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Abstract

Transform inversions, in which density and survival functions are computed from
their associated moment generating function M, have largely been based on methods
which use values of M in its convergence region. Prominent among such methods
are saddlepoint approximations and Fourier-series inversion methods, including the fast
Fourier transform. In this paper we propose inversion methods which make use of values
for M which lie outside of its convergence region and in its analytic continuation.
We focus on the simplest and perhaps richest setting for applications in which M is
either a meromorphic function in its analytic continuation, so that all of its singularities
are poles, or else the singularities are isolated essential. Asymptotic expansions of
finite- and infinite-orders are developed for density and survival functions using the
poles of M in its analytic continuation. For finite-order expansions, the expansion
error is a contour integral in the analytic continuation, which we approximate using the
saddlepoint method based on following the path of steepest descent. Such saddlepoint
error approximations accurately determine expansion errors and, thus, provide the
means for determining the order of the expansion needed to achieve some preset
accuracy. They also provide an additive correction term which increases accuracy of the
expansion. Further accuracy is achieved by computing the expansion errors numerically
using a contour path which ultimately tracks the steepest descent direction. Important
applications include Wilks’ likelihood ratio test in MANOVA, compound distributions,
and the Sparre Andersen and Cramér–Lundberg ruin models.
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1. Introduction

The moment generating function (MGF) M(s) is an important tool used for deriving distri-
butions in applied probability. When an expression for M cannot be readily recognised, then
the corresponding density and survival functions may be computed by using inversion methods.
Such inversion procedures are largely based upon computing values for M which are entirely
within its convergence region. Prominent among such methods are saddlepoint approximations
as well as Fourier-series inversion methods, including the fast Fourier transform (FFT).
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In this paper we provide expansions, saddlepoint approximations, and numerical inversion
methods which rather make use of values for M outside of its convergence region and in its
analytic continuation. Our discussion focusses on the setting of greatest practical importance
in which the analytic continuation of M into {Re(s) > 0} is either meromorphic, so all
singularities are poles, or else has isolated essential singularities.

1.1. Summary and relationship to existing literature

Suppose that the random variable X has an absolutely continuous distribution on (− ∞, ∞)
with MGF M(s), which converges in a neighbourhood of 0 of the form {a < Re(s) < b} or
{a ≤ Re(s) < b} for a ≤ 0 < b. Assume that b is an m-pole and dominant in that there are
no other singularities in {Re(s) = b}. Furthermore, suppose that the analytic continuation of
M into {Re(s) ≥ b} is meromorphic, so that any additional singularities in {b < Re(s) < ∞}
are also poles. In this context we develop right-tail expansions for the density function f (t)
and the survival function S(t) = P(X > t) associated with M using the asymptotic residue
methods of Doetsch (1974, Section 35). These methods are simple in principle and entail
displacing the inversion integrals for f (t) and S(t) along the contour {Re(s) = b − ε} inside
the convergence domain to the contour {Re(s) = b + ε} outside the convergence domain and
employing Cauchy’s residue theorem. Accordingly, the integral along the vertical contour
{Re(s) = b − ε}, which is f (t), is the sum of the residue term at b, denoted by f1(t), plus an
error term which is the integral along the vertical contour {Re(s) = b+} for b+ = b + ε and
denoted by R1(t). Thus, when applied to both f (t) and S(t), Cauchy’s theorem provides the
first-order expansions

f (t) = f1(t) + R1(t) :=
m∑

k=1

uktk−1e−bt + R1(t), (1)

S(t) = S1(t) + RS
1(t) :=

m∑
k=1

vkSG(k,b)(t) + RS
1(t), (2)

where f1(t) and S1(t) are the respective residue approximations based on specified constants
{uk} and {vk}, and SG(k,b) is the survival function of a gamma (k, b) distribution with mean
k/b and variance k/b2. The errors R1(t) and RS

1(t) are contour integrals along {Re(s) = b+} of

order o(e−b+t) as t → ∞. If b is rather an isolated essential singularity then Cauchy’s residue
theorem still applies and leads to the same sort of residue expansions as in (1) and (2), but with
m= ∞.

Apart from the setting in which M is rational, such approximations have not been developed
in any generality for continuous distributions in which M is meromorphic or when M has
essential singularities. In rational settings, f1 and S1 represent inversions for the leading term
in a partial fraction expansion of M. The only nonrational meromorphic context for M in
which the expansion S1 (but not f1) has been featured in the literature concerns the Pollaczek–
Khintchine formula for steady-state waiting time in an M/G/1 queue. In this context, S1(t) is
equivalent to the Cramér–Lundberg approximation for S(t), the survival function for steady-
state waiting time which is also the ruin probability in the Cramér–Lundberg ruin model;
see Tijms (2003, Section 8.4).

Recently, Butler (2017) used Tauberian theorems from analytic number theory to determine
the asymptotic orders for f1 and S1 as t → ∞. These orders capture the leading terms in (1) and
(2) as f1(t) ∼ umtm−1e−bt and S1(t) ∼ umtm−1e−bt/b ∼ vmSG(m,b)(t). Concerning the quality

https://doi.org/10.1017/jpr.2019.19 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.19


Expansions and saddlepoint approximations in the analytic continuation 309

of the numerical approximations, the entire residue expansions are substantially more accurate
than just their leading terms. For m> 1, we find that the full residue expansions are often
extremely accurate even for small t whereas the mth leading terms alone are not accurate
at all even for larger t. This is not the case, however, for a simple pole (m= 1), since the
leading terms in Butler (2017) are analytically the same as (1) and (2) with f1(t) = u1e−bt and
S1(t) = u1e−bt/b = v1SG(1,b)(t).

While the results in Butler (2017, Proposition 1) also apply more broadly than those here,
such as when b is an algebraic branch point and m /∈ I

+ = {1, 2, . . .}, they also impose the
typical side conditions on the density f which are characteristic of such Tauberian results.
Checking such conditions when all that is known about f is its MGF M can be very difficult.
By contrast, the main results of this paper for S(t) are derived by placing all assumptions on M.
Expansions concerning f (t) such as (1), only require the assumption that its inversion formula
holds. This is ensured by making the weak assumption that f is locally of bounded variation at t.
Butler (2017, Section 6) also considered the Sparre Anderson and Cramér–Lundberg models
and provided asymptotic orders for the density f and survival S functions of maximum loss.
Results for both f and S require moderately strong side conditions on the claim amount density.
Here, conditions on this density are only needed for density expansions and even then entail
much weaker conditions which are related to its bounded variation. The same comment also
applies to more general compound distributions.

If M has additional poles (or complex conjugate pairs of poles) at b = b1 < Re(b2±)
< · · · < Re(bm±) then Cauchy’s theorem can be used to deform the inversion integral further
out to {Re(s) = Re(bm)+}, where Re(bm)+ = Re(bm) + ε. This provides the higher-order
expansions

f (t) = fm(t) + Rm(t), S(t) = Sm(t) + RS
m(t), (3)

where fm and Sm add the residue contributions from the m (pairs of ) poles and the error
terms Rm and RS

m are integrals along the vertical contour {Re(s) = Re(bm)+}. The higher-
order expansions fm and Sm typically provide errors which are o(e−Re(bm)+t) as t → ∞. If M
is rational then fm and Sm represent higher-order partial fraction expansions of M as given
in Feller (1968, Section XI.4). Our emphasis, however, is on what is new here: that such
expansions also apply to meromorphic functions that are not rational.

An important attribute of such expansions is that the expansion errors for fm(t) and Sm(t)
may be assessed by computing saddlepoint approximations for the error integrals Rm(t)
and RS

m(t), which we denote as R̂m(t) and R̂S
m(t). These saddlepoint approximations quite

accurately determine the expansion errors as they depend on m so that computing {R̂m(t),
R̂S

m(t) : m ≥ 1} allows m to be selected so that fm(t) and Sm(t) achieve preset accuracies. The
fact that expansion errors can be so effectively approximated using such saddlepoint methods
makes the expansions much more valuable computationally than they would be otherwise.
The approximations may also be used to correct the mth order expansions as fm(t) + R̂m(t)
and Sm(t) + R̂S

m(t) to achieve even greater accuracy. Alternatively, the error terms may be
computed by using numerical contour integration so that the corrected expansions can achieve
even higher accuracy. This approach will be seen as easier that direct numerical inversion
in the convergence domain since a much smaller term (just the error) is being numerically
approximated.

If M admits an infinite sequence of poles in which Re(bm) → +∞ as m → ∞, then the
resulting infinite expansions f∞ and S∞ often provide convergent expansions for f and S.
We show this happens in the computationally difficult case for the null distribution of Wilks’
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likelihood ratio test in MANOVA in which M is not rational. This is a setting in which there
is no exact expression in the literature for making p-value computations and in Section 2.7 we
show how these new infinite expansions f∞ and S∞ can be expressed in terms of generalised
hypergeometric functions. Various other examples are used to examine whether or not the
infinite expansions f∞ and S∞ converge in the presence of convolutions and finite mixing.

The bulk of the discussion and numerical work concerns expansions for general compound
distributions on (−∞, ∞) as well as for the Sparre Andersen and Cramér–Lundberg models
with distributions on (0, ∞). In the former general setting, we formulate very weak conditions
in Theorem 3 and Corollary 3 for the existence of first-order expansions and also for the
existence of new higher-order expansions, respectively. We also provide numerical examples
to demonstrate the extraordinary accuracy of these expansions when b is a pole that assumes
various orders. For the Sparre Andersen and Cramér–Lundberg models, where only first-order
expansions have been previously considered, we again formulate very weak conditions for
their existence in Theorem 4 and Corollary 4 and propose new higher-order expansions fm(t)
and Sm(t) in Corollary 5. Connections are made to heavy-traffic approximations. In numerical
examples such higher-order expansions are shown to provide accuracy which approaches that
of exact computation.

1.2. Main contributions of the paper

The major point of this paper is that the computation of f and S from M need not be based
solely on values of M in its convergence domain. In fact, such computations can be better
made by using values of M outside and in its analytic continuation in the following three
ways.

• The poles/essential singularities of M at b and further into its analytic continuation
provide residue expansions as described above that are typically competitive or more
accurate than traditional saddlepoint approximations which make use of values of M in
its convergence domain.

• Saddlepoint approximations implemented in the analytic continuation of M often
provide quite accurate approximations to the error integrals Rm(t) and RS

m(t) for the
expansions in (1) and (3). This makes the expansions all the more important since it
allows m to be chosen to achieve preset accuracy. When added to the expansions, they
improve upon the accuracy of the expansions. For even greater accuracy, Rm(t) and RS

m(t)
can be computed using simple numerical integration that makes a modest attempt at
pursuing the steepest descent direction in the analytic continuation of M.

• Inversion integrals for computing f (t) and S(t) necessarily have contours that begin in
the convergence domain, but this does not mean that such contours should stay in the
convergence domain to achieve the most efficient numerical inversion. Indeed, the most
efficient computation allows such contours to be deformed (using Cauchy’s theorem) so
that they make some attempt at pursuing the path of steepest descent which most often
passes outside of the convergence domain for M and into its analytic continuation.

The expansions in (1)–(3) only apply to the right tail as t → ∞. For the left tail, similar
expansions for the density and cumulative distribution function (CDF) can be derived as
t → − ∞. The theoretical development is given in Section 5.3 of Butler (2019a) and an
example involving the compound distribution of Example 17 is given in Section 5.3.1.

Due to space limitations, analogous expansions and saddlepoint approximations for lattice
distributions are presented elsewhere in Butler (2019b). A parallel but quite distinct theory
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results for lattice distributions which must also address periodicity of the mass function. Also,
the MGFs are periodic and the inversion formulae involve finite contour integration and both
of these facts lead to a parallel but different development of the expansions and saddlepoint
approximations in the analytic continuation.

2. Expansions using the analytic continuation

Suppose that X is an absolutely continuous random variable on (−∞, ∞) with density
f (t), distribution function F(t), and survival function S(t) = 1 − F(t). Define the MGF of X as
M(s) =E(esX) on the complex domain for which the expectation converges and suppose that
this domain is {a < Re(s) < b} or {a ≤ Re(s) < b} for −∞ ≤ a ≤ 0 < b < ∞. Let the notation
M(s) also denote the analytic continuation of the MGF to complex values s ∈C for which
E(esX) is not finite.

To ensure that the inversion theorem applies to density f (t) for t > 0, we assume that f (t) is
locally of bounded variation for all t ∈ (0, ∞); see Doetsch (1974, Theorem 24.3) or Widder
(1946, Chapter VI, Theorem 5a). The inversion theorem concerns the normalised version of
density f (t) defined as f̄ (t) = 1

2 {f (t+) + f (t−)}. In order to avoid distinctions between the two,
we assume, without any loss in generality, that f (t) = f̄ (t) is the normalised version at points
for which it is not continuous.

2.1. Expansions for f (t) using pole b

The inversion formula for f (t) is

f (t) = 1

2π i
lim

N→∞

∫ b−+iN

b−−iN
M(s)e−st ds, (4)

where b− = b − ε with 0 < ε < b, and the integration is performed along the vertical line
{Re(s) = b−} and within the convergence domain for M. Consider deforming this contour to
allow integration along the vertical line {Re(s) = b+ = b + ε} which is outside the convergence
domain of M but still within its analytic continuation. If singularity b is an m-pole of M and
the only singularity in {b ≤ Re(s) ≤ b+}, then we can use Cauchy’s residue theorem to relate
the two integrals in terms of the residue of M(s)e−st at b > 0. If, apart from the pole at b, M
possesses an analytic continuation to {Re(s) < b + ε0} for ε0 > ε, then Cauchy’s theorem can
be applied to integration over the rectangular curve with the four corners b− ± iN and b+ ± iN
to give

f (t) = 1

2π i
lim

N→∞

∫ b−+iN

b−−iN
M(s)e−st ds

= − Res{M(s)e−st; b} + 1

2π i
lim

N→∞

( ∫ b++iN

b+−iN
+

∫ b−+iN

b++iN
+

∫ b+−iN

b−−iN

)
M(s)e−st ds.

(5)

Subject to condition X of Theorem 1 below, the last two integrals are negligible for large N so
that (5) becomes

f (t) = − Res{M(s)e−st; b} + R1(t), (6)

with

R1(t) = e−b+t 1

2π

∫ +∞

−∞
M(b+ + iy)e−iyt dy, (7)
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where the improper integral is a principal-value integral. With the additional uniform inte-
grability condition UI of Theorem 1, then the integral in (7), whose contour lies outside the
convergence domain of M but within the analytic continuation, can be made as small as o(1)
as t → ∞. Thus, R1(t) = o(e−b+t) as t → ∞ so (6) becomes

f (t) = e−bt
m∑

k=1

tk−1 (−1)kβ−k

(k − 1)! + o(e−b+t), t → ∞. (8)

Here, the residue has been determined by multiplying the Taylor expansion of e−st about s =
b with the Laurent expansion of M about b whose principal part is denoted as

∑m
k=1 β−k

(s − b)−k. Sufficient conditions for the expansion in (8) are formalised in Theorem 1.
The leading term in this expansion is e−bttm−1(−1)mβ−m/(m− 1)! and was given in

Butler (2017, Proposition 1) with error o(tm−1e−bt) as t → ∞. By contrast, the use of Cauchy’s
theorem determines the expansion in (8) with smaller-order error o(e−b+t), which should prove
more accurate in numerical computations.

Before stating Theorem 1, it is worth emphasizing that the integral in (7) is not the Fourier
inversion that leads to the tilted density fb+(t) = eb+tf (t). For ε < 0, M(b + ε + iy), as a
function of y, is the characteristic function of fb+ε(t) so that the inversion holds.

fb+ε(t) = e(b+ε)tf (t) = 1

2π

∫ +∞

−∞
M(b + ε + iy)e−iyt dy, ε ∈ (−b, 0), (9)

However, for ε ≥ 0, the identity in (9) does not hold because the integral is outside the
convergence domain for M(s).

Theorem 1. (Density expansions.) Suppose absolutely continuous X has density f (t) on
support S⊆(−∞, ∞) which is locally of bounded variation for all t > 0. Also suppose that
X has MGF M with convergence boundary {s ∈C : Re(s) = b} with 0 < b < ∞. Subject
to conditions AC, X and UI on M below, the density has asymptotic expansion (8) as
t → ∞ with error R1(t) = o(e−b+t) as given in (7).

AC. There exists ε0 > 0 such that M can be analytically continued across its convergence
boundary to {b ≤ Re(s) < b + ε0}, save from an m-pole at b.

X . For some b+ = b + ε with ε ∈ (0, ε0),

max
b≤x≤b+ |M(x + iN)| → 0, N → ∞.

UI. For some T > 0, the principal-value integral

∫ +∞

−∞
M(b+ + iy)e−iyt dy

converges uniformly in t for t ≥ T .

Proof. The proof follows from Doetsch (1974, Theorem 35.1) and details are given in
Section 5.1.1 of Butler (2019a). �

What is most notable about Theorem 1 is that its main assumptions AC, X , and UI all
concern M and not f . In many stochastic modelling applications, M is available but f is
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not, so such conditions are much simpler to check than conditions on f as were used in
Butler (2017, Proposition 1). The only assumption made about f in Theorem 1 is that it is
locally of bounded variation, i.e. for each t > 0, there is a small δt > 0 for which f is of bounded
variation within (t − δt, t + δt). This is the weakest assumption under which the inversion
formula (4) holds and is satisfied, for example, over sets for which f is finitely piecewise
continuous.

The uniform integrability condition UI can often be established by showing that M(b+ + iy)
is absolutely integrable in y. The next result follows directly from the Riemann–Lebesgue
lemma (Feller (1971, p. 513)).

Lemma 1. If |M(b+ + iy)| is integrable in y then UI holds. If a δ > 0 and Y > 0 exist such
that maxb ≤ x ≤b+ |M(x + iy)| < c/|y|1+δ for |y| > Y and some c > 0, then conditions X and
UI hold.

Example 1. (Minus log-beta.) The density of X = − ln{Beta (α, β)} provides an example
in which the uniform integrability assumption UI holds, but the absolute integrability in
Lemma 1 may not. The MGF of X is M(s) = c�(α − s)/�(α + β − s) with c = �(α +
β)/�(α), and has the asymptotic order |M(x + iy)| ∼ c|y|−β as y → ±∞ which is uniform
over bounded values of x; see 5.11.9 of NIST DLMF (2014) in the references. If β ≤ 1 then
absolute integrability does not hold; however, UI holds along with condition X as shown
in Section 5.1.2 of Butler (2019a). Thus, from Theorem 1, the density of X has expansion
f (t) = e−αt�(α + β)/{�(α)�(β)} + o(e−α+t) for all α > 0 and β > 0 and any α+ ∈ (0, 1).

Theorem 1 can be extended to deal with the setting in which multiple poles lie along the
convergence boundary {Re(s) = b}. The expansion is given as Equation (53) in Corollary 6 of
Butler (2019a, Section 5.1.3).

Example 2. (Interfering poles.) Suppose that M has m-poles at b and b ± yi, with respective
mth order Laurent coefficients β−m = α0, β+−m = α + γ i, and β−−m = β̄+−m = α − γ i, where
the superscripts ± identify the associated pole b ± yi. Then expansion (53) in Corollary 6 of
Butler (2019a) has the form

f (t) = e−bt
m∑

k=1

tk−1( − 1)kck(t)

(k − 1)! + o(e−b+t), (10)

where the term with the highest order has the coefficient

cm(t) = β−m + e−iytβ+−m + eiytβ̄+−m = α0 + 2α cos (yt) + 2γ sin (yt).

The periodicity of cm(t) is due to the presence of the complex conjugate pair of poles. If,
instead, the poles at b ± yi are of lower order m1 <m then cm(t) = β−m and the periodicity
does not appear in the leading O(e−bttm−1) term, but rather in the lower-order O(e−bttm1−1)
term.

2.2. Expansions for S(t) using pole b

An asymptotic expansion for S(t) also follows by using Cauchy’s theorem in the same
manner as used in Theorem 1 under slightly weaker conditions.

Theorem 2. (Survival expansions.) Suppose absolutely continuous X with support in
( − ∞, ∞) has the survival function S(t) and MGF M with convergence boundary
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{s ∈C : Re(s) = b} with 0 < b < ∞. Subject to conditions AC and X of Theorem 1 as well
as UIS below on M, then

S(t) =
m∑

k=1

SG(k,b)(t)
( − 1)kβ−k

bk
+ RS

1(t), (11)

where
∑m

k=1 β−k(s − b)−k is the principal part of the Laurent expansion for M(s) at b, and
SG(k,b) is the survival function of a gamma (k, b) distribution given by

SG(k,b)(t) = e−bt
k−1∑
j=0

(bt)j

j! . (12)

With b+ = b + ε, the error is

RS
1(t) = e−b+t 1

2π

∫ ∞

−∞
M(b+ + iy)

b+ + iy
e−iyt dy = o(e−b+t), t → ∞. (13)

UIS. For some T > 0, the principal-value integral

∫ +∞

−∞
M(b+ + iy)

b+ + iy
e−iyt dy

converges uniformly in t for t ≥ T .

Proof. The proof is the same as used in Theorem 1 but applied instead to the inversion
formula of S(t). See Section 5.1.4 of Butler (2019a) for details. �

If S1(t) and f1(t) are the expansions in (11) and (8), respectively, then S1(t) = ∫ ∞
t f1(u) du;

also the error terms in (13) and (7) are related by RS
1(t) = ∫ ∞

t R1(u) du. Thus, expansion
(11) could have been derived directly from Theorem 1 through the integration of (8) and
subsequently showing that the error of o(e−b+t) is maintained after such integration. This is
a legitimate argument but it also requires using the stronger condition UI of Theorem 1 rather
than the weaker condition UIS of Theorem 2. Note also that no locally bounded variation
assumption is needed for S(t), as there was for f (t), since S(t) has total variation 1.

Condition UIS can often be shown to hold by using the following result.

Lemma 2. If
∣∣M(b+ + iy)

∣∣p
is integrable for some p > 1 then UIS of Theorem 2 holds. If

δ > 0 and Y > 0 exist such that maxb≤x≤b+ |M(x + iy)| < c/|y|δ for |y| > Y and some c > 0,

then conditions X and UIS hold.

Proof. Use Hölder’s inequality so that

∫ +∞

−∞
|M(b+ + iy)|

|b+ + iy| dy ≤
{ ∫ +∞

−∞
|M(b+ + iy)|p dy

}1/p{ ∫ +∞

−∞
1

|b+ + iy|q dy

}1/q

< ∞,

(14)

where 1/p + 1/q = 1. The absolute integrability in (14) implies UIS. �
Example 3. (Example 1 continued.) The MGF of X = − ln{Beta (α, β)} satisfies both
conditions of Lemma 2 and SX(t) = e−αt�(α + β)/{α�(α)�(β)} + o(e−α+t).
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When M admits multiple poles along the convergence boundary {Re(s) = b}, then an
expansion for S(t) is given in Equation (56) of Butler (2019a, Section 5.1.5, Corollary 7).

Example 4. (Example 2 continued.) The survival function expansion given in Butler (2019a,
Equation (56)) has the same general form as (10) but with different coefficients {cS

k(t) : k =
1, . . . ,m} replacing {ck(t)}. After using (12) to expand SG(m,b) and SG(m,b+iy) in (56), then the
leading term of order O(e−bttm−1) in S(t) is e−bttm−1( − 1)mcS

m(t)/(m− 1)!, with

cS
m(t) = β−m

b
+ 2Re

{e−iytβ+−m

b + iy

}

= α0

b
+ 2

b2 + y2
{(bα + yγ ) cos (yt) + (bγ − αy) sin (yt)}.

A tedious computation shows that cS
m(t) = ∫ ∞

t cm(u) du, which is consistent with the fact
that the survival expansion in Butler (2019a, Equation (56)) is the tail area for the density
expansion in Butler (2019a, Equation (53)) when the latter expansion is valid. Note that the
hazard function f (t)/S(t) ∼ cm(t)/cS

m(t) as t → ∞ and this ratio is a 2π/y-periodic function
without a limit as discussed in Butler (2017, Section 3, Example 1).

2.3. Higher-order expansions using multiple poles

We now consider higher-order expansions for f (t) and S(t) related to poles of M that lie
further into the analytic continuation {Re(s) ≥ b}. The following alternative assumption is
needed.

ACm. Either M has a monotone increasing sequence of distinct real poles b = b1 < · · · <
bm, where bj is an mj-pole, or it has a monotonic increasing sequence of complex
conjugate pairs of poles denoted by b = b1 < Re(b2±) < · · · < Re(bm±). Apart from
these poles, M admits an analytic continuation into {b ≤ Re(s) < bm + ε0}, with
ε0 > 0.

Nonreal poles must occur in complex conjugate pairs bj+ and bj− = b̄j+ due to the property
that M̄(s) =M(s̄) for all s. Denote the principal part of the Laurent expansion of M about
pole bj as

∑mj
k=1 β−k;j(s − bj)−k.

Cauchy’s theorem is now used as in Theorems 1 and 2 to give an expansion in terms of
the first m residues at {bk : k ≤ m} by displacing the contour integral from {Re(s) = b−} to
{Re(s) = b+

m}, where b+
m = bm + εm with 0 < εm < ε0.

Corollary 1. (Higher-order expansions.) Suppose that the density f (t) satisfies the conditions
of Theorem 1 with conditions ACm, Xm, and UIm on M replacing AC, X , and UI.

Xm. For some εm ∈ (0, ε0), maxb ≤ x ≤b+
m

|M(x + iN)| → 0 as N → ∞.

UIm. For some T > 0, the principal-value integral
∫ +∞
−∞ M(b+

m + iy)e−iyt dy converges
uniformly in t for t ≥ T .

Then,

f (t) = fm(t) + Rm(t) :=
m∑

j=1

e−bjt
mj∑

k=1

tk−1 ( − 1)kβ−k;j

(k − 1)! + Rm(t), (15)

where

Rm(t) = e−b+
m t 1

2π

∫ +∞

−∞
M(b+

m + iy)e−iyt dy = o(e−b+
m t), t → ∞. (16)
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Suppose that S(t) satisfies the conditions of Theorem 2 with conditions ACm and Xm on M
replacing AC and X , and the following assumption UIS

m replacing UIS.

UIS
m. For some T > 0, the principal-value integral

∫ +∞
−∞ M(b+

m + iy)(b+
m + iy)−1e−iyt dy

converges uniformly in t for t ≥ T .

Then,

S(t) = Sm(t) + RS
m(t) :=

m∑
j=1

mj∑
k=1

SG(k,bj)(t)
(−1)kβ−k;j

bk
j

+ RS
m(t), (17)

where

RS
m(t) = e−b+

m t 1

2π

∫ +∞

−∞
M(b+

m + iy)

b+
m + iy

e−iyt dy = o(e−b+
m t), t → ∞, (18)

and SG(k,bj) denotes the survival function of a gamma (k, bj) distribution as in (12).

If bj is rather a complex conjugate pair bj+ and bj−, then (15) and (17) continue to hold but
with the jth term summed over both j+ and j − .

2.4. Expansions using essential singularities

If b and other finite singularities are isolated essential then similar residue expansions hold
under the identical conditions used in Theorems 1 and 2 and Corollary 1. The formal statements
of the corresponding results are identical apart from pole orders {mj} taking value ∞ so that
residue sums are infinite. We provide two examples.

Example 5. (Compound Poisson distributions.) Here X = ∑N
k=0 Yk, where N ∼ Poisson (λ),

{Yk : k ≥ 1} are independent and identically distributed (i.i.d.) with a meromorphic MGF
MY (s), and Y0 = 0 with probability 1. The MGF of X is M(s) = exp [λ{MY (s) − 1}] and the
poles of MY are isolated essential singularities of M. Expansions for the conditional density
and survival functions of X given X 
= 0 make use of the residue expansions for these essential
singularities. Unconditional expansions include the additional factor 1 − e−λ.

Example 6. (Noncentral χ2(2m, λ).) The MGF is

M(s) = 1

(1 − 2s)m
exp

{λ

2

( 1

1 − 2s
− 1

)}
(19)

and b = 1
2 is an essential singularity. From the form in (19) we see that this distribution is the

convolution of a central χ2(2m), which contributes the factor (1 − 2s)−m, and a compound
Poisson with Poisson rate λ/2 and Y1 ∼ Exponential ( 1

2 ).
For m ≥ 2, the UI condition holds due to Lemma 1; when m = 1, UI holds by an

integration-by-parts argument as given in Butler (2019a, Section 5.1.6). The expansion errors
in (7) and (13) are R1(t) ≡ 0 ≡ R1S(t) so the residue expansions are exact and take the form of
infinite Poisson mixtures of well-known central χ2 distributions of the form

f (t) = − Res
{
M(s)e−st;

1

2

}
=

∞∑
k=0

e−λ/2

k!
(λ

2

)k
fχ2(2m+2k)(t), (20)

S(t) = − Res
{M(s)

s
e−st;

1

2

}
=

∞∑
k=0

e−λ/2

k!
(λ

2

)k
Sχ2(2m+2k)(t). (21)
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Here fχ2(2m+2k) and Sχ2(2m+2k) are the density and survival functions of a central χ2(2m + 2k)
distribution. For details, see Butler (2019a, Section 5.1.6).

Alternatively, these expansions can be shown to hold for any real m > 0 by taking a Taylor
expansion of the exponential term in M about 0 and inverting the infinite sum term-by-term.
Since the sum is infinite, justification for this must be based on Doetsch (1974, Theorem 30.1)
which allows the inversion integral to be interchanged with the infinite sum. From this, we
conclude that the identities in (20) and (21) hold for any real m > 0 and for a.e. t > 0.

2.5. Saddlepoint approximations in the analytic continuation

The expansion errors in (16) and (18) can be approximated by using either saddlepoint
approximations or through numerical integration. In both integrals, if the integrand factor
M(s)e−st has another real pole at bm+1 > bm then a real saddlepoint ŝm ∈ (bm, bm+1) may exist
to approximate the integrals. In such cases, saddlepoint approximations for Rm(t) and RS

m(t) are

Rm(t) � R̂m(t) = 1√
2πK′′(ŝm)

exp{K(ŝm) − ŝmt}, (22)

RS
m(t) � R̂S

m(t) = 1√
2π{K′′(ŝm) + ŝ−2

m }
1

ŝm
exp{K(ŝm) − ŝmt}, (23)

where K(s) = ln M(s) and ŝm and ŝm are the respective saddlepoint solutions to K′(ŝm) = t and
K′(ŝm) − 1/ŝm = t in (bm, bm+1).

Proposition 1. (Existence of a saddlepoint in (bm, bm+1).) For the setting above in which
consecutive poles bm < bm+1 are real, saddlepoints ŝm and ŝm exist in (bm, bm+1) if {M(s) : s ∈
(bm, bm+1)} is either a subset of (0, ∞) or a subset of ( − ∞, 0).

An example of the setting for Proposition 1 is given in Figure 1 of Section 3.2.1. In
such cases, M(s)e−st achieves a minimum (maximum) value in (bm, bm+1) when M(s) > 0
(< 0). Also, in such cases, K(s) = ln M(s) is analytic on s ∈ (bm, bm+1) × ( − δ, δ) ⊂C for
sufficiently small δ > 0, so that K′(s) − t must have a real zero for at least one ŝm ∈ (bm, bm+1).
Such a point ŝm must therefore be a saddlepoint by the Cauchy–Riemann equations. This
argument does not apply when 0 ∈ {M(s) : s ∈ (bm, bm+1)}. This is because K(s) cannot be
made analytic on (bm, bm+1) × ( − δ, δ) since 0 is not in the domain of the ln function and an
analytic branch of the multifunction ln M(s) cannot be defined on (bm, bm+1) × ( − δ, δ).

With this setup, the saddlepoint formulae in (22) and (23) can be derived as in Copson (1965,
pp. 92–93) or Murray (1984, Chapter 3) based upon the steepest descents method. Both (22)
and (23) presume that the saddlepoints are simple meaning that K′′(ŝm) 
= 0 so the expressions
are well defined as complex computations.

In many settings there is a unique real saddlepoint for M(s)e−st in (bm, bm+1). This is
the case for some simpler distributions such as the minus log-beta distribution (Examples 1
and 3), Wilks’ likelihood ratio statistic (Examples 7 and 8), the extreme value, logistic, and
hyperbolic secant distributions (Example 10). This is also the case in a relatively complicated
Cramér–Lundberg example (Example 19).

In settings where bm+1 is not real and is rather a complex conjugate pair of poles bm+1
and b̄m+1, then there may be multiple real or complex conjugate pairs of saddlepoints in
{bm < Re(s) < Re(bm+1)}. This is illustrated in both the right and left tails of the compound
distribution of Example 17 (see also Butler (2019a, Sections 5.3 and 5.3.1)) and in a
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Cramér–Lundberg example (Example 18). With multiple real or multiple complex conjugate
pairs of saddlepoints, then a choice must be made between them when using (22) and (23) to
approximate the inversion integrals for Rm(t) and RS

m(t). We recommend the closest (pair) in
terms of its real component. If one must deal with a complex conjugate pair of saddlepoints
then such saddlepoints typically lie somewhere in the vicinity between bm and bm+1, and bm

and b̄m+1, but not necessarily on straight lines as would happen when bm and bm+1 are both
real poles. Also with a complex conjugate pair of saddlepoints, both saddlepoints are used in
the approximation and the contour of the inversion integral must be deformable to pass along
the path of steepest descent from each saddlepoint in the pair. Thus, in this case, (22) and (23)
are applied by adding the contributions from both saddlepoints.

The saddlepoint approximation in (23) will be accurate without the need to apply the
method of Bleistein (1966) to deal with the integrand factor (b+

m + iy)−1, since b+
m is not in

the convergence domain of M and therefore well away from 0. If a value for b+
0 ∈ (0, b) in

(18) were chosen so it is in the convergence domain, then RS
0(t) = S(t) and the approximation

in (23) using a saddlepoint in (0, b) would not be as accurate as the Lugannani and Rice (1980)
saddlepoint approximation for S(t), which is based upon the Bleistein method.

If M is analytic on {Re(s) > bm} then deforming the contour integral further to the right
cannot change the errors Rm(t) and RS

m(t). Also, there may not be any saddlepoints in this
region to approximate these errors. An example is the random variable −ExV ∗ Exp (1), where
ExV is an extreme value distribution with MGF �(1 − s). The convolution distribution has
MGF �(1 + s)/(1 − s) with poles {. . . , −2, −1, 1} and f1(t) = e−t = S1(t) have errors R1(t) =
−e−et

(1 + e−t) and RS
1(t) = −e−et−t. In examples for which M is meromorphic with only a

finite number of poles outside of {a < Re(s) < b}, then M is rational and such errors are 0.
For example, with poles only at an < · · · < a1 < 0 < b < · · · < bm, then f (t) = fm(t) and S(t) =
Sm(t) for t > 0.

2.6. Examples

The expansions and saddlepoint approximations together can provide more accurate
approximations to f (t) and S(t) than the individual methods used separately as seen in the
next example.

Example 7. (Wilks’ likelihood ratio statistic, M rational.) The likelihood ratio statistic �k,p,n

in MANOVA has null distribution − ln �k,p,n ∼ − ∑k
i=1 ln{Beta (ai/2, p/2)}, with ai = n −

i + 1 and all beta variates independent. Here, k denotes dimension, p is the degrees of freedom
for hypothesis, and n is the degrees of freedom for error. Taking k = 3, p = 6, and n = 7, then
the MGF for − ln �3,6,7 is

M(s) = c
3∏

i=1

�{(8 − i)/2 − s}
�{(14 − i)/2 − s}

= c
{( 5

2 − s
)(

3 − s
)( 7

2 − s
)2(4 − s

)( 9
2 − s

)2(5 − s
)( 11

2 − s
)}−1 (24)

where c = 3 274 425
16 and s < a3/2 = 5

2 = b. The MGF has seven poles ranging from 5
2 to 11

2 in
increments of 1

2 with 1-poles at 5
2 , 3, 4, 5, and 11

2 and 2-poles at 7
2 and 9

2 . This rational form
for M occurs whenever either p is even or k is even with the latter setting following from the
fact that �k,p,n and �p,k,p+n−k have the same distribution. From the rational form in (24), the
exact density/survival functions can be easily computed through partial fraction inversion. This
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TABLE 1: Various density and survival approximations, fm(3) + R̂m(3) and Sm(3) + R̂S
m(3), for f (3) =

0.297 316 and S(3) = 0.206 673 47 where m denotes the number of residues included. The boldface digit
indicates the last ‘accurate’ digit or the last digit in agreement with the exact result when both are rounded
to the same number of digits. Also shown are saddlepoint approximations R̂m(3) and R̂S

m(3) for errors
Rm(3) and RS

m(3), respectively, along with exact (numerically integrated) computations for these errors.

m = 1 3 5 6 7
ŝm, ŝm ∈ ( 5

2 , 3) ( 7
2 , 4) ( 9

2 , 5) (5, 11
2 )

fm + R̂m 1.419 −0.8876 0.3005 0.297 312 f (3)b

R̂m −3.612 5.780 −0.040 71 0.036164 –a

Rm −4.733 6.965 −0.043 89 0.036208 0
Sm + R̂S

m 0.6442 −0.0884 0.2073 0.206 672 98 S(3)b

R̂S
m −1.368 1.484 −0.028190 0.041124 –a

RS
m −1.806 1.779 −0.028791 0.041129 0

aIndicates that R̂m or R̂S
m is undefined.

bIndicates that the seven residue sum is exact.

approach can be shown to be equivalent to that used by Schatzoff (1966) who worked in the
time domain by successively convoluting log-beta densities.

In Table 1 we show the approximations of Corollary 1 for f (3) = 0.297 316 and S(3) =
0.206 673. The entries demonstrate that a sufficient number m of residue terms are needed in
order for the asymptotic expansions to achieve an accurate approximation. This should have
been expected in this example from the nature of the asymptotic expansion since the poles
are spaced relatively close together with increments of 1

2 . The entries for saddlepoint error
approximations R̂m(3) and R̂S

m(3) provide guidance about the expansion error and appear quite
useful in determining the value of m needed to ensure sufficient accuracy. Both approximations
need to sum residues to at least the 2-pole at m = 5 in order to achieve any kind of accuracy.
Inaccuracy for m ≤ 4 occurs because successively added residue terms fluctuate in sign and
magnitude. This is caused by quite large residues that are not adequately dampened by the
gradually diminishing exponential values {exp ( − bjt)} using poles {bj} in increments of 1

2
which are not well spaced.

Saddlepoint density and Lugannani and Rice (1980) survival approximations applied in
the convergence strip {s < 5

2 } of the MGF lead to the values 0.2984 and 0.2061, respectively,
where the boldface digits indicate the last ‘accurate’ digit or the last digit in agreement with the
exact result when both are rounded to the same number of digits. These approximations attain
remarkable accuracy which is slightly better than expansions to m = 5 and exceeded only by
using m = 6 residues. When term m = 7 is included, the expansions are exact.

Example 8. (Wilks’ likelihood ratio statistic, M is not rational.) Consider the case in which
both p and k are odd. This is the setting in which there are no exact computational procedures
(however, see Section 2.7 below). We take k = 3, p = 5, and n = 7 so the MGF for − ln �3,5,7 is

M(s) = c1
1

(5/2 − s) (3 − s) (7/2 − s)2 (4 − s) (9/2 − s)2
× �(11/2 − s)

�(6 − s)
, (25)

where c1 = 30240/
√

π . There are poles at 5
2 , 3, 7

2 , 4, 9
2 , 11

2 with saddlepoints in between; how-
ever, above 11

2 there are no saddlepoints. At 11
2 and above there are simple poles at 11

2 , 13
2 , . . . ,
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TABLE 2: Various density and survival approximations for f (2.7) = 0.301 133 and S(2.7) = 0.201 400 8
where m denotes the number of residues included. See Table 1 for further description.

m = 1 3 4 5
ŝm, ŝm ∈ ( 5

2 , 3) ( 7
2 , 4) (4, 9

2 ) ( 9
2 , 11

2 )

fm + R̂m 1.222 −0.1469 0.3531 0.301 128
R̂m −2.786 2.350 −0.4404 −0.048072
Rm −3.706 2.798 −0.4924 −0.047611

Sm + R̂S
m 0.5530 0.091 65 0.2127 0.201 400

R̂S
m −1.050 0.6000 −0.1015 −0.051469

RS
m −1.402 0.7097 −0.1128 −0.051384

but M(s) is monotone decreasing in between each pair of poles with ∞ =M{(k − 1
2 )+} >

M{(k + 1
2 )−} = −∞ for k ≥ 6, so Proposition 1 does not hold. Since �( 11

2 − s)/�(6 − s) ∼
1/

√−s when Re(s) is fixed and Im (s) → ∞, then |M(s)| = O(|s|−15/2); thus, conditions
ACm, Xm, and UIm of Corollary 1 hold for all m ≥ 1.

In Table 2 we show the accuracy that can be achieved when using the expansions and
saddlepoint approximations to determine f (2.7) = 0.301 133 and S(2.7) = 0.201 400 8. Five
terms (m = 5) are needed to stabilise the expansion but five terms result in 5 digit accuracy
(after rounding) for both density and survival approximations. For comparison, the saddlepoint
density and Lugannani and Rice (1980) survival approximations are 0.3028 and 0.2009,

respectively, with 2 and 3 digit accuracy (after rounding); this is considerably better than the
four term expansion but much less accurate than using five residue terms.

In both examples, the saddlepoint error approximations R̂m and R̂S
m make it very clear which

values of m provide adequate and inadequate expansions. This is an important aspect of the
methods if they are to ensure a specified accuracy particularly when poles are not well spaced
as occurs in these two examples.

2.7. Expansions using an infinite number of poles

If M admits an infinite sequence of increasing poles b = b1 < b2 < · · · and Corollary 1 can
be assumed to hold for all m = 1, 2, . . ., then we obtain infinite expansions for f (t) and S(t)
which we can denote as

f (t) ≈ f∞(t), S(t) ≈ S∞(t).

The proper meaning for these expansions is that Corollary 1 holds for each m < ∞. The infinite
sums f∞(t) and S∞(t) may or may not be pointwise convergent and if so, may or may not
converge to f (t) and S(t). We formalise the conditions for equality in the next result whose
proof is based on Cauchy’s theorem.

Corollary 2. Suppose that Corollary 1 holds for all m = 1, 2, . . . . Then

(a) f∞(t) is convergent and f (t) = f∞(t) if and only if there exists a sequence {εm} such that
Rm(t) → 0 as m → ∞;

(b) S∞(t) is convergent and S(t) = S∞(t) if and only if there exists a sequence {εm} such that
RS

m(t) → 0 as m → ∞;

(c) if (a) holds then (b) holds.
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Proof. Only (c) requires comment. If f (t) = f∞(t) then S(t) = S∞(t) follows from Fubini’s
theorem. �

The condition Rm(t) → 0 as m → ∞ is an existence condition for a particular sequence
of vertical contours {Re(s) = b+

m = bm + εm} such that Rm(t), the integral over this vertical
line, converges to 0 as m → ∞. It is not necessary that this holds for all possible sequences.
Typically b+

m → ∞, so in relatively straightforward cases Rm(t) → 0 if it can be shown that
|M(b+

m + iy)| is uniformly integrable for sufficiently large values of m. Examples where these
series correctly converge to f (t) and S(t) are now given.

Example 9. (Example 1 continued.) For integer-valued β ∈ {1, 2, . . .}, the minus log-beta
MGF M(s) = �(α + β)�(α − s)/{�(α)�(α + β − s)} is a rational function with β simple
poles so an exact finite expansion is easily determined. For β /∈ {1, 2, . . .}, M has simple
poles at s = α, α + 1, . . . and the exact density and survival functions are recovered from the
infinite expansion of residues; see Section 5.1.7 of Butler (2019a).

Example 10. (Extreme value, logistic, and hyperbolic secant(θ ).) These distributions have
respective MGFs �(1 − s), �(1 + s)�(1 − s), and cos(θ )/ cos(θ + s) for θ ∈ ( − π/2, π/2). All
three distributions satisfy all parts of Corollary 2 and the details are given in Section 5.1.7 of
Butler (2019a).

Example 11. (Example 8 continued.) From (25), the MGF has the form M(s) =M5(s) ×
�(11/2 − s)/�(6 − s), where M5(s) contributes the first 5 poles which lead to the term f5(t)
based on the associated residues. The latter factor �( 11

2 − s)/�(6 − s) has an infinite sequence
of simple poles at { 11

2 , 13
2 , . . .}, which contributes an infinite sum of residues. All conditions

of Corollary 2 are shown to hold in Section 5.1.7 of Butler (2019a). After simplification, the
residue summation becomes the convergent hypergeometric expansion in

f (t) = f∞(t) = f5(t) − 672

π
e−(11/2)t

4F3

(1

2
, 1, 1,

3

2
; 3,

7

2
, 4; e−t

)
.

The exact survival function has S(t) = S∞(t), which is also expressible in terms of 4F3
hypergeometric functions. Thus, Corollary 2 provides exact expressions for the density and
survival functions of Wilks’ likelihood ratio statistic in the intractable setting where k and m
are odd-valued, which is the setting in which no exact results have previously been derived.
General expressions can be derived for arbitrary odd values of k and m and a computational
algorithm is under development to make such computations simple in the general case. Similar
infinite residue expansions can be developed for all the other log-likelihood ratio test statistics
in normal theory MANOVA as they involve sums of independent log-beta distributions with
structure similar to this example; see Anderson (2003, Chapters 9 and 10).

2.8. Convolutions and finite mixtures

For convolution distributions, the infinite expansions in Corollary 2 may or may not
converge as seen in the next three examples. The first two examples convolve a density that
has a convergent expansion with a density whose MGF is an entire function.

Example 12. (ExV ∗ Normal.) The convolution of an extreme value and an independent
normal distribution leads to divergent sums for both f∞(t) and S∞(t). The MGF is M(s) =
�(1 − s) exp (s2/2) and has simple poles at j = 1, 2, . . . with Res (M; j) = ( − 1)j/(j − 1)! ×
exp (j2/2). In f∞(t), the residue factor exp (j2/2) from the normal term dominates e−jt for all t
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so f∞(t) and also S∞(t) diverge. Here, |M(b+
m + iy)| is integrable (see Butler (2019a, Section

5.1.8)) but not uniformly integrable in m while ACm, Xm, UIm, and UIS
m hold for all m.

Thus, Corollary 1 applies for all m and the divergence of f∞(t) is due to the nonexistence of
a sequence {εm} for which Rm(t) → 0 as m → ∞. Using m = 5 terms, f5(1.7) = 2.0506 with
f (1.7) = 0.1697 and R̂5(1.7) = −1.6202 with R5 = −1.8813. The saddlepoint sequence {R̂m}
also captures this divergence since R̂6(1.7) = 16.35 with R6(1.7) = 18.89.

Example 13. (ExV ∗ Uniform (0, 1).) Both f∞(t) and S∞(t) converge to f (t) and S(t),
respectively, if we convolve an extreme value distribution with an independent uniform on
(0, 1). The MGF M(s) = �(1 − s)(es − 1)/s has Res (M; j) = ( − 1)j/(j − 1) × (e j − 1)/j and
now factor ej − 1 does not overwhelm e−jt when summed over j as occurred in Example 12.
See Butler (2019a, Section 5.1.8) for more details.

Example 14. (General convolution.) Let the MGFs M1(s) and M2(s) both satisfy
Corollary 2. Then the convolution density for M1(s)M2(s) may also admit a convergent
infinite residue expansion about the combined set of poles for M1(s) and M2(s) denoted
as {bn}. If bn → ∞ then a sufficient condition is the existence of an N and a sequence {εn}
such that b+

n = bn + εn ∈ (bn, bn+1), and |M1(b+
n + iy))| and |M2(b+

n + iy))| are uniformly
integrable for n > N. When M1(s) and M2(s) share common poles, then this expansion
depends on coefficients from the analytic portions of the Laurent expansions for M1(s) and
M2(s) at these common poles. An example satisfying this sufficient condition and sharing
poles is given in Butler (2019a, Section 5.1.8) in which X and Y have MGFs �(1 − s) and
�(1 − 2s), and the density of X + Y is derived as an infinite convergent expansion.

Example 15. (Laplace distribution.) This distribution is the difference of two independent
Exponential (1) variables and it provides an example in which there are poles at ±1 and
for which expansions exist in both the right and left tails. If the appropriate expansions are
used in either tail then f1(t) = e−t/2 for t > 0 in the right tail and fL1(t) = et/2 for t < 0 is the
expansion in the left tail. Together they reproduce f (t) = e−|t|/2 for t ∈ ( − ∞, ∞). Also left-
tail expansion F1(t) = et/2 for t ≤ 0 and S1(t) = e−t/2 for t ≥ 0, so all agree with their exact
counterparts. This example reinforces the point that the expansions should only be used in their
appropriate tails.

If all the components of a finite mixture distribution admit convergent expansions then
a weighted sum of these expansions provides the expansion for the mixture distribution
and f∞(t) = f (t) and S∞(t) = S(t). If, however, a component distribution lacks such an
expansion then f∞(t) and S∞(t) can converge but perhaps to the wrong density/survival
function.

Example 16. (Mixture of ExV and Uniform (0, 1).) Consider a finite mixture of ExV and a uni-
form distribution on (0, 1) using equal weights. The MGF is M(s) = {�(1 − s) + (es − 1)/s}/2
and Res{M(s); j} = (−1)j/(j − 1)!/2 = Res{�(1 − s)/2; j} so that f∞(t) = fExV(t)/2. This,
however, differs from f (t) = { fExV(t) + 1{0<t<1}}/2 on the interval {0 < t < 1}, where the
uniform has its support. Likewise, S∞(t) = SExV(t)/2 
= [SExV(t) + {1{t<1} −t 1{0<t<1}}]/2 =
S(t). Conditions ACm, Xm, UIm, and UIS

m hold for all m, but a sequence of {εm} cannot be
found for which Rm(t) → 0 as m → ∞.

The difficulty in Example 16 is that the residue expansion recognises addend �(1 − s)/2
but not addend (es − 1)/(2s), which has no finite singularities. In the density inversion, addend
1{0<t<1} /2 as a part of f (t) remains in the error term Rm(t) for all m since, by Cauchy’s theorem,
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the corresponding addend (es − 1)/s}/2 in M(s) is an entire function. This phenomenon
occurs whenever an addend in M(s) is an entire function and demonstrates that such residue
expansions should not be used with mixture distributions in such instances.

3. Compound distributions as infinite mixtures

In insurance mathematics a ruin amount R is often a compound distribution R = ∑N
k=0 Xk,

where N ∈ {0, 1, . . .} has a weighting distribution with probability generating function (PGF)
P(z) = ∑∞

k=0 p(k)zk which is convergent on {z ∈C : |z| < r} for r > 1. Suppose that X0 puts
mass 1 at 0 and {Xk : k ≥ 1} are i.i.d. absolutely continuous claim amounts with support in
(−∞, ∞). Let X1 have density fX(t) and MGF MX(s) which converges in the right half of
the complex plane on {0 ≤ Re(s) < c} or {0 ≤ Re(s) ≤ c} with 0 < c ≤ ∞. When MX(c) < ∞,

then suppose that r <MX(c) so that in all settings there is a unique root b to MX(s) = r such
that b ∈ (0, c). Ruin R has a compound distribution with MGF P{MX(s)} which converges
on {0 ≤ Re(s) < b} in the right half of the complex plane. The special case in which P(z) is a
geometric (1 − 1/r) PGF leads to an infinite mixture distribution with geometric weights and
includes the Cramér–Lundberg and Sparre Andersen risk models as described in Feller (1971,
Chapter XI.7) and considered in Section 4. The case in which P(z) is negative binomial
(n, 1 − 1/r) was considered by Embrechts et al. (1985) and Sundt (1982).

In the general compound distribution setting, we now give new first-order expansions for
the density and survival functions of the ruin amount R with support S ⊆ (−∞, ∞). The proof
is relegated to Section 5.2.1 of Butler (2019a). The following conditions are needed on fX(t)
and MX(b + ε1 + s), the transform for the unnormalised tilted density e(b+ε1)tfX(t) for some
ε1 > 0.

AICD
p . For some ε1 ∈ (0, c − b), |MX(b + ε1 + iy)|p is integrable in y for some integer p ≥ 1.

UICD. If p ≥ 2 then, for k = 1, . . . , p − 1, there exists Tk > 0 such that the principal-value
integral

∫ ∞
−∞ MX(b + ε1 + iy)ke−ity dy converges uniformly in t for t > Tk.

A sufficient condition for both AICD
p and UICD to hold is that |MX(b + ε1 + iy)|

is integrable in y for some ε1 ∈ (0, c − b). Necessary conditions for such absolute integrability
are that fX(t) is continuous and bounded (Feller (1971, Chapter XV.3, Theorem 3)). The
exponential density, for example, is neither continuous nor does it satisfy this absolute
integrability condition, but it does satisfy the weaker stated conditions AICD

p and UICD as
well as the next very weak condition.

BVCD. Integer q ≥ 1 exists such that f (∗q)
X (t), the q-fold convolution of fX, has bounded

variation on (−∞, ∞). If q ≥ 2 then, for k = 1, . . . , q − 1, assume that f (∗k)
X (t) is

locally of bounded variation for all t ∈ S ∩ (0, ∞).

Theorem 3. (Density/survival expansions for compound distributions.) Let P(z) and MX(s)
be as described above. Suppose that the convergence bound r > 1 is an m-pole of P(z) which
is analytic on {z ∈C : |z| ≤ r} apart from its pole at r.

If conditions AICD
p , UICD, and BVCD hold, then there exists an ε ∈ (0, ε1) sufficiently

small such that the density of R has the expansion

fR(t) = e−bt
m∑

k=1

tk−1 (−1)kβ−k

(k − 1)! + o(e−(b+ε)t), t → ∞, (26)
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with

β−k =
m−k∑
j=0

ρ−k−j

j!
dj

dsj

( 1

{N (s)}k+j

)
s=b

, (27)

where
∑m

k=1 ρ−k(z − r)−k specifies the principal part of the Laurent expansion for P(z) at r,
N (s) = {MX(s) − r}/(s − b), N (b) =M′

X(b), and N (j)(b) =M(j+1)
X (b)/(j + 1).

Assuming that only condition AICD
p holds, there exists an ε ∈ (0, ε1) sufficiently small such

that the survival function of R has the expansion

SR(t) =
m∑

k=1

SG(k,b)(t)
( − 1)kβ−k

bk
+ o(e−(b+ε)t), t → ∞. (28)

Proof. The theorem follows from Theorems 1 and 2 if the conditions for these theorems
can be shown to hold. Such theorems cannot be expected to hold for R directly because it
has a point mass at 0 with probability p(0). This leads to p(0) as the leading term in a Taylor
expansion for P{MX(s)} so that conditions X and UI of Theorem 1 typically do not hold. We
work instead with random variable R+, defined as R given that R 
= 0, which has an absolutely
continuous distribution on ( − ∞, ∞) with MGF

MR+ (s) = P{MX(s)} − p(0)

1 − p(0)
. (29)

The conditions of Theorem 3 ensure that Theorems 1 and 2 can be applied to MR+ (s); the
details are relegated to Butler (2019a, Section 5.2.1). �

In Theorem 3 we state that expansions (26) and (28) exist for a sufficiently small
ε ∈ (0, ε1). If, however, MR+ can be analytically continued to {Re(s) < b + ε0} for ε0 > 0
apart from its pole at b, then these first-order expansions may hold to order o{e−(b+ε)t} for
any ε ∈ (0, ε0). Corollary 8 of Butler (2019a, Section 5.2.2) provides the modest conditions
needed for this to hold.

Conditions AICD
p , UICD, and BVCD represent the weakest conditions under which it

has been possible to prove Theorem 3. Such weak conditions allow the density of X to
be unbounded and for |MX(b + ε1 + iy)| to not be integrable. For example, consider the
gamma (α, c) distribution with α ∈ (0, 1]. Any such distribution satisfies AICD

p and UICD

since integrand {1 − (b + ε1 + iy)/c}−αke−ity is uniformly integrable in y for all k ≥ 1 (using
an integration-by-parts argument) and absolutely integrable for k > 1/α. Any such gamma
(α, c) density also satisfies condition BVCD with q = �1/α� for S = (0, ∞).

3.1. Higher-order expansions

If MR is a meromorphic function in its analytic continuation {Re(s) ≥ b}, then higher-order
expansions can be computed subject to the conditions below. In order to simplify the resulting
expansions, we assume simple poles in ACCD

m below, which result by assuming that P admits
only one simple pole at r.

ACCD
m . The function MR admits a sequence of simple real poles b = b1 < · · · < bm or a

complex conjugate sequence of simple poles for which b = b1 < Re(b2±) < · · · <
Re(bm±). Apart from these poles, MR can be continued analytically to {b ≤ Re(s) <

bm + ε0} for some ε0 > 0.
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AICD
mp . There exists εm ∈ (0, ε0) and integer p ≥ 1 such that |MX(b+

m + iy)|p is integrable in
y for b+

m = bm + εm. If b+
m > c then maxc ≤ x ≤b+

m
|MX(x + iN)| → 0 as N → ∞.

UICD
m . If p ≥ 2 in condition AICD

mp then, for k = 1, . . . , p − 1, there exists Tk > 0 such that

the principal-value integral
∫ ∞
−∞ MX(b+

m + iy)ke−ity dy converges uniformly in t for
t > Tk.

Corollary 3. (Higher-order expansions for compound distributions.) Let P(z) and MX(s) be
as described in Theorem 3.

If fX satisfies the bounded variation conditions of BVCD, and MR and MX satisfy
conditions ACCD

m , AICD
mp , and UICD

m above with simple real poles, then

fR(t) = fm(t) + Rm(t) :=
m∑

j=1

e−bjt −ρ−1

M′
X(bj)

+ Rm(t), t → ∞, (30)

Rm(t) = 1 − p(0)

2π
e−b+

mt
∫ ∞

−∞
MR+ (b+

m + iy)e−ity dy = o(e−b+
m t), (31)

where ρ−1 is the residue for P at its single simple pole r and MR+ is given in (29).
Assuming that conditions ACCD

m and AICD
mp hold, then

SR(t) = Sm(t) + RS
m(t) :=

m∑
j=1

e−bjt −ρ−1

bjM′
X(bj)

+ o(e−b+
m t), t → ∞, (32)

where RS
m(t) is the integral expression in (31) with the additional integrand factor (b+

m + iy)−1.
With complex conjugate pairs of poles, the same expansions apply when summed over all
complex conjugate pairs.

Proof. The proof is given in Section 5.2.3 of Butler (2019a) and broadly follows that of
Theorem 3. �

If r is rather an m-pole of P then b1, · · · , bm are also m-poles, and a more general and
complicated version of the corollary can be stated in which the jth terms of (30) and (32) are
replaced with terms of the form given in (26) and (28), respectively. Furthermore, if P admits
more than one pole then the residue ρ−1 in (30) and (32) becomes dependent on j and is the
residue for the pole of P at the value MX(bj).

3.2. Negative binomial weights

Suppose that the weight distribution for N is negative binomial (m, p) with q = 1 − p = 1/r
and P(z) = (p/q)m(1/q − z)−m. Then

MR+ (s) = pm

1 − pm

[
1

{1 − qMX(s)}m − 1

]
. (33)

From (33) we see that MR+ can be analytically extended past the value c if c is a pole of MX

but not when it is a branch point. If c is a pole then MR+ (s) → −pm/(1 − pm) as s → c, so
c is a removable singularity for MR+ . Additional poles of MX above c are also removable
singularities of MR+ , while the zeros of 1 − qMX(s) determine m-poles of MR+ for use in
the higher-order expansions of Corollary 3.
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TABLE 3: Various density and survival function approximations for the true density f (t) and survival S(t)

in three settings: using a negative binomial (m, 1
2 ) weight distribution with m= 3, 2, and 1 along with an

extreme value claim distribution. For various approximations, the last accurate digit is boldface.

m= 3, m= 2, m= 2, m= 1, m= 1,

t = 6 t = 4.658 t = 4.986 t = 3.010 t = 4.015

f 0.030 824 23 0.034 596 24 0.029 802 52 0.040 909 00 0.023 444 02
f1 0.030 824 19 0.034 596 78 0.029 802 65 0.041 064 01 0.023 458 29

fSP
a 0.032 96 0.038 21 0.032 81 0.050 36 0.027 82

fSP\b 0.032 62 0.036 62 0.031 61 0.041 69 0.024 40
R̂1 −0.071241 −e −e −0.031597 −0.041576
R1 0.074369 −0.065408 −0.061332 −0.031550 −0.041427

S 0.073 691 21 0.073 701 78 0.063 158 926 0.073 641 81 0.042 100 3
S1 0.073 691 19 0.073 701 87 0.063 158 919 0.073 707 32 0.042 106 2

SSP
c 0.074 38 0.074 82 0.064 08 0.076 52 0.043 395

SSP\d 0.074 62 0.074 66 0.064 01 0.073 48 0.042 18
R̂S

1 −0.085541 −e −e −0.046863 −0.056876
RS

1 0.071803 −0.079149 −0.086991 −0.046551 −0.055876

a,c Denotes a saddlepoint density or Lugannani and Rice (1980) survival approximation applied directly to
P{MX(s)} and retaining the point mass at t = 0.

b,d Denotes a saddlepoint density or Lugannani and Rice (1980) survival approximation applied to MR+ (s) and
without the point mass and subsequently correcting by using the factor 1 − p(0).

e Path of steepest descent for computation lies in the directions θ = 0 and 180◦.

The Laurent coefficients from the PGF of N are ρ−m = (− p/q)m and ρ−k = 0 for k =
1, . . . ,m− 1. Values in (27) are

β−k = ρ−m

(m− k)!
dm−k

dsm−k

( 1

{N (s)}m
)

s=b
, k = 1, . . . ,m− 1.

Example 17. (Extreme value claims, right tail.) Suppose claims follow an extreme value
distribution with support (− ∞, ∞) and MGF MX(s) = �(1 − s). In Table 3 we show
expansion approximations f1 and S1 for the density and survival function of R using negative
binomial (m, 1

2 ) weight distributions, with m= 3, 2, and 1. We used t = 6 in the m= 3 case
and chose values for t in the m= 2 and m= 1 cases which are designed to maintain a
comparable percentile location both unconditionally, with t = 4.658 and 3.010, respectively,
and conditionally (given X 
= 0), with t = 4.986 and 4.015, respectively. The rationale for this
is that the accuracy of such expansions can be expected to improve as t → ∞, so in order to
determine accuracy as the pole order m changes, the percentile rank of t should stay fixed.

A comparison of f (t) with f1(t) and S(t) with S1(t) leads to the following observations. For m
fixed, accuracy increases with t as expected. If the percentile rank of t is held fixed for R|R 
= 0,

so the accuracy comparison involves columns 2, 4, and 6, then accuracy decreases as the pole
order decreases from m= 3 to 1.

All m terms in expansions (26) and (28) are needed in order to attain the high accuracy seen
in the table. For density approximation, if only the leading term in (26) of order O(e−bttm−1)
is used in the m= 3 and m= 2 cases, then the resulting approximate density values are not
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accurate. This leading term attains the values 0.02674, 0.0168, and 0.0150 respectively over
columns 2–4. For the survival function, the leading term of order O(SG(m,b)(t)) is not accurate
either and attains the respective values 0.0215, 0.0417, and 0.0365.

First-order expansions are least accurate for m= 1; however, saddlepoint error corrections
also substantially improve accuracy in this case. When t = 3.010 (4.015) then f1 + R̂1 =
0.040 904 (0.023 443) and each error correction adds one further digit of accuracy; also S1 +
R̂S

1 = 0.073 639 (0.042 099) and error correction adds two (one) additional digits of accuracy.
Saddlepoint density approximations fSP(t) and fSP\(t) in Table 3 are based on the approx-

imation (22) applied with and without the point mass p(0) included in the MGF used for the
approximation. Thus, we approximate f (t) either directly from MR to get fSP(t), or indirectly
from MR+ to get fSP\(t), through f (t) = {1 − p(0)}fR+(t) 1{t>0} . Likewise, SSP(t) and SSP\(t)
use the Lugannani-Rice approximation (Butler (2007, Section 1.2.1)) to approximate S(t)
either directly or else indirectly through S(t) = {1 − p(0)}SR+ (t) 1{t>0} . Both approximations
provide adequate accuracy for all these applications but do not achieve the extraordinary
accuracy of f1(t) and S1(t). Approximations fSP\(t) and SSP\(t) have comparable accuracy to
their counterparts fSP(t) and SSP(t) for m= 3 and 2 and show slightly greater accuracy with
m= 1. This is explained by the fact that p(0) increases as m decreases so more mass is placed
at 0 and the methods that do not remove this point mass encounter greater difficulty and, hence,
lose accuracy.

3.2.1. Inversion integration and the analytic continuation of P{MX(s)}. The expansions of
Theorems 1 and 2 do not apply directly to the density and survival of R, but rather indirectly
by way of the absolutely continuous distribution for R+ = R| R 
= 0 with MGF MR+ (s) =
[P{MX(s)} − p(0)]/{1 − p(0)}, density fR+(t), and survival SR+ (t); thus, the relations fR(t) =
{1 − p(0)}fR+(t) and SR(t) = {1 − p(0)}SR+ (t) for t > 0 lead to the expansions in Theorem 3
for the distribution of R. In fact, if the density inversion integral in (4) were used with MGF
P{MX(s)}, then it would not converge due to the leading term p(0) > 0 in its expansion. Using
P{MX(s)} in the survival inversion integral (54) of Butler (2019a, Section 5.1.4) results in
a conditionally convergent principal-value integral but not an absolutely convergent integral;
thus, numerical inversion requires integration from ε − Ni to ε + Ni for quite large N. By
comparison, both of these integrals are absolutely convergent using MR+ (s) if |MX(ε +
iy)| = O(|y|−1−α) as y → ∞ for some α > 0. From a practical perspective, however, absolute
convergence is typically not enough and α must be large if the numerical inversion is to be
accurate using reasonable values of N.

For our example, the ‘exact’ computations for f (t) and S(t) in Table 3 were based on the
numerical inversion of MR+ (s) to determine fR+ (t) and SR+ (t). The integration was in the
convergence strip along the contour line {Re(s) = ŝ0} determined by saddlepoint ŝ0 ∈ (0, b)
which solves d ln {MR+ (s)}/ ds = t. This leads to an inversion integral expression

fR+ (t) ≈ e−ŝ0t 1

π

∫ N

0
Re{MR+(ŝ0 + iy)e−ity} dy (34)

for sufficiently large N. Survival SR+ (t) is determined as in (34) by including the additional
factor (ŝ0 + iy)−1 in the argument of Re{·} in the integrand. We used N = 20 to obtain a 17
digit accuracy based on an inversion integrand which, from (33), has the order

|MR+(ŝ0 + iy)| ∼ pmmq

1 − pm
|�(1 − ŝ0 − iy)| = O(|y|1/2−ŝ0e−π |y|/2), |y| → ∞,

with ŝ0 ∈ (0, 0.55); see 5.11.9 of NIST DLMF (2014).
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FIGURE 1: Plot of MR+ (s)e−6s versus s ∈ [0, 5.5] for the m= 3 setting showing the real poles as well as
the potential for saddlepoints at critical values in between the integers 1–5.

The analytic continuation of P{MX(s)}. The m-pole b = 0.5571 applies to all five examples
in Table 3 since it is a pole for the factor {2 − �(1 − s)}−m, which appears in P{MX(s)} and
MR+ (s). The exact remainder terms R1(t) and RS

1(t) in Table 3 were computed using numerical
inversion of MR+ (s) as in (34) but rather passing the vertical contour through ŝ1, the closest
real saddlepoint above b. In each of the five examples, Cauchy’s theorem, as reflected in the
identities f (t) = f1(t) + R1(t) and S(t) = S1(t) + RS

1(t), was confirmed to 17 significant digits
through numerical computation of f (t), R1(t), S(t), and S1(t) using MAPLE R©.

In the analytic continuation of MR+ (s) in which Re(s) > b, there are poles at b2± =
2.581 ± 0.1723i, b3 = 4.076, 4.978, 6.004, 6.999, . . . arising as zeros of 2 − �(1 − s). For the
m= 3 example, Figure 1 shows a plot of MR+ (s)e−6s which captures these real poles as well
as potential saddlepoints spaced in between the integers 1 − 5. Saddlepoints are located at
0.2687, 2.196, 2.546, 4.019, and 4.838. For all saddlepoints except 2.546, Figure 1 suggests
that |MR+ (s)e−6s| has a local minimum at each of these saddlepoints along the real line.
This is indeed the case as K′′

R+ > 0 at each of these saddlepoints so the steepest descent
(ascent) directions are ±90◦ (0◦, 180◦) and the saddlepoint is ‘vertically oriented’. By contrast,
the saddlepoint at 2.546 occurs at a local maximum for |MR+ (s)e−6s| along the real line.
This is confirmed by computing K′′

R+ (2.546) < 0 so its steepest descent (ascent) directions
are θ = 0◦, 180◦ ( ± 90◦) and are horizontally oriented. Thus, the geometry at 2.546 shows a
real saddlepoint roughly in between the complex conjugate pair of poles b2± which have the
bearings ±1.370 = ±78.5◦.

The extraordinary accuracy of f1(t) and S1(t) in the examples of Table 3 is partly due
to having the poles b2± lying well above b = 0.5571, so the asymptotic order of error is
O(e−Re(b2+)t).

The computations for R1(t) and RS
1(t) integrate along the respective contours {Re(s) = ŝ1}

and {Re(s) = ŝ1}. In Figure 2 we plot the modulus of the integrand along the former contour
leaving saddlepoint ŝ1 = 2.196. While the steepest descent curve is tangent at ŝ1, it clearly
deviates from this vertical line quite quickly since, for y > 0.14, the modulus increases along
the vertical line due to the presence of the pole at 2.581 + 0.1723i.

In all the cases for which entries of R̂1(t) and R̂S
1(t) are given in Table 3, the next highest

saddlepoint above b is vertically oriented and the saddlepoint approximation at this saddlepoint
gives a reasonable assessment for the error magnitude in Cauchy’s theorem. In the m= 2 case,
these saddlepoints were horizontally oriented and this leads to inaccuracy when approximating
R1(t) and RS

1(t). For example, in the case t = 4.658, R̂1(t) = 0.03146i and R̂S
1(t) = 0.03149i

and the imaginary factor i results from the contour integral passing horizontally through the
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FIGURE 2: Plot of Re{KR+ (ŝ1 + iy) − 6(ŝ1 + iy)} versus y ∈ [0, 1] for the m= 3 setting, where ŝ1 =
2.196. The path of steepest descent is tangent at ŝ1 (y = 0).

saddlepoints at ŝ1 = 0.861 and ŝ1 = 0.851, respectively, to the right of pole b. Apart from
the obviously incorrect imaginary factors, their magnitudes are also quite far from the true
values of R1(t) and RS

1(t). Judging from this example and others, the accuracy of saddlepoint
computations as error approximations are in doubt if the saddlepoints are horizontally
oriented.

4. Sparre Andersen and Cramér–Lundberg models

Suppose claims for an insurance company arrive as a renewal process with interarrival
times {Ti} that are i.i.d. and absolutely continuous with MGF MT convergent on {Re(s) < a}
or {Re(s) ≤ a} with 0 < a ≤ ∞. Let the claim amounts {Xi} be positive, i.i.d., and absolutely
continuous with MGF MX convergent on {Re(s) < c} or {Re(s) ≤ c} with 0 < c ≤ ∞. Suppose
that the company’s premiums increase revenue at the constant rate σ > 0 such that E(X −
σT) < 0 so the random walk

∑n
i=1 (Xi − σTi) = :

∑n
i=1 Yi = :Sn, which measures the company

loss, has a negative drift. Under such circumstances, the maximum loss R = supn≥1 Sn is known
to have a compound geometric distribution with MGF P{ML+(s)} in which P(z) = e−B/{1 −
(1 − e−B)z} gives geometric (e−B) weights with B = ∑∞

n=1 P(Sn > 0)/n < ∞. The MGF
ML+ (s) is that of the ascending ladder distribution of the random walk {Sn} and has been
discussed extensively in Feller (1971, Chapter XII). Wiener–Hopf factorization is used to
extract ML+ from MY (s) =MX(s)MT ( − σ s), the MGF of Y = X − σT . The convergence
domain for ML+ is {Re(s) < c} and, assuming that 1 <MY (c) ≤ ∞, the convergence domain
for MR is {Re(s) < b}, where b is the unique positive real root of MY (s) = 1 in (0, c).
Feller (1971, Chapter XVIII, Sections 3–5) discusses Wiener–Hopf factorization and
Butler (2017, Appendix B.4.2) summarises much that is relevant to our discussion. Density
and survival function expansions for R, as in Theorem 3, can be derived, but the integrability
conditions AICD

p and UICD do not seem especially suitable in this context as they can be

difficult to verify for ML+ . The density fL+(t) and, hence, eb+tfL+(t) are most often discontin-
uous at t = 0, so that transform ML+(b+ + iy) is not absolutely integrable in y (Feller (1971,
Chapter XV.3, Theorem 3)) and this refutes a simple sufficient condition for AICD

p and UICD.

Furthermore, BVCD is difficult to verify since fL+(t) is more often intractable. We instead
develop the conclusions of Theorem 3 under some alternative conditions ACSA and AISA

p
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given below, which are more practically useful and suited for distributions with support on
(0, ∞). A proof is given in Section 5.4.1 of Butler (2019a).

ACSA. For some ε1 ∈ (0, c − b),
∫ ∞

0− e(b+ε1)t dfL+ (t) is absolutely convergent.

AISA
p . For some ε1 ∈ (0, c − b), |ML+(b + ε1 + iy)|p is integrable in y for some p > 1.

Theorem 4. (Sparre Andersen model.) Let MT , MX, and P be as described above so that
b ∈ (0, c) is a simple pole of P{ML+(s)}.

Under condition ACSA,

fR(t) = e−bt(− β−1) + o(e−(β+ε)t), t → ∞, (35)

for sufficiently small ε ∈ (0, ε1), where β−1 = Res [P{ML+(s)}, b].
If either of the conditions ACSA or AISA

p holds, then

SR(t) = e−bt(− β−1)

b
+ o(e−(b+ε)t), t → ∞, (36)

for sufficiently small ε ∈ (0, ε1).

The expansion of SR(t) in (36) is the classical result given in Theorem 3.1, Case (i) of
Embrechts and Veraverbeke (1982). Density expansion (35), which implies (36), was first
shown to hold in Butler (2017, Section 5.2) under more restrictive conditions on the MGF
and density of X. By comparison, the assumptions ACSA and AISA

p place conditions on ML+
and fL+ which tend to be weaker and more inclusive, but perhaps more difficult to check in
settings where fL+ is not tractable.

Conditions ACSA and AISA
p , however, are ideally suited for the Cramér–Lundberg setting

in which density fL+ and MGF ML+ take on explicit forms. In this context it is easily shown
that conditions ACSA and AISA

p and Theorem 4 hold without further qualification; see Section
5.4.2 of Butler (2019a). In the Cramér–Lundberg setting the renewal process for claim arrivals
is a Poisson (λ) process so that interarrival times {Ti} for claims are i.i.d. Exponential (λ). If
μ =M′

X(0) then B = − ln(1 − ρ), where ρ = λμ/σ < 1 ensures that the random walk
∑n

i=1 Yi

has a negative drift. The ascending ladder distribution has density fL+(t) = SX(t)/μ, which
is the excess life density with MGF ML+ (s) = {1 −MX(s)}/( − μs). See Section 5.4.2 of
Butler (2019a) for more details.

Corollary 4. (Cramér–Lundberg model.) Suppose that MX is as described above, MT (s) =
(1 − s/λ)−1, and P(z) = (1 − ρ)/(1 − ρz). Let b be the smallest positive root of ρML+ (s) = 1
in (0, c). Then conditions ACSA and AISA

p hold without further conditions, so that

fR(t) = (1 − ρ)e−bt b

λM′
X(b)/σ − 1

+ o(e−(b+ε)t), t → ∞, (37)

SR(t) = (1 − ρ)e−bt 1

λM′
X(b)/σ − 1

+ o(e−(b+ε)t), t → ∞, (38)

for sufficiently small ε ∈ (0, c − b).

The survival expansion (38) is the classical Cramér–Lundberg approximation for ruin
probability as given in Asmussen (2000, III.5, Theorem 5.3). Expansion (37), which implies
(38), was first derived in Butler (2017, Section 5.1) under restrictive conditions on the MGF
and density of X.
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The expansions for fR and SR in both Theorem 4 and Corollary 4 hold to higher asymptotic
order (for larger values of ε > 0) if MGF

MR+ (s) = (1 − ρ)ML+(s)

1 − ρML+ (s)
, Re(s) < b, (39)

can be analytically extended to {Re(s) < b + ε0}\{b} for some ε0 > 0. Corollary 9 of
Butler (2019a, Section 5.4.3) gives the precise conditions.

4.1. Higher-order expansions for the Cramér–Lundberg model

Increasingly accurate approximations can be obtained by adding in additional residue terms
when MR+ in (39) admits an increasing sequence of simple real poles or complex conjugate
pairs. The next result is new and follows from Corollary 3 as shown in Section 5.4.4 of
Butler (2019a).

Corollary 5. (Cramér–Lundberg model.) Assume that the conditions of Corollary 4 hold.
Suppose, furthermore, that MR+ can be analytically continued as in ACCD

m and that MX

satisfies XCL
m .

XCL
m . If bm > c, then εm ∈ (0, ε0) exists such that maxc≤x≤b+

m
|MX(x + iN)| → 0 as

N → ∞, where b+
m = bm + εm and ε0 is specified in condition ACCD

m .

For real-valued poles, then

fR(t) = fm(t) + Rm(t) := (1 − ρ)
m∑

k=1

e−bkt bk

λM′
X(bk)/σ − 1

+ o(e−b+
m t), (40)

SR(t) = Sm(t) + RS
m(t) := (1 − ρ)

m∑
k=1

e−bkt 1

λM′
X(bk)/σ − 1

+ o(e−b+
m t), (41)

as t → ∞. Here,

Rm(t) = 1 − ρ

2π
e−b+

mt
∫ ∞

−∞
MR+ (b+

m + iy)e−ity dy, (42)

and RS
m(t) is expression (42) with the additional integrand term (b+

m + iy)−1. The same
expansions hold with complex conjugate pairs of poles when summed over all pairs of poles.

4.2. Heavy-traffic diffusion approximations

Siegmund (1979) and Blanchet and Glynn (2006) provided diffusion or heavy-traffic
approximations for the distribution of R in the Sparre Andersen model which are directly
related to the expansions above. In particular, the complete asymptotic expansion of Blanchet
and Glynn (2006, Equation 5) is exactly the survival expansion (36) in Theorem 4, and
the corrected diffusion approximation of Siegmund (1979, Equation 28) is a lower-order
approximation to this expansion as discussed further below. The importance of these papers
is that they address the computation of the residue coefficient β−1 = Res [P{ML+(s)}, b], a
task made quite difficult due to its dependence on ML+ . These papers are less relevant in
the Cramér–Lundberg setting since explicit values for this residue are available and so the
complete expansion of Blanchet and Glynn (2006, Equation 5) is given in (38) of Corollary 4
with even higher-order terms in (41) of Corollary 5.
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Heavy traffic is related to properties of the convex function KY (s) = ln MY (s) for the
random step size Y . From Siegmund (1979), the adjustment coefficient � = b − 0 since 0
and b are the unique zeros for KY (s). Heavy traffic occurs when the negative drift of the
random walk K′

Y (0) ↑ 0 and � = b ↓ 0. In terms of convex KY , this means that the value and
location of its minimum approach 0. The asymptotic regime for heavy traffic has t → ∞, b ↓ 0,

and bt → ξ > 0; see Siegmund (1979). The expansion in (36) holds under asymptotic regime
t → ∞ so it also holds under the more restrictive heavy-traffic regime. Hence, equating the
asymptotic expansion in (36) with that in Blanchet and Glynn (2006, Equation 5) shows their
leading terms must be the same within the heavy-traffic asymptotic regime.

This discussion suggests that improvement over the expansions in both Siegmund (1979)
and Blanchet and Glynn (2006, Equation 5) is possible in the Sparre Andersen setting by
using higher-order expansions comparable to those in Corollary 5. The impediment to this,
however, is in determining the additional residues for poles of P{ML+(s)} further into its
analytic continuation.

4.3. Applications and Cramér–Lundberg examples

Wiener–Hopf factorization in the Sparre Andersen model leads to an explicit rational form
for ML+ when MY (s) =MX(s)MT ( − σ s) is a rational function and B < ∞. Factorization
of 1 −MY (s) into monomials in its numerator and denominator fully identifies those
monomials belonging to the rational factor that determines ML+ (s), so that ML+ is rational;
see Butler (2017, Section B.4.2). Since P is rational, then P{ML+(s)} is rational and its partial
fraction expansion leads to exact computation of the density and survival function of R+.

By contrast, when MY is not rational, then extraction of ML+ (s) is quite difficult except
in the Cramér–Lundberg setting where ML+ is the excess life MGF constructed from MX .
Tijms (2003, Section 9.2.2) considered two Cramér–Lundberg examples which use hyperex-
ponential and Erlang claim distributions. In both instances, however, MX is rational which
leads to rational expressions for ML+ (s) = {1 −MX(s)}/( − μs) and an exact analysis is
possible through partial fraction expansion. We avoid these simpler situations by presenting
two examples in which ML+ is not rational. In the first example, MX is an entire function
while in the second example, MX admits a sequence of increasing poles.

Example 18. (Cramér–Lundberg, Raleigh (1) claims.) Assume that claims follow a Raleigh
(1) distribution with mean 1. Take λ = 1 and σ = 2 so that ρ = 1/2. We wish to determine
f (2.5) and S(2.5) using higher-order expansions. In Figure 3 we show a sequence of simple
poles (♦) for MR+ (x + iy) which occur as zeros for denominator 1 − ρML+ (s) with b = 0.913
(♦) as the real pole at the boundary of convergence. Higher-order poles lie approximately
on the 45◦ line with x ≈ y. Interspersed in between the poles are saddlepoints ( ◦ ) for
MR+ (s)e−2.5s. The lines through the saddlepoints indicate the directions of steepest descent.
Not shown are the matching complex conjugate poles and saddlepoints located below the real
axis. Real saddlepoint ŝ0 = 0.4753( ◦ ) lies inside the convergence domain.

In Table 4 we show the accuracy for asymptotic expansions in (40) and (41) of orders m = 1
to m = 7 for the values fR(2.5) and SR(2.5). First-order expansion f1(2.5) = 0.056 68 attains
4 (3 significant) digit accuracy and this exceeds the accuracy of saddlepoint approximation
fSP\(2.5) = 0.060 46. First-order expansion S1(2.5) = 0.062 071 4 attains similar accuracy and
exceeds that of saddlepoint approximation SSP\(2.5) = 0.062 17.
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FIGURE 3: A plot showing the alternating pattern of poles (♦) and saddlepoints ( ◦ ) for MR+ (s)e−2.5s

for s = x + iy ∈C with x, y ≥ 0. Lines through saddlepoints indicate the directions of steepest descent.

TABLE 4: (Cramér–Lundberg, Raleigh claims). Errors of various residue approximations for density and
survival function values fR(2.5) and SR(2.5) using a Raleigh (1) claim distribution with mean 1. For a

description of other entries, see Table 2.

m

1 2 3 4 5 6 7

fR(2.5) = 0.056 611 657 517 109 792 008 983 897 080

fR − fm −0.04698 0.05247 −0.07578 −0.07160 0.08320 −0.09147 −0.09119
R̂m −0.04823 0.05237 −0.07786 −0.07111 0.08289 −0.010404 −0.09102

SR(2.5) = 0.062 043 948 141 506 505 125 940 182 011

SR − Sm −0.04275 0.06539 −0.07255 0.09140 0.09325 −0.010279 −0.011901
R̂S

m −0.04276 0.06461 −0.07239 0.09491 0.09258 −0.010302 −0.011673

Exact values for fR and SR are displayed to a 30 decimal point accuracy and were computed
using numerical integration which roughly follows the path of steepest descent from ŝ0 as
described in Section 4.4 below.

There are some subtleties concerning how the saddlepoint computations were made.
The saddlepoint density value fSP\(2.5) = 0.060 46 results if (22) is used only with ŝ0 =
0.4753. However, upon viewing the pattern of saddlepoints and poles in Figure 3, additional
saddlepoint terms are needed to approximate f (2.5) when based on the method of steepest
descents. The contour for this path must be deformed to pass through the saddlepoint ŝ0 but
also the saddlepoints ŝ1± = 2.703 ± 3.807i with steepest descent directions ±0.723 ≈ ±41.4◦.
The sum of all three contributions is 0.060 44 and about the same value. Likewise, in the
computation of R̂1, saddlepoint computation requires summing four contributions over ŝ1±
and ŝ2± = 2.817 ± 2.821i with the latter having steepest descent directions ±2.23 ≈ ±128.0◦.
This yields the value for R̂1 in Table 4. The value SSP \(2.5) = 0.062 17 was computed
using the Lugannani–Rice approximation, which accommodates for the pole at s = 0 using
the Bleistein (1966) method, but which is not based upon following the path of steepest
descent. Saddlepoint approximation using (23) and summing over saddlepoints ŝ0 = 0.6504
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TABLE 5: (Cramér–Lundberg, truncated extreme value claims). Errors of various residue approximations
for density and survival function values fR(4.5) and SR(4.5) using a truncated extreme value claim

distribution. For a description of other entries, see Table 2.

m

1 2 3 4 5 6

fR(4.5) = 0.030 179 752 039 210 535 538 667 337 228

fR − fm −0.05389 0.06117 −0.09136 0.012388 −0.015707 0.017115
R̂m −0.05409 0.06102 −0.09180 0.011393i −0.014282 −0.014114i

SR(4.5) = 0.065 156 088 639 497 614 225 253 072 583

SR − Sm −0.05176 0.07404 −0.010338 0.013776 −0.015118 0.018165
R̂S

m −0.06184 0.07358 −0.010442 0.012881i −0.015461 0.015183i

and ŝ1± = 2.679 ± 3.794i leads to 0.058 17 which, as expected, is less accurate due to not
accommodating the pole at s = 0.

Example 19. (Cramér–Lundberg, truncated extreme value claims.) Assume that the claim
distribution has the density (1 − e−1) exp ( − t − e−t) 1{t>0} with mean μ = 1.260. Its MGF
is derived in Section 5.4.8 of Butler (2019a) as

MX(s) = 1

1 − e−1

1

1 − s
1F1(1 − s;2 − s; − 1), (43)

where 1F1 denotes the confluent hypergeometric function. Expression (43) admits simple poles
at s ∈ {1, 2, . . .} at which MR+ (s) is analytic. Interspersed between these poles are simple zeros
for the denominator of MR+ (s) which occur at

b = b1 = 0.4632 < b2 = 2.226 < 2.896 < 4.023 < 4.995 < 6.001 = b6.

We choose λ = 1/μ and σ = 2 so that ρ = 1
2 . In between the poles, there are real saddlepoints

for MR+ (s)e−4.5s which are used to approximate error terms for fR(4.5). They occur at

ŝ1 = 2.049 < 2.735 < 3.906 < 4.312( − ) < 5.958 < 6.055( − ) = ŝ6,

where the negative sign (no sign) indicates a saddlepoint that is oriented horizontally
(vertically) so the path of steepest descent is in directions 0, π ( ± π/2). Slightly different
saddlepoints apply when dealing with the survival inversion.

In Table 5 we show that increasingly accurate approximations can be obtained by adding
in additional residue terms from these simple poles. The leading residue terms f1(4.5) =
0.030 175 8 and S1(4.5) = 0.065 154 3 achieve a 5 and 4 decimal point accuracy, and this
exceeds that of the saddlepoint approximations fSP\(4.5) = 0.032 54 and SSP\(4.5) = 0.065 21,

which achieve a 2 and 4 decimal point accuracy. Each additional residue term contributes 2 or
3 more accurate digits in the expansions. The saddlepoint computation of errors R̂m(4.5) and
R̂S

m(4.5) provides a reliable guide for expansion accuracy by capturing the correct order for
error except, as previously seen, when horizontally oriented saddlepoints are involved.

Exact computations of fR(4.5) and SR(4.5) were computed by roughly following the path of
steepest descent as described below.
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FIGURE 4: (Raleigh claim distribution). A plot of Re{MR+ (ŝ0 + iy)e−ity} versus y (solid line) and its
asymptotic expression μ−1(1 − ρ)y−1 sin (ty) versus y (dashed line) shows that the former plot resembles

a slowly dampened sine function. Here, t = 2.5, μ = 1, and ρ = 1
2 .

4.4. Steepest descent inversion required

In both examples of Section 4.3, numerical confirmation for the accuracy of various
approximations for fR(t) and SR(t) required choosing inversion contours that are more specific
to the examples than those in (34). In fact, for all Cramér–Lundberg examples, the integrand
for the inversion in (34) is of order O{y−1 sin(ty)} as y → ∞ and not absolutely integrable.
A proof is given in Section 5.4.5 of Butler (2019a).

Theorem 5. (Cramér–Lundberg inversion contour.) Let the inversion integral (34) for fR+ (t)
use an arbitrary contour {Re(s) = x} for x ∈ [0, b). Then, the integrand in (34) for the resulting
inversion integral which computes fR+(t) has the asymptotic expansion

e−xt 1

π
Re{MR+ (x + iy)e−ity} ∼ (1 − ρ)e−xt

πμ

sin (ty)

y
, y → ∞. (44)

Thus, the left-hand side of (44) is conditionally integrable in y but not absolutely integrable.
The integrand for inversion of SR+ (t) if x 
= 0 has the expansion

e−xt 1

π
Re

{MR+ (x + iy)e−ity

x + iy

}
∼ (1 − ρ)e−xt

πμ

cos (ty)

y2
, y → ∞, (45)

so the left-hand side of (45) is absolutely integrable but still converges very slowly.

In Figure 4 we show how quickly the inversion integrand for the density conforms to its
oscillatory asymptotic expansion in (44) when x = ŝ0. Such slowly dampened oscillations
are a major impediment to accurate density and survival function inversion. To avoid such
difficulties in our numerical computations, we deform the inversion contour so it becomes
a contour ray which ultimately approximates the path of steepest descent in direction θ ∈
[0, π/2]. Instead of integrating from ŝ0 − i∞ to ŝ0 + i∞ as in (34), we choose ray angle
θ above the real axis and ray angle −θ below the real axis. Thus, our deformation of the
integration is along three lines: from ŝ0 − iπ + e−iθ∞ to ŝ0 − iπ to ŝ0 + iπ to ŝ0 + iπ + eiθ∞.
As shown in Section 5.4.6 of Butler (2019a), this provides the following inversion expression.

Theorem 6. (Cramér–Lundberg deformed contour.) Let absolutely continuous variable R+
have density fR+ (t) on (− ∞, ∞) which is locally of bounded variation at t. Suppose that its
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MGF MR+ (s) converges in the right half-plane on {0 ≤ Re(s) < b} for b > 0. Furthermore,
assume that

max
θ≤φ≤π/2

|MR+ (ŝ0 + iπ + Neiφ)| → 0, N → ∞,

and also assume that MR+ is analytic in the sector {ŝ0 + iπ + reiφ : r ≥ 0, φ ∈ [θ, π/2]}.
Then, the inversion integral (4) for fR+(t) which passes through the saddlepoint ŝ0 may be
deformed so that

fR+ (t) = e−ŝ0t 1

π

∫ π

0
Re{MR+ (ŝ0 + iy)e−ity} dy (46)

+ e−ŝ0t 1

π

∫ ∞

0
Im [MR+ (ŝ0 + iπ + reiθ ) exp{i(θ − tπ ) − treiθ }] dr. (47)

The inversion for SR+ (t) is the same as in (46) and (47) but includes the additional integrand
factors (ŝ0 + iy)−1 and (ŝ0 + iπ + reiθ )−1 inside the curly and square braces of (46) and (47),
respectively.

Contour deformation, as in Theorem 6, leads to extraordinary gains in computational
efficiency over (34) for numerical inversion. This is demonstrated in Example 20, which
provides a setting in which the ultimate steepest descent direction is θ ≈ 50.6◦, and also in
Example 21 where the ultimate direction is θ = 0.

Example 20. (Raleigh (1) claims.) Exact values for fR and SR in Table 4 are given to a 30
decimal point accuracy and were computed using (46) and (47) and following a ray that
approximates the path of steepest descent. The improper integral in (47) was truncated at
N = 60. This path starts at saddlepoint ŝ0 = 0.4753 goes to ŝ0 + iπ, and then follows the ray
θ = 9π/32 ≈ 50.6◦ which lies slightly above the 45◦ ray on which we find the sequence of
poles for MR+ . These ‘exactly’ computed values were confirmed to agree (to 30 digits) with
computed values for f1 + R1 and S1 + RC

1 , where R1 and RC
1 were computed as in (46) and

(47) but with ŝ0 replaced by 3 > b and using a slightly different direction θ = 10π/32 ≈ 56.2◦.
By comparison, integration along the vertical contours in (34) with N = 500 was quite

far from exact with fR(2.5) ≈ 0.056 593 and SR(2.5) ≈ 0.062 043 98. The density error is
0.0319 and less accurate than first-order approximation f1(2.5) and the survival error is 0.0730
and comparable to S3(2.5). The problem with accuracy is due to the slowly dampened and
oscillatory nature of the integrand as seen in Figure 4 and highlighted in Theorem 5.

Example 21. (Truncated extreme value claims.) Exact computations of f (4.5) and S(4.5) used
the inversion contour in (46) and (47) which passes through saddlepoint ŝ0 = 0.4632, ŝ0 + π i
and follows a horizontal ray with θ = 0 and truncated with N = 60. Justification for using
Theorem 6 is given in Section 5.4.8 of Butler (2019a). These computations were confirmed to
a 30 digit accuracy using Cauchy’s theorem and passing the inversion also through saddlepoint
ŝ5 and using θ = π/32.

To determine what sort of accuracy can be achieved numerically when the contour of
integration stays within the convergence region as in (34), we used integration on vertical
contours with N = 500 and 502. Since the integrand is a slowly dampened sine wave, the
numerical integration fluctuates with increasing N. A separation of 2 for N = 500 and 502
satisfies sin (4.5N) ≈ − sin{4.5(N + 2)} and should lead to two numerical results which have
errors of opposite signs. This is what happened as we obtained f (4.5) ≈ 0.030 171 8 and
0.030 189 2 with errors 0.0579 and −0.0595, and S(4.5) ≈ 0.065 156 10 and 0.065 156 085
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with errors of −0.0711 and 0.0837. Even with the use of such a massive amount of numerical
integration within the convergence domain, we are only able to achieve roughly the accuracy
of the first- and second-order expansions f1 and S2. Of course, the convergence acceleration
methods of Abate and Whitt (1992) and Strawderman (2004) can improve upon these results.

The problem with conventional inversion algorithms is their insistence on using vertical
contours that stay in the convergence domain, which ensures that convergence is slow, rather
than attempting to follow the path of steepest descent which is ultimately in some direction
θ ∈ [0, π/2 − ε) and which takes the contour outside the convergence domain. If we deform
the contour to crudely follow this path, as given in the integration formula of Theorem 6, then
Example 21 shows that numerical integration in MAPLE R© achieves a 30 digit accuracy using
a contour that is 12% = 100( 60

500 )% of the length used in following the vertical contours. Thus,
our integration after deformation far outperforms the truncated integration along the vertical
contour and is, furthermore, more stable and faster per unit of contour length. There seems to
be no sensible reason for applying sophisticated convergence acceleration methods to slowly
converging integrals in the convergence domain in the first place when much faster convergence
can be achieved by deforming the contour to pass into the analytic continuation and to roughly
follow the direction of steepest descent.

From a practical point of view, however, numerical integration is not even needed in this
example since the first three residue terms suffice as a substitute for exact computation. We
know this without making exact computations since the suggested saddlepoint approximations
in the analytic continuation accurately provide the correct orders for these errors.
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