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Abstract
Objectives: Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials
elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate
animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these
into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials.

Methods: An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and
descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes.

Results: In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in
cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuro-
plasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular
supply.

Discussion: The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous
system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo
adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may
reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations
outlined from the animal research.
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Introduction

Nutrition is directly responsible for the delivery of energy for cel-
lular metabolism, as well as providing the diverse array of sub-
strates required for normal physiological function. It also plays a
central role in the modulation of inflammatory and disease proc-
esses(1–3) and, thus, can be utilised as a therapeutic intervention.
Nutritional therapies that limit substrate availability and produce
ketosis (such as fasting, calorie restriction and ketogenic diets)
directly impact metabolism and cellular energetics(2,4). Ketosis
has been reported to be effective in neurological conditions
characterised by neurodegeneration(5–9), psychological disor-
ders(10), brain injury(6,11) and nervous system excitability(12–15).
More recently, the presence of ketones has been suggested to
influence pain mechanisms(16–18). Given this, ketosis produced
through a ketogenic diet may be an appropriate treatment strat-
egy for persistent pain, a dysfunction within the nervous system

involving changes in both cortical structure and function(19,20).
Neuroplastic remodelling facilitates increased connectivity and
amplification of pain perception and is required to shift into a
persistent pain state(21). Broadly, nutritional interventions have
been shown to improve pain outcomes(22–24). Directly targeting
neurobiology through a ketogenic diet could potentially modu-
late maladaptive change and become an additional strategy to
add to comprehensive chronic pain management(25).

The concept of nutritional neurobiology for chronic pain
management is starting to appear in the literature, where dietary
intake can be both a trigger for upregulated painmechanisms but
also potentially provide therapeutic options(25,26). There have
been three systematic reviews published to date(22–24) that report
outcomes on human participants with chronic pain from dietary
interventions, all published in the last 2 years. These reviews
report the effectiveness of improved nutrition generally as a pain
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management option, particularly when considering nutrient-
dense whole-food diets and the removal of discretionary ultra-
processed foods high in sugar and fat. They are unable to clearly
point to any specific diet as the best treatment, however. A recent
review suggested both the Mediterranean diet and a carbohy-
drate-restricted diet were promising diets for reducing the impact
of chronic pain by either a reduction in inflammation or a reduc-
tion in oxidative stress(26). The authors note, however, that only
two studies reviewed were specifically assessing the context of
chronic pain (knee osteoarthritis) and the rest were examining
participants with metabolic dysregulation (such as elevated
cardiovascular risk or obesity).

Nutritional ketosis is achieved through a ketogenic diet by
restricting dietary carbohydrates sufficiently to shift cellular ener-
getics from glucose to fat oxidation as the main fuel source(27).
Ketone bodies (β-hydroxybutyrate and acetoacetate) are pro-
duced in the liver (ketosis) and delivered via the bloodstream
as part of this alternate fuel pathway, providing both a fuel
source and a signalling molecule that can modulate many
physiological processes(6). As a signalling molecule, β-hydroxy-
butyrate is a metabolic intermediary that can act as an endog-
enous class I and II histone deacetylase inhibitor involved in
the regulation of longevity and antioxidant defences, diseases
of aging, and also diabetes and cancer(10,28,29). It acts as a ligand
for G-protein-coupled receptors (hydroxycarboxylic acid recep-
tor 2) and free fatty acid receptor 3, which bind short-chain fatty
acids, regulate metabolism and play a role in the development of
metabolic disease states(28). Ketone signalling via a ketogenic
diet has been reported to beneficially effect physiological proc-
esses involved in many disease conditions, including obesity,
cancer, diabetes, epilepsy, Parkinson’s disease, Alzheimer’s dis-
ease, multiple sclerosis, peripheral neuropathy, liver disease,
inherited metabolic disorders, muscle degeneration, polycystic
ovarian syndrome, irritable bowel syndrome, migraine and
fibromyalgia(12,30).

Whilst ketogenic diets have reported efficacy clinically for
humans in a variety of neurological conditions, the evidence
for plausible physiological mechanisms by which the nervous
systemmay be modulated relies heavily on animal models (both
in vivo and in vitro) to explore the mechanistic pathways. The
mechanisms suggested are neuroprotective and neuromodula-
tory, whereby decreasing glycolytic metabolism and shifting to
fat oxidation raises ATP and adenosine levels and improves cel-
lular energetics. It also activates multiple signalling pathways
involved in the reduction of reactive oxygen species in neuro-
logical tissues, increased mitochondrial number and function,
synaptic regulation, and inhibition of pro-inflammatory cytokine
mediators(18,31–35). The overall effect would seem to be restoring
homeostatic synaptic function and excitability.

To date, there is limited published literature on human clini-
cal trials that examine a ketogenic diet as a treatment for chronic
pain. The purpose of this scoping review was to investigate ani-
mal models that report outcomes related to the nervous system
by changing from a standard animal diet to a ketogenic diet. It
includes multiple models of nervous system dysfunction and
synthesises the outcomes presented into broader themes by
which a ketogenic diet may plausibly modulate biological path-
ways associated with human chronic pain perception. It also

discusses the potential issues with clinical translation from ani-
mal models to human models of dietary interventions.

Methods

Protocol

The framework for this reviewwas based on relevant items of the
scoping review protocol and PRISMA-ScR checklist from the
Joanna Briggs Institute(36,37) to answer the research question:
‘How does a ketogenic diet in animal models influence the nerv-
ous system?’

Eligibility criteria

Studies were included if they met the following criteria:

1. Mammal models that report an ad libitum high-fat, low-
carbohydrate ketogenic diet that is ≥7 d (% energy from fat
≥69 % or 3:1 ratio of fat:protein þ carbohydrate þ fibre þ
extras) as the intervention. The minimum diet length of 1
week was used to ensure all studies were captured, and
was based on similar systematic reviews reporting studies
where the minimum reported length of diet was 2 weeks in
rat and mouse models assessing both metabolic and nervous
system outcomes(38,39).

2. Studies that report objective outcomes related to nervous sys-
tem function including neuroinflammation.

3. Experimental study designs: longitudinal pre–post interven-
tion trials including randomised controlled trials.

Studies were excluded if:

1. The diets were both high in fat and carbohydrate, carbohy-
drate levels exceeded 10 % or where the chow was not
described, and the ketogenic status could not be confirmed.

2. The diet was not ad libitum or provided in the form of whole
food, including oral gavage, intraperitoneal models, food
extracts or exogenous ketones.

3. The subjects were human or in vitro cultures.
4. The model used represented cancer or genetic syndromes.
5. The paper was not in English.

Information sources and search strategy

An electronic database search including Medline, EMBASE,
Cochrane Library for controlled trials, AMED via OVID,
CINAHL via Ebsco, Web of Science and PubMed was carried
out on 5 July 2020 and included dates from database inception
to the search date. A preliminary search refined the search strat-
egy, with the key terms outlined in Supplementary Table 1.
Additional searches included a Google Scholar search to check
identified articles ‘cited by’ and ‘related articles’ links, and refer-
ence checks on identified articles with subsequent hand search
for these and inclusion if they met the criteria. Retrieved referen-
ces were downloaded into EndNote referencemanagement soft-
ware (Endnote X7.7.1, Thomson Reuters 2016) and then
imported using Covidence systematic review software (Veritas
Health Innovation, Melbourne, Australia).
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Study selection and screening

Duplicates were removed, then titles and abstracts were
assessed in Covidence by two reviewers independently (R.F.
and T.F) against the eligibility criteria. Full texts of identified stud-
ies were then screened by two reviewers independently (R.F.
and T.F) for final eligibility, with any disagreements resolved
by a third reviewer.

Data items

The primary outcomes of interest were changes in nervous sys-
tem function (such as excitability) or energetics (such as altered
substrate measured by blood glucose or ketones levels) that
report a plausible biological mechanism by which a ketogenic
diet may influence the nervous system. Additional data extracted
included: author, year of study, animal, animal variant, chow
ratios, disease model and intervention diet length. Critical
appraisal of the literature to assess risk of bias was not carried
out due to the frequently poor-quality methods employed in ani-
mal research. This includes lack of randomisation, lack of blind-
ing and incorrect statistical methods(40,41). Nervous system
outcomes were taken as presented by the study authors.

Data charting process and synthesis of results

Data itemswere extracted and compiled in an excel spreadsheet.
Primary outcomes were reviewed, and a subjective thematic
analysis was carried out by R.F. The process of thematic analysis
involved building a list of categories that best fit the outcome
description given by the study author. These were then further
synthesised into broad themes. Studies with more than one rel-
evant theme could be allocated intomore than one theme. A ran-
dom sample of thirty-five studies (20 %) was independently
reviewed by T.F to ensure consistency of theme allocation.

Results

A systematic search of the databases retrieved 7045 studies
screened for eligibility after duplicates were removed. A total
of 341 full-text articles were assessed with a total of 170 meeting
the inclusion criteria and included in the scoping review (Fig. 1).
Of the ninety-nine studies excluded for being either >10 %
carbohydrate or ≤69 % fat, only three studies were described
as lower in ketogenic (but still included 32 % carbohydrate, 20
% carbohydrate or 30 % fat). The remaining studies were cap-
tured by the search term ‘high fat’, which retrieved studies high
in both fat and carbohydrate designed to produce obesity ormet-
abolic dysfunction.

Characteristics of included studies

The studies comprised 103 rat studies, 63 mouse studies, 2 that
included rats andmice, and 1 that included rats and gerbils as well
as a canine case study. There was a range of nervous system dys-
function models, including five age-related degeneration(42–46),
four Alzheimer’s disease(47–50), seven autism(51–57), four cerebral
ischaemia(58–61), two pain perception(16,62), twenty-four general
central nervous system(63–86), two diabetes(87,88), ninety-one epi-
lepsy(89–179), two metabolic syndrome(180,181), one mild cognitive

impairment(182), two multiple sclerosis(183,184), one nerve
toxin(185), four optic nerve dysfunction(186–189), two Parkinson’s
disease(190,191), three peripheral nerve dysfunction(192–194), four
spinal cord injury(195–198), three stroke(199–201) and nine traumatic
brain injury(202–210). The length of the dietary intervention ranged
from 1 week to 6 months.

Fourteen broad themes involving nervous system function
were identified. These themes, the disease models used, and fur-
ther details are presented in Table 1. Detailed information on
individual study characteristics and reported outcomes is com-
piled in Supplementary Table 2, which references all 170
included studies.

1. Alterations in cellular energetics and metabolism
(reported in twenty-eight studies across nine disease
models(42,43,46,49,63,68,70,72,74–76,83,85,87,91,95,97,108,125,136,142,156,
187,188,192,197,202,207)). The reduced glucose consumption
of a ketogenic diet resulted in lower glucose availability
within the nervous system and a shift to fat-based
metabolism with up-regulation of processes required
to deliver this alternate energy substrate. Fat-based
metabolism was reported to improve energy availability,
utilisation and efficiency. It was also reported to reduce
low-grade inflammation driven by a low energy state.

2. Biochemical (reported in three studies in epilepsy
models(102–104)). Elemental changes (P, S, K, Ca, Fe, Cu,
Zn and Se) within the hippocampus were assessed via X-
ray fluorescence microscopy with significant changes, with
a significant decrease in P, K and Zn, and a significant
increase in Ca and Se as a result of the ketogenic diet. As
hippocampal levels of Ca increase with seizures, these
changes did not provide evidence supporting a mechanism
for seizure reduction. Additionally, the ratio of absorbance
for specific biological macromolecules (such as ketones
and lipids) was increased with the possibility of these mol-
ecules being involved in anti-seizure mechanism rather
than elemental changes.

3. Cortical/neuronal excitability (reported in fifty-three studies
of which forty-nine were epilepsy models(53,57,67,89–94,104,107,109–
111,113–116,118,124,125,127,129,131,135,140–142,144,150–152,154–156,158–164,166,167,

170–173,175,177–179,209)). The ketogenic diet was broadly reported
to restore the balance of nervous system excitability toward
homeostatic levels; however, some studies reported neutral
or negative findings(91,93,140,150,151,154,166,175,178). This category
was largely composed of epilepsy models that described
reductions in frequency, threshold, duration, latency and
spread of seizures. Restoration of circadian rhythms within
the brain was also reported.

4. Epigenetic regulation (reported in thirty studies across nine
disease models(44,55,61,69,72,76,95,97,99,100,105,106,108,122,127,132,135,
145,146,149,157,165,172,174,176,177,181,182,192,208)). The genes report-
edly altered by the ketogenic diet generally pertained to
the disease model being investigated. Overall, they tended
to up-regulate beneficial genetic expression regarding neu-
roinflammation, neurodegeneration and neuroprotection.

5. Mitochondrial function (reported in eighteen studies across
ten disease models(45,51,52,76,78,97,117,120,134,173,180,184,187,192,
199,203–205)). The overall reported benefit to the mitochondria
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within the nervous system was positive, with increases in
number, and improvements in structure and function includ-
ing energy production and redox balance.

6. Neuroinflammation (reported in seven studies across six dis-
ease models(123,183,188,191,199,204,206)). Ketones were reported to
inhibit theNOD-, LRR- andpyrin domain-containing protein 3
(NLRP3) inflammasome expressed in the nervous system and
subsequent reduction of the downstream inflammatory sig-
nalling pathways it generates. Neuroinflammation was also
reportedly reduced through a reduction in reactive oxygen
species. Neuroinflammation was frequently reported in terms
of signalling pathways, so many of the relevant studies were
reported in theme 12.

7. Neuroplasticity and structural integrity (reported in twenty-
six studies across ten disease models(45,47,50,54,73,77,79,80,124,
130,133,134,141,143,144,147,183,184,186,189,193,194,197,199–201)). Improved
synaptic plasticity (long-term potentiation) and a reduction
of maladaptive plasticity (such as mossy fibre sprouting in
epilepsy models) was reported on a ketogenic diet. Other
structural changes reported across a range of diseasemodels
included: improved myelin formation, reduced axonal
degeneration, improved white matter development, reduc-
tion in β-amyloid, increased neuronal progenitor cells fol-
lowing seizure, prevention of neuronal loss in the
ipsilateral hippocampus, reversal of hippocampal atrophy
and lesions, improved neuronal recovery following insult

Fig. 1. Inclusion flowchart.
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when the diet commenced pre-injury, and reduction in reti-
nal ganglion cell loss.

8. Neuroprotection (reported in six studies across four disease
models(58,59,88,185,190,191)). A reduction of neuronal apoptosis
and neuronal death was reported as a result of the diet in a
variety of disease models. Protection against seizure was
commonly reported in the epilepsy models and reported
in theme 3.

9. Neurotransmitter function (reported in ten studies across
four disease models(45,64,70,74,85,96,98,101,153,190)). Various
mechanisms around neurotransmitter production and clear-
ance were reported with proposed benefit from the diet
being an improved GABA levels or GABA-to-glutamate
ratio. Parkinson’s disease models reported improvements
around dopamine levels.

10. Nociception (reported in three studies, two for pain and one
for peripheral nerve dysfunction(16,62,193)). A reduction in
both allodynia and thermal pain sensitivity was reported that
was not dependent on lowered glucose levels.

11. Redox balance (reported in fifteen studies across eight disease
models(63,71,78,86,92,120,180,181,186,190,192,195,196,203,210)). Several
studies found an improvement in redox balance through
either a reduction in nervous system reactive oxygen species
or an increase in antioxidant defence.

12. Signalling pathways (reported in thirty-six studies across
eight disease models (48,54,56,60,61,63,65,66,69,71,82,84,112,119,121,123,

125,126,131,135,137–139,143,148,149,161,164,168,169,187,196,198–201)). A vari-
ety of signalling pathways were reported depending on
the disease model being used. These centred around other
key mechanisms such as reduced neuroinflammation,
reduced oxidative stress, altered neuronal energy metabo-
lism, reduced cortical excitability and reduced
neurodegeneration.

13. Synaptic transmission (reported in seven studies across
three disease models(42,44,67,95,97,128,178)). Improved clearance
and levels of protein transporters for neurotransmitters was
reported to improve synaptic transmission. Cortical excita-
bility was described as improved due to a reduction in
long-term potentiation, without any change in baseline
excitability or impact on normal brain activity. Not all studies
noted reduced long-term potentiation(67).

14. Vascular supply (reported in three studies across three dis-
easemodels(48,61,81)). The size of cerebral infarct and oedema
was reduced with a ketogenic diet. Alzheimer’s models
reported increased blood flow providing positive outcomes.
In epilepsy, positive outcomes due to a decrease in capillar-
isation associated with seizures were also reported.

Discussion

The aim of this scoping review was to investigate animal models
that report outcomes related to the nervous system by changing
from a standard animal diet to a ketogenic diet. We identified four-
teen broad themes of biological mechanisms from eighteen differ-
ent disease models by which a ketogenic diet is reported to
influence the nervous system in animal models (Table 1).
Multiple themes may be present within a single study, with many

of the different mechanisms and pathways reported resulting in
similar overarching effects, including reduction of inflammation
and oxidative stress, normalisation of neuronal excitability and
improved cell viability. The themes outlined are consistent with
other broader reviews that included in vitro and hypothetical mod-
els(211,212). The purpose of describing these themes was to provide
insight into how altering dietary macronutrients to produce ketosis
in humans could also plausibly exert influence on the nervous sys-
tem in a chronic pain model. The ketogenic diet appears to utilise
metabolic modulation to engage the reported mechanisms in ani-
mal studies, and thus could also potentially facilitate positive
changes within a human nervous system that has undergone aber-
rant neuroplasticity leading to a persistent pain state.

There aremanymechanismspresented that fit with current pri-
orities in pain neuroscience research, such as targeting inflamma-
tion. An increase in pro-inflammatory cytokines is often seen in
chronic lifestyle disease(213), but also frequently occurs with
chronic pain(214,215). The failure of the inflammatory response to
resolve perpetuates the development of metabolic diseases, but
also potentially contributes to persisting pain by shifting the nerv-
ous system towards a pathologically maladapted state(216).
Neuroinflammation is a common finding in many neurological
conditions and was frequently reported in the outcomes from
the extracted studies. Modulation of neuroinflammation across
various models from the ketogenic diet was attributed to as many
as nine mechanisms (Supplementary Table 2): (a) suppression of
nuclear factor (NF)-kβ resulting in reduced expression of proin-
flammatory cytokines tumour necrosis factor α (TNF-α), interleu-
kin (IL)-1β and interferon (IFN)-γ(196); (b) a decrease in
hippocampal mRNA levels of IL-1β(106); (c) reduced pro-inflam-
matory cytokine hippocampal TNF-α levels with reduced NF-kβ
dependant cyclooxygenase (COX)-2 (enzyme for prostaglandin
synthesis) signalling pathway(123); (d) activation of the peroxi-
some proliferator-activated receptor (PPAR)-γ(161) (a nuclear tran-
scription factor involved in detecting and metabolising lipids)
which also suppresses the COX-2 dependant pathway(123) and
regulates catalyse expression(126); (e) central and peripheral sup-
pression of inflammatory cytokines/chemokines coupled with a
reduction in reactive oxygen species (ROS)(183); (f) meeting the
cellular energy demandwhich inhibits AMP-activated protein kin-
ase (AMPK) (which senses and regulates cellular energy levels)
and reduces low-energy facilitated inflammation(188); (g) inhibi-
tion of the NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3) inflammasome through ketone action on hydroxycar-
boxylic acid receptor 1 (HCAR1)(188,196); (h) altered NADþ/
NADH ratio (which is coupled to glycolysis) and regulates inflam-
mation(63); and (i) reduced mitochondrial ROS production(199).
The use of a ketogenic diet for chronic pain management could
be theoretically targeting any of these mechanisms to lower
inflammation and reduce pain perception(4,18,217), and is sup-
ported mechanistically by the outcomes from animal research.

Mitochondrial pathology is another theme presented that has
been implicated in central sensitisation seen in chronic pain,
with dysfunctional mitochondria observed in the muscle cells
of fibromyalgia patients(218), and two recent studies reporting
between 67 % and 91 % of patients with mitochondrial diseases
also reporting chronic pain(219,220). Given this, strategies to
restore or optimise mitochondrial function would be an
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Table 1. Overall themes presented for beneficial ketogenic diet outcomes

Models Mechanistic theme Detail

ARD, ALZ, CNS, D, EP, ON, PND, SCI,
TBI

Cellular energetics and metabolism • Reduction in glucose availability with concomitant increase in alternate fuel substrates (ketones, lactate, glutamate)
• Adaptive regulation of energy transporters reflecting change in fuels (reduction in glucose transporters and increase

in ketone transporters)
• Improved cerebral energy metabolism, utilisation and efficiency
• Increased energy reserves/ATP
• Increased seizure resistance when combined with calorie restriction
• Reduction in maladaptation driven by low-energy-facilitated inflammation

EP Biochemical • Increased calcium selenium, decreased phosphorus, potassium and zinc areas of hippocampus
AUT, CNS, EP, TBI Cortical/neuronal excitability • Balance of excitation and inhibition restored towards more normal levels

• Reduction in seizure events, threshold, duration, intensity, latency and spreading. Delayed progression of seizure
stage

• Restoration of circadian rhythms
ARD, AUT, CI, CNS, EP, MetS, MCI, PND,

TBI
Epigenetic regulation • Modulation of genes for neurotransmitter production and function, synaptic transmission and neuroplasticity

• Altered mitochondrial gene expression favouring biogenesis, improved function and efficiency
• Up-regulation of genes for brain adaptation following ischaemia
• Up-regulation of differentially regulated transcripts encoding energy metabolism enzymes
• Up-regulation of intracellular signal transduction pathways
• Modulation of genes for inflammatory signalling pathways favouring anti-inflammation
• Down-regulation of genes related to apoptosis and neuronal death
• Altered gene expression for various factors related to seizure production, ameliorated seizure–induced DNA

methylation
• Down-regulation of genes related to neurodegeneration

ARD, AUT, CNS, EP, MetS, MS, ON, PND,
ST, TBI

Mitochondria • Increased biogenesis and mass
• Improved bioenergetic profile, oxygen consumption and maximal respiration rates
• Improved mitochondrial antioxidant defence
• Improved mitochondrial autophagy
• Decreased percentage of damaged mitochondria post-seizure with increased expression of autophagy proteins and

decreased apoptosis
EP, MS, ON, PKD, ST, TBI Neuroinflammation • Suppression of inflammatory cytokines/chemokines and reactive oxygen species

• Inhibition of the NLRP3 inflammasome
• Reduced oedema

ARD, ALZ, AUT, CNS, EP, MS, ON, PND,
SCI, ST

Neuroplasticity/structural integrity • Improved hippocampal synaptic plasticity
• Improved myelin formation and white matter development
• Neuroanatomical differences with prenatal exposure
• Prevention of neuronal loss
• Increased neuronal recovery post-seizure
• Reduced supragranular mossy fibre sprouting in epilepsy models

CI, D, NT, PKD, Neuroprotection • Reduced likelihood of seizure.
• Elimination of post-ischaemia hippocampal neurodegeneration
• Reduced neuronal death
• Attenuated toxicity from a neurotoxin

ARD, CNS, EP, PKD Neurotransmitter function • Improved GABA-to-glutamate ratio
• Increased dopamine activity in the motor and somatosensory cortex
• Altered gut biome resulting in systemic GABA and elevated hippocampal GABA/glutamate levels
• Inhibited decrease of striatal dopamine and metabolites

CP, PND Nociception • Decreased thermal pain sensitivity
• Protection from allodynia

CNS, EP, MetS, ON, PKD, PND, SCI, TBI Redox balance • Improved redox state
• Improved neurochemical metabolite ratios
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appropriate pain management strategy(221). Beneficial outcomes
on mitochondria were frequently reported in the extracted stud-
ies (Table 1); however, the result is less clear when examining
the outcomes of individual studies (Supplementary Table 2).
Kephart et al.(180) reported no benefit to mitochondrial quality
in brain tissue sampled following a long-term ketogenic diet.
A study by Lauritzen et al.(45) was one of the few to report neg-
ative outcomes. This study was designed specifically to examine
a mouse model of mitochondrial dysfunction bred to express a
mutated mitochondrial DNA repair gene (mutUNG1) designed
to represent DNA damage that occurs in neurological disorders.
They reported an increase in mitochondrial mass in the hippo-
campus and upregulated mitochondrial antioxidant defences,
which would appear positive; however, this did not correlate
with their overall observation of accelerated neurodegeneration
from impaired mitochondrial dynamics and function. The con-
text of their experiment becomes important, where the keto-
genic diet increased mitochondrial biogenesis, but this
increase was of dysfunctional mitochondria, compounding the
neurodegeneration and energy demands. This study highlights
the difficulty in extrapolating these results to human application.
Their research does not necessarily apply to a ketogenic diet
applied in the absence of this specific mitochondrial gene muta-
tion, but as the authors(45) conclude, the diet also cannot be con-
sidered always beneficial for every type of mitochondrial
pathology. Theoretically, the ketogenic diet appears to have
potential for pain management through the improvement of
mitochondrial function with subsequent reduction of oxidative
stress and inflammation. Variability in clinical efficacy is likely
to exist due to nuance in the mechanism of mitochondrial
pathology.

Difficulty in extrapolating results also exists where an animal
is fed the diet, but the analysis occurs in a dissected animal which
is no longer a part of a complex adaptive system. One of the
inclusion criteria for the current review was that the experiment
had to have fed a ketogenic diet to the animal; cell culture and in
vitro studies were excluded. The lack of an intact noradrenergic
systemmay limit the effect of the ketogenic diet and produce dis-
parate results(164) and may also account for the differences seen
between animal and human trials involving ketogenic diets.

Chronic pain involves an increase in neuronal excitability(222,223),
with links suggested between thesemechanisms and those involved
in seizures, and the use of anticonvulsantmedications to treat neuro-
pathic pain(18). A ketogenic diet has been widely used clinically as a
treatment for epilepsy with several trials in adults(15) as well as chil-
dren(224). A similar interpretive difficulty lies in the animal research for
epilepsy where clinical human trials report generally favourable out-
comes, but the animal research results can range between anticon-
vulsant to pro-convulsant outcomes(91,166,175) (Supplementary Table
2). Again, experiment design becomes important, with the eighty-
nine epilepsy studies including: different animal models (species,
strain and age), multiple different seizure induction models (using
different chemicals with different target receptors, and some using
electrical shock), inconsistent levels of ketosis achieved, different
chow content and quality, different chow quantity (with some diets
employing calorie restriction in conjunctionwith the ketogenic diet),
different lengths of dietary intervention, mismatched animal weight
between groups resulting from different diets(150), and differentT
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dietary applicationswhere thediet couldbe startedpre-seizure/brain
injury or after the event. Despite commonalities, translating the pro-
posed neuromodulatory mechanisms from the animal epilepsy
research to clinical chronic pain conditions requires more nuance
and may explain variable clinical results in any human trials.

Neurotransmitter function was frequently reported in the
included studies as a change within the nervous system favouring
a reduction or restoration of normal levels of neuronal excitability.
The mechanism reported was improved GABA-to-glutamate ratios
usually via increased GABA (inhibitory) and/or decreased gluta-
mate (excitatory) levels,with outcomes being a reduction in various
seizure metrics in the animals tested. The research exploring the
relationship between chronic pain and neurotransmitter levels is
inconsistent. There is evidence supporting motor cortex disinhibi-
tion that is more pronounced in neuropathic pain(222); however,
whether this is due to a loss of GABAergic inhibition, as has been
suggested, is still unclear. A recent systematic review reported
altered neurotransmitter levels demonstrated in a small number
of human chronic pain trials. There were increased levels of Glx
(glutamate and glutamine combined) reported, but no correspond-
ing reduction in GABA as might be expected(225). The authors
reported that different pain conditions may present with unique
neurometabolite signatures, but the research was limited by inad-
equate reporting and standardisation of magnetic resonance spec-
troscopy techniques used.

A further variable that may contribute to the inconsistencies
reported is that of the chow. Problems exist where the control
diets are not matched appropriately to the ketogenic chow.
Differences in vitamins, minerals and fibre exist between the
diets as well as the macronutrient properties, limiting the ability
to assess the ketogenic component of the diet. A number of
issues also exist with the commercial rodent ketogenic diet for-
mulations, including restriction of protein, choline deficiency(226)

and poor-quality fats (such as hydrogenated vegetable oils)
rather than fats with amore beneficial inflammatory profile (such
as omega-3)(227).

The evidence presented in animal models supporting positive
changes from a ketogenic diet, such as seenwith anti-inflammatory
mechanisms, appears compelling. However, the reported out-
comes overall are often inconsistent and ambiguous(67), and there
are many difficulties when extrapolating from animal models to
human models of chronic pain(228). The use of specific animal
strains and sexmay reduce the heterogeneity and increase the like-
lihoodof detecting an effect, butmaybepoor representations of the
diversity in target human pain populations(229). These translational
issues could be explored by also including natural animal models
(such as using the ketogenic diet on naturally occurring pain pre-
sentations in domestic animals)(229) as well as more consistency in
experimental design, and reporting which more clearly acknowl-
edges the limitations of the research. These strategies may allow
the data to better inform human clinical trials of chronic pain.

Conclusion

Fourteen broad themes were identified from the literature outlin-
ing how a ketogenic diet influences nervous system function
from animal models. Themechanisms presented centred around

the reduction of inflammation and oxidative stress as well as a
reduction in nervous system excitability. These mechanisms
are potential drivers of chronic pain, and treatment strategies
which target these have implications for chronic pain manage-
ment. Given the multiple potential mechanisms presented, it is
likely that many of these are involved synergistically and
undergo adaptive processes within the human body, and con-
trolled animal models that limit the investigation to a particular
pathway in isolation may reach differing conclusions. Attention
is required when translating this information to human chronic
pain populations owing to the limitations outlined from the ani-
mal research.
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