayer at
leading order

(u, v, p)= (`1/3U, `−1/3Re−1/2V, `2/3P), with x− x0= `X, y= `1/3Re−1/2Y, t= `2/3T,
(2.3)

and all of the capital-lettered quantities are generally of order unity. The full system
(2.1) then reduces to the well-known condensed flow interaction (Smith 1976a,b;
Smith & Daniels 1981) given by

U =ΨY, V =−ΨX, (2.4a,b)

UT +UUX + VUY =−PX(X, T)+UYY, (2.4c)
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20 L. Pruessner and F. Smith

with the unknown scaled pressure P(X, T) being independent of Y because of the
y-momentum equation. The relevant boundary conditions are

U = 0, V = ∂f /∂T, at Y = f (X, T), (2.4d,e)

U − λY→ 0 as Y→∞ (2.4f )

for no slip on the moving blip surface and to match with the outer flow response
in turn. The requirement (2.4f ) of effectively zero displacement in Y corresponds to
the feedback effect from the flow outside the sublayer being relatively small. The
function f in (2.4d,e) denotes the unknown scaled shape of the blip surface which
is addressed further just below while the positive O(1) factor λ in (2.4f ) is the given
scaled incident WSS, namely Re−1/2(∂u/∂y) at y = 0, in the surrounding boundary
layer locally: see figure 1.

Concerning (second) the blip surface shape as it responds to the fluid flow over
the blip, the shape and the flow interact via the local pressure as in the models
used by Carpenter & Garrad (1985), Gajjar & Sibanda (1996), Davies & Carpenter
(1997) and Pruessner (2013) and others. The assumptions made are primarily those
of the widely used membrane-model type as in the references immediately above
with particularly interesting background discussions of linearly elastic materials and
allied facets relevant here being in Takagi & Balmforth (2011) as well as Vella, Kim
& Mahadevan (2004), Stewart, Waters & Jensen (2009), Singh, Lister & Vella (2014)
and Xu, Billingham & Jensen (2014). This then gives the wall equation

e1ηxxxx + e2ηxx + e3η+ e4ηtt + e5ηt = p− p0. (2.5)

In this simple plate membrane model the unknown blip shape is y = η(x, t) and
the non-dimensional constant coefficients en are (e1, e2, e3, e4, e5) = (−B∗/U∗2L∗3,
T∗t /U

∗2
L∗, −κ∗L∗/U∗2, M∗/L∗, C∗/U∗)/ρ∗ with M∗, C∗, B∗, κ∗, T∗t being the mass

density, the damping constant, the flexural rigidity, the spring stiffness and the
longitudinal tension respectively, while p0 is the non-dimensional base pressure
relative to the oncoming pressure level which is taken to be zero. The values of the
above quantities are determined experimentally or are tabulated for certain materials.
The scaled version appropriate to the short-blip application is then

ẽ1 fXXXX + ẽ2 fXX + ẽ3 f + ẽ4 fTT + ẽ5 fT = P− P0 (2.6a)

where η = Re−1/2δf , ẽ1 = Re−1/2e1/(`
4δ), ẽ2 = Re−1/2e2/(`

2δ), ẽ3 = Re−1/2e3/δ, ẽ4 =
Re−1/2e4/δ

5, ẽ5 = Re−1/2e5/δ
3, P0 = `−2/3p0. In particular ẽ1 < 0, ẽ2 > 0, ẽ3 < 0. The

coefficients are sensitive to the blip length scale ` (recall δ in (2.2b−f )) and to Re
but in applications of interest here the dominant coefficient can sometimes be ẽ2. The
boundary conditions on f are

f = fX = 0 at X = 0, 1 (2.6b)

if the end points of the single blip are taken as X=0,1 for definiteness. Representative
initial conditions have the shape f and pressures P, P0 being zero.

The nonlinear governing system is therefore (2.4a–f ), (2.6a,b). Fair agreement
between theoretical results based on the system and experimental results or direct
simulations is found in the prescribed-shape case (Smith 1976a,b; Sobey 1980;
Rothmayer & Smith 1998). This system whether with prescribed wall shape or
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Tiny flexible blips and shear flow 21

flexible shape then appears to require numerical treatment usually: see the next
section. On the other hand if P0 is zero then there is simply no disturbance. Thus, a
linearised version which is also helpful and intriguing in its own right has f being
small and so (2.4a–f ) reduce to linear equations for small U − λY, V, P. Use of a
Fourier transform in X for example as in Stewartson (1970), Smith (1976a,b) and
Guneratne & Pedley (2006) along with inversion and convolution properties then
yields for quasi-steady flow the integro-differential relation

P=−γ
∫ X

0
f (s)(X − s)−2/3 ds (2.7)

between P, f for X > 0, thus replacing (2.4a–f ). Here γ =−3 Ai′(0)λ5/3/Γ (1/3) is a
positive constant {≈0.289838λ5/3}. The parabolic nature of the flow contribution on
its own is then clear. Also the unknown blip f is again assumed to start at the station
X = 0 for definiteness and the pressure P there is zero. In the streamwise direction
the only boundary conditions imposed on U, V, P are at the upstream end of the
first blip, where U = λY , V = P = 0, and we note that it is inappropriate to fix the
downstream pressure on the current short length scales. The nature of the problem is
somewhat mixed, being parabolic upstream of the blip(s), then elliptic over the length
of a blip, then parabolic at all streamwise stations where there is no blip, and so
on, but the overall upstream influence of a relatively long triple-deck in external flow
(Stewartson 1970; Smith 1982) or the long Re1/7 (multiplied by the channel width)
axial length in internal flow (Smith 1977; Luo & Pedley 1996) is insignificant for
the present short blips. Likewise the corresponding flow-dominated linear instabilities
existing over the longer scales are inactive in the present setting. The fully nonlinear
unsteady condensed flow (2.4a)–(2.6b) with |∂/∂T| of order unity can nevertheless
lead to a finite-time breakup, Smith (1988) and Peridier, Smith & Walker (1991), as
a nonlinear by-pass into deep transition as seen later in §§ 4 and 6. The motivational
settings of § 1 however are more concerned with quasi-steady behaviour initially in
which |∂/∂T| is relatively small.

It can be seen immediately that a positive f shape corresponding to a bump
rather than a dent provokes negative pressures, which makes sense physically in
terms of an adverse pressure gradient on the front face of the blip and a favourable
pressure gradient most likely on the rear face, together with a lag in the response
due to convolution. Likewise a pressure rise followed by a fall is expected for a
dent. The persistence of the pressure response downstream of the end point X = 1 is
evident from (2.7) (the integral is then from 0 to 1) and represents a wake effect. A
normalisation is now applied. With U, V, P, Y, T, f normalised by factors λm where
m is 2/3, 1/3, 4/3, −(1/3), −(2/3), −(1/3) in turn (see the references above) and
the representative X already normalised to unity by definition of blip length, the
flow contributions throughout (2.4) are thus normalised to O(1) whereas the shape
contributions in (2.6a) have orders |ẽ|λ−1/3 on the left compared with λ4/3 and P0
successively on the right-hand side. Here only the steady case is considered for now
and |ẽ| refers to the typical size of the wall coefficients ẽn, n = 1, 2, 3, all of the
wall coefficients being supposed to be of the same order for convenience. Hence the
active ratios indicate two major parameters, namely Γ1, Γ2 defined by

Γ1 = P0/λ
4/3 and Γ2 = |ẽ|/λ5/3. (2.8a,b)

When Γ1, Γ2 are of order unity the fluid-shape interaction is fully nonlinear, while if
Γ1 is small then linearised theory holds since the normalised responses in P, f become
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22 L. Pruessner and F. Smith

of order Γ1. In the subsequent calculations we tend to take |ẽ| as given as O(1) and
vary the incoming shear factor λ and the relative base pressure P0 in order to help
explore the main two-dimensional parameter space. There are many other parameters
of course detailing relative wall coefficients and blip distributions for example. The
linear and nonlinear responses for a single blip are examined in the next two sections
whereas those from the presence of multiple blips are addressed in § 5.

3. Results and intensifications

The influences of various physical factors are discussed in the following subsections.
Analytical and numerical treatments of (2.4a–f ), (2.6a,b) appear necessary. The
numerical method we adopted is a finite difference one and, in brief, it comprises
an iterative process of guessing the scaled shape f for all X in the range, then
solving (2.4a–f ) for the scaled pressure P or using (2.7) if applicable, then updating
f from integration of (2.6a,b), and continuing to iterate thus between the flow and
wall equations until successive iterates differ by a specified small tolerance, typically
10−6 in P. This is with a prescribed under-pressure value P0 in (2.6a) and with
a Prandtl transposition introduced into (2.4a–f ) in order to deal with the no-slip
requirement accurately. The treatment applies with modifications for both the linear
and the nonlinear cases, abetted by analysis in §§ 3–5, for quasi-steady slowly varying
flow. Results are presented in figures 2–9. These tend to confirm the expectation from
the previous section of adverse and favourable pressure gradients over the typical blip
as well as corresponding reductions and increases respectively in the scaled WSS,
∂U/∂Y at Y = 0, along with response lags and with a clear wake effect in terms
of the wall pressure downstream of the blip. Both linear and nonlinear quasi-steady
flows will be considered at first below before the emphasis moves on to the linear
regime for reasons (namely the occurrence of intensifications and blowups) that will
become apparent.

3.1. Effects of the incident wall shear
Here the influence of the scaled wall-shear parameter λ is investigated starting with
figure 2(a) which shows single-blip results from the nonlinear version (2.4a–d) with
(2.6a,b) along with those from the linearised version (2.7) with (2.6a,b). This is for
wall coefficients [ẽ1, ẽ2, ẽ3] equal to [−1, 1, −1], an incident shear λ of unity and
under-pressures P0 of 1 and −1. The versions produce almost identical results with
allowance for sign changes due to P0, even though the parameter Γ1 is not especially
small here. The inference drawn tentatively is that for amplitudes that are suitably low
in numerical terms the two versions can be used almost interchangeably. A subsequent
result described in § 3.4 is for a raised amplitude of blip shape f where the agreement
is observed to remain close, again for wall coefficients [−1, 1,−1]. Figure 2(b) then
shows how the induced shapes respond according to linearised theory when λ is varied
over a wide range of values with P0 maintained at unity for the [−1, 1, −1] case.
The rapid change of response as λ passes through a critical value λc between 55 and
60 is indicative of a substantial enhancement or intensification of effects then; this
may be thought of as static divergence or even resonance but we refer also to the
next section with respect to unsteadiness. Figure 2(c) plots the associated result from
the linearised theory when P0 is neglected and a renormalisation of f ′′(0) to unity is
applied, a result that tends to confirm an enhanced effect on shape emerging together
with an eigenvalue phenomenon for λc of 58.504 more precisely.
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FIGURE 2. (a) Numerical results for a single blip with wall coefficients [ẽ1, ẽ2, ẽ3]
of [−1, 1, −1], incoming shear λ of unity and P0 = 1 or −1, showing blip shape f ,
slope f ′ and fluid-flow pressure P versus scaled distance X. Linearised and low-amplitude
nonlinear calculations are compared (light and dark). (b) As (a) but λ varying from 1
to 80: linearised results for shape. (c) Normalised shape at λ = λc ≈ 58.504, the first
intensification value, from linearised theory.

The effect of the flow on the blip shape itself (being an integral or lagged effect)
is a gradual build-up with downstream distance. The blip hump rises for instance, so
the induced flow pressure falls, certainly along the front face of the hump, and the
scaled wall shear rises; hence this supplements the under-pressure influence tending
to pull the blip surface down, with the WSS then decreasing on the leeward face of
the upward blip; if the conditions are just right the interaction leads to intensification.

3.2. Effects of base pressure
The influence of the under-pressure is investigated via figure 3, showing the blip shape,
fluid pressure and WSS produced over the [−1, 1,−1] flexible blip with the incident
shear λ maintained at unity. The scaled under-pressures P0 imposed cover a wide
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FIGURE 3. Results for same case as in figure 2 with λ of unity and P0 being varied:
nonlinear calculations showing f , P, WSS (wall shear stress).

range from 10 to 500. Linearised properties hold well for the lower amplitudes but
nonlinear effects are important at the higher amplitudes as separation in the sense
of flow reversal is approached although the solutions for blip shape throughout do
remain notably similar. Flow reversal is a regular phenomenon in view of the non-
classical setting here, and previous solutions showing reversed-flow eddies for bumps
and dents are given in figures 5–7 of Smith (1976a,b), in Rothmayer & Smith (1998)
and in Pihler-Puzović & Pedley (2013). The results again seem physically sensible, in
keeping with the earlier comments in this section.

3.3. Effects of the wall coefficients
Figure 4(a) concerns the influence of the scaled wall coefficients. The calculated
blip shapes f are presented for wall coefficients [ẽ1, ẽ2, ẽ3] such that ẽ2 is kept as
unity but ẽ1, ẽ3 are varied from −1 to zero with ẽ1, ẽ3 equal, corresponding to the
flexural rigidity and spring stiffness being reduced in magnitude. The under-pressure
remains at unity throughout while λ is also kept as unity. The responses are all at low
amplitudes but the relative response in shape increases considerably as the rigidity
and stiffness are reduced. We note that for all [0, 1, ẽ3] cases for any ẽ3 in the present
paper only the boundary conditions of zero f are imposed at the ends X= 0, 1 directly
leaving f ′ to be accommodated by the implicit slight rigidity becoming significant in
local end layers of relative length O(|ẽ1|1/2) because of the higher derivatives involved.
See also the variations due to wall coefficients examined in appendix A. The property
that the [0, 1, 0] case in particular appears comparatively remote from the other cases
in figure 4(a) even at quite small rigidity and stiffness is due to the |ẽ1|1/2 scaling.
Figure 4(a) in addition shows as crosses an analytical solution brought forward
from § 3.5 which is included for comparison and agrees well with the linearised
numerical work. Also there is close agreement again between the nonlinear (solid)
and the linearised (dashed) calculations as the figure indicates. Figure 4(b) provides
a closer-in view in order to see clearly the effects from increasing the coefficients
ẽ1, ẽ3 in magnitude up to 2; the blip shapes reduce notably then.
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FIGURE 4. Linearised shape solutions with wall coefficients [ẽ1,1, ẽ3],λ=1,P0=1, where
ẽ1= ẽ3 is varied from (a) −0.1 to 0, (b) −0.1 to −2. A nonlinear solution is also shown
by the dashed curve in (a).

3.4. Increasing amplitudes
Figure 5(a–c) addresses further the effects of scaled amplitudes and provides evidence
of two distinct paths into nonlinear behaviour, one standard and one not. Variations
in the wall coefficients similar to those of figure 4(a,b) are examined in figure 5(a)
but with P0 increased to 200, which raises the blip amplitudes firmly into the
nonlinear range and shows a trend towards flow reversal taking place just ahead of
the downstream end of the blip. Phenomena similar to those in § 3.2 thus occur here
including induced adverse pressure gradients near the rear of the blip. Figure 5(b)
examines a less familiar trend, for the basic [−1, 1, −1] case with base pressure
P0 reduced to 0.2 but increasing λ. The resulting blip shapes for a given λ from
linear and nonlinear calculations remain almost graphically indistinguishable from
each other up to λ values of 30 or so but the differences begin to show up clearly
when λ is increased to about 50; these herald the approach to intensification as
λ → λc (≈58.504 in this case). Lowering the base pressure delays the onset of
these differences. The same trend occurs in the corresponding pressures shown in
figure 5(c).

3.5. Intensification
The effects observed intensify according to the computational results above as certain
critical parameter values are approached. See also the plots in figures 6–9 concerning
among other quantities the critical λ values for full intensification. Figure 6(a,b) is
for the basic case of [−1, 1, −1], P0 of unity, but with λ varying more widely: see
also figures 2(b,c), 5(b,c). Now another intensification is indicated clearly near a
higher λ value of about 235, i.e. a second eigenvalue. Figure 7 presents the critical
values λc plotted against ẽ1 (= ẽ3) obtained for 4–5 successive roots by treating
(2.6a,b), (2.7) as a shooting problem with the constant P0 omitted. The trend is one
of increasing λc overall as the rigidity and stiffness are increased, for a given root
number, while the remoteness between critical values for nominally zero rigidity
and stiffness parameters and small parameter values is in line with the |ẽ|1/2 scaling
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FIGURE 5. Influences of increasing amplitude for different λ values: (a) λ= 1 with P0=
200, wall [ẽ1, 1, ẽ3] where ẽ1 = ẽ3 ranges from −2 to −0.5, nonlinear computations of
f ,P, WSS; (b) λ= 10, 30, 50 with P0= 0.2, wall [−1, 1,−1], comparing nonlinear (dashed
curves) and linearised (solid) predictions for f ; (c) is as (b) but for P.

described in § 3.3. The close-in results suggest that each root for zero rigidity and
stiffness may propagate more than one set of roots R1, R2 and so on among those
shown for non-zero rigidity and stiffness. In figure 8(a–c) by contrast we show the
first-root eigenvalues associated with intensification for cases where each of ẽ1, ẽ2, ẽ3
is varied separately in order to present a different slice through the parameter space,
which connects with the parameter study in appendix A and accompanying analysis.
Next, figure 9(a,b) gives plots of the shapes f and induced pressures P from both the
first and second roots in wall cases [ẽ1, 1, −1] with the coefficient ẽ1 being varied
between −0.5 and −3. We see little change in f over the range for a given set of
first or second roots whereas the pressure P alters considerably for each set, which is
physically sensible because of the different incident shear values, and the maximum
magnitude of the pressure depends almost linearly on ẽ1. Shown in figure 9(c) is a
plot relevant to the special case of [0, 1, 0] described at the end of the current section
and confirming the existence of multiple roots.
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FIGURE 6. Blip height f at midpoint (Xmid) as λ is varied, implying enhanced responses
(intensifications) near critical values λc of (a) 58.5, (b) 234.9 approximately, in the
[−1, 1,−1] case with P0 of unity.
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FIGURE 7. Intensification roots for varying wall coefficients. Roots λc versus ẽ1 (= ẽ3)
showing roots R1–R5 for cases [ẽ1, 1, ẽ3].

Additional analytical support can be given in regard to intensification and a
succession of critical values. In the linear regime first, formally, an exponential
solution proportional to exp(mX) applies at large X values downstream or for rapid
spatial variation if X is renormalised to keep f ′′(0)= 1, the ẽn coefficients are adjusted
accordingly, n= 1, 2, 3, and shooting forward in X from zero f , f ′ at zero X with a
single parameter is considered. This supplements a particular solution proportional to
P0. The unknown exponential factor m must satisfy

ẽ1m4 + · · · =−γ̄m1/3, (3.1)
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FIGURE 8. Intensifications for wall coefficients [ẽ1, 1, −1], [−1, ẽ2, −1], [−1, 1, ẽ3]
respectively. First roots λc are plotted against ẽ1, ẽ2, ẽ3 in turn.

where γ̄ is proportional to γ and depends on the renormalisation. The relation (3.1)
allows oscillatory behaviour which can be adjusted in principle to give f , f ′ zero at
the end X = 1. Second, suppose that the governing equation (2.6a) is dominated by
the contribution involving ẽ2 on the left. Then the derivative conditions in (2.6b) have
to be abandoned and the small-X expansion of f has the form

f = a1X + a2Xω + · · · (3.2a)

where ω is 10/3 with a1 unknown but a2=−81γ a1/(280ẽ2), for the case of zero P0.
If the condition f =0 is then imposed at X=1 the approximate requirement a1+a2=0
is obtained. Hence there is a non-trivial solution for

γ ≈ ( 280
81

)
ẽ2, (3.2b)

as an estimate for intensification. Extending this to include non-zero wall coefficients
ẽ3 and base pressures P0 leads to the relation

[1− 81γ /(280ẽ2)− ẽ3/(6ẽ2)]a1 = P0/(2ẽ2), (3.2c)
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FIGURE 9. (a) Renormalised shapes f versus X at the first and second roots for cases
[ẽ1, 1,−1] with various ẽ1. (b) As (a), showing pressure P. (c) Case [0, 1, 0]: right- and
left-hand sides (RHS, LHS) of (3.4a) in logarithmic form plotted against κ; their crossings
identify the intensification roots.

for the constant a1, away from the intensification at a critical value λ = λc, γc =
(0.289838 . . .)λ5/3

c = 280ẽ2(1 − ẽ3/(6ẽ2))/(81) wherever the term in square brackets
on the left is zero in (3.2c). The prediction (3.2c) has the effective slope a1 and
base pressure P0 being of identical sign for λ values below critical and opposite signs
above critical, in line with the numerical results in figures 2(b), 6–9. A similar analysis
based on the ẽ1 contribution dominating leads to ω being 16/3 and the estimate γ ≈
(58 240/729)ẽ1 for intensification which is closer to the numerical values obtained.

In the (third) special case of small or negligible ẽ1, ẽ3 a Laplace-transform approach
as in Pruessner (2013) provides an explicit solution in the form

κ ẽ2f (X)= 6
7

eν1X

[
α cos α1 − P0

κ
cos β1

]
− 31/2

2π

∫ ∞
0

(α + P0κ
−1R−1)R1/3e−κRX dR

D̂
,

(3.3a)
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where κ ≡ γ̃ 3/7, α1 ≡ 3π/7− ν2X, β1 ≡ 6π/7− ν2X, ν1 ≡ κ sin 3π/7, ν2 ≡ κ cos 3π/7,
γ̃ ≡ γΓ (1/3)/ẽ2 are given while α≡ ẽ2 f ′(0) is unknown. Also D̂= (R14/3+R7/3+ 1).
The condition f (1)= 0 then acts to determine α since, from (3.3a),

D1α +D2P0 = 0, (3.3b)

with the coefficients D1,D2 defined by

κD1 = 31/2

2π

∫ ∞
0

R1/3e−κR dR

D̂
− 6

7
eν1 cos

(
3π

7
− ν2

)
, (3.3c)

κ2D2 = 31/2

2π

∫ ∞
0

R−2/3e−κR dR

D̂
+ 6

7
eν1 cos

(
6π

7
− ν2

)
. (3.3d)

A comparison with the numerical results above is favourable and is shown in
figure 4(a) concerning the blip shape. Moreover the roots or eigenvalues at which
intensification occurs are given simply by

31/2

2π

∫ ∞
0

R1/3e−κR dR

D̂
= 6

7
eθ1κ cos

(
3π

7
− θ2κ

)
, (3.4a)

from (3.3a,b), in this special case. Here θ1 = sin 3π/7, θ2 = cos 3π/7 are constants.
The relation (3.4a) establishes that there are infinitely many intensification roots κ=κn

successively, and

κn ∼
(

n+ π

14

)/
θ2 (3.4b)

at large n. The dominant roots stemming from (3.4a) are presented in terms of the
predictions for the critical λ values in figure 9(c) and they agree closely with the
large-n asymptote (3.4b) even for n of unity. We remark that although at first glance a
λ of zero might appear to be a root it is not really so for this case; it just corresponds
to the value f (0) being zero as required. The approach can be extended to general wall
coefficients, and we note in addition that for small non-zero ẽ3 values the roots lie
close to those of (3.4a) whereas for small nonzero ẽ1 some roots lie there but others
arise at large values of the Laplace-transformed variable corresponding to short-length
effects concentrated near the endpoints at X = 0, 1 usually. These and the previous
results indicate that nonlinear influences, for example in § 3.4 and figure 5(a–c), and
the closeness to intensification, where the amplitude |f | grows in inverse proportion
to |λ− λc| according to either (3.2c) or (3.3a), must have an interesting interplay.

4. Weakly nonlinear behaviour of a single blip near intensification

To clarify how nonlinearity first affects intensification at low amplitude this section
considers the weakly nonlinear response of the blip shape and the local flow properties
at parameter values close to a typical intensification. Near a representative critical
value λ0 for intensification the scaled incident WSS can be expressed as

λ= λ0 + ελ1 + · · · (4.1)

say, where the constant ε is small and the coefficients λ0, λ1 and so on are of order
unity. The entire fluid-body interaction then takes the form
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{U, Ψ, P} = {λ0Y, 1
2λ0Y2, 0} + ε{AU1 + λ1Y, AΨ1 + 1

2λ1Y2, AP1}
+ ε2{U2, Ψ2, P2} + · · · , (4.2a)

{f , P0} = ε{Af1, 0} + ε2{f2, P02} + · · · , (4.2b)
ẽM = ẽ1M + εẽ2M + · · · (4.2c)

for M = 1, 2, 3, when nonlinear influences first become substantial. The blip-shape
perturbation of order ε is an order of magnitude greater than the base-pressure
perturbation (of order ε2) in (4.2b), hence providing evidence of the occurrence
of intensification subject to the self-consistency that emerges below. The critical
disturbance function f1 is taken to be normalised such that f ′′1 (0) = 1, for the sake
of definiteness, whereas A represents the unknown disturbance amplitude and is
dependent on the slow scaled time T̃ in general which is defined by time T = ε−1T̃ .
The physical expectation is that the slow-time dependence is present usually because
of variations in the under-pressure or in the change in the wall-shear factor λ1,
while the leading factor λ0 must normally remain constant for physical sense in the
scalings. If λ is evolving faster, on the condensed scale with T of O(1), then the
far-field conditions involve a Stokes layer (Brown & Daniels 1975) wherein Y is O(1)
balancing the order of magnitude T1/2 from (2.4d,e) at large |X|. For slow evolutions
however the effective time scale is larger and so is the Stokes Y scale, even lying
outside the condensed layer of § 2 if the effective time scale is as large as a positive
power of Re. Further the evolution in (4.1)–(4.2c) is with regard to the perturbation
in λ rather than the leading-order contribution. A weak temporal dependence through
the additional wall-flexibility coefficients ẽ4, ẽ5 in (2.6a) would also be admissible and
is discussed later in § 6 but we focus here on temporal dependence springing from
the fluid-dynamical background. The relative smallness of the under-pressure in (4.2b)
is notable, its order-ε2 size being due to the interaction intensifying at the leading
order ε. Further the contributions to the wall-flexibility parameters of order ε and
smaller on the right-hand side of (4.2c) correspond to detuning of the intensification;
a similar effect can be generated by slight detuning of the blip length.

Substitution of (4.1)–(4.2c) into the nonlinear governing equations (2.4a–f ), (2.6a,b)
along with the usual stream-function properties yields at leading order O(ε) the
unforced linear system

UmX + VmY = 0, (4.3a)
λ0YUmX + Vmλ0 =−PmX +UmYY + R1m, (4.3b)

with Um ∼ λ0fm + R2m as Y→∞, (4.3c)
Um = Vm = 0 at Y = 0, (4.3d)

ẽ11 f ′′′′m + ẽ21 f ′′m + ẽ31 fm = Pm + R3m, (4.3e)

in which m is unity and R11–R31 are identically zero. Here X lies between 0, 1,
the values of fm, f ′m are to be zero at the end points and the intensification or
eigen-function which is accentuated through the absence of any forcing on the m= 1
quantities is described below. At next order, O(ε2), the same system applies but with
m = 2 and with the forcing that arises from detuning, evolutionary and nonlinear
contributions, so that
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R12 =−dA/dT̃U1 − Aλ1(YU1X + V1)− A2(U1U1X + V1U1Y), (4.4a)
R22 = Aλ1f1, (4.4b)

R32 =−P02 − A(ẽ12 f ′′′′1 + ẽ22 f ′′1 + ẽ32 f1). (4.4c)

These forcings are affected by the leading-order flow and wall solutions of course as
well as by the small under-pressure. In particular R12, R22 are flow-field effects while
R32 constitutes the wall effect.

The solution of (4.3a–e) may be obtained by means of a Fourier transform
(superscripted F) applied in X, which allows (4.3a,b) to be cast as a forced Airy
equation for the scaled flow shear. Hence,

(∂um/∂y)F = [(iαλ0)
−1/3I(ξ)+ Bm]Ai(ξ) (4.5a)

where α is the transform variable, Ai is the Airy function, ξ = (iαλ0)
1/3Y and

I(ξ)=
∫ ξ

0
(Ai(q̂))−2

[∫ q

∞
Ai(ξ̂ )RF

1mξ̂ dξ̂
]

dq̂. (4.5b)

Use of (4.3c,d) then enables the unknown shear constant Bm to be determined in terms
of the scaled pressure which is found to be given by

PF
m = 3λ5/3

0 (iα)−1/3Ai′(0)f F
m + Γ F. (4.6a)

Here

(iα)Γ F =−Ai(0)I′(0)+ 3Ai′(0)
{∫ ∞

0
Ai(ξ)I(ξ) dξ + (iα)2/3λ2/3

0 RF
2m

}
. (4.6b)

So the wall balance (4.3e) requires the relation

ẽ11 f ′′′′m + ẽ21 f ′′m + ẽ31 fm =−γ
∫ X

0
fm(s)(X − s)−2/3 ds+ R42(X) (4.7a)

to hold, in which R42(X) = Γ (X) + R32(X). The factor multiplying the integral on
the right in (4.7a) agrees with the intensified value of that in (2.7) as required for
consistency. The relation (4.7a), which is subject to the end conditions

fm = f ′m = 0 at X = 0, 1, (4.7b)

acts at leading order (m= 1) to define the intensified blip shape in normalised form
but also acts, at the second order (m=2) where the R terms are non-zero, to provide a
solvability constraint that helps control the unknown amplitude. This constraint stems
from use of the normalised function q(X) say that is adjoint to f1(X) and can be shown
from (4.7a,b) when m= 1 to be given by q(X)= f1(1− X). Multiplication through by
q(X) in (4.7a) when m= 2 then leads to the requirement that∫ 1

0
R42(X)q(X) dX = 0 (4.8)

which constitutes an amplitude equation. A substitution of the effects from (4.4a–c)
in the requirement (4.8) yields the amplitude equation for A(T̃) as

d1
dA

dT̃
+ d7A+ d6A2 + P02 = 0, (4.9a)
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FIGURE 10. (a) The phase-plane solution with horizontal axis A∗ = d6A/|d7| and vertical
•
A
∗

for times |d7|T̃/d1, associated with weakly nonlinear evolution in or near intensification.
(b) Evolution of amplitude A when d7= T̃,P02= 0.25 with d1, d6 normalised to unity, for
various small kicks in amplitude at large negative T̃ . Quasi-steady states denoted qss are
shown for comparison. (c) As (b) but P02 =−0.25.

where
d7 ≡ d2λ1 + d3ẽ12 − d4ẽ22 + d5ẽ32 (4.9b)

and it can be shown that all the coefficients d1–d6 are positive; a calculation gives the
estimates 0.422, 0.392, 14.76, 0.362, 0.029, 1.11 in turn. The latter values are for the
central example of the wall coefficients ẽ1, ẽ2, ẽ3 being −1, 1,−1 respectively whereas
effects over a wide range of variation in these wall coefficients are investigated in
appendix A.

The amplitude equation (4.9a) encapsulating the nonlinear response in terms of the
amplitude function A(T̃) is Riccati-like and yields the phase-plane diagram drawn in
figure 10(a), when d1, d6, d7 are independent of time T̃ , which tends to confirm the
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significance of only the signs of the coefficients above. Varying the scaled pressure P02

yields the different sets of trajectories with positive, zero or negative intercept values
(+, 0,− respectively) at zero A while d7 being positive or negative is responsible for
the left–right reflection of the curves. Here d7 may be positive or negative depending
on the four parts which constitute that coefficient. The arrows indicate direction
along the trajectories with increasing time: rightwards in the upper half plane and
leftwards in the lower half. The normalised diagram, plotting (d6d1/|d7|2) dA/dT̃
against d6A/|d7|, shows first that if the scaled under-pressure P02 is negative then on
any solution trajectory there are two roots of the quadratic equation corresponding
to zero time derivative, one root having positive amplitude and the other negative,
and all trajectories are also connected with a large-amplitude asymptote in which
dA/dT̃ ∝ A2 with a negative coefficient of proportionality. On the other hand if P02

is positive then two roots are found if d7
2 > 4d6P02 (in which case the roots are of

the same sign), one root in the marginal case where equality holds and no real roots
otherwise. Again the connection with a large-amplitude asymptote is clear. Whether
the under-pressure is positive or negative, the greater of the two amplitude roots acts
as an attractor and the lesser one as a repellor whenever two roots exist, whereas
the large-amplitude asymptote which is featured on the left-hand side of the diagram
with A tending to negative infinity serves as an attractor in every instance. The initial
value of A and subsequent evolution with scaled time can play a key role in deciding
the eventual outcome for the evolving amplitude. The choice of outcomes is

A→[−d7 + (d7
2 − 4d6P02)

1/2]/(2d6) as T̃→∞, for d7
2 > 4d6P02, (4.10a)

A∼−(d1/d6)(T̃0 − T̃)−1 as T̃→ T̃0 − . (4.10b)

The steady-state value in (4.10a) can be positive or negative, being dependent upon
the values of P02 and the coefficient d7, and is consistent with the value −P02/(d2λ1)

for the linear steady regime and results of § 3 when λ approaches the critical value
identified there with prescribed ẽn coefficients. This links with the quasi-steady
behaviour of § 3 at low amplitudes.

In contrast the blow-up behaviour in (4.10b) occurs at a finite scaled time and is
such that the fully nonlinear system (2.4a–f ), (2.6a,b) is reinstated over a shorter
time scale around the blow-up time T of approximately ε−1T̃0. This is because when
T − ε−1T̃0 becomes of order unity the denominator in (4.10b) becomes of order ε,
making A grow as large as ε−1 and therefore causing the U-perturbation and |f | in
(4.2a,b) to become of order unity. Saturation as in (4.10a) and blow-up to full (strong)
nonlinearity within a finite scaled time as in (4.10b) are the two main possibilities
for the weakly nonlinear near-intense response, then, while the latter full nonlinearity
leads on to the strong break-up route discussed later in terms of transition.

Concerning (4.9a,b) further the results in figure 10(b,c) are formally for varying
λ1 from large negative to large positive values which force d7 to pass smoothly
from negative to positive; specifically this is normalised to d7 = T̃ with d1 = d6 = 1.
The scaled base pressure is ±0.25. The low-amplitude asymptotes for large negative
times T̃ match with the quasi-steady behaviour found in § 3 whereas blow-up of
the amplitude A can be produced within a finite time, confirming the nonlinear
progression to the strong break-up route mentioned at the conclusion of the previous
paragraph.
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5. Intensifications for many blips

Interactive solutions for multi-blips are now considered. Solutions for four blips
are presented in figure 11(a,b), with the values of the wall coefficients fixed at
(−1, 1, −1). These are linear results. Also solutions for one, two or three blips
correspond to terminating the calculation just before the second, third or fourth blip
successively. In figure 11(a) two different arrangements of the four under-pressures
are considered, for parameter λ of unity, and it is apparent that the interactions
between the successive blips are relatively mild in these cases. In figure 11(b) λ
is increased to a near-critical value of 55 where the interactions are seen to be
considerable. When P0 is positive the minimum pressure produced decreases with
downstream distance X and the maximum pressure also decreases, and in addition
the scaled pressure P starts from a non-zero value at the beginning of all but the
first blip because of the wake effect. For linear or nonlinear intensifications the wake
effects in the induced pressure field can play a substantial role in the total interaction
produced by a configuration of many blips, as described below.

Supposing the configuration consists of a sequence of blips that are of identical
length (normalised to unity), identical material and so on, but not necessarily spaced
out equally, we consider the most upstream one first. This approach ties in with
the mixed parabolic–elliptic nature of the entire fluid/body interaction. Near or in
intensifications the first blip produces a dominant scaled pressure response P and
scaled shape response F which in the incipient nonlinear range have amplitude of
order ε, that is small as in § 4, and these act as eigenfunctions. The associated
under-pressure P0 is only of order ε2 then and acts at second order to help control
the detailed amplitude evolution; thus, the dominant pressure response varies as the
square root of the forcing pressure. The main point now concerns the O(ε) pressure
P and the fact that it exhibits a wake contribution as referred to in § 3, a contribution
which extends over the second blip in particular. As a consequence the forcing
pressure for the second blip is also of O(ε). Moreover this blip is augmented, as it is
identical to the first blip, and so it produces the very same eigenfunction response as
before except that, crucially, the amplitude is of order ε1/2 since the forcing pressure
(replacing under-pressure effect) is now of order ε. The overall effect is therefore
larger on the second blip and begins as if anew. Also the mechanism can continue
afresh to further blips downstream: the pressure wake effect from the second blip
is O(ε1/2), extends over the third blip, produces O(ε1/4) amplitudes in pressure and
shape on the third blip; the pressure wake effect from the third blip is O(ε1/4),
extends over the fourth blip, produces O(ε1/8) amplitudes in pressure and shape there;
and so on.

The prediction then is of an increasing trend of pressure and shape amplitudes with
increasing distance downstream, and likewise for the wall-shear perturbations. The
trend has the enhanced amplitude sequence:

ε, ε1/2, ε1/4, ε1/8, ε1/16, . . . (5.1)

from blip to successive blip for the above case of several identically constituted blips
(see figure 11c) whereas for example the sequence is

ε, ε1/2, ε1/2, ε1/2, ε1/4, . . . (5.2)
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FIGURE 11. Two or more blips. (a) Linearised f , P versus X with successive
base-pressures P0 of 1,1,1,1 (thin curves) or 1,−1,1,−1 (thick), blip lengths unity, λ=1,
wall case [−1, 1,−1]. (b) Linearised f ,P with base pressures 1, 1, 1, 1, blip lengths unity,
λ= 55 (just below intensification), wall case [−1, 1,−1]. (c) Weakly nonlinear heights f
for the equimaterial setting of (5.1), equally or unequally spaced blips, yielding heights
ε, ε1/2, etc., as X increases; not to scale. Results for 2 blips stop before the third, 3 blips
stop before the fourth, and so on.

for the case of two identical blips followed by any two differently constituted blips
and then identical ones again. Each of the two different blips here provokes a
maintained amplitude in shape and pressure because of the wake-pressure effect from
its immediate predecessor and so delays the enhancement but does not prevent it
continuing downstream. Overall, the increasing downstream trend and mechanism
involved seem to add weight to the significance of non-periodicity in the overall
configuration.

The same or similar reasoning extends to configurations other than the identical-
blips one above, as (5.2) indicates. A combination of the workings in this and the
previous sections points to a succession of linked nonlinear amplitude equations which
are of considerable interest for future research.
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c

t

b

a

Subcritical

Supercritical

(i) (ii) (iii) (iv)

FIGURE 12. Sketch, not to scale, of effects of changing incident shear λ: curve a shows
response of max |WSS| if λ varies slowly as in b from subcritical to supercritical; when
λ variation is instead as in c the response remains close to c. Time scales (i)–(iv), . . . are
slow, fast, faster, faster, . . . .

6. Further comments
Three points (i)–(iii) stand out in conclusion.

(i) Inferences on flow transition. The work has shown that when the wall shear of
the incident boundary layer flow acquires certain critical values (eigenvalues) a tiny
flexible blip can, after some delay, rise or fall to a magnitude much greater than
is otherwise the case. This intensification (§ 3, § 5) along with blowup (§ 4 and see
next paragraph) points to a tuneable trip being feasible over a wide parameter range
in the boundary layer. Both shear and wall flexibility are required for the present
intensifications and fast growth mechanisms to occur as the present scales lie outside
the usual boundary-layer instability of Tollmien–Schlichting waves (Smith 1979).

Intensification leads to a non-standard path into transition from low amplitudes, as
figure 12 indicates by showing schematically the effects of gradually changing the
oncoming shear λ for the regime of relatively low base pressures. Curve a shows
the response of the maximal |WSS| when λ varies slowly as in b from subcritical
to supercritical. The response produces only a small disturbance from λ over the
quasi-steady temporal scale (i) of § 3 until a critical value λ = λc is encountered at
which stage (ii) weakly nonlinear amplification can occur (§ 4), leading to strongly
nonlinear evolution over the faster time scale (iii) of (2.4a–f ), (2.6a,b). This is
followed by finite-time blowup as in Smith (1988) and Peridier et al. (1991) which
provokes the even faster evolution (iv) described by Davies, Bowles & Smith (2003)
(see also Cassel & Conlisk 2014; Gargano et al. 2014) with further restructuring
and deep transition towards turbulence taking place. The time scales (i)–(iv) etc. for
response a are slow, fast, faster, faster, etc. The boosted nonlinear behaviour in a does
not arise however without the intensification associated with a critical λ. Thus when
the incident λ variation is subcritical throughout as in c the response remains close
to c. It is noted that the incident λ values b, c do not change scale. The variation
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in surrounding conditions can be by means of varying Reynolds number rather than
shear as in the figure.

(ii) Comparisons. A connection can be made here with the recent work on non-flexible
but dynamic roughnesses (Huebsch 2006; Huebsch et al. 2012) which are similarly
small and numerous distributed on an airfoil surface. These show considerable effects
on transition and on the mean-flow alteration in particular similar to those discussed
above. Detailed comparisons may follow. An additional contrast can be made with
the works on internal motions cited in the introduction, since the present study based
on small-scale condensed flow holds also for internal motions with comparatively
short flexible blips. In particular Guneratne & Pedley (2006), Kudenatti et al. (2012)
and Pihler-Puzović & Pedley (2013) and related papers are all on longer length
and time scales and largely involve the 1/7-power length scaling of viscous–inviscid
interaction that brings cross-channel pressure gradients into play (Smith 1977) as well
as upstream influence in the steady case and Tollmien–Schlichting-like instabilities
in the unsteady case (Hall & Smith 1982). Such overall upstream influence and
underlying flow instabilities are absent in effect over the short scales of current
concern whether the flow is external or internal. Moreover, the current concern
includes influences (due to ẽ1, ẽ3) from flexural rigidity and spring stiffness which
are absent in the papers above. Nevertheless comparison is possible. The results in
our figures 7, 9(c) with regard to higher roots can be compared, with rigidity and
stiffness neglected, and they seem to agree with those in Guneratne & Pedley’s (2006)
figure 5 in two ways: the first is for ‘shorter’ length scales (large σ in Guneratne
and Pedley) and the second is for ‘longer’ scales (small σ ). Both of these ranges of
length scales yield fixed displacement of the wall layer(s) in effect, namely zero or
the average of the wall shapes respectively as described in Smith (1976a,b), Smith
(1977) and Sobey (2000), the former length scales being analogous with our range
(2.2a). The comparison takes into account the different incident wall shears and wall
coefficients for the internal and external applications and the factor of two associated
with the average mentioned above in the case of much longer length scales. The
present theory thus covers a wide range in internal channel flows, specifically

Re−1/2�| x |� Re1/7 and Re1/7�| x |� Re, (6.1a,b)

with allowance for that factor of two (and noting that this Re is based on channel
width). The intensified or critical values from (3.4a,b) for short blips are in the same
close neighbourhood as the numerical values in Guneratne & Pedley (2006) at large
σ . The corresponding analytical values for ‘long’ blips are, from the factor of two
above, simply given by

(Critical tension for ‘long’ blips)/(that for short blips)= 2. (6.2)

The change in critical values here is due to the mitigating effect of the opposite
channel wall for the ‘long’ cases. In comparison, on a logarithmic scale the numerical
values of spacings between the large-σ roots are approximately the same as those
between small-σ roots in Guneratne & Pedley (2006), suggesting consistency with the
prediction (6.2).

(iii) Further work. It will also be interesting to extend the tiny-flexible-blip study
to the highly nonlinear regime as in Smith & Daniels (1981) producing longer-scale
separations. Some evidence for this appears in Smith (1976a,b) and Pihler-Puzović &
Pedley (2013). In terms of the parameters of § 2 the regime corresponds to Γ1∼ 1 but

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.193


Tiny flexible blips and shear flow 39

Γ2� 1. Future studies should investigate unsteadiness associated with the influences
of mass density and damping in the wall response in addition to that considered in
§ 4. The initial effect of the damping proportional to e4 in (2.5) is merely to alter
the coefficient of the single derivative in (4.9a), raising the interesting possibility of
a change in sign of the coefficient and hence a change in the physical mechanism,
whereas that of the mass density represented by e5 is to introduce a second derivative
in scaled time and this alters the physical nature and implications of the amplitude
equation to a greater extent.
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Appendix A. Nonlinear coefficients as the wall parameters vary
This appendix describes the behaviour of certain quantities as the scaled wall

parameters vary. The major quantities are the eigenvalue λc and the constants

C1 =
∫ 1

0
q(x) dx, J1 =

∫ 1

0
q1(x)q(x) dx, C3 =

∫ 1

0
q2(x)q(x) dx, (A 1a−c)

D1 =
∫ 1

0
f ′′′′1 (x)q(x) dx, D2 =

∫ 1

0
f ′′1 (x)q(x) dx, D3 =

∫ 1

0
f1(x)q(x) dx, (A 2a−c)

which arise in the nonlinear study in § 4. Here q(X) is f1(1 − X) as defined in that
section while q1(X) is the integral of f1(s) with respect to s from zero to X and q2(X)
is the integral of 3f ′1(s)(X − s)(1/3) with respect to s from zero to X. The findings
are that the above constants when evaluated for the (first) resonant value of λ vary
relatively little, by less than 1 % over ẽ1 values from −1 to −20. The normalisation
f ′′1 (0) = 1 is assumed. Similar comparatively small variations in the values of the
constants in (A 1), (A 2) occur over a wide range of wall coefficients ẽ2, ẽ3.

The most significant point is that there is no change in sign of any of the
constants as the wall coefficients vary. So in particular since these constants are
largely proportional to the contributions d1 to d6 in (4.9a), (4.9b) the results in
figure 10(a) remain valid throughout.

These findings are complemented by an asymptotic analysis holding for small or
large values of the wall coefficients as follows.

First, analysis of the orders of the terms in the integro-differential equation resulting
from (2.6a) combined with (2.7) when f = f1, λ= λ0 at intensification with zero P0 in
effect indicates that: whenever ẽn� 1 then λ5/3

0 is O(ẽn) (i.e. a1 increases linearly with
ẽn); whenever ẽn� 1 then λ5/3

0 is O(1); in most cases of small or large ẽn the shape
f is typically O(1) since the condition f ′′(0)= 1 is applied. The sole exception is for
small ẽ1, where thin end layers of length order ẽ(1/4)1 occur near x = 0, 1 (in which
f is of order ẽ(1/2)1 ) due to the highest derivative and these lead to f being typically
O(ẽ(1/4)1 ) for almost the whole x-range.
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Second, similar reasoning extends to the nonlinear coefficients C1, J1, etc., as ẽn

becomes large or small. Thus, in nearly all cases C1 remains O(1) since f (x) and
q(x) are O(1), and similarly J1, C3, D1, D2, D3 are O(1). The only exceptional case
is for small ẽ1 where, since f is typically O(ẽ(1/4)1 ), C1 must be O(ẽ(1/4)1 ); likewise
J1,C3,D1,D2,D3 are all O(ẽ(1/2)1 ) because they are shape-squared effects.

All of the trends in the analysis here agree reasonably well with the trends found in
numerical studies of the six constants as the wall coefficients become small or large.
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