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ABSTRACT
Stiffened wing and fuselage panels often have a postbuckling reserve of strength, enabling
them to carry loads far in excess of their critical buckling loads. Therefore allowing for
postbuckling in design can reduce their weight, hence reducing fuel consumption and environ-
mental impact. The present paper extends the postbuckling analysis in the exact strip software
VICONOPT to more accurately reflect the skewed mode shapes arising from shear load and
anisotropy. Such mode shapes are represented by a series of sinusoidal responses with dif-
ferent half-wavelengths which are coupled together using Lagrangian multipliers to enforce
the boundary conditions. In postbuckling analysis the in-plane deflections involve responses
with additional half-wavelengths which are absent from the out-of-plane deflection series.
Numerical results are presented and compared with finite element analysis for validation. The
present analysis gives close results compared to the finite element and finite strip methods and
saves computational time significantly.
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NOMENCLATURE
Ai, Bi membrane and bending-membrane stiffness at node i
b width of plate
D displacement vector
f eigenparameter, i.e. load factor
f * trial value of f
I, O identity matrix and null matrix
J number of eigenvalues below f *
J0 number of fixed end eigenvalues below f *
Jm number of fixed end eigenvalues of member m below f *
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K( f ) global stiffness matrix
K�( f ) upper triangular form of K( f )
l length of plate
L longitudinal interval of mode repetition
n number of strips
Nx, Ny, Nxy stress resultant vectors
ui, vi in-plane displacements at node i
wi, ϕi out-of-plane displacements and rotations at node i
εx, εy uniform longitudinal and transverse strains
εxi, εyi, εxyi membrane strains at node i
κxi, κxi, κxyi curvatures at node i
λm, λn longitudinal half-wavelength
ξ parameter defining mode repetition

Subscripts
i node number
k half-wavelengths for in-plane displacements
m, n half-wavelengths for out-of-plane displacements
Q number of unique values of k

1.0 INTRODUCTION
Mass minimisation is a crucial objective in aircraft design to reduce the cost of manufactur-
ing, environmental impact and fuel consumption(1). This objective can be realized by using
composite material, which can provide better performance than traditional metals in terms of
the strength to weight ratio and the stiffness to weight ratio. Additionally, from a structural
perspective, it is well known that stiffened wing and fuselage panels often have a postbuck-
ling reserve of strength, allowing them to carry compressive and shear loads exceeding the
initial buckling load(2). Therefore the postbuckling behaviour is also considered when con-
ducting an aircraft design. Figure 1 shows the behaviour of plate structures in buckling and
postbuckling ranges. With increasing in-plane load P, the curve follows path A which for a
perfect plate shows no displacement w until the critical buckling load is reached. After the
bifurcation point B, the curve follows path C for a linear idealization. For large deflection
analysis, the curve follows the non-linear path D with increasing slope. The path E indicates
buckling and postbuckling behaviour for an imperfect plate.

Research on postbuckling has continued for over a century. The first postbuckling theory
can be traced back to 1910 by von Karman who first introduced the large deflection the-
ory(3). Later on, energy considerations for postbuckling analysis were made by Cox et al. (4)

After that, Koiter(5) developed the classical nonlinear bifurcation theory which accelerated the
development of nonlinear buckling analysis. Local postbuckling analysis for stiffened panels
was first investigated by Graves-Smith and Sridharan(6). Dawe et al. (7) used the finite strip
method(8) to analyse local postbuckling.

Stein(9) created an analytical postbuckling solution for isotropic and orthtropic plate under
compression and shear.

Compared to the finite element method and finite strip method, the exact strip method saves
computational time significantly due to a much smaller stiffness matrix. Unlike the finite strip
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Figure 1. Load-displacement graph for postbuckling problem.

method, the exact strip method(10) for prismatic plate assemblies requires no discretisation in
the transverse direction. Instead, analytical solutions of the governing differential equations
are obtained, resulting in transcendental eigenvalue problems for critical buckling and free
vibration.

In the simplest (VIPASA) form of the analysis(11), the mode shape of buckling or vibra-
tion is assumed to vary sinusoidally in the longitudinal (x) direction. The computation is
repeated for a set of user specified half-wavelengths λ and converges to the required eigen-
values (i.e. critical buckling loads or natural frequencies) for each λ to any required accuracy
using the Wittrick-Williams (W-W) algorithm(12,13). By choosing half-wavelengths λ which
divide exactly into the panel length l, exact solutions are obtained for isotropic and orthotropic
panels with simply supported ends and which carry no shear load.

In the VICON analysis(14), the mode shape is represented by a series of sinusoidal terms
with different half-wavelengths, in order to analyse panels which are anisotropic or carry
shear loads. The eigenvalues are also found using the W-W algorithm, with an extension
to allow constraints which couple the exact stiffness matrices for different half-wavelengths
so as to satisfy the boundary conditions at the longitudinal ends of the structure. Thus a
shear loaded panel can be accurately represented. VICON analysis improves the accuracy
for these more general buckling problems and also retains the advantage of computational
efficiency, having been shown to be more than 100 times faster than the finite element program
STAGS(15).

This paper outlines recent developments in exact strip postbuckling analysis. The present
analysis improves the previous postbuckling analysis in VIPASA to cover plates which are
anisotropic or loaded in shear. The governing in-plane equations are derived and solved ana-
lytically, using a formulation which extends that of Che et al. (1) from VIPASA to VICON
analysis by including more half-wavelengths. Implementation in the exact strip software
VICONOPT(10) thus allows accurate postbuckling analysis for panels with shear loads and
anisotropy. Numerical results are given and compared with finite element results to validate
the proposed analysis.
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2.0 EXACT STRIP ANALYSIS AND WITTRICK-WILLIAMS
ALGORITHM

The exact strip method is a numerical analysis method which is similar to the finite strip
method(8) but provides faster and more accurate analysis by reducing the partial differen-
tial governing equations to ordinary differential equations which are solved analytically. As
in many structural analysis methods, a global stiffness matrix K is assembled using the ele-
ment stiffness matrices. The elements of K are transcendental functions of the loads and/or
the vibration frequency. Thus the critical buckling loads and natural frequencies can be
determined by solving the transcendental eigenvalue problem

KD = 0 . . . (1)

where D is the displacement amplitude vector.
The exact strip method reduces the global stiffness matrix to much smaller order than that

of the finite element method. Computational time is therefore saved significantly. In addition
the accuracy of exact strip method is more than enough for preliminary aircraft design. A
disadvantage compared with the finite element and finite strip methods is that buckling or free
vibration requires the solution of a transcendental, rather than a linear eigenvalue problem.
However transcendental eigenvalue problems can be solved accurately, quickly and reliably
using the W-W algorithm(12,13).

Instead of finding the eigenvalues directly, the W-W algorithm counts the number of eigen-
values which lie below any trial value f * of f, the load factor or frequency of vibration.
The eigenvalues can be referred to as critical buckling load factors or natural frequencies
of vibration. The general form of the algorithm can be written as

J = J0 + s
{
K

(
f ∗)} . . . (2)

where J is the number of eigenvalues lying between zero and the trial value f ∗; J0 is the
number of eigenvalues which would still be exceeded by f ∗ if constraints were imposed so
as to make all the displacements D zero; s {K ( f ∗)} is known as the sign count of K, i.e. the
number of negative diagonal elements of the upper triangular matrix K� ( f ∗) obtained from
K ( f ∗) by Gauss elimination(13). J0 can be calculated from

J0 =
∑

m
Jm . . . (3)

where Jm, the number of eigenvalues of member m exceeded at the trial value f ∗ when its
ends are fully restrained, can be obtained analytically or by numerical procedures(11).

3.0 EXACT STRIP SOFTWARE VICONOPT
VICONOPT(10) covers buckling, postbuckling and free vibration of prismatic assemblies of
anisotropic plates loaded by a combination of longitudinally invariant in-plane stresses. The
VIPASA analysis in VICONOPT assumes the displacements u, v and w vary sinusoidally in
the longitudinal direction with half-wavelength λ as shown in Fig. 2. This assumption gives
the out-of-plane displacements as
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Figure 2. Simply supported end conditions in VIPASA analysis.

Figure 3. Load and strain paths of VICON and VIPASA for shear or anisotropy.

w = f1( y)sin
(πx

λ

)
. . . (4)

where f1( y) is a function of the transverse location y which is obtained from analytical
solutions of the governing equations.

For an orthotropic panel with the simply supported boundary conditions shown in Fig. 2,
straight nodal lines are located at sinusoidal intervals which depend on the half-wavelength
λ. Therefore simply supported end conditions are automatically satisfied if λ divides exactly
into the panel length l.

The above assumptions of no shear load or anisotropy are conditions of VIPASA analysis. If
they are violated the nodal lines become skewed and are no longer parallel to the longitudinal
ends. Thus the end conditions are not satisfied and VIPASA gives conservative buckling and
vibration results, perhaps underestimating the critical buckling load by up to 50%(16).

VICON analysis overcomes this weakness of VIPASA by coupling the stiffness matrices
of different half-wavelengths and using Lagrangian Multipliers to minimise the total energy
of the panel subject to point constrains, e.g. to approximate the required end conditions, see
Fig. 2. It can therefore handle assemblies of plates which carry shear load or are made from
anisotropic material, or which have a variety of boundary conditions including attachments
to beam-type supporting structures(14). Figure 3 shows the VIPASA and VICON differences
in the initial buckling stage and a prediction of the VICON postbuckling path when there is
shear or anisotropy.

An infinitely long panel is modelled, with the end supports repeating at longitudinal inter-
vals of the panel length l, see Fig. 4. The mode shapes are assumed to repeat in the longitudinal
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Figure 4. Illustration of an infinitely long plate assembly with point supports (a) plan view (b) isometric view.

direction at intervals of L = 2l/ξ , where ξ is a parameter in the range 0 ≤ ξ ≤ 1. The
mode shapes can therefore be represented(14) by a series of responses with half-wavelengths
l/(ξ + 2m) where m is any integer. Sufficient accuracy is obtained by considering a finite
series of half-wavelengths

λm = l

(ξ + 2m)
(m = 0, ±1, ±2, . . . , ±q) . . . (5)

where the integer q determines the number of terms in the series.
Like VIPASA analysis, VICON analysis uses the W-W algorithm to obtain the natural fre-

quencies of vibration and the critical buckling loads. Derivations of the governing equations
and stiffness matrices, and the use of Lagrangian multipliers can found in(14,17).

4.0 POSTBUCKLING IN VIPASA
Aircraft structures such as stiffened panels can often carry loads far in excess of their critical
buckling loads. By fully utilising the postbuckling reserve of strength, the aircraft mass can be
significantly reduced. Postbuckling in VICONOPT(18) firstly assumed that plates with regu-
lar geometry are simply supported and buckle sinusoidally with half-wavelength λ. The stress
distribution was assumed to remain invariant in the longitudinal direction. Later on, Anderson
and Kennedy(2) implemented a Newton iteration scheme into VICONOPT to improve the
convergence on the critical buckling load and associated mode which solve Equation (1). The
mode vector D = {Dj; j = 1, . . . n} includes displacements and rotations both at the longitu-
dinal plate edges and strip edges of each plate. K = {Kj; i, j = 1, . . . n} is the corresponding
exact stiffness matrix, which is a transcendental function of the stress resultants in each strip,
and hence also of D. Suppose that

D = D∗ + d . . . (6)

where D∗ is a trial mode vector and d = {dj; j = 1, . . . n} is the adjustment needed to D∗ in
order to solve Equation (1), The Newton iteration is expressed in the matrix form as

(
K∗ +

∑n

j=1

∂K∗

∂Dj
dj

)
(D∗ + d) =0 . . . (7)
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where K∗ = K(D∗). Neglecting higher order terms, Equation (7) becomes

∑n

j=1

(
K∗

ij +
∑n

k=1

∂K∗
ik

∂Dj
D∗

k

)
dj = −

∑n

j=1
K∗

ijD
∗
j (i = 1, . . .n) . . . (8)

After solving the equation, adjustments vector d can be obtained. Substituting d into
Equation (6) gives the mode vector D which is used in the new iteration.

Che et al. (1) obtained a more accurate stress distribution using an improved exact strip
postbuckling analysis extended from Stein(9). In this method, plates are divided into lon-
gitudinal strips, for which the governing equations are derived and solved analytically. It
utilizes the out-of-plane results obtained from VIPASA analysis which vary sinusoidally
with one half-wavelength λ. The out-of-plane displacement and rotation at node i are
given by

wi = wiccos
(πx

λ

)
+ wissin

(πx

λ

)
;ψi =ψiccos

(πx

λ

)
+ψissin

(πx

λ

)
. . . (9)

The in plane displacements are assumed to vary as the sums of linear, constant and
sinusoidal terms with two half-wavelengths λ and λ/2.

ui = ε
(

x − a

2

)

+ ui0 + uiccos
(πx

λ

)
+ uissin

(πx

λ

)
+ uiccos

(
2πx

λ

)
+ uissin

(
2πx

λ

)
. . . (10)

vi = vi0 + uiccos
(πx

λ

)
+ vissin

(πx

λ

)
+ viccos

(
2πx

λ

)
+ vissin

(
2πx

λ

)
. . . (11)

The improved method shows a great improvement compared to the previous one. However,
because it is restricted to the VIPASA analysis, when solving problems of anisotropic plates
or plates loaded in shear the skewed modes do not satisfy the end conditions and the results
have unrealistically high errors or may fail to converge.

5.0 POSTBUCKLING IN VICON
VICON can solve shear loaded and anisotropic plate problems more accurately by coupling
responses with more than one half-wavelength. Based on Che’s improved exact strip postbuck-
ling method(1), accurate stress distributions can be found for each stage of the postbuckling.
Previous postbuckling analysis with the VIPASA analysis of VICONOPT gives good agree-
ment for orthotropic plates without shear, i.e. with no skewing in the mode shape. Therefore
applying the improved exact strip method could also allow for postbuckling when the VICON
analysis is used.

The previous method was based on out-of-plane deflection results obtained from VIPASA
analysis, i.e. only one half-wavelength was included. In VICON analysis, the out-of-plane
displacements are assumed to vary as the sum of sinusoidal responses with more than one
half-wavelength. As a result, the in-plane displacements, strains and stress resultants to be
found by the following analysis will involve responses with additional half-wavelengths, as
shown in Fig. 5.
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Figure 5. Calculation procedures.

5.1 Displacements
The plates are divided into n-1 strips with arbitrary width, as identified by the n nodes at
the strip edges. At each node i, the out-of-plane deflections wi and rotations ϕi about the x
axis are assumed to vary as the sum of sinusoidal responses in the longitudinal direction with
half-wavelengths λm, and are written in the form

[
wi

ϕi

]
=

[∑
mwimccos πx

λm
+ wimssin πx

λm∑
mϕimccos πx

λm
+ ϕimssin πx

λm

]
. . . (12)

where the amplitudes wimc, wims, ϕimc and ϕims are obtained from a VICON eigenvalue analysis
at the previous iteration.

According to classical plate theory, it is assumed that ϕi = wi
′, where the prime indicates

the derivative with respect to the transverse direction y. The subscript m denotes the sequence
of out-of-plane half-wavelengths.

As described above, the in-plane displacements are assumed to be:

[
ui

vi

]
=

[
εx

(
x − a

2

) + ∑
kuikccosπx

λk
+ uikssinπx

λk

εy

(
y − b

2

) + ∑
kvikccosπx

λk
+ vikssinπx

λk

]
. . . (13)

The linear terms εx and εy denote the applied longitudinal and transverse strains. The sub-
script k denotes the sequence of in-plane half-wavelengths. a is the plate length and b is its
width.

5.2 Strains and curvatures
Based on von Karman’s large deflection theory, strains and curvature are given by:

⎡
⎢⎢⎢⎢⎢⎢⎣

εxi

εyi

εxyi

κxi

κyi

κxyi

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ui
∂x + 1

2

(
∂wi
∂x

)2

∂vi
∂y + 1

2

(
∂wi
∂y

)2

∂ui
∂y + ∂vi

∂x + ∂wi
∂x

∂wi
∂y

− ∂2wi
∂x2

− ∂2wi
∂y2

−2 ∂
2wi
∂x∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

εxi0

εyi0

γxyi0

κxi0

κyi0

κxyi0

εxi1c

εyi1c

γxyi1c

κxi1c

κyi1c

κxyi1c

εxi1s

εyi1s

γxyi1s

κxi1s

κyi1s

κxyi1s

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

cos
(
πx
λ1

)
sin

(
πx
λ1

)
cos

(
πx
λ2

)
sin

(
πx
λ2

)
cos

(
πx
λ3

)
sin

(
πx
λ3

)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . (14)
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Substituting from Equation (13) into Equation (14) gives

[
εi

κ i

]
=

[
ε0(wi)
κ0(wi)

]
+

[
ε1

0

]
ui +

[
ε2

0

]
u′

i . . . (15)

wi =

⎡
⎢⎢⎢⎢⎢⎣

wi1c

wi1s

wi2c

wi2s
...

⎤
⎥⎥⎥⎥⎥⎦ , ui =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vi0

vi1c

vi1s

vi2c
...

ui0

ui1c

ui1s

ui2c
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, εi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εxi0

εxi1c

εxi1s

εxi2c
...
εyi0

εyi1c

εyi1s

εyi2c
...

γxyi0

γxyi1c

γxyi1s

γxyi2c
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κxi0

κxi1c

κxi1s

κxi2c
...
κyi0

κyi1c

κyi1s

κxi2c
...

κxyi0

κxyi1c

κxyi1s

κxyi2c
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . (16)

The vector ε0 (wi) can also be partitioned into

⎡
⎣ ε0x (wi)

ε0y (wi)

ε0xy (wi)

⎤
⎦, where

ε0x (wi)= 1

2

(
∂w

∂x

)2

=

1

2

∑
m

∑
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−wimcwinc
π2

λmλn
sin

(
πx
λm

)
sin

(
πx
λn

)
+wimswins

π2

λmλn
cos

(
πx
λm

)
cos

(
πx
λn

)
−wimcwins

π2

λmλn
sin

(
πx
λm

)
cos

(
πx
λn

)
−wimswinc

π2

λmλn
cos

(
πx
λm

)
sin

(
πx
λn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. . . (17)

ε0y (wi)= 1

2

(
∂w

∂y

)2

=

1

2

∑
m

∑
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕimcϕinc
π2

λmλn
cos

(
πx
λm

)
cos

(
πx
λn

)
+ϕimsϕins

π2

λmλn
sin

(
πx
λm

)
sin

(
πx
λn

)
+ϕimcϕins

π2

λmλn
cos

(
πx
λm

)
sin

(
πx
λn

)
+ϕimsϕinc

π2

λmλn
sin

(
πx
λm

)
cos

(
πx
λn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. . . (18)
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Table 1
Summations of half-wavelengths l/m and l/n, m,n=(1,3,5)

Summations n = 1 n = 3 n = 5
m = 1 2 4 6
m = 3 4 6 8
m = 5 6 8 10

ε0xy (wi)= ∂w

∂x
· ∂w

∂y
=

∑
m

∑
n

π

λm

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wimsϕinc
π2

λmλn
cos

(
πx
λm

)
cos

(
πx
λn

)
−wimcϕinc

π2

λmλn
sin

(
πx
λm

)
cos

(
πx
λn

)
+wimsϕins

π2

λmλn
cos

(
πx
λm

)
sin

(
πx
λn

)
−wimcϕins

π2

λmλn
sin

(
πx
λm

)
sin

(
πx
λn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. . . (19)

Substituting λm = l/m, λn = l/n into Equations (17)– (19) and simplifying,

ε0x (wi)= π2

4l2

∑
m

∑
n
mn

⎛
⎜⎜⎜⎜⎜⎝

(wimcwinc + wimswins) cos[(m − n)πx
l ]

+ (wimswins − wimcwinc) cos[(m + n)πx
l ]

+ (−wimswinc − wimcwins) sin[(m + n)πx
l ]

+ (−wimcwinc + wimswins) sin[(m − n)πx
l ]

⎞
⎟⎟⎟⎟⎟⎠ . . . (20)

ε0y (wi)= 1

4

∑
m

∑
n

⎛
⎜⎜⎜⎜⎜⎝

(ϕimcϕinc + ϕimsϕins) cos[(m − n)πx
l ]

+ (ϕimcϕinc − ϕimsϕins) cos[(m + n)πx
l ]

+ (ϕimsϕinc − ϕimcϕins) sin[(m − n)πx
l ]

+ (ϕimcϕins + ϕimsϕinc) sin[(m + n)πx
l ]

⎞
⎟⎟⎟⎟⎟⎠ . . . (21)

ε0xy (wi)= π

2l

∑
m

∑
n
m

⎛
⎜⎜⎜⎜⎜⎝

(wimcϕinc + wimsϕins) cos[(m − n)πx
l ]

+ (wimsϕinc − wimcϕins) cos[(m + n)πx
l ]

+ (−wimcϕinc + wimsϕins) sin[(m + n)πx
l ]

+ (−wimcϕinc + wimsϕins) sin[(m − n)πx
l ]

⎞
⎟⎟⎟⎟⎟⎠ . . . (22)

Here c and s denotes the cos components and sin components respectively. The values
of (m − n) and (m + n) decide the number of in-plane half-wavelengths λm to be used,
which are generalized from summations and subtractions of the out-of-plane wavelength
terms. For example, if ξ = 1 and q = 2 in Equation (5), the out-of-plane half-wavelengths
are λm = l/m, m = (1, 3, 5). The summations and subtractions are shown in Tables 1 and 2,
respectively.
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Table 2
Subtractions of half-wavelengths l/m and l/n, m,n=(1,3,5)

Subtractions n = 1 n = 3 n = 5
m = 1 0 −2 −4
m = 3 2 0 −2
m = 5 4 2 0

Considering the unique values in Tables 1 and 2, the half-wavelengths for the in-plane dis-
placements will be λk = l/k, k=(0,1,2,3,4,5,6,8,10). When (m-n)=0, i.e. the half-wavelength
λk = ∞, its cosine term is a constant term while its sine term is identically zero and is omitted
from the analysis.

In Equation (15),

ε1 =
⎡
⎢⎣

J

02Q−1

02Q−1

02Q−1

02Q−1

J

⎤
⎥⎦ , ε2 =

⎡
⎢⎣

02Q−1

02Q−1

I2Q−1

02Q−1

I2Q−1

02Q−1

⎤
⎥⎦ . . . (23)

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
π
l

0

0

0

0
...

0

0

0

0

−λ2ωi

0

0
...

0

0

0

λ2
π
l

0

0

0
...

0

0

0

0

0

0

−λ3
π
l

...

0

0

0

0

0

λ3
π
l

0
...

0

0

· · ·
· · ·
· · ·
· · ·
· · ·
. . .

0

0

0

0

0

0

0

0

0

−λk
π
l

0

0

0

0

0

0

λk
π
l

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . (24)

where I2Q−1 and 02Q−1 are unit and null matrices of order of 2Q-1, respectively and Q is the
number of unique values of k found from Tables 1 and 2.

An analogous procedure can be used to find the curvatures κ i. For simplicity, these are
not given here, as the following section shows that they are not required when the coupling
stiffness matrix B = 0, e.g. for the common situations of composite plates with a symmetric
layup.

5.3 Stresses and equilibrium equations
The stress resultants Nxi, Nyi and Nxyi are needed for the equilibrium equations and final analy-
sis. For a general anisotropic plate, the relationships between stress and strain can be obtained
by

⎡
⎣ Nxi

Nyi

Nxyi

⎤
⎦ =

⎡
⎣ Ai11

Ai12

Ai16

Ai12

Ai22

Ai26

Ai16

Ai26

Ai66

⎤
⎦

⎡
⎣ εxi

εyi

εxyi

⎤
⎦ +

⎡
⎣ Bi11

Bi12

Bi16

Bi12

Bi22

Bi26

Bi16

Bi26

Bi66

⎤
⎦

⎡
⎣ κxi

κyi

κxyi

⎤
⎦ . . . (25)
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Substituting Equation (25) into Equation (15) gives

[
Ni

N ′
i

]
= Ai

[
ε0(wi)

ε′
0(wi)

]
+ Bi

[
κ0(wi)

κ ′
0(wi)

]
+ Aiε1

[
ui

u′
i

]
+ Aiε2

[
u′

i

u′′
i

]
. . . (26)

where

N i =
[
N1 N2 N3 · · · N2Q−1

]T
. . . (27)

Ai =
⎡
⎢⎣

Ai11I2Q−1

Ai12I2Q−1

Ai16I2Q−1

Ai12I2Q−1

Ai22I2Q−1

Ai26I2Q−1

Ai16I2Q−1

Ai26I2Q−1

Ai66I2Q−1

⎤
⎥⎦ . . . (28)

Bi =
⎡
⎢⎣

Bi11I2Q−1

Bi12I2Q−1

Bi16I2Q−1

Bi12I2Q−1

Bi22I2Q−1

Bi26I2Q−1

Bi16I2Q−1

Bi26I2Q−1

Bi66I2Q−1

⎤
⎥⎦ . . . (29)

ε′
0(wi) is the derivative of ε0(wi) with respect to y.

After obtaining all these expressions, the equilibrium equations are assembled and solved
to find the in-plane displacements u and v.

∂Nyi

∂y
+ ∂Nxyi

∂x
= 0 . . . (30)

∂Nxyi

∂y
+ ∂Nxi

∂x
= 0 . . . (31)

Substituting Equation (25) into the Equations (30) and (31), for each node 2*(2Q-1) equi-
librium equations are given in terms of the unknowns ui and vi. After solving the equilibrium
equations, substituting the values of ui and vi back into Equations (14) and (25) gives the
strains and stresses.

All the plate edges are restrained against out-of-plane deflection. Three different in-plane
boundary conditions are considered on the longitudinal edges: free edges, fixed edges and
straight edges. In the free edge case there is no restraint on transverse displacement. The fixed
edge case has transverse displacement constraints on all components of v. For the straight
edge case, the two longitudinal edges remain straight but can move towards or away from
each other. Restraints are imposed on all the sinusoidal components of v but the constant
component is unrestrained.

The results which follow will all be for the stress distributions in the initial postbuckling
calculations when the strain is 2% above the critical buckling strain. In order to extend the
present analysis to practical design levels, the Newton iteration procedure in VICONOPT will
be used, i.e. utilizing the stress distributions obtained here to obtain out-of-plane mode shapes
at further strain increments. Further VICON postbuckling results will be presented in future
publications.

https://doi.org/10.1017/aer.2019.27 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.27


670 THE AERONAUTICAL JOURNAL MAY 2019

Table 3
Laminate stiffness of example 1

A stiffness matrix (Nm−1)
1.0602×108 2.7455×107 0
2.7455×107 1.0602×108 0
0 0 3.9285×107

D stiffness matrix (Nm)
61.349 7.4974 −4.0589
7.4974 12.642 −4.0589

−4.0589 −4.0589 11.441

Figure 6. Loads and edge assignments for example 1.

6.0 ILLUSTRATIVE RESULTS
In this section, illustrative results are given for two examples.

6.1 Composite plate loaded in compression
In order to compare the method with the previous (VIPASA) postbuckling analysis in
VICONOPT, the first example is chosen from Che(19). It is a symmetric balanced compos-
ite square plate with length 0.3m and thickness 0.002m. The composite consists of 8 layers
with ply angles [0, 45, −45, 90, 90, −45, 45, 0]. The material properties are Young’s moduli
E11 = 121kNmm−2, E22 = 1.30kNmm−2, shear moduli G12 = G13 = G23 = 6.41kNmm−2 and
Poisson’s ratio ν12 = 0.38. The overall laminate stiffness are shown in Table 3. The plate is
simply supported with respect to out-of-plane displacement w on all four edges, fixed against
in-plane displacement v on the unloaded edges and free to deflect in-plane on the loaded
edges. Uniform compression is applied to the left and right sides of the plate as shown in
Fig. 6. For the postbuckling analysis the plate is divided into n=10 strips of equal width, and
the VICON analysis uses ξ = 1 and q = 2 in Equation (5).
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Figure 7. Variation of in-plane displacements (a) u displacement (present analysis). (b) u displacement
(ABAQUS analysis). (c) v displacement (present analysis). (d) v displacement (ABAQUS analysis).

The analysis gives the first cycle of the postbuckling which for illustration utilises out-of-
plane displacements with just three half-wavelengths obtained from VICON analysis when
the longitudinal strain exceeds the initial buckling strain by 2%. Figure 7(a) and (c) shows the
in-plane displacement contour plots. The results are validated against finite element analysis
using a mesh of 20 × 20 ABAQUS S4R elements(20), see Fig. 7(b) and (d).

As shown in Fig. 7(a) and (b), the uniform compression leads to uniform u displacement
contours. The left and right edges equally move to each other as shown in both the present
result and the ABAQUS result. Figure 7(c) and (d) shows the v displacement contours. It
can be seen that the present result is slightly skewed but less than the ABAQUS result. The
reason can be found from the w displacement assumption from VICON which contains three
half-wavelengths. Theoretically only an infinite series of half-wavelengths can represent the
accurate results. Therefore three half-wavelengths result in losing some accuracy. The user
can increase the number of half-wavelengths if required.

Figure 8 gives the longitudinal stress resultants Nx, Ny, Nxy at the top surface of the plate.
All the contours are antisymmetric and skewed as expected, and the results from the present
analysis are close to the finite element results. A sample result from the previous VICONOPT
analysis [Fig. 8(c)] fails to capture the antisymmetry and skewing.
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Figure 8. Variation of stresses on the top surface of the plate. (a) Nx (present analysis). (b) Nx (ABAQUS
analysis). (c) Nx (previous VICONOPT analysis). (d) Ny (present analysis). (e) Ny (ABAQUS analysis).

(f) Nxy (present analysis). (g) Nxy (ABAQUS analysis).
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Figure 9. Stress resultant Nx on top surface of the plate.

Figure 9 gives a quantitative comparison of stress resultant Nx along the longitudinal cen-
tre line of the plate between ABAQUS and present analysis. The values are all symmetric as
expected, with the compressive stress being greatest at the centre and decreasing towards the
two ends. The greatest discrepancy of 3.2% occurred at the two ends of the plate. However
the present analysis has less variation than ABAQUS which can be explained as due to
displacement differences as demonstrated above.

6.2 Isotropic plate loaded in compression and shear
The second example is a square isotropic plate loaded under equal longitudinal compression
Nx and shear Nxy. The plate has length 0.3m and thickness 0.001m with the material properties
Young’s modulus E = 110 kNmm−2 and Poisson’s ratio ν = 0.3. All four edges are simply
supported against out-of-plane displacement, fixed against in-plane displacement v on the
unloaded edges and free to deflect in-plane on the loaded edges as shown in Fig. 10.

Figures 11 and 12 show the variation of stress resultants Nx, Ny and Nxy from the present
analysis and ABAQUS analysis. Figure 13 gives quantitative comparisons of Nx along the
longitudinal centre line. The biggest error is 13.6% at the two loaded ends. It can be seen
that all the stresses are antisymmetric, and from the quantitative comparison the values from
present analysis are almost the same as ABAQUS.

It is noted that the sinusoidal assumption of the previous VIPASA postbuckling analysis
precluded the possibility of mode jumping. The use of a series of half-wavelengths in the
present VICON analysis will allow for gradual or discrete changes in the postbuckling mode
as the load is increased.

7.0 CONCLUSIONS AND FUTURE WORK
Postbuckling analysis has been presented for anisotropic and shear loaded plates. The analysis
is based on exact strip analysis, in which the mode shapes are assumed to be the sum of
sinusoidal responses with different half-wavelengths which are coupled together to satisfy
the boundary conditions at the longitudinal ends. Initial postbuckling results for two example
problems show very good agreement with finite element analysis. The greatest error is only
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Figure 10. Loads and edge assignments for example 2.

Figure 11. Variation of in-plane displacements (a) u displacement (present analysis). (b) u displacement
(ABAQUS analysis). (c) v displacement (present analysis). (d) v displacement (ABAQUS analysis).
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Figure 12. Variation of stresses on the top surface of the plate. (a) Nx (present analysis). (b) Nx (ABAQUS
analysis). (c) Ny (present analysis). (d) Ny (ABAQUS analysis). (e) Nxy (present analysis). (f) Nxy (ABAQUS

analysis).

3.2% in first example and 13.6% in the second example. It also can be seen there is a big
improvement compared with a previous exact strip postbuckling analysis in which the mode
shapes were assumed to be purely sinusoidal.

The two models all utilized the three different half-wavelengths for the w displace-
ment obtained from VICON. Therefore some accuracy is sacrificed. However more half-
wavelengths can also be used, but at the expense of increased computational time. The analysis
currently only covers the first cycle of postbuckling, for which it achieves a good outcome. A
full postbuckling analysis will be permitted by extending the Newton iteration scheme in the
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Figure 13. Stress resultant Nx on top surface of the plate.

exact strip software VICONOPT. The analysis will also be further extended to cover stiffened
panels, in order to provide more capabilities for preliminary aircraft design.
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