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SUMMARY
This paper presents a design of an assembly sequence
planner based on a “plan reuse” philosophy. Most of
assembly planning research in the past has attempted to
completely plan each problem from scratch. This research
shows that stored cases of basic assembly configurations
can be applied to a given assembly problem. It is observed
that the number of such basic assembly configurations is
quite small. The planner divides the assembly into a number
of constituent configurations, which are called “loops”.
These act as subgoals in its search for solutions. Plans
retrieved for all subgoals are fused into a set of plans that
are consistent with the constraints implied by each plan.
Application specific constraints on the assembly are explic-
itly handled in the second phase of planning. Mechanisms
for assembly representation and implementation details of
the planner are also presented.

KEYWORDS: Assembly planning; Case-based reasoning; Sub-
goals; Computational complexity; Precedence constraints;
Precedence graphs.

I. INTRODUCTION
Assembly planning plays a major role in aiding shop floor
control, production system design and scheduling activities.
The assembly plan provides vital manufacturing informa-
tion, and imposes constraints in the selection of production
equipment and alternative routings. The planning process
followed by a human planner is iterative. Humans examine
the part and assembly drawings to create a tentative plan
based on intuitive geometric reasoning. They subsequently
revise the plans based on mechanical properties, assembly
practices, managerial considerations, design notes, etc.1 The
approach commonly used in planning is to subdivide the
task into smaller and smaller problems until the simplest
problems are obtained. More information on the modeling
and reasoning issues in assembly planning can be found in
literature.1–11 An insight gained from our research is that
planning in the assembly domain is best served by
considering many of the constraints at the local level before
the global level. That is, combinations of locally feasible
solutions are combined to give globally feasible solutions.
The advantage is that the combinatorial explosion of plan
options is controlled at a lower level without allowing them
to propagate to higher levels. This task needs to be
supported by an appropriate identification of “localities”.

Localities are a suitable subdivision of the problem in which
planning for each subgoal can be performed relatively
independent of each other.

In this paper, the Assembly Planner using Experience
(APE) is proposed. APE demonstrates that the Case-Based
Reasoning (CBR) paradigm can be quite effective in the
assembly domain. APE utilizes case-based planning to
store, retrieve, and modify existing cases (experience) to
develop assembly sequence plans. This paradigm is very
powerful for complex domains but has not been applied to
the assembly domain in a significant way. The focus of this
research is to explore application of a planning paradigm, to
combine both geometric and application constraints and to
leverage past experience to resolve these constraints. The
contributions of this research are the following:

d To demonstrate some aspects of an efficient representa-
tion of assembly information to support the re-use of past
experience.

d To demonstrate how a large variety of possible assembly
parts configurations can be effectively reduced to make
the search and retrieval problem of past experiences
(cases) computationally feasible for practical sized
assemblies.

d To demonstrate the ability of APE to plan directly when
the need arises, thereby providing a hybrid methodology
which allows; (i) re-use of stored cases if they are found
in the database, and (ii) for situations not found in the
database, “primitive connections”* between parts are
employed to form larger plans.

Assembly modeling, which involves the representation of
both the assembly and the plan, is an important aspect of the
planner design. In APE, graphs are used to model the
assembly. Graphs provide a formal, efficient and flexible
representation. The assembly is represented by three kinds
of graphs: Connection Graph, Mating Direction Graph, and
Obstacle Fact Graph. The plan is represented by an
Assembly Precedence Graph. Formal definitions of these
graphs and their properties are defined in this paper.

This paper is organized in six sections. The introduction
is followed by Section II, which discusses the recent work in
assembly planning and the case-based model of reasoning.
This section also explains why CBR is useful for assembly
planning. Section III describes the assembly modeling using
graphs and the concept of “goals” in assembly. Section IV

* A “primitive connection” simply shows how two parts may be
connected (i.e. the first part could be placed in the assembly and
then the second could be connected to the first or vice versa).
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presents the actual reasoning process, combining graph
theory and CBR in a search for feasible solutions. Section V
addresses the implementation issues of the APE system. A
summary of the research is presented in Section VI.

II. Related work
This section reviews some previous work addressing
modeling assemblies, reasoning approaches and application
of case-based paradigm in planning.

A. Modeling for assembly
The information found in the assembly model is an
important part of the input to the assembly. In order to
represent and reason about the assembly, this knowledge
must be in a compact and accessible form. The design of
assemblies for manufacturability and maintainability is a
difficult problem. According to Foundyller, “Engineering
time associated with the designing, debugging and doc-
umentation of assemblies, as opposed to the time spent on
individual components, often consumes most of the engi-
neering effort that goes into the development of a new
product. . .”.12 In order to help designers visualize the
design, expensive prototypes and clay models are often
used.

A detailed assembly model should consist of detailed
geometric information, information about the components,
information about the different types of contacts and
information about the production environment of the
product. Sanderson et. al.3 used a model which includes
three types of entities: parts, contacts and attachments (the
contact types). It starts with the detailed part geometry and
assembly configuration from the design stage. In addition to
this information, they also explicitly represent of the
attachment that hold the parts together. This attachment
information is added interactively to the relational model.
Thus, there are three levels of the product model: (i) the
CAD model of assembly, (ii) a relational model which
indicates the contacts between parts and (iii) a graph with
the attachments added that describes the constraints on the
degrees of freedom within the structure.

Henrioud and Bourjault represent the assembly informa-
tion in a 5-tuple that comprises the components,
connections, fasteners, set of transformations, and a map-
ping from each attachment to the set of components or
functional features.5 Santochi and Dini use a “table of
contact” formalism in their FLAP (FLexible Assembly
Planning) system.13 Contacts between parts, and the feasible
disassembly directions are determined by simulation of
movements using a CAD system and detecting collisions.
Lin and Chang derive graphs of mating directions and
spatial constraints by analyzing the geometrical model built
in the TWIN modeler.1 In addition to the geometric data,
non-geometric data is stored in a “frame based” symbolic
representation. The three major types of non-geometric
information are standardized machine elements, mechanical
fasteners and assembly design intents. Delchambre suggests
a structured model of assembly containing almost all the
required information.2 In his model, the geometrical infor-
mation specifies the shape and dimensions of the parts as
well as their relative positions within the final assembly.

Component information includes the features of the compo-
nents and their roles in the assembly. This information is
usually obtained from user interaction. There is also the
topological information that indicates the type of contacts
between the parts in the assembly. In addition to these, there
is the final assembly information that defines the features of
the whole assembly (e.g. product functionality) and the
technological information about the manufacturing facilities
(e.g. which fixtures are available).

Anantha describes a system for feature based assembly
modeling that enables a user to design mechanical parts
based on features and explicitly specify the spatial relation-
ships between the part features.14 It also enables the user to
characterize the remaining degrees of freedom in terms of
kinetmatic joints that capture some of the functionality of
the assembly. This allows a treatment of over-, under- and
fully-constrained assemblies. The system employs symbolic
reasoning about the geometric structure of the parts to
satisfy the spatial constraints between them rather than the
algebraic methods used by other researchers. Shah and
Tadepalli also discuss feature-based assembly modeling.15

Venuvinod describes an algorithm that identifies the princi-
pal disassembly directions by an iterative process of
analyzing the contact planes.16 These define the visual
region of the part. A part is said to be nominally
disassembleable if its visual region is unbounded. For
confirmation, a second stage is used to check the global
translation freedom of each component. Instead of checking
the translational freedom in all the directions, he proves that
it is sufficient to check along the central disassembly
direction and two orthogonal directions. Wolter and his
colleagues have analyzed mating constraint languages
which are the most commonly used constraint languages for
assembly planning. They consider relations of the type
“equal/not equal”(==, = /=), “less-than” (<), and “less-
than-or-equal” (=<). They have proven that it is possible to
translate any constraint expession comprised of the above
relation types to one comprised of “<” or “<=” relations
only.17

An important stage in the planning process is the
generation of the precedence relations. All the different
types of constraints have to be converted to precedence
diagrams by the planner, from which the assembly plans can
be generated automatically. Some researchers use the notion
of “preconditions” and “post-conditions” directly.17 A
precondition is a set of states after which it is possible to
perform an action. A post-condition is the set of states after
which it is impossible to perform the operation. More
frequently, the precedence constraints are used to implicitly
define the pre- and post-conditions. If a sequence is
legitimate, each operation in the sequence must be possible.
Therefore, no operation must be prevented by past actions
nor should it obstruct later actions. In other words, if the
actions in a sequence satisfy the pre- and post-conditions,
then the operations in the sequence can be performed in
order.

In order to represent the precedences, different prece-
dence operators have been suggested: Lin and Chang use
“must_follow” and “must_immediately_follow”1 whereas
Delchambre suggests the use of “must_precede” and must_
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strictly_precede”.2 In reference 1, a generalized scheme
which includes all the fundamental constraint relations and
from which complex ones can be built by boolean
operations, is proposed. These may denote constraints
between two parts (P1>P2), a joint and a part (P1-P2>P3),
which means that the connection P1-P2 needs to be created
before part P3 is placed in the assembly), or between two
joints (P1-P2>P3-P4). In reference 2, constraints are
classified into hard constraints and soft constraints. Hard
constraints are created due to the intrinsic property of the
assembly (i.e. geometric feasibility, mechanical constraints
(due to attachements) and component constraints). Soft
constraints are further divided into stacking constraints and
technological constraints.

Henrioud and Bourjault have considered two types of
constraint: (i) operative constraints from geometry, material
handling requirement and stability and (ii) strategic con-
straints which they obtain from imposed subassemblies, a
linear assembly tree requirement, etc.5 In Sanderson’s work,
the soft constraints are referred to as “state feasibility
conditions” based on rigidity and stability whereas the
former (hard constraints) are called “task feasibility condi-
tions”.3 Sanderson and colleagues also use constraints of the
type “connection to connection” and “connection to state”.
The precedence inference methods described above can be
classified as either “query-and-answer” methods or “geo-
metric reasoning methods”. There is a further class of
inference approaches called “knowledge based” that use
rules for grouping parts.9, 18, 19 It is claimed that these
methods are superior for axial assemblies or orthogonal
assembly directions since they avoid the extensive computa-
tion due to redundant geometric data.

B. Reasoning for assembly
The approach commonly used in planning is to subdivide
the task into smaller and smaller problems until the simplest
problems are obtained. Sanderson et al.20 abstract the task
decomposition problem into a search for cut-sets* of a
graph of connections. They suggest the AND/OR formalism
for the representation of selected assembly sequence. They
also discuss evaluation functions for assembly sequence
plans based on minimizing complexity, number of alter-
native sequences and the depth of the assembly tree.
Sanderson and Homem deMello also discuss a formal
algorithm that is correct and complete for finding assembly
sequences.4 However the utility of this algorithm is limited
by the fact that it is mainly an exhaustive graph decomposi-
tion algorithm. Thus it allows the combinatorial explosion
of solutions before constraints are applied and the solution
set is pruned.

Wilson and Schweikard have found that give an assembly
of k polyhedra with a total of n vertices, a valid translation
and removable subassembly is found in O7k2 ·n48 steps.21

Based on this finding, they derive a polynomial time
algorithm for determining feasible assembly sequences
consisting of single translations. Santochi and Dini describe
an assembly system that is able to plan for assemblies where

Design for Assembly (DFA) principles have been applied.13

Their primary approach is to identify subgroups within the
assembly and generate all possible sequences for the
subgroups and the entire product. The number of sequences
is then reduced by considering precedence, accessibility and
stability conditions. Browne et al. describe a two-stage
planning approach where the first stage analyzes the
assembly for compliance with DFA principles before
planning.22 The planning engine is rule-based and imple-
mented in the OPS5 language. The rules cover situations
where a part (or subassembly) is placed in a fixture, two
subassemblies are joined, the master part is removed from
assembly and so on.

The more sophisticated assembly systems for 3-D parts
are described in references 1 and 2. Lin anc Chang describe
a powerful method for performing the assembly sequence
generation for 3-D mechanical parts.1 They develop graphs
of mating directions and spatial constraints from analysis of
a boundary representation (B-Rep) geometric model. A
three level planning strategy is proposed that analyzes the
part connectivity relationships and plans for collision free
insertion of individual components. The non-geometric data
is also converted into precedence relations and rules are
used to prune the graph obtained from the first three stages.
They consider assemblies that have one base or main part.
Delchambre develops an automated assembly planning
system which is synthesis based.2 Extending the algorithm
by Sanderson,4 Delchambre developed a synthesis based
assembly planning system using precedence constraints at
the start of planning. The general criteria applied to select
sequences, such as the number of product reorientations,
number of fixtures, number of unstable assemblies formed,
and degree of parallelism are also discussed.

Cao has applied reasoning based on Petri-net representa-
tions to situations where intermediate processes during
assembly may modify the properties of the part and create
additional constraints that did not exist at the start of
planning.23 Arai and Iwata extend the scope of the assembly
problem usually dealt with by researchers to include
mechanism.6 They address the problem of kinematic
simulation and evaluation functions needed when designing
mechanisms, using  disassembly approach. Each part is
studied to determine if it can be removed from the assembly.
When there is more than one way to disassemble a
component, the shortest path is taken. In calculating the
movements, they also consider errors that appear due to
representation of cylindrical and spherical components in a
CAD system. Their system also supports disassembly in
more than one step.

C. Case-based reasoning
Case-based reasoning (CBR) is an approach to solving
problems in complex domains by reusing and/or adapting
solutions from past experience. Case-based planning differs
from rule-based planning in that rule-based planners require
a large number of rules to account for all options. Rule-
based planners are constrained to small, well-defined
domains. Rules must account for each and every condition
of uncertainty. In complex domains, rule-based systems
quickly become cumbersome due to the number of rules to

* A cut-set is a set of edges which when removed, breaks up a
graph into two or more partitions.
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be defined and managed. In addition, most real world
domains are so complex that providing a complete set of
rules is impractical or impossible. This is especially true of
the interactions between actions in the assembly domain.

Case-based planning manages to control complexity by
focusing on the required knowledge based on the context.
All the information available is not stored. Only previously
developed plans and information required to retrieve and
adapt old plans are stored. For assembly planning, the graph
description of the assembly and constraints on the assembly
are stored. Adaptation of experience is employed as a
learning mechanism. Typical rule-based systems do not
have the ability to create new rules or change old ones
depending upon their planning experience.

Case-based reasoning is derived from cognitive studies
based on the nature of information storage in the human
brain and the reasoning process. Human expertise is rooted
in “stories” or “episodes” that are rich in detail.24 Knowl-
edge acquisition studies show that people find it easier to
describe a series of events or a case rather than identify rules
that made them decide on an action.25, 26 The basic idea in
CBR is simple. A case-based reasoner solves new problems
by adapting solutions that were used for similar problems in
the past.24 Case-based planning is driven by the under-
standing that most problems in the real world are complex
and planning them from scratch is quite tediouis. However,
problems within a domain have similar characteristics.
Thus, we are able to reuse old solutions. A case-based
planner finds those cases in memory that are solutions to
problems similar to the current problem. The planner then
retrieves the old case, either reuses it directly or adapts it to
suit the new problem.

Most case-based planning work addresses areas other
than engineering. CYRUS is a story understanding program
developed by Kolodner.27 Stories about the diplomatic
travels of a person are studied. Questions are asked to
determine the system’s understanding or comprehension of
stories. If it does not have an answer directly, the system
generates a series of sub-questions. The generation of
answers to these sub-questions helps to answer the main
query. IPP (Integrated Partial Parser) is another text
understanding program.28 IPP reads texts about terrorist
activities and makes generalizations. IPP uses these general-
izations to guide its future interpretation of news stories.
The JUDGE program models a judge who is deciding
sentences for convicted criminals.29 JUDGE uses informa-
tion such as the charge made, the events that occurred and
legal statutes for that crime to reach its decision. This
domain is a subjective domain unlike the assembly domain.
Consistency is an important feature of JUDGE, independent
of whether the decisions were “right” or “wrong”. CHEF, an
innovative Chinese cooking program built by Hammond at
Yale, was an important influence on the development of the
APE system.30 CHEF generates Chinese dishes starting
from an initial base of 20 recipes. The goals specified are
usually the ingredients that one wants to be included in the
dish. CHEF has a memory organization that promotes
learning from its failures.

A case-based reasoner developed by Rechsberger and Pu
exists in the assembly planning arena.5 Their observation is

that “If assembly sequence generation problems are costly,
then not all of them should be solved from scratch.” The
system uses a vector of features such as the part’s mating
direction and overlap of its projected area with the projected
area of other parts as the index key for each case. The
causality evaluation of Rechsberger and Pu’s system was
limited because it tried to trace the problem to a single step.
Since it only looks at single actions, the system does not
have a sense of global interactions between components or
subassemblies. Also, it provides only one plan and if a new
constraint appeared the system replans from the beginning.
A more recent work by Pu and Purvis (CORINTH) extends
their previous work and adds a formal procedure for case
adaptation.31 This system is able to generate multiple plans;
however these plans are generated one by one without
capturing common portions. This again prevents identifica-
tion of potentially parallel actions. It also seems that
derivation of “require not” predicates would be difficult to
automate. On the other hand, CORINTH’s constraints-based
matching algorithm is well suited for making approximate
matches. Overall, APE and CORINTH seem to have
complementary abilities. CORINTH uses spatial predicates
such as “(press-fit 2 1)” or “(overlap 1 3)” in describing a
case. These are very specific to that assembly. Thus, quick
matches for very similar assemblies can be made. However,
if the given problem is somewhat different (but topo-
logically quite similar), it may result in imperfect matches
and require repair procedures. APE, on the other hand, was
designed to work at a higher level of abstraction. Thus, it
does not use such predicates which are assembly specific.
Instead, it uses the “loop” primitive to capture the essential
(or generic) aspects of the assembly. The advantage is that
APE is able to handle a wider variety of assemblies. The
drawback is that in some cases, it will spend more effort in
obtaining matching cases.

Chakraborty and Wolter32 have presented a generalized
reuse oriented solution to assembly sequence planning.
They use a small set of primitive structures repeatedly to
build up hierarchical structures of the assembly. However,
the user is required to identify the different substructures in
an assembly. This would be quite tedious for the user in the
case of large assemblies. Stored plans for the substructures
are combined to form a generalized plan. Constraints arising
due to specific geometries of parts as well as user-defined
constraints are not taken into account. Their paper proves
two useful theorems. The first shows that plans obtained by
systematic merging of correct primitive plans are also
correct. The second theorem shows that if the sets of
primitive plans are also complete, systematic merging of the
plans for primitive structures comprising the assembly
produces a complete set of plans for the assembly. Both of
these theorems apply to APE. Thereby, the systematic
approach to merging correct primitive assembly plans in
APE is shown to be correct and complete under the
assumption that all relevant constraints have been modeled.

This research demonstrates that CBR paradigm can play
a much more effective role in assembly planning. An
important requirement for case-based planning is the
appropriate definition of “goals”. This is crucial since it is
with these goals that the planner is able to index its memory.
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It should be noted that in all the planners discussed the goal
identification is relatively simple. Even in the assembly
planner of Rechsberger and Pu, the goal is simply to find a
part that can be placed next. However, to enable an overall
view of the assembly planning problem, this goal definition
is not complete. Our treatment of this issue is discussed in
Sections III and IV.

III. A GRAPH-BASED ASSEMBLY MODEL
Modeling of the assembly problem is an important aspect of
the planner design. The assembly model in  general needs to
accommodate both geometric and non-geometric informa-
tion. The geometric information consists of the solid model
representations of the parts, their positions and the informa-
tion about the connections that comprise the assembly.
Though the assembly problem is essentially a geometrical
one, the non-geometrical information is important. The
inclusion of non-geometrical information helps to reduce
the explosion of possible solutions to a set that embody the
limitations placed by the design intents, special properties
of components and fasteners, and technical constraints. The
planner, presented here, assumes: (i) that all the parts of the
assembly are rigid polyhedral, (ii) there is no default main
or base part, (iii) almost any part can be a base part, (iv) all
the parts are moved from infinity to their final positions in
the assembly in one translation (no rotational aspects), (v)
there are no internal forces in the assembly, once part is
placed it is not moved, and (vi) partial assemblies are stable.
The assembly is assumed to be connected, i.e. there is no
loose part or a disconnected subassembly. Only one kind of
constraints, i.e. of the form “part-->part” are used.

A. Assembly representation
By preprocessing the geometrical model, it is possible to
abstract the information contained in the CAD files into a

set of graphs which can then be conveniently and efficiently
manipulated without repeatedly accessing the CAD design
file.1, 10 The APE system begins planning from this graph
data. Preprocessing of CAD files is not limited to a specific
method; either geometric reasoning or knowledge based
approaches can be used, provided they produce output in the
form that APE requires. The knowledge based approaches
may be better in situations where a designer makes a small
local change in the assembly to minimize reprocessing. The
information needed for assembly planning can arise from
different sources. As described earlier, these could be
geometric, part information, technological information, and
so on. This research deals essentially with the geometrical
aspect of the information. However, the proposed model is
scalable to represent constraints (i.e. cost or priority
associated to certain subassembly) arising from other
sources. The other sources can be some problem-specific
databases which provide this information as additional
constraints. An example of a constraint that arises due to the
tooling and the subsequent required modification is illus-
trated in Figure 1. While the first plan shows that parts A and
B could be placed into the assembly independent of each
other, the second plan shows that A needs to be placed after
B due to the constraint. When these types of constraints are
applied to the graph originally obtained from the geometri-
cal planning, the graph reduces significantly.

To explain the geometrical model more clearly, a simple
example is shown in Figure 2 with all the derived graphs.
This pen assembly example was used in Pu.33 By using the
same example an informal comparison between APE and
Pu’s system is established. Basic characteristics of an
assembly. ! consisting of n parts are:

d Set of Parts (P)={P1, P2, P3, . . . , Pn} of the assembly.
d Set of Connections (C)={insert, attach, . . .} made

between the parts.

Fig. 1. An Example of tooling constraint.

Sequence planner 269

https://doi.org/10.1017/S0263574798000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000356


d Set of Directions (D)={+X, 2X, +Y, 2Y, +Z, 2Z} in
which parts can be moved from infinity to the assembly.

d Set of Rules (R)={rule#1, rule#2, rule#3, . . .} to define
the constraints under which a particular part can not be
placed in it required position at required instance in
assembly.

The geometrical information is essentially composed of
three types of facts: (i) all the different connections that the
parts make with each other, (ii) the different directions in
which mating occurs between parts, and (iii) the conditions
under which a part cannot be placed in its required position
due to other parts obstructing its path. This form of a model
for abstracting the assembly information is suggested by
Line.1 This information is represented by graphs. Graphs
provide a formal, efficient and flexible means of representa-
tion. For any specific assembly, !, a  set of graphs are
defined as follows using the above basic characteristics of
an assembly:

(i) For an assembly, !, there exists a single Connection
Graph CG(X, E), which represents inter-connections made
between various parts. A node in CG represents the part and
an edge between two nodes represents the connections made
between the corresponding parts. Here X={; xi | xi =p :p

«P} and E={xi| xi =c :c«C}.
A CG is an undirected graph consisting of n nodes with

degree d(xi )<=1. Figure 2(a) presents a CG for a pen
assembly consisting of five parts; body (B), cap (C), tube
(T), button (Bu) and head (H). The only type of connection
in this example is insertion.

(ii) For an assembly, !, there exists a single Mating
Directions Graph, MDG(X, E), to identify the directions
that are available for each part to connect with its mating
parts. Here X={; xi |xi =p :p«P} and E={xi |xi =d :d«D}.

MDG is a directed graph with n number of nodes. Each
directed arc (xi, xj ) represents the direction in which the
source node xi can mate with the destination node xj . Thus,
the correspondence for a node xi, G(xi) indicates all its
mating directions and inverse correspondence, G2 i(xi)
shows the directions in which other parts can connect to it.
In the planning process one needs both sets of arcs due to
nature of the algorithms used and to resolve any ambiguity.
For example, in Figure 2(b) the pen assembly. H mates with
T by moving in the +Y direction, whereas H mates with the
part C by moving in the 2Y direction. MDG is the most
typical representation of the assembly. It provides the spatial
description of all possible solutions from which all the
infeasible solutions are removed using the constraints

Fig. 2. Pen assembly example.
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specific to that problem.
(iii) For an assembly, !, there exists from zero to n

number of Obstacle Fact Graphs, OFG (X, E). Each OFG
corresponds to a part which obstructs the mating of other
parts along certain mating directions if that blocking part is
placed earlier in the sequence than the other parts. Here
X={r, xi |xi =p :r, p«P} and E={xi |xi =d :d«D}.

Each OFG has one source node r, denoting the obstruct-
ing part, and one or many nodes xi, representing the parts
that are being obstructed. The arcs between the root and
other nodes denote the direction in which the obstruction
occurs. OFGs are directed graphs and are constructed using
the Set of Rules (R). In Figure 2, the T blocks the mating of
parts Bu, C and H in the respective directions shown. The
OFG differs from the Spatial Constraints Graph (SCG) used
in reference 1. In SCG, there is a graph for each part
showing the parts that obstruct it. While in OFGs, there is a
graph for each part that obstructs other parts. This is more
suitable for our algorithms since these algorithms are based
on depth first search technique. Each node can be processed
only by taking into account the nodes that are in its subtree.
While in the SCG structure, all the SCG’s have to be
scanned to obtain the parts that are obstructed by one part.

B. Plan representation
The representation problem for assembly plans has

received some attention due to the requirement of less
storage and easy user understanding. The storage require-
ment is understandable since in assembly, unlike other
domains, the number of sequences(plans) that are produced
can be quite large. Assembly plans have been represented by
diamond graphs,8 AND/OR graphs,3, 4 assembly trees2 and
assembly precedence graphs.1 In the “Diamond graph”
representation, the state of the assembly is shown by a
rectangle filled with smaller rectangles. Each smaller
rectangle represents the formation of a connection. In the
initial state, the large rectangle is empty and in the goal state
is completely filled. This representation requires less space
but is quite difficult for a viewer to understand. AND/OR
graphs have been used by Sanderson and deMello.3

Successors of a node are grouped into pairs where each pair
shows one way in which the parent could be divided. Each
pair is combined by an “AND”. The pairs are related to each
other by “OR”. This representation supports Sanderson and

deMello’s disassembly based planning algorithm.4 How-
ever, the AND/OR representation is very difficult to
interpret. Delchambre suggests the use of assembly trees.2

The nodes represent subassemblies and branches show the
actions. This representation shows the assembly starting
from the base part and not as a disassembly graph (as in the
AND/OR graph). When a part or subassembly is added, it is
shown by the addition of an arrow. The links indicating the
parts to receive these components do not have arrow heads.
The intersection of an arc without an arrow and an arc with
an arrow shows the formation of connections between the
nodes they represent.

In this design, assembly precedence graphs (APGs) are
employed for plan representation. In the APE system,
additional information is provided by labeling the edges
with the mating directions of parts. An APG is an acyclic
directed graph (tree) with n number of vertices. The arcs
between the nodes represent the order of precedence. For an
APG, the following statements hold true:

(i) If xi precedes xj , it implies that part xi is to placed
before the part xj.

(ii) If xi precedes xj, then xj succeeds xi.
(iii) If xi precedes xk and xk precedes xj, then precedes

xj.
(iv) If xj is located in the subtree of xj, then xj is below xi

and xi is above xj.
(v) A part can be placed in the assembly only after all its

predecessor parts have been placed in the assembly.
In the example shown in Figure 1(a) a part C is a

predecessor to parts B and A. Similarly, A and B are
successors to C. Thus, parts B and A will be placed after C.
The parts can also be placed in parallel (assuming there is
no other constraint). APG is capable of representing the
parallelism in the precedence constraints and can efficiently
be stored in less space.

C. Nature of assembly subgoals
The case representation within the case-base must be
efficient. It must be efficient in size so that the potentially
large number of cases can be represented, yet also powerful
enough to effectively support the planning task. Different
case representations are used by different planners. How-
ever, it appears that each domain has a different
representation that would serve it most usefully. For

Fig. 3. An example of a loop representing a subgoal.

Sequence planner 271

https://doi.org/10.1017/S0263574798000356 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000356


example, in CHEF,30 the attributes of a dish are used to
index into the case-base. The goals could be “to include a
certain ingredient” or “to ensure the texture of a certain
ingredient”. There is also the notion that some goals are
more important than the others. The search process is aware
of these goal priorities. In the assembly domain, it is not
clear that analogies of such goals exist. The goal is to ensure
that all required connections are created in the proper
directions. It is not obvious that some connections are more
important than others. The overall picture is not localized
but is dependent upon the mating directions and the spatial

constraints. Thus, the APE system indexes and stored cases
based on their connections, mating directions and spatial
constraints.

The subgoals we have defined are called “loops”. A loop
consists of a sequence of mating parts including the
directions in which parts mate with the part followng them
in the loop. In Figure 3, for example, C can mate with H by
moving along +X axis, H can mate with B along +X and B
in turn can mate along 2X with C. This situation gives rise
to a loop shown in Figure 3. One should observe this kind
of information about loops is already embedded in our
assembly representation (i.e. CG and MDG). The degree of
subgoal interaction is quite high in assembly planning. This
is because each subgoal is comprised of parts that may also
be included in other subgoals.

The part ordering derived from one subgoal may
contradict a part ordering from another subgoal. This is not
always the case for other case-based planners. Most of the
goals in other domains are non-interacting and the plans for
non-interacting subgoals are easy to combine. For the goals
that are found to interact, certain repair rules based on
causality are applied. In the assembly problems, every step
has interactions. These planners must perform a “plan
repair” task every time plans combination for different
subgoals is attempted.33

Indices to the APE case representation consist of the set
of assembly graphs. The constraints portion of the graphs
can be modified later to expand the number of constraints.
In addition, the case also contains the APG which represents
the solutions to that problem. At the conclusion of planning,
the APG implicitly satisfies all the precedence constraints
that were considered during planning. The situation where
two cases conflict does not occur here, as it is assumed that
the set of constraints is consistent and each constraint is
essential.

Fig. 4. Planning schematic of APE.

Fig. 5. Loop nodes and non-loop nodes.
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IV. PLANNING STRATEGY
The planning strategy developed for the APE system is
shown in Figure 4. The utilization of experience represented
in cases is fundamental to the approach. The concept of
feedback in this strategy is inspired by the model developed
by Hammond.30 The planner is composed of the following
modules:

(1) EVALUATOR module: The input to this module is the
problem description. It extracts the different sub-goals
from this description.

(2) RETRIEVER module: This module uses the subgoals
generated by the evaluator to find “best” matches from
the database of cases.

(3) MODIFIER module: The Modifier matches from the
RETRIEVER and performs a series of adjustments to the
case solution to adapt it to the problem at hand.

(4) COMPOSITER module: This module combines the
retrieved plans to create a set of plans for the current
problem. The COMPOSITER also has the ability to plan
from first principles for subgoals not found in the
retrieved plans.*

(5) POST-PROCESSOR module: This module takes the
newly formed plans and applies the different constraints
that it must satisfy. Constraints need not only be

geometrical; application relevant constraints could also
be considered. Plans that fail to satisfy the constraints
are removed at this stage.

(6) MAINTAINER module: Before the POST-PROCESSOR
stage, the MAINTENANCE unit decides whether the
newly generated plans should be stored. The plans are
stored after their composition but before the application
of constraints to obtain a generic plan for that set of
goals. This is more useful than storing a set of plans
influenced by the effect of constraints that may be
specific to that problem. The set of constraints to be
satisfied are then applied to the plans. After applying the
constraints, the remaining set of plans are provided to
the user. The MAINTENANCE module also stores
failure history for assembly designs that failed to
generate even a single plan. These may be due to
extrinsic constraints that are too restrictive or assembly
designs that are physically impossible.

A. Goal identification
For a case-based planner, the most important function is to
retrieve previously stored information. If the planner can
find the correct past case, subsequent modifications are
reduced. APE retrieves and plans using “micro cases”.
These “micro cases” or subgoals are obtained from the
assembly representation. The initial step is to recognize that
the CG is composed of nodes that are members of “cycles”
or “loops” and nodes that are not members of cycles1 (see

* A first principles approach would start with the basic plan, “part
A is connected to part B”. It then merges each of these “single
step” plans to form a plan for the subgoal.

Fig. 6. An example of loop parameters.

Fig. 7. Plan retrieval.
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Figure 5). These nodes are called “cyclic” nodes and “non-
cyclic” nodes. It can be observed that in the assembly
domain, a non-cyclic part can be placed in the assembly
after its connecting part is placed. The part that mates with
a non-cyclic part can be a cyclic or a non-cyclic part. There
are also interactions between parts of one loop and another.
This situation tells us that in a general sense the non-cyclic
parts are responsible for much less complexity than the parts
that form cycles.

For parts that comprise cycles, there are different
sequences by which they can be assembled. This research
determined that the loops of parts provide a convenient
identification of locality (i.e. planning for subgoals which
are independent of its adjacent parts) within an assembly. In
addition to defining the loop, the proper mating directions of
the parts are required. This is obtained from the MDG.

There are other ways of identifying locality of con-
straints. For example, one may focus on a node and identify
the mating parts along each of its mating directions.
However, the identification of loops is more useful.
Focussing on individual nodes is not suitable since it does
not provide a unique way to index a case. Moreover, it also
does not show the constraints imposed by neighboring parts
on the placement of a part. Therefore, subgoals are to locate
the plans for each individual loop. Thus, after removing all
the non-cyclic nodes, a graph is obtained that is composed

of only nodes that form loops. The strategy is to first plan
for the nodes that are in this reduced graph and then add the
non-loop parts.

B. Problem evaluation
The first step in obtaining the subgoals for a certain
assembly problem is to decompose its CG and MDG into a
set of directed simple loops. The approach for this purpose
is to create a spanning tree of the CG and to identify the
loops by adding the missing edges one by one. The missing
edges are the edges which were initially removed to form
the spanning tree. Every addition of a missing edge provides
an additional loop. For generating the spanning tree, any
convenient algorithm may be employed since the algorithm
for generating cycles does not require any special properties
from the spanning tree. In this implementation, a depth first
search (DFS) traversal algorithm of the graph produces a
spanning tree.34

Along with the creation of the spanning tree, a list of the
edges removed from the connections graph to form the
spanning tree is also collected. This information, along with
the MDG is used to generate the set of directed loops that
form the assembly. It should be noted that the relationship
between this set of loops to the assembly problem is not
one-to-one. The set of loops produced from an assembly is
unique, however a certain set of loops can be generated by

Fig. 8. Merging of plans.
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more than one assembly.
The COMPOSITER mechanism does not require that the

loop set be unique (i.e. for a given assembly, one always
gets particular set of loops). However, generating a set of
goals uniquely from an assembly is still important for the
planner extensions to define goals for “macro” cases. To
ensure uniqueness, the algorithm first extracts all the loops
of size 3 and only then proceeds to loops of size 4. Since
loops of size 3 and 4 are the most common ones in
assemblies, they are stored in the case base. Without
attempting to show this formally, it is a common observa-
tion in most assemblies that useful apertures and shapes are
formed by only three or four parts interacting with each
other. For loops of larger sizes (which are formed infre-
quently), the planner can generate plans individually.

C. Plan Retrieval. This phase involves the searching of the
database to find a match for the loops provided to the
RETRIEVER module. Before proceeding further, a descrip-
tion of the databases is provided.

(1) Loop Database: The loop database consists of loops that

are identified by the strings of mating directions. There
are different databases for loops of different sizes.
Actual part names are not included in the description,
though their location is implied in the direction strings.
Each entry also contains the loop’s family number. A
family of loops consists of loops that are of the same
assembly configuration but different in spatial orienta-
tion and/or direction of traversal of the loop. An
example of an entry in the loop database is shown in
Figure 6. The important consequence of grouping into a
Family is that all the loops have identical plans that only
have to be adjusted for their differences in orientations.
Each loop is thus identified by four parameters or status
values in addition to the family number. These are:
d Reorient: The Reorient value locates the axis in

which the primary direction points. The primary
direction is the first direction in the direction string.

d Swivel: The Swivel value indicates the value (in steps
of 90°) by which the loop is rotated about the primary
axis.

d Reverse: The Reverse status indicates whether the
loop was traversed in a reverse direction relative to

Fig. 9. Types of constraints.
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that of the reference string of the family. The
reference string for a family is the string which has a
zero value for all its status values.

d Cyclic: The Cyclic value denotes the fact that the
loop has been rotated to the left by one unit. Thus, a
size-3 loop can be cycled 3 times and a size-4 loop
can be cycled 4 times.

(2) Plan Database: After retrieving the loop, the family
number of this loop is used to index the Plan database
which holds the plans for each family. The interesting
fact about these families is that they are quite few in
number*. Thus we have a very good opportunity for
reuse of plans.

D. Modification of plans
The plans obtained from the database are expressed in terms
of part names acting as placeholders for the actual parts. To

make the plans useful, the dummy part names are converted
to reflect the part names from the problem as well as change
the directions labelled on the directed edges of the plan
based on the reorientation. Both these functions are
accomplished using the four status values.

The loop from the loop database is transformed using the
status values so that its direction string now matches the
direction string of the loop from the problem. At this stage,
we can match the dummy part names with the part names
from the problem. Each direction label of the plan is also
subjected to the transformation routines using the status
valus to obtain corresponding direction values. An example
of this can be seen in Figure 7.

The reorient value indicates which axis toward which the
assembly is oriented and the swivel value indicates the twist
of the assembly about that axis. These affect the spatial
positioning of the assembly. The reverse and cyclic values
are used to identify the starting node and identify whether
the loop has been traversed clockwise or counterclockwise.
Thus, a set of plans that can be applied to the current
situation is obtained and returned to the planner.

At the start of planning, the user is asked to provide the
files which contain the assembly problem graphs. The user

* For this research, where we assume unidirectional mating, five
families for loops of size 3 and 18 families for loops of size 4 have
been identified as primary families. However, even among these
families, there are only a few families which are physically
feasible.

Fig. 10. Precedence algorithm.
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is also asked to name the “base part” or “main part”. This
selection specifies the base part as the first part in the
assembly (i.e. the part on which the other parts will be
placed). This restriction helps to reduce the number of plans
to be considered. Therefore, when the plans are retrieved, a
check is applied to eliminate plans which do not have the
base part as the first part in the assembly. Of course, for
loops that do not contain the base part, this restriction is not
meaningful. The base part restriction results in a different
rule for loops having a part or parts which also form other
loops inlcuding the base part. This rule applies to plan
graphs (i.e. APGs) of such loops — a part which also forms
loops with the base part can be the root node (or first part).
This rule ensures that when the plans for loops without the
base part are merged with the plans for loops containing the
base part, the requirement that the base part be the root node
will be satisfied for the merged APG.

E. Merging
When the plans for two loops are to be merged, plans for the
respective loops are fused into one plan by matching
corresponding nodes in the respective APGs. While doing
so, the constraints implied in both graphs must be satisfied.
In order to avoid attempts at merging plans that ae
incompatible, a merge check is performed to evaluate the
feasibility of the merge. If the initial set of constraints given
were consistent (and a correct base part is chosen), then the
intermediate APGs are always mergeable. (If none of the
plans can be merged, this may indicate a wrong choice of
base part).

The basic condition to successfully and correctly merge
two plans is that the part ordering implicit in both the plans
is consistent on the parts common to them. That is to say, if
a part B, is below another part A, in an APG for the first
loop, then B strictly cannot be above A in the second plan.

The second condition is that the mating directions labelling
the edges of the APG are consistent when merged. For
example, if in one APG a part has a certain mating direction
and in another APG it has another mating direction, then
those two graphs cannot be merged. On the other hand, if
the part can be placed using either of two mating directions
when in one APG and it uses only one of those directions in
another APG, then in the merged graph it can only use the
one common direction. During the merge check, only the
first of the conditions is checked. It is more convenient to
ensure the second condition concurrently with the actual
merging. The algorithm for checking the conditions speci-
fied above, first determines the common elements in both
the graphs. For each common part, say PARENT, it finds the
other common parts which are in its subtree (i.e. below it) in
the first graph. They are its SUCCESSORS. The second
graph is traversed starting at each of these SUCCESSOR
nodes to search for this PARENT part in the subtree. If the
PARENT part is found, a violation occurs and the plans
cannot be merged. With respect to two merged plans
referred to above, one of the merged plans is the plan
composed of all the loops merged until now, and the other
is the plan for a single loop that is to be merged with the
remainder of the loops.

Once the check is performed the merging process itself is
quite simple. In order to merge the two graphs, the incoming
(i.e. new) plan is traversed in a depth first search (DFS)
order. If a part on the incoming plan is a part not found in
the existing plan, then a new entry is created to accom-
modate the new part. For parts common to the two plans, it
is first checked to determine whether the mating directions
of that part are consistent. This is the second condition for
mergeability mentioned above. If this condition is satisfied,
the part is located in the existing plan and its set of
predecessors and set of successor parts is modified to
include the information from the incoming plan. It is thus

Fig. 11. Redundant precedence elimination.
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ensured that the information in both graphs is systematically
fused into one consistent plan. The merging process is
demonsrated for the pen example in Figure 8. By iterating
on all the plans in the existing plan set as well as the set of
plans for the incoming loop, we are able to produce a set of
plans that represent the feasible combinations.

F. Post-Processing
At the post-processing stage, user-defined and geometric
precedences constraints are applied to plans. It should be
noted however that the “intrinsic” constraints of the problem
are automatically implied in the plans even at this stage.
Therefore, they are redundantly applied at the next stage.

The “intrinsic” constraints are a property of the loop’s graph
structure and will occur in any physical configuration
containing the particular loop. The “extrinsic” constraints
are the other constraints and may be due to the actual shape
of the parts or some user imposed condition. Examples of
“intrinsic” and “extrinsic” constraints are shown in Figure 9.
The extrinsic constraints cannot be derived from an analysis
of the loop alone. They can be derived only after including
more details about the assembly. In our general view,
constraints are also quite similar to plans. Constraints are in
effect a “conditional plan”  which also must be successfully
merged into the existing plan for the assembly to be
feasible. If the mating direction of a merged part, C, is the
blocked direction with respect to a particular blocking part,

Fig. 12. Sequence of planning steps.
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D, then D can be placed in assembly only after C. The
different possible cases and the actions to be taken to handle
those cases are shown in Figure 10.

An important function required after merging of plans as
well as applying precedences is to “clean up” the plan
graph. This procedure removes all the transitive links in the
graph. The plan graph is not only directed and acyclic but
must also be “non-redundant.” By non-redundant, we mean
that the precedence implied in the graph between two parts
should only be derivable in one way. This is best illustrated
by Figure 11. In such situations, the direct arc from the
predecessor to the successor should be removed since the
longer path between the two already implies that prece-
dence. This direct arc must be removed to avoid extraction
of a wrong plan while traversing the APG. For example, in
Figure 11, if redundant arc between part2 and part4 is not
removed a wrong plan (i.e. part1-part2-part4-part3-part5)
may be extracted. This algorithm is a modification of the

shortest path algorithm where a decision function maintains
the maximum value of the distance between two points
instead of the minimum distance. This algorithm calculates
the longest distance between two nodes and compares it to
the direct distance between the two nodes. If two nodes are
directly connected in their adjacency graph and also have a
maximum distance greater than one, then the short edge is
removed. The complete sequence for the Pen example
including the intermediate plans are shown in Figure 12.

V. IMPLEMENTATION ISSUES
The system was developed predominantly in C. For the
different data structures, the system uses class libraries
written in C++. The executables exist for both Sun (Solaris
2.2) and SGI Indigo (IRIX 4.0.5F) environments. The
compilers used were Gnu g++ on the Suns and CC on the
SGI.

Fig. 13. Representation of graphs.
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A. Data structures
Since the major tasks in this planner involve the manipula-
tion of graphs, the representation of graphs is important.
Both the directed and undirected graphs are used. The CG
and a spanning tree are undirected graphs. The MDG and
the plan graphs are directed graphs. However, the plan
graphs are also acyclic. The assembly graphs CG, MDG,
and OFG could be generated automatically in the future
from geometric reasoning about part a CAD data.

The input graphs and the plan graphs stored for each
family are stored in the adjacency matrix representation.
This representation is explained by Figure 13. The CG is a
symmetric matrix of ones and zeros. The matrix represent-
ing the MDG has direction strings in its elements. The
directions are complementary about the diagonal. When
checking mergeability as well as merging plans and
applying precedences, it is necessary to traverse the graph
from the top down systematically. The graph is traversed
using the DFS algorithm. To support this algorithm, it is
convenient to use an adjacency list representation of the
plan graphs. The matrix representation is easier to use when
the number of nodes in the graph is known. However, the
adjacency list representation is much more flexible with
respect to changing the number of graph nodes or
representing graphs of unknown size. Other important
structures are the “loops” which represent the search goals
and the precedence constraints. Each “loop” is stored as a
list of structures showing the source part, the destination
part and the direction of mating. The precedence constraints
are stored as a list of lists (see Figure 14).

B. Databases
The Loop database contains all the different direction
strings that could be generated by a permutation of
directions in all possible dimensions. These are generated

off-line for loops of both sizes 3 and 4. As explained before,
these are the most common loops and therefore it is useful
to store them for case retrieval. The status values that lead to
loop creation from the basic loop of each family are also
stored. The effect of the different transformations on a
direction string are shown in Figure 15. The loops are
loaded into memory at run-time. The Plan database is also
provided off-line.

C. Computational complexity
The existing implementation of the APE does not neces-
sarily use the best algorithms in all of its stages. We present
an estimate of the complexity of APE system assuming a
typical situation where the algorithms with relatively better
complexity are used. Assume there are n number of nodes,
e number of edges, and L number of total loops. Also
assume that w is an average number of nodes per loop (here
w is either 3 or 4), then the complexity (C) can be estimated
as:

C=O(e2)+O(L)+O(L)+O(Lw2)+O(w2)

The first term in the above equation is the complexity of
the EVALUATOR to produce L loops. This stage involves
the DFS (whose complexity is O(e)) and finding of circuits
(or loops) of size 3 and 4. The second through fifth terms
represent the complexities of RETRIEVER, MODIFIER,
COMPOSITOR, and POSTPROCESSOR stages, respec-
tively.

VI. CONCLUSIONS
The APE system design approaches the assembly sequence
planning problem by leveraging notion that although
assembly problems are complex arrangements of parts,
these combinations are formed by combinations of a
relatively small number of constituent configurations. This

Fig. 14. Precedence constraints representation.
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realization assists in significantly reducing the complexity
and amount of planning to determine the feasible sequences
for the assembly. This planner is a “hybrid” planner since it
reuses stored cases as well as create plans from the primitive
connections between parts for situations that are not found
in the case repository. For example, to creates plans for a
loop of size five, each of the connections could be converted
to a “micro-plan” that consists of just two parts and the
direction in which the first mates with the second. From
these micro-plans, the planner can use the same methods
employed to merge larger plans. This capability allows
planning for such infrequent cases. As a resulting finding, it
is interesting that the number of possible assembly config-
urations is so small. When unidirectional mating is
assumed, there were only five families for loops of size
three and only eighteen families for loops of size four in the
assemblies considered.

APE is the one of few planners that retrieves stored
assembly cases and combines them in a systematic way to
form a complete set of assembly plans. Idetification of
similarity eases the difficult task of assembly planning by
enabling plan reuse. APE systematically develops a number
of feasible plans using the precedence constraints imposed
on the assembly. This opens the door for applying various
selection criteria on the plans such as least number of
reorientations of a subassembly or least amount of move-
ment required by an assembly robot. The compact plan
representation employed by APE allows precedence con-
straints to be easily applied on all the plans. Constraints can
be applied at any stage of the planning process or during
adaptation of stored cases. APE plans efficiently by
generating only feasible plans at each stage. APE is thus
able to avoid the task of pruning large numbers of infeasible
plans at the end of planning. Addition of a new constraint
does not require complete replanning.

APE and CORINTH show that case-based planning is an
effective planning method for assembly sequences. The
potential challenges are to reduce the extent of training
needed before a case-based planner becomes fully powerful,
and the evaluation of whether this approach can consistently
produce results superior to those planners using a fast “first-
principles” approach.
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