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Flexibility increases lift for
passive fluttering wings
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We examine experimentally the influence of flexibility on the side-to-side fluttering
motion of passive wings settling under the influence of gravity. Our results
demonstrate the existence of an optimal flexibility that allows flexible wings to
remain airborne twice as long as their rigid counterparts of identical mass and size.
Flow visualization and measurements allow us to elucidate the role of flexibility
in generating increased lift and wing circulation by shedding additional vorticity
at the turning point. Theoretical scalings are derived from a reduced model of the
flight dynamics and yield quantitative agreement with experiments. These scalings
rationalize the strong positive correlation between flexibility and flight time. Our
experimental results and theoretical scalings represent an ideal system for the
validation of computational approaches to model biologically inspired fluid–structure
interaction problems.
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1. Introduction

The aerial display of flying insects has long captivated biologists and physicists
alike and is a source of inspiration for the design of lightweight flapping micro-air
vehicles (MAVs) (Percin et al. 2011). To remain in the air, the flapping motion of
insect wings generates much higher lift forces than predicted by classical aerodynamic
theory. The importance of unsteady aerodynamics has been discussed in previous
work, and the crucial role of vortices, such as stable leading-edge vortices, has been
identified (Birch & Dickinson 2001). Both insects and MAVs are required to be
lightweight and their wings are hence often flexible (Combes & Daniel 2003; Percin
et al. 2011). The flow-induced elastic deformation of flat flexible structures represents
a rich class of fundamental problems in the field of fluid–body interactions. Recently,
two problems have received considerable attention: the flapping flag instability
(Shelley, Vandenberghe & Zhang 2005; Eloy et al. 2008) and the flow-induced
reconfiguration of flexible bodies (Alben, Shelley & Zhang 2002). These studies have
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highlighted the crucial role of flexibility in drag reduction (Alben et al. 2002) and
optimal thrust generation (Heathcote & Gursul 2007; Spagnolie et al. 2010). Previous
studies have suggested flexibility to improve locomotion through resonant mechanisms
(Michelin & Llewellyn-Smith 2009; Masoud & Alexander 2010). However, the
relevance of resonance to flapping flight has been recently questioned (Ramananarivo,
Godoy-Diana & Thiria 2011).

The present study focuses on a less explored question relevant to the design of light
MAVs and valuable for the understanding of biological locomotion: the influence of
flexibility on vortex generation and aerodynamic lift. We here present the results of an
experimental study of passive flexible wings undergoing an unsteady fluttering motion.
The motion of free bodies settling or rising in a surrounding fluid under the influence
of gravity has generated a high level of interest (Huang et al. 2013; Heisinger, Newton
& Kanso 2014; Hu & Wang 2014; Tchoufag, Fabre & Magnaudet 2014). Recent
work on freely falling flat plates has focused on rigid wings (Mahadevan 1996). Such
uniformly loaded plates are longitudinally unstable, which prevents them from gliding
steadily and gives rise to an unsteady motion. Most of the previous work on falling
plates has examined the transition from a side-to-side fluttering motion to a tumbling
motion (Belmonte, Eisenberg & Moses 1998; Andersen, Pesavento & Wang 2005),
whereby the wing undergoes full rotations. The present work examines the effect of
flexibility on passive flight. We investigate whether passive elastic deformations can
increase lift and allow the wings to remain airborne for longer time periods. In the
tumbling regime, flexible wings induce less lift than rigid wings and reduce the flight
time (Tam et al. 2010). Here, we focus on the fluttering regime.

Our experiments reveal a dramatic increase of lift and flight time due to subtle
chordwise dynamic wing deformations, in sharp contrast to previous steady-state
studies reporting a decrease in lift due to chordwise flexibility (Zhao et al. 2010).
The extent of the lift increase is rationalized by deriving scaling laws for the flight
characteristics. We identify a non-resonant lift increase mechanism that allows flexible
wings to shed stronger vortices leading to increased circulation and lift on the wings.

2. Experimental approach

For experimental ease, our study is conducted in a water tank 140 cm tall, 100 cm
wide and 10.5 cm deep (figure 1a). Our wings correspond to flat rectangular plates
of chord length l, thickness h and span length L and are released at the top of the
tank and freely settle through water of density ρ under the influence of gravity g,
see figure 1(a). Wings are characterized by their density ρs and bending rigidity in
the chordwise direction κ . In order to both settle to the bottom of the tank and
elastically deform, the wings are required to be both negatively buoyant and flexible.
Consequently, we manufacture wings from two different materials. We use metallic
brass of density 8500 kg m−3 to allow the wings to settle in water as well as the
elastic polymer vinylpolysiloxane of density 1050 kg m−3 to allow the wings to be
compliant. The wings are assembled by arranging equally spaced brass bars in a
custom-made mould before casting the elastic polymer (figure 1a). The spanwise
dimension of the wings, L= 10 cm, closely coincides with the depth of the tank in
order to constrain the experiment to be two dimensional. Millimetre-sized polished
stainless steel beads are fixed at the four corners of the wing, allowing the wing to
freely move in water with negligible friction against the glass wall of the tank.

The dynamics of the passive wings is characterized by two non-dimensional
numbers,

I? = ρsh
ρl

and Cy = ρU2l3

κ
, (2.1a,b)
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Flexibility increases lift for passive fluttering wings

where U=√(ρs − ρ)hg/ρ is the characteristic settling velocity deduced from a force
balance between weight and buoyancy on the one hand and hydrodynamics on the
other. Here, I? is the non-dimensional moment of inertia, which can also be interpreted
as the inverse of the added mass parameter. In our study, the material densities are
not varied and I? is a geometric parameter characterizing the cross-sectional aspect
ratio h/l of the wings. The non-dimensional number Cy is the Cauchy number, which
corresponds to the ratio of hydrodynamic to elastic bending forces and increases with
the flexibility of the wing. In all experiments, the Reynolds number is of the order
of Re ≈ 105 and does not vary significantly between experiments. In this study, the
influences of I? and Cy were investigated by varying the cross-sectional geometry
of the wing and the Young’s modulus of the elastic polymer independently. We
considered five wing cross-sectional geometries, I? = 0.05, 0.07, 0.10, 0.17, 0.24, by
varying the thickness of the brass bars (h = 0.4–1.6 mm) and the chord length of
the wings (l= 41–80 mm). All five cross-sectional geometries have low thickness to
chord aspect ratio, h/l = 0.005–0.039, and the wings can be considered to be thin
flat plates. All of these wings undergo a fluttering motion in agreement with previous
experimental studies, which have determined the transition to tumbling motion to
occur beyond a critical value of the non-dimensional moment of inertia of I?crit ≈ 0.4
(Belmonte et al. 1998). Using nine different elastic polymers with Young’s moduli
ranging from E = 0.26 to 1.2 MPa, the bending rigidity in the chordwise direction
κ is varied. The natural frequencies of the flexible wings are no less than 10 Hz.
Fully rigid wings are also considered by fixing thin mylar films to the upper and
lower surfaces of the wings. The Cauchy number ranges between 0 for rigid wings
and 70 for the most flexible ones. The range of Reynolds and Cauchy numbers
investigated in our experiments is relevant to many problems of objects, paper, leaves
and seedpods falling in air.

Wings are released in the water tank and their descent is recorded using high-speed
imaging at 150–250 f.p.s. Figure 1(b) represents successive snapshots recorded with
our experimental set-up. The videos are processed to extract the two-dimensional
trajectory of the wing X(t) = (x(t), y(t)), the wing velocity U(t) = (vx(t), vy(t)) and
the pitch angle θ(t) between the horizontal x̂ and chord x̂′ directions, figure 1(a). The
side-to-side fluttering motion is characterized by turning points, where the wings stop
and change direction, separated by gliding intervals, where the wings descend due
to gravity. Characteristic quantities are deduced from the analysis of the trajectories:
the horizontal 1x and the vertical 1y distances between consecutive turning points,
the frequency of the oscillatory motion f , the average vertical descent velocity of the
wing Ud and the characteristic flight time τf = l/Ud required to descend over one
chord length l at the average descent rate Ud (figure 1b). Wing shape is characterized
by the deflection, which corresponds to the distance from a point along the deformed
camberline to the straight chordline joining the leading and trailing edges. The extent
of elastic deformation is recorded by measuring the maximum deflection along the
wing δ. In addition, the two-dimensional flow velocity field u in the tank is measured
in separate sets of experiments using double frame particle image velocimetry (PIV).
Figure 1(c) represents the typical vorticity field left behind a fluttering wing. All
experimental data are non-dimensionalized with the characteristic velocity as a
reference velocity Uref =U, the dimension of the chord as a reference length lref = l
and the reference time scale tref = l/U. Henceforth, all variables are non-dimensional
unless otherwise specified.
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FIGURE 1. (a) Experimental set-up. (b) Superimposed snapshots of the fluttering motion
(Cy = 0 and I? = 0.1). Time between snapshots: 125 ms. (c) Particle image velocimetry
measurements of the vorticity and velocity fields (Cy = 10 and I? = 0.1). The wing is
represented by a line and the wing circulation Γ and wake vortices Γwake are highlighted
by coloured arrows.

3. Experimental results

We proceed by detailing our experimental observations. For each cross-sectional
geometry characterized by I?, the effect of flexibility is isolated by studying wings
with increasing Cauchy number from values corresponding to rigid wings, Cy = 0, to
highly flexible wings, Cy ≈ 70. Following their release, the wings settle in a stable
periodic two-dimensional left-to-right fluttering motion (see the supplementary movies
available at http://dx.doi.org/10.1017/jfm.2015.1). The fluttering motion is always
observed for all but the most flexible wings. For very flexible wings (Cy > 60), the
stability of the fluttering motion is lost to an unstable flapping motion (Shelley et al.
2005), resulting in rapid descent, see the supplementary movies. The flexibility at
which this transition occurs is in agreement with previous experimental work (Shelley
et al. 2005). We henceforth restrict our attention to the stable fluttering motion, which
is the only dynamics observed for Cy 6 60.

Flexible wings deform during the fluttering motion. Typical wing shapes are
reproduced in figure 2(a). Rigid wings, Cy = 0, remain flat throughout their descent,
while flexible wings exhibit small upward bending deformation δ, generally not
exceeding 5 % of the chord length l. Figure 2(c) represents the time variations of the
deformation δ during the fluttering motion for I? = 0.1 and Cy = 15. During gliding
intervals, the deformation does not exceed 1 % and the wings can be considered to
remain flat. Elastic deformations are restricted to short time periods at the turning
points, where δ reaches a maximal value δ̄ of the order of 4 %, see figure 2(c).
In our experiments, the chord length does not exceed 8 cm and the dimensional
deflection does not exceed 5 mm. In figure 2(a), the white arrows indicate the
frames in the sequence of snapshots, when the maximal deformation δ̄ is observed.
The wing deformations δ̄ remain very small for all wings, as can also be seen in
the supplementary movies. Figure 2(d) represents the maximal wing deformation
δ̄ recorded at the turning points for wings of increasing flexibility. The elastic
deformation δ̄ is found to increase linearly with the flexibility of the wing Cy.

While the extent of elastic deformation remains small, its effect on the flight
characteristics is striking. For each value of I?, the fluttering amplitudes 1x and 1y
decrease severalfold as Cy is increased, see figure 3(a,b). Concurrently, the frequency f
of the fluttering motion increases severalfold, see figure 3(c). The characteristic flight
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FIGURE 2. (a) Superimposed snapshots of the fluttering motion for I?=0.1 and increasing
Cy. White arrows highlight wing shapes, when the deformation δ reaches its maximum
value δ̄. (b) Circulation measurements deduced from high-speed imaging as a function
of time for a fluttering wing (I? = 0.1 and Cy = 15) (c). Bending deformation δ as a
function of time for the same fluttering wing as in (b). (d) Maximum bending deformation
δ̄ measured at the turning point as a function of the Cauchy number Cy for fluttering
wings (I? = 0.1).
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FIGURE 3. Influence of wing flexibility on flight characteristics. For each I?, the wing
flexibility Cy is varied and the dependence of the flight characteristics with respect to the
Cauchy number Cy is recorded. The panels correspond to (a) 1x, the horizontal amplitude
of the fluttering motion, (b) 1y, the vertical amplitude of the fluttering motion, (c) f , the
frequency of the fluttering motion, (d) τf , the characteristic flight time. All quantities are
non-dimensional.
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time τf is the most relevant quantity in our study as it characterizes how long the
wing remains airborne. The non-dimensional flight time τf is precisely the inverse of
the non-dimensional average descent velocity Ud. The flight time τf strongly depends
on the wing flexibility Cy (figure 3d). For each wing geometry I?, τf increases from
its value for rigid wings at Cy = 0 to a maximum at some optimal flexibility C?

y .
For Cy > C?

y , τf decreases with increasing Cy (figure 3d). For I? = 0.05, the flight
time of wings of optimal flexibility is 1.22 times longer than for rigid wings. This
increased flight time is enhanced at higher I? values. For the highest value, I?= 0.24,
the optimally flexible wing remains aloft 2.5 times longer than its rigid counterpart,
corresponding to a more than twofold increase in flight time. While the fluttering
frequency does increase with flexibility, the dimensional values of f remain of the
order of 1 Hz, which is one order of magnitude lower than the natural frequencies of
the wings. The optimal flight time due to flexibility is hence not caused by a resonant
mechanism. The effect of flexibility on the flight characteristics is best observed by
watching recorded videos of fluttering wings of identical geometry and increasing
flexibility provided in the supplementary material.

Velocity and vorticity fields obtained from PIV measurements provide key insight
into the fluttering dynamics and shed light on the mechanisms generating wing
circulation. Figure 1(c) represents the typical vorticity field produced by a descending
wing. Particle image velocimetry measurements were performed for wings of varying
geometry I? and flexibility Cy. Two key vortical elements can be identified in the
vorticity distribution. First, the bound vorticity on the wing corresponds to the wing
circulation at the origin of the Joukowski lift. Second, vortices are shed at each
turning point: a strong vortex and an associated much weaker counter-rotating one
(see figure 1c). Outside of these two vortical elements, little vorticity is present in
the flow. This characteristic vortex distribution is observed for all fluttering wings
of varying Cy and I?. We estimate the wing circulation during the gliding interval
Γ and the circulation around the asymmetric vortex pair shed at the turning point
Γwake. We do so by evaluating the line integral Γ = ∮

C
u · dl, where C represents a

closed contour closely following the vortical element of interest and u is the flow
velocity interpolated on C . In addition, the wing circulation Γ was also measured
from the high-speed imaging experiments. The acceleration of the wing is computed
from the recorded time-resolved wing trajectory X(t) = (x(t), y(t)). One can directly
deduce the total aerodynamic force acting on the wing. Assuming a Joukowski lift
ρΓ |U| (Andersen et al. 2005), one can estimate the wing circulation from the lift
force. Figure 2(b) represents the time variations of the circulation deduced from
high-speed imaging for I?= 0.1 and Cy= 15. During gliding intervals, the circulation
remains relatively constant at a value of 0.008 m2 s−1. Turning points correspond to
the shaded areas, for which the estimate is not expected to be accurate as the wing
velocity U vanishes. The wing circulation was estimated separately using PIV and
high-speed imaging and the measurements were in perfect agreement and confirmed
the accuracy of the PIV measurements. For a given cross-sectional geometry I?,
we observe flexible wings to develop larger wing circulation Γ than their rigid
counterparts and to shed stronger vortices Γwake at the turning points (see figure 4).
The increase in wing circulation due to flexibility is significant. For I? = 0.24 and
Cy = 11, the circulation is 2.1 times larger than for the corresponding rigid wing.
The circulation increases deduced from the PIV measurements and from high-speed
imaging are in agreement.
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FIGURE 4. Dependence of 1Γe=Γ −Γ0 on wing flexibility Cy. Each data set corresponds
to a fixed cross-sectional geometry with 0.05 6 I? 6 0.24. Inset: the circulation for rigid
wings (Cy = 0) is independent of wing geometry I?.

4. Theoretical scalings

In the following, we elucidate the physical mechanisms responsible for the increase
in lift and flight time. Hence, we focus exclusively on flexibilities between the rigid
limit Cy = 0 and the optimal value C?

y , for which the flight time is maximum. In
this discussion, we consider a simplified vorticity distribution as follows. The bound
vorticity on the wing is reduced to a single point vortex Γ attached to the wing
and each asymmetric vortex pair is represented by a point vortex at the turning
point, whose circulation Γwake corresponds to the circulation around the vortex pair
(figure 1c). Outside of these vortices, we assume the flow to be irrotational in
agreement with our PIV data. This simplified vorticity distribution is characteristic of
the observed distribution for all fluttering wings.

During a gliding interval, the wing descends from one turning point to the following
one under the influence of gravity with a circulation of +Γ . At the turning point,
the wing comes to rest and sheds a wake vortex +Γwake before resuming flight in the
opposite direction with a circulation −Γ . In this simplified vorticity field, Kelvin’s
circulation theorem has two important consequences: (i) Γ and Γwake remain constant
in time and (ii) Γwake = 2Γ . This equality follows directly from the conservation of
circulation for a contour around a turning point, considering that the circulation of
the wing is initially +Γ and becomes −Γ after the wake vortex Γwake is shed. This
problem is not without correspondence with classical starting vortices. These two
inferences are verified experimentally from the measurements of circulation around
the wing and around wake vortices from each PIV data set. For each value of I?, Γ
varied by no more than 8 % during the gliding interval and the ratio of wake to wing
circulation was Γwake/Γ = 2.01 ± 0.08. We conclude that the wing circulation Γ is
created predominantly at the turning points and remains relatively constant through
the subsequent gliding interval.

The following physical picture emerges. Wing flexibility acts at the turning points,
where elastic deformations occur. These passive deformations allow flexible wings
to shed stronger wake vortices and to generate larger wing circulation than their
rigid counterparts of equal I?. During gliding intervals, both rigid and flexible wings
experience lift forces, which depend on the wing circulation created at the turning
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point. We proceed by deriving theoretical scalings to rationalize the effect of flexibility
on fluttering wings.

4.1. Scaling for the wing circulation
Generally, circulation is created when wings with sharp edges are accelerated and
vorticity is shed at the trailing edge. There is an analogy between the wake vortices
in our experiment and classical starting vortices. At the turning point, the wing is
first accelerated by gravity and fluid flows around the leading and trailing edges.
Vorticity develops at the two wing tips and the pressure distribution corresponding to
this vorticity distribution creates a bending moment responsible for the brief upwards
bending deflection δ observed (see figure 2c). Thereafter, the vorticity at the trailing
edge is shed to satisfy the Kutta condition, cancelling the bending moment, and the
trailing edge is further accelerated by elastic forces until the wing returns to a flat
configuration. This description agrees with the earlier observation that deformations
arise only at the turning points.

Two forces thus contribute to the acceleration experienced by the wing tips: gravity
and wing elasticity. Accordingly, the wing circulation is written as the sum of two
terms, Γ =Γ0+1Γe, where Γ0 is the circulation due to the gravitational acceleration
of the equivalent rigid wing and 1Γe characterizes the contribution of elasticity.
Circulation scales as the product of a characteristic length times a characteristic
velocity. Theoretical scalings for each contribution Γ0 and 1Γe can be derived.
Gravity accelerates the wing downwards from rest to a descent velocity, which scales
with the characteristic settling speed U. The dimensional circulation due to gravity
is hence expected to scale with Γ0 ∼ lU, which in non-dimensional terms translates
to a constant Γ0 independent of I? and Cy. This scaling is validated experimentally
by measuring the circulation around rigid wings, Γ (Cy = 0) = Γ0, for which the
contribution of elasticity vanishes. The circulation Γ0 is constant and independent of I?

in agreement with the scaling (see inset in figure 4). Next, we consider the additional
1Γe generated when the bending energy due to the deformation δ is released. In this
case, the relevant length scale is the maximal deformation at the turning point δ̄ and
the relevant velocity scale is the velocity of the wing tip δ̄/τ due to elastic forces,
where τ is the characteristic time of the elastic response. The following scaling for
the dimensional circulation can be deduced: 1Γe ∼ δ̄(δ̄/τ ). The non-dimensional
deflection scales linearly with the Cauchy number, δ̄/l ∼ Cy, in agreement with
our experimental observations of δ (see figure 2d). The non-dimensional time of
the elastic response scales with τ/tref ∼ C1/2

y . Together, these scalings yield for the
non-dimensional circulation

1Γe ∼C3/2
y . (4.1)

The 3/2 exponent of this nonlinear scaling implies that wing circulation and wake
vortices greatly increase with flexibility. This result is verified against our experimental
measurements of Γ for wings of varying flexibility Cy. For each different wing
geometry I?, we consider the experimental data recorded for wings, for which we
observed an increase in flight time. These wings are characterized by a Cauchy
number ranging from the rigid limit Cy = 0 to the value at which the maximal flight
time was recorded Cy = C?

y . For all flexible wings, 1Γe is estimated experimentally
as 1Γe = Γ − Γ0, where Γ is the circulation measured around the flexible wing
and Γ0 is the circulation measured around its rigid counterpart of identical geometry.
For each separate wing geometry I?, this 3/2 exponent is verified experimentally by
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plotting 1Γe(Cy) on a ‘log–log’ scale, see figure 4. At the optimal C?
y , 1Γe is of the

same order of magnitude as Γ0 and the increase in wing circulation due to flexibility
is significant.

4.2. Scalings for the flight characteristics
We now turn to the gliding intervals and quantify the effect of increased circulation
on the flight characteristics. Previous studies (Mahadevan 1996; Belmonte et al. 1998;
Andersen et al. 2005) have investigated the falling dynamics of wings with reduced
models adapted from Kirchhoff’s ordinary differential equations (ODEs) for the
motion of bodies immersed in an irrotational flow. The non-dimensional momentum
equations can be written as

I?v̇x′ − (I? + 1)θ̇vy′ = −Γ vy′ −Dx′ − sin θ, (4.2a)

(I? + 1)v̇y′ + I?θ̇vx′ = +Γ vx′ −Dy′ − cos θ, (4.2b)

where inertia and added mass appear on the left-hand side, while the right-hand side
includes the lift force derived from the Kutta–Joukowski theorem, the drag force and
gravity. Here, vx′ and vy′ are the components of the wing velocity U in the frame
co-rotating with the wing (see figure 1a), Dx′ and Dy′ are the components of the drag
force.

Previous studies rely crucially on empirical quasi-steady expressions for the wing
circulation as a function of the instantaneous wing motion vx′ , vy′ and θ̇ (Belmonte
et al. 1998; Andersen et al. 2005). In contrast, we have deduced from our experiments
that the lift force during gliding only depends on the circulation level generated at
the turning point and that it remains constant throughout the gliding motion. Since no
elastic deformations occur during gliding intervals, the dynamics of rigid and flexible
wings can be modelled by (4.2) assuming a constant wing circulation (Mahadevan
1996), given by (4.1). Assuming that Γ remains constant simplifies (4.2) and allows
the derivation of theoretical scalings for the flight characteristics. We note that by
assuming a constant Γ , the shedding of the wake vortex Γwake and subsequent jump
in wing circulation from Γ to −Γ at the turning point is not adequately represented.
Equations (4.2) hence only model a single gliding interval, corresponding a wing
started from rest and whose motion is prescribed by (4.2) with constant Γ .

Equations (4.2) can be written in terms of vx and vy, the horizontal and vertical
components of U, and further simplified on the basis of experimental observations to
derive theoretical scalings. We assume I?� 1, the pitch angle θ� 1 during the gliding
segments, leading to the simplified system

I?v̇x =−Γ vy −Dx, (4.3a)
v̇y =+Γ vx −Dy − 1. (4.3b)

Considering that the scale of the fluttering dynamics is determined by the inertia,
added mass, lift and gravity terms in the coupled ODEs (4.3), we can directly deduce
theoretical scalings for the different terms in the equations: the horizontal speed
vx ∼ 1/Γ , the vertical descent speed vy ∼

√
I?/Γ and the time scale of the periodic

motion 1/f ∼ √I?/Γ . Combination of these scalings yields scalings for the flight
characteristics:

1x∼
√

I?

Γ 2
, 1y∼ I?

Γ 2
, f ∼ Γ√

I?
, τf ∼ Γ√

I?
. (4.4a−d)

Equations (4.4) predict that the fluttering amplitudes 1x and 1y decrease with
the wing circulation Γ squared and the frequency f and flight time τf linearly
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FIGURE 5. Comparison between experimental data recorded with high-speed imaging
(symbols) and theoretical scalings (dashed line). Each data set corresponds to a given
cross-sectional geometry. For each I?, the wing flexibility Cy is varied. The panels
correspond to scalings for (a) 1x, the horizontal amplitude of the fluttering motion,
(b) 1y, the vertical amplitude of the fluttering motion, (c) f , the frequency of the fluttering
motion, (d) τf , the characteristic flight time. Scalings are expressed in terms of the
wing circulation Γ and the added mass parameter 1/I?. Here, 1x, 1y, f and τf are
non-dimensional.

increase with Γ . From (4.4), the lift coefficient Cl can also be shown to be
quadratic in Γ , Cl ∼ Γ 2. These scalings are verified experimentally by plotting
the non-dimensionalized flight characteristics measured from high-speed imaging as a
function of the non-dimensional circulation measured from PIV experiments. Figure 5
presents experimental results on a ‘log–log’ scale for each separate wing geometry I?.
For all four flight characteristics, the quadratic and linear scalings in Γ (4.4) are
verified for each I?. The Cauchy number Cy does not directly appear in the scalings
(4.4). However, as discussed previously, the circulation Γ depends on the flexibility
since Γ –Γ0 directly scales with C3/2

y .
The theoretical scalings (4.4) depend on the wing dynamics through the

non-dimensional moment of inertia I?, see (4.3). Taking into account the dependence
on I? allows for a full collapse of all the different experimental data sets with the
theoretical scalings, requiring no fitting parameters. The full data collapse in figure 5
is in stark contrast to the data presented in figure 3, where the flight characteristics
are presented as a function of the flexibility Cy. This collapse validates the physical
picture described above. Combination of the theoretical analyses of the turning points
and the gliding intervals fully rationalizes all experimental observations. For example,
small passive elastic deformations of wings of I? = 0.24 occur at the turning points
and lead to a more than twofold increase in Γ relative to their rigid counterparts,
figure 4. This increase in circulation results in a more than twofold increase in flight
time and fourfold increase in lift coefficient, see figure 5.
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5. Conclusion

In summary, we have introduced a new model system to investigate the effect of
flexibility on flight and lift generation. The present study establishes a positive and
very substantial correlation between flexibility, wing circulation and lift generation,
relevant to flapping flight. The extent of the lift increase is particularly striking: small
bending deflections of 3–5 mm (no more than 5 % of the chord length) at the turning
points result in an up to twofold increase in flight time and fourfold increase in lift
coefficient Cl. Our study demonstrates the role of small passive elastic deformations at
the origin of optimal lift increase. The formation of high wing circulation is directly
related to the passive elastic acceleration of the trailing edge at the turning points.
Theoretical scalings are derived in excellent agreement with experiments and identify
the turning points as the crucial instants of unsteady lift generation. These theoretical
scalings directly link the creation of additional circulation to elastic deformations
(see figure 4). The detailed interactions between the flow and the deforming wing at
the trailing edge have not been investigated and remain to be elucidated. Our results
evidence the benefits of very small amplitude elastic deformations of the trailing edge
in generating more lift, which could be advantageous to light biological systems. The
Reynolds number Re = 104–105 and Cauchy number Cy = 0–100 in our study are
relevant to many biological systems producing lift in the living world such as insects
and winged seedpods. In this context, it is interesting to note that in these systems
the chordwise bending stiffness can significantly decrease towards the trailing edge
(Combes & Daniel 2003), leading to elastic deformations at the trailing edge.

The physics behind the lift enhancing mechanism rationalized in this study is
fundamentally different from previously reported resonant mechanisms associated
with thrust increase. The common view found in the literature is that propulsion
can be enhanced by matching the flapping frequency to the resonance frequency of
flexible wings, which in some cases may be energetically favourable (Alben 2008).
In contrast, our study highlights the importance of very small deformations at turning
points for lift increase. The lift enhancement mechanism identified in our study is
non-resonant, and optimal lift generation is obtained far from resonance, the natural
frequencies of the flexible wings (∼10 Hz) being an order of magnitude higher than
the fluttering frequency (∼1 Hz).

This study also presents an ideal model system for the development and validation
of aeroelastic modelling and computational approaches. The dynamics of our
system includes all the relevant aspects of the flight dynamics of insects and
MAVs: the dynamics of an entirely free body immersed in a fluid, aeroelasticity,
unsteady aerodynamics, vortex generation and shedding. The scaling laws (4.4) are
straightforward to verify. It is interesting to note that these scalings depend on both
the Cauchy number Cy and the non-dimensional moment of inertia I? and account
for the elastic dynamics as well as the dynamics of freely falling wings. In particular,
our theoretical scalings (4.4) and (4.1) are valid for fully rigid wings and predict the
non-dimensional flight time to decrease with

√
I?. The validity of this scaling for rigid

wings is verified by our experimental data (see figure 5). It is interesting to note that
previously proposed approaches to model the aerodynamics of rigid fluttering wings
fail to reproduce these scalings (Andersen et al. 2005). These studies use quasi-steady
aerodynamics (Hu & Wang 2014) to model the aerodynamic forces as a function of
the instantaneous angle of attack and linear and angular velocities of the wing and
neglect the complex dynamics at the turning points. Our study suggests that the lift
force during the gliding intervals is determined by how much circulation developed
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around the wing at the previous turning point. Our simple theoretical model captures
non-trivial aspects of the fluttering dynamics, which more intricate computational
models do not, and highlights the necessity of accurately modelling the complex
dynamics at the turning points in studies of unsteady falling plates.
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