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Transition to turbulence in straight pipes occurs in spite of the linear stability of the
laminar Hagen–Poiseuille flow if both the amplitude of flow perturbations and the
Reynolds number Re exceed a minimum threshold (subcritical transition). As the pipe
curvature increases, centrifugal effects become important, modifying the basic flow as
well as the most unstable linear modes. If the curvature (tube-to-coiling diameter d/D)
is sufficiently large, a Hopf bifurcation (supercritical instability) is encountered before
turbulence can be excited (subcritical instability). We trace the instability thresholds
in the Re − d/D parameter space in the range 0.01 6 d/D 6 0.1 by means of laser-
Doppler velocimetry and determine the point where the subcritical and supercritical
instabilities meet. Two different experimental set-ups are used: a closed system where
the pipe forms an axisymmetric torus and an open system employing a helical pipe.
Implications for the measurement of friction factors in curved pipes are discussed.
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1. Introduction

Past studies of flows in curved pipes have been largely motivated by the need
for reliable friction-factor data. The pressure drop in pipes is a fundamental design
parameter in industry and the accurate prediction of the drag is of importance for
many practical applications. For that reason friction-factor correlations for curved
pipes are abundant in the literature, see e.g. Naphon & Wongwises (2006) and
Vashisth, Kumar & Nigam (2008) for corresponding compilations. The dependence
of the friction factor f on the Reynolds number Re and change in slope encountered
with increasing Re have commonly been used to estimate the critical threshold for
the onset of turbulence. The dependence of the critical Reynolds number on the pipe
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curvature derived in this way is thus entirely based on empirical relations found from
pressure-drop measurements.

For straight pipes it is well established that the laminar Hagen–Poiseuille flow
is linearly stable at all flow speeds and transition to turbulence results from
finite-amplitude perturbations, often referred to as subcritical transition (Grossmann
2000). Once triggered, the transition to turbulence can be described as catastrophic,
i.e. it is abrupt and distinct concerning flow properties such as the pressure drop.
Hence, the distinction between laminar and turbulent flow in a straight pipe is clear
cut, in principle. A complication, however, is caused by spatio-temporal intermittency.
The coexistence of patches of laminar and turbulent flow in the transitional regime
(Wygnanski & Champagne 1973; Nishi et al. 2008; Samanta, de Lozar & Hof
2011) and the absence of a linear instability have caused considerable difficulties
in understanding the transition and in defining a threshold Reynolds number for the
onset of turbulence (Eckhardt et al. 2007; Mullin 2011). While intermittent turbulent
spots are transient at low Reynolds numbers, turbulence becomes sustained at larger
Reynolds numbers when the spreading rate of turbulent spots outweighs their decay
rate. Avila et al. (2011) have shown both rates to coincide at a critical Reynolds
number Re ∼= 2040, which provides a natural criterion for defining the onset of
turbulence.

The flow in curved pipes is further complicated by centrifugal forces. The imbalance
between centrifugal forces and the cross-stream pressure gradient leads to a secondary
flow in the form of a pair of steady streamwise Dean vortices symmetric with respect
to the equatorial plane. Associated with the Dean vortices the maximum of the
streamwise velocity is shifted radially from the centre of the pipe towards the outer
wall. Due to the increased cross-stream gradient of the streamwise velocity near the
outer wall, the drag in curved pipes is considerably higher when compared with
straight pipes. This effect is more pronounced in laminar flows, while the mean wall
shear stress in turbulent flows is less affected. Therefore, the difference in pressure
drop between laminar and turbulent flow is much smaller than in straight pipes.
Cioncolini & Santini (2006), hereinafter referred to as C06, reported a small range
of Reynolds numbers in the transitional regime where the laminar pressure drop is
even larger than the turbulent one.

Figure 1 shows critical Reynolds numbers for the transition to turbulence as a
function of the curvature from several selected publications (adopted from Vashisth
et al. 2008, table 4) based on pressure-drop measurements and observations of
discontinuities in the log(f )–log(Re)-plane respectively. These critical Reynolds
numbers scatter over a wide range. As a common trend, however, the critical Reynolds
number increases strongly with increasing curvature.

The similar approach of all investigators using pressure-drop measurements shall
be exemplified considering the most recent investigation by C06. They tested 12
helically coiled pipes with curvatures 0.003 6 d/D 6 0.14 made of copper tubes
wound around a cylinder. The inlet section consisted of a straight inlet pipe of
100 pipe diameters followed by one revolution of the coiled pipe. The coiled part
of the inlet was intended to damp entrance effects and to yield a fully developed
flow. Downstream of the inlet the pressure drop over 0.25 to 1 revolutions of the
coiled pipe was measured. The friction-factor profiles obtained were analysed to
determine the critical Reynolds number. Based on the observations of discontinuities
in the log(f )–log(Re)-plane, C06 defined unique critical Reynolds numbers for small
and large curvatures and two different critical Reynolds numbers for intermediate
curvatures, all of which are displayed in figure 1 as four curve segments.
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FIGURE 1. Critical Reynolds numbers as a function of the curvature for selected
publications. The data were taken from table 4 of Vashisth et al. (2008).

Recalling the abovementioned intermittent regime in straight pipes, where turbulent
spots coexist with the laminar flow, the existence of such an intermittent regime
seems also probable at least for mildly curved pipes. However, integral pressure-drop
measurements are insufficient to investigate intermittent flows. Furthermore, the
observation of a supercritical instability spuriously and incoherently reported by
earlier investigations of Sreenivasan & Strykowski (1983), Webster & Humphrey
(1993), Webster & Humphrey (1997) and Piazza & Ciofalo (2011) requires a space-
and time-resolved measurement of the flow field in order to shed more light on the
laminar–turbulent transition in curved pipes.

Experiments by Kühnen et al. (2014), hereinafter referred to as K14, have already
revealed a multistage transition to turbulence in a toroidal pipe with d/D = 0.049
by means of stereoscopic particle image velocimetry (S-PIV). They identified
and characterized distinct flow states. The onset of time-dependent flow could be
determined at a first critical Reynolds number of Rec1 = 4075± 2 %. The bifurcation
was found to be of supercritical Hopf type, leading to a wave travelling along the pipe.
At Rec2 ≈ 4400 a secondary Hopf bifurcation occurs. After the secondary bifurcation
the flow becomes chaotic, as signified by a broad peak in the power spectrum. Fully
turbulent flow with the characteristic friction-factor scaling and the change in the
slope of the friction factor in the log(f )–log(Re)-plane was obtained for Re & 8000.
Hence, measurements of the pressure drop fail in detecting the onset of the first
instability to time-dependent flow (Rec1).

In view of the lack of detailed results on transitional curved pipe flow and the
qualitative and quantitative differences among previous investigations, a systematic
variation of the curvature is desirable. From previous investigations one can suppose
the Hopf bifurcation point to move to larger Reynolds numbers as the curvature
decreases with Rec1→∞, as straight pipe flow is linearly stable. On the contrary, the
subcritical transition to turbulence is assumed to arise at lower Reynolds numbers as
the curvature decreases, because it can be expected to approach Re∼= 2040 for straight
pipes. Hence, we expect a range of curvature at which the supercritical instability
and the subcritical transition to turbulence compete. This regime is targeted in the
present investigation. We focus on the linear instability threshold from laminar to
oscillatory Dean flow (travelling waves) and on the onset of subcritical turbulence for
small and moderate curvatures. The instabilities are detected experimentally by means
of laser-Doppler velocimetry and gathered in the Reynolds number–curvature plane.
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Nos Designator d (mm) D (mm) d/D

1 T-0.1 30.3 303 0.100
2 T-0.075 30.3 404 0.075
3 T-0.049 30.3 614 0.049
4 T-0.041 15.2 370.7 0.041
5 T-0.034 15.2 447 0.034
6 H-0.082 10.2 124.7 0.082
7 H-0.072 10.2 141 0.072
8 H-0.062 10.2 165.4 0.062
9 H-0.051 10.2 198.5 0.051

10 H-0.041 10.2 249 0.041
11 H-0.031 10.2 328.3 0.031
12 H-0.026 10.2 399 0.026
13 H-0.021 10.2 497 0.021
14 H-0.01 10.2 1017 0.010

TABLE 1. Overview of the 14 different experimental set-ups and their geometric properties.
Pipes are designated using T for a toroidal pipe (nos 1–5) and H for a helical pipe
(nos 6–14), combined with the curvature d/D. Pipe T-0.049 and the respective results are
from K14.

To this end we use two different experimental set-ups: a closed system consisting of
a toroidal pipe and an open system consisting of a helical pipe with small pitch.

2. Experimental set-up and methods of investigation

Five different toroidal pipes and nine different helical pipes all with curvatures in
the range 0< d/D6 0.1 are used to investigate the transition to turbulence of the fully
developed laminar flow. The geometrical properties of these pipes are listed in table 1.
For reference in the text each particular pipe is assigned a shortcut, where T stands
for a toroidal pipe (nos 1–5) and H for a helical pipe (nos 6–14) in conjunction with
the respective curvature.

Both types of set-up have specific advantages and disadvantages. The closed
toroidal pipe is geometrically very precise, has zero pitch and is better suited for
full optical access. However, the finite length of the toroidal system (πD) and the
boundary conditions associated with the driving realized by an actuated rolling sphere
(see § 2.1) can potentially affect the transition. Due to this boundary condition only
the flow in a certain azimuthal range can be considered to be fully developed. For
T-0.049 this range is limited to ϕ ∈ [0.85π, 1.15π], where ϕ is the toroidal angle and
ϕ = 0 corresponds to the location of the actuated sphere (see K14). The boundary
condition also restricts the usable curvature. If the curvature is too large the flow in
the whole toroidal pipe may be affected by the driving mechanism.

The open helical pipes are realized using stiff hydraulic hoses (see § 2.2). By
bending into helical pipes the curvature can be varied with relative ease. Although
great care was taken in setting up each curvature the system is intrinsically less
accurate than the precisely machined rigid torus, since the cross-section of the pipe
may be slightly affected by the curvature. In addition, the helical set-up has a
small pitch, i.e. an increase in coil elevation per revolution, which gives rise to an
additional torsional force on the flow. However, the effect of torsion on the flow
is considered to be negligible provided that the coil pitch is lower than the coil
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FIGURE 2. Sketch (side view) of the set-up with toroidal pipes. The lower (1) and
upper (2) plexiglass discs are bolted together and sealed using rubber O-rings (screws and
sealings not shown) to ensure leakproof tightness. The two discs are machined such that
they realize a toroidal pipe with internal diameter d and toroidal diameter D. A flat pot
magnet (3) with threaded stem is incorporated into the boom (4) right below the centreline
of the tube to move a ferromagnetic sphere (5) placed into the tube. The boom is rotated
around the shaft (6) by a geared direct current motor (not shown). Drawing not to scale.

radius (toroidal approximation for helical coils), see e.g. Germano (1982), Yamamoto,
Yanase & Yoshida (1994) and Hüttl & Friedrich (2000). As an advantage, the helical
set-up allows for a longer continuous investigation of the flow, not interrupted by the
passage of the driving mechanism. Additionally, the inlet flow from a straight pipe
can be kept laminar to very high Reynolds numbers and the length of the helical
pipe can be made quite long to fully rule out any entrance effects. Since helical pipes
represent the quasi-standard for experimental investigations of curved pipe flow, the
investigation of the transition in helical as well as in toroidal geometries provides an
important consistency check.

2.1. Toroidal pipe
The experimental set-up employing a toroidal pipe is realized by a stationary torus
(toroidal cavity) made from perspex. Figure 2 shows a sketch of the main parts of
the facility. For manufacturing reasons and to provide access to the cavity the top
and bottom halves of the torus are machined into perspex plates which are accurately
assembled to form the closed toroidal cavity. To drive the fluid motion a ferromagnetic
stainless chromium steel sphere with diameter slightly less than the toroidal tube is
placed into the toroid in addition to the working fluid. The steel sphere is actuated
from outside the toroidal cavity using a strong permanent magnet mounted on a
rotating boom. To achieve a constant and precisely adjustable flow rate in the torus
the boom is rotated at a constant angular velocity, thereby steadily moving the sphere
inside the torus driving the fluid. This allows the flow rate in the torus to be precisely
adjusted. The driving system to rotate the shaft consists of an electric gear motor
combined with a belt drive. The Reynolds number is defined as Re = Ud/ν, where
d is the diameter of the tube, ν is the kinematic viscosity of the fluid and the bulk
velocity U = ΩD/2, with Ω the angular velocity of the rotating boom and D the
diameter of the centre circle of the torus. Further details can be found in K14.

2.2. Helical pipe
To detect a Hopf bifurcation in the range of Reynolds numbers covered by previous
investigations (figure 1) it is essential to realize a laminar flow. Thus, perturbations of
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FIGURE 3. (a) Block diagram of the set-up with helical pipes and (b) sketch (side view)
of the helical pipe (1) with inner diameter d and outer diameter do. The pipe is wound
around a cylinder (2) of diameter DC. The number of windings varied between each
particular set-up, because the total length of the coiled pipe (1050 d) was kept constant.
All measurements were taken at 1000 d downstream of the inlet to the coiled section.
Drawings are not to scale.

the basic laminar flow must be minimized to avoid a premature onset of turbulence.
For that reason the helical pipe has been set up similar to straight-pipe-flow facilities
which have proven to have excellent performance in this respect (see, e.g., Hof et al.
2006; Kuik, Poelma & Westerweel 2010).

Figure 3(a) provides a schematic overview of the main parts of the helical-pipe
facility. Coming from a reservoir the fluid driven by a constant pressure head first
enters a calming section. The flow rate of the system can be adjusted manually
by changing the total pressure head. The calming section consists of a settling
chamber, honeycombs and a series of coarse and fine screens to reduce any undesired
disturbances in the flow before entering the pipe through a smoothly contracting
nozzle. After a straight entrance length of 100 d, where the flow is proven to develop
a laminar profile up to Re = 8000, the flow enters a coiled section with coiling
diameter D. The transition from the straight to the coiled section is quasi-abrupt
but smoothed due to the stiff and continuous hose used. In the coiled section the
hose is wound several times around a cylinder of appropriate diameter DC for a
total length of 1050 d. For experiments in which a turbulent inflow to the helically
coiled section is desired a continuous disturbance can be activated in the straight
pipe right after the calming section. To determine the Reynolds number the flow rate
is measured manually by weighing the mass per time at the exit into a collecting
vessel. Furthermore, the temperature of the water is constantly measured to determine
the viscosity of the fluid. The fluid is then pumped back into the header tank. All
experiments are performed with water as the test fluid at ambient temperature.

Figure 3(b) shows a cross-section of the coiled section. It consists of a long
hydraulic hose (TU1610C by SMC) with d = 10.2± 0.15 mm internal diameter and
do = 16 ± 0.1 mm outer diameter. The hose is made of polyurethane, providing a
transparent, rather stiff yet sufficiently flexible tube. The diameter of the cylinder
is DC, the diameter D of the coiling (equal to the diameter of the centre circle of
the torus) is D = DC + do. The cylinder diameter DC is varied from 108.7 mm for
the largest curvature to 1001 mm for the smallest curvature. The accuracy of the
Reynolds number Re was determined to be ±3 %.
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2.3. Measurements
A laser Doppler velocimeter (DANTEC Dynamics) was used to record velocity
time series of the streamwise (azimuthal) velocity component w. Subsequently w
was Fourier analysed for different Reynolds numbers. The dimensionless frequency
(Strouhal number) is obtained as f̂ = fd/U, where f is the frequency in hertz. A
Cartesian (x, y, z) coordinate system is used in the meridional observation plane at
constant toroidal (helical) angle ϕ. The origin of coordinates is set in the centre
of the pipe, the x-axis being directed radially towards the inside of the coiling and
the z-axis pointing in the streamwise direction. The respective Cartesian velocity
components are denoted (u, v,w).

As shown by Webster & Humphrey (1997) and K14, the first instability is an
oscillatory mode with the largest amplitude at two points located mirror-symmetric
with respect to the equatorial plane y= 0 in the inner half of the curved pipe. K14
have shown that the spatial distribution of the fundamental Fourier mode A1(x, y) with
frequency f1 and the corresponding streamwise velocity fluctuation has a maximum at
(x, y)∼= (0.17 d,±0.31 d) for a curvature of d/D=0.049. Since the best signal-to-noise
ratio for detecting the oscillatory perturbations is achieved at these locations, the flow
velocity was measured at (x, y) = (0.17 d, 0.31 d). However, the optimum locations
for other curvatures may differ slightly. In the helical set-up the measurement plane
was always located 1000 d downstream of the inlet to the coiled section to rule out
any transient effects.

For d/D = 0.049 K14 have found the first instability at Rec1 to be oscillatory
with a single dominant frequency f̂1. Upon an increase of the Reynolds number
the amplitude of the fundamental mode as well as weak higher harmonics increase
continuously. A second oscillatory instability was detected at Rec2, signified by an
ambiguous peak broadening of f̂1 which could not be safely distinguished from an
additional fundamental frequency slightly different from f̂1 in the power spectrum.
Further beyond the second critical point additional frequencies in the vicinity of f̂1

have been detected. The same fundamental frequency f̂1 is still dominant, but its
amplitude decreases. Since we expect a similar scenario also for other curvatures,
we use these indications to detect Rec1 and Rec2; i.e. the onset of a single dominant
frequency f̂1 is indicative of Rec1, and the onset of peak broadening of f̂1 and the
emergence of additional frequencies is indicative of Rec2.

If instead of a continuous supercritical bifurcation a subcritical direct transition to
turbulence occurs the LDV signal is clearly different. Although turbulent flow at the
inner side of curved pipes (i.e. the measurement location) has been reported to be
damped considerably compared with the outer side (Sreenivasan & Strykowski 1983;
Noorani, Khoury & Schlatter 2013), in our measurements the onset of turbulence
could be distinctly identified either by an increase of the standard deviation by a factor
of ∼4 or by an increase of the average velocity as indicated by w̄turb in figure 4.
The figure shows the intermittent regime in a mildly curved pipe (H-0.02) to be
qualitatively similar to observations in straight pipes, where laminar and turbulent
flows can coexist. Since the time scales at the onset of turbulence can be extremely
large (Avila et al. 2011) we select the Reynolds number Ret where the turbulence
fraction reaches 50 % (measured 1000 d after the entrance to the coil) as the criterion
for the onset of turbulence. It should be noted that this threshold will be somewhat
above the onset of sustained turbulence. It is, however, much more convenient to
determine and provides a sufficiently accurate estimate for the purpose of the present
investigation.

770 R3-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.184


J. Kühnen, P. Braunshier, M. Schwegel, H. C. Kuhlmann and B. Hof

0 1 2 3
0.25

0.30

0.35

0.40

0.45

FIGURE 4. Streamwise velocity w measured in H-0.02 at (x, y)= (0.17 d, 0.31 d) for Re=
4140. The signal shows an intermittent behaviour indicative of the subcritical scenario.
Turbulent regions are indicated by a grey background.

3. Results

For the five toroidal pipes investigated we find a supercritical Hopf bifurcation
from the steady basic flow to an oscillatory flow at Rec1 as the Reynolds number
is increased quasi-statically (circles in figure 5). On further increasing the Reynolds
number beyond Rec1 the oscillation amplitude grows continuously from zero at the
threshold. At some point the amplitude of the single dominant frequency reaches
a maximum as a function of Re and begins to decrease on an increase of Re. At
this second critical Reynolds number Rec2 (plusses in figure 5) the blurred peak
broadening also sets in and additional frequencies arise in the spectrum very close to
the fundamental frequency, as observed by K14.

For the six helical pipes with curvatures 0.031 6 d/D 6 0.082 we similarly find a
supercritical Hopf bifurcation at Rec1 (diamonds in figure 5) followed by Rec2 (stars)
for a further increase. It should be noted that in this curvature regime Rec1 is found
independently of whether the inlet flow originating from the straight pipe is laminar
or turbulent.

As can be seen from figure 5, Rec1 monotonically increases as d/D → 0 and
the results for Rec1 from the helical pipes are in excellent agreement with the
measurements employing the toroidal pipes. For, e.g., d/D = 0.041, the only
curvature equally investigated in both set-ups (T-0.041 and H-0.041), the difference
is 1Rec1 = 87. This difference is well within the accuracy with which the Reynolds
number could be determined (see §§ 2.1 and 2.2). Except for the relatively large
curvature d/D = 0.1, the second critical Reynolds number Rec2 is also increasing
for d/D→ 0, although no clear trend could be detected for the dependence of the
distance between the two critical points 1Re = Rec2 − Rec1 on d/D. However, the
results for 1Re also seem to be consistent between the toroidal and helical pipes.

For the three helical pipes with the smallest curvatures (H-0.026, H-0.021 and
H-0.01), on the other hand, we could not detect a supercritical bifurcation. Instead,
subcritical transitions are found at Ret = 4644 (H-0.026), Ret = 4141 (H-0.021) and
Ret = 3011 (H-0.01). The values for Ret are given by solid triangles in figure 5. It
should be noted that in these cases the inlet flow into the helical pipe is turbulent.
However, by reducing the finite-amplitude perturbations, i.e. by keeping the inlet
flow into the helical pipe laminar, we are able to detect a supercritical instability
at Rec1 = 5800 for H-0.026. The two thresholds (Rec1 and Ret) for the different
instabilities for this curvature are indicated in figure 5 by an arrow. As the emergence
of the oscillatory flow at Rec1 = 5800 triggers turbulence, Rec2 could not be detected
for H-0.026.
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FIGURE 5. Measured bifurcation points Rec1 and Rec2 and Reynolds number Ret where
the turbulence fraction reaches 50 % in toroidal (T) and helical (H) pipes.

For H-0.021 and H-0.01 we could not verify a supercritical bifurcation by keeping
the inlet flow laminar, as the flow in the helical pipe could not be kept laminar
sufficiently long beyond Ret. Ink injected into the straight pipe upstream of the
helical pipe for flow visualization indicated that the laminar flow coming from the
straight pipe is perturbed and becomes turbulent right at the inlet section to the
helical pipe, where the straight pipe quasi-abruptly turns into a curved pipe.

Assuming that Rec1→∞ for d/D→ 0 we can fit the data points of supercritical
transition in the toroidal and helical set-ups to

Rec1 = 77.2 D/d+ 2438. (3.1)

Although the small number of three data points for Ret may seem not very reliable
for the linear fit d/D = 9 × 10−6Ret − 0, 0185, the point of the intersection where
subcritical turns into supercritical transition depending on the curvature can be
reasonably reliable conjectured to be at d/D∼= 0.028.

4. Discussion

The experiments presented in this paper establish the existence of an instability
threshold to an oscillatory mode (supercritical Hopf bifurcation) in the Re–d/D
parameter plane if the curvature is sufficiently large (0.028 6 d/D 6 0.1), which is
masked by subcritical transition to turbulence if the curvature is small (d/D6 0.028).
By reducing perturbation levels we could track and detect the supercritical bifurcation
down to d/D= 0.026.

Excellent agreement and the same Hopf bifurcation are found in the closed toroidal
pipes as in the helical pipes. Hence, neither the difference in the streamwise boundary
conditions nor the small pitch or the lower geometrical precision of the helical pipe
has a sizable influence on the bifurcation point. The results obtained enable a

770 R3-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.184


J. Kühnen, P. Braunshier, M. Schwegel, H. C. Kuhlmann and B. Hof

better understanding of previous seemingly contradictory observations reported in the
literature.

None of the previous studies of transition in curved pipes using pressure-drop
measurements have revealed the existence of the supercritical Hopf bifurcation
and the oscillatory flow regime between Rec1 and Rec2. In particular, none of the
correlations suggested previously even roughly capture the trend of Rec1 or Rec2 (for
comparison see also figure 1). It can be concluded that not only the transition to the
oscillatory part of the flow between Rec1 and Rec2 but also to the non-fully turbulent
regime above Rec2 has a negligible effect on the pressure drop.

Our measurements provide a solid basis for the existence of laminar oscillatory
flow in curved pipes with critical data of unprecedented accuracy. Laminar stable
travelling waves in curved pipes have only been spuriously and incoherently reported
before. While Sreenivasan & Strykowski (1983) provided more qualitative data,
Webster & Humphrey (1993, 1997) measured the onset of periodic low-frequency
perturbation waves at Re = 5060 for d/D = 0.055, a value that is considerably
above our measurement of Rec1 and even above Rec2. We cannot offer a definitive
explanation for this deviation. However, since the first dominant frequency of the
oscillatory flow is still distinctly present in the spectrum even beyond Rec2 (see K14),
their measurements may have been carried out in the quasi-periodic regime.

Piazza & Ciofalo (2011) numerically investigated the transition to turbulence in
a torus limited to the two values of curvature d/D = 0.1 and 0.3. They found a
supercritical Hopf bifurcation for d/D = 0.3. Apart from being out of the range of
the present investigation, the flow states found (stationary, periodic, quasi-periodic and
chaotic) seem to be in qualitative agreement with our experimental results. However,
the supercritical Hopf bifurcation was found at Rec1 = 4575, which is considerably
above the range predicted by our fit (3.1). For the curvature that is directly comparable
with the present investigation (d/D= 0.1) they found a direct transition from a steady
to a quasi-periodic flow in the range 5139 < Re < 5208 associated with hysteresis
(subcritical Hopf bifurcation). This is in contradiction to our measurements. Being
aware of their results we paid high attention to possible hysteresis or a direct transition
from a steady to a quasi-periodic flow in our measurements, especially for d/D= 0.1,
but did not find any indication for it. We cannot explain this discrepancy, but based
on the present solid experimental evidence from two different set-ups we suggest that
more refined simulations are needed.

As the curvature is further decreased towards the straight-pipe limit, i.e. for 0 6
d/D 6 0.028, we observe a subcritical transition similar to straight pipes. As can be
seen, in comparison to figure 1 our data points for Ret comply with the general trend
of published correlations, being relatively close to Ito (1959), Kubair & Varrier (1961)
and C06. This strongly suggests that previous investigations employing pressure-drop
measurements have detected the subcritical transition. Depending on the perturbation
level caused by a specific set-up and the respective intermittent turbulence fraction
they found different scaling laws for the critical Reynolds number.

In the regime of subcritical transition the onset of turbulence is postponed compared
with straight pipes and occurs at Reynolds numbers considerably larger than Re=2040
(the value where turbulence first becomes sustained in straight pipes). Our results
confirm that fully developed turbulent flow emerging from a straight pipe can
be completely laminarized depending on the curvature, as already observed by
Sreenivasan & Strykowski (1983). This effect is most pronounced for d/D ∼= 0.028
where Rec1(d/D) and Ret(d/D) intersect with laminarization up to Re∼= 5180.

Further investigations are required to clarify the range of Reynolds numbers for
which the flow can be kept laminar for d/D < 0.026. A continuously increasing
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curvature at the passage from the straight to the curved inlet section and helical pipes
with higher geometric precision may enable such investigation. This would allow Rec1
to be tracked to even higher Reynolds numbers and smaller d/D respectively. Finally,
it should be noted that existing friction-factor data in the transitional regime may be
somewhat inaccurate, as the effect of intermittency seems not to have been taken into
account in respective pressure-drop measurements.

In summary, we have determined the transition threshold to unsteady flow in
curved pipes for curvatures 0.01 6 d/D 6 0.1 by means of laser-Doppler velocimetry.
Experiments were carried out in toroidal and helical pipes and both data sets were in
excellent agreement. For small curvature values a subcritical transition akin to that in
straight pipes is encountered. For large curvatures, on the other hand, a supercritical
multistage transition is detected. By systematically varying the pipe curvature we have
tracked the Hopf bifurcation and determined the point where the transition scenario
changes from super- to subcritical (d/D∼= 0.028).

Acknowledgements

J.K. acknowledges the provision of preliminary numerical data by P. Schlatter
and A. Noorani of KTH Mechanics related to this work and friendly support by
G. Lemoult. The project was partially funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC
grant agreement 306589.

References

AVILA, K., MOXEY, D., DE LOZAR, A., AVILA, M., BARKLEY, D. & HOF, B. 2011 The onset of
turbulence in pipe flow. Science 333 (6039), 192–196.

CIONCOLINI, A. & SANTINI, L. 2006 An experimental investigation regarding the laminar to turbulent
flow transition in helically coiled pipes. Exp. Therm. Fluid Sci. 30 (4), 367–380.

ECKHARDT, B., SCHNEIDER, T. M., HOF, B. & WESTERWEEL, J. 2007 Turbulent transition in pipe
flow. Annu. Rev. Fluid Mech. 39, 447–468.

GERMANO, M. 1982 On the effect of torsion in helical pipe flow. J. Fluid Mech. 125, 1–8.
GROSSMANN, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603.
HOF, B., WESTERWEEL, J., SCHNEIDER, T. M. & ECKHARDT, B. 2006 Finite lifetime of turbulence

in shear flows. Nature 443, 59.
HÜTTL, T. J. & FRIEDRICH, R. 2000 Influence of curvature and torsion on turbulent flow in helically

coiled pipes. Int. J. Heat Fluid Flow 21, 345–353.
ITO, H. 1959 Friction factors for turbulent flow in curved pipes. Trans. ASME J. Basic Engng 81,

123–134.
KUBAIR, V. & VARRIER, C. B. S. 1961 Pressure drop for liquid flow in helical coils. Trans. Indian

Inst. Chem. Engng 14, 93.
KÜHNEN, J., HOLZNER, M., HOF, B. & KUHLMANN, H. C. 2014 Experimental investigation of

transitional flow in a toroidal pipe. J. Fluid Mech. 738, 463–491.
KUIK, D. J., POELMA, C. & WESTERWEEL, J. 2010 Quantitative measurement of the lifetime of

localized turbulence in pipe flow. J. Fluid Mech. 645, 529–539.
MULLIN, T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech.

43 (1), 1–24.
NAPHON, P. & WONGWISES, S. 2006 A review of flow and heat transfer characteristics in curved

tubes. Renew. Sustainable Energy Rev. 10, 463–490.
NISHI, M., UNSAL, B., DURST, F. & BISWAS, G. 2008 Laminar-to-turbulent transition of pipe flows

through puffs and slugs. J. Fluid Mech. 614, 425.
NOORANI, A., KHOURY, G. K. EL & SCHLATTER, P. 2013 Evolution of turbulence characteristics

from straight to curved pipes. Intl J. Heat Fluid Flow 41 (0), 16–26.

770 R3-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.184


J. Kühnen, P. Braunshier, M. Schwegel, H. C. Kuhlmann and B. Hof

PIAZZA, I. D. & CIOFALO, M. 2011 Transition to turbulence in toroidal pipes. J. Fluid Mech. 687,
72–117.

SAMANTA, D., DE LOZAR, A. & HOF, B. 2011 Experimental investigation of laminar turbulent
intermittency in pipe flow. J. Fluid Mech. 681, 193–204.

SREENIVASAN, K. R. & STRYKOWSKI, P. J. 1983 Stabilization effects in flow through helically
coiled pipes. Exp. Fluids 1, 31–36.

VASHISTH, S., KUMAR, V. & NIGAM, K. D. P. 2008 A review on the potential applications of
curved geometries in process industry. Ind. Engng Chem. Res. 47 (10), 3291–3337.

WEBSTER, D. R. & HUMPHREY, J. A. C. 1993 Experimental observation of flow instability in a
helical coil. Trans. ASME J. Fluids Engng 115 (3), 436–443.

WEBSTER, D. R. & HUMPHREY, J. A. C. 1997 Traveling wave instability in helical coil flow. Phys.
Fluids 9, 407–418.

WYGNANSKI, I. J. & CHAMPAGNE, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs
and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335.

YAMAMOTO, K., YANASE, S. & YOSHIDA, T. 1994 Torsion effect on the flow in a helical pipe.
Fluid Dyn. Res. 14, 259.

770 R3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

18
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.184

	Subcritical versus supercritical transition to turbulence in curved pipes
	Introduction
	Experimental set-up and methods of investigation
	Toroidal pipe
	Helical pipe
	Measurements

	Results
	Discussion
	Acknowledgements
	References




