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The time dispersion effect affects the accuracy of solar time difference of arrival (TDOA) navi-
gation. In this celestial autonomous navigation, Mars’s moons are reflecting celestial bodies, and
their shape affects the TDOA dispersion model. In the modelling process of traditional methods,
the moons of Mars (Phobos and Deimos) are regarded as points, which causes the model to
be inaccurate. In order to solve these problems, we simplified the Mars’s moons into ellipsoids
or solid diamonds, and then established a TDOA model with the nonspherical Mars’s moons
as reflecting celestial bodies through differential geometry and geometric optics. Finally, we
analysed the time dispersion caused by the Mars’s moons in theory. Theoretical analysis and
experiments show that the point model error is 5·66 km, and the 3D model error is within 70 m.
Thus, the 3D TDOA model established in this paper is meaningful. In addition, the Sun–Mars-
moons–spacecraft angle, solar flare, three-axis length, and attitude of the Mars’s moons have a
great effect on the dispersion profile, while the Mars’s moons-to-spacecraft distance has a small
effect.

K E Y W O R D S

1. Time Dispersion. 2. TDOA. 3. Mars. 4. Modelling. 5. Navigation.

Submitted: 25 May 2020. Accepted: 13 August 2020. First published online: 15 September 2020.

1. INTRODUCTION. Celestial navigation uses the optical signals emitted or reflected
by celestial bodies to calculate the carrier position (Li et al., 2006; Wang et al., 2007). The
stars (Sun) radiate external signals, and celestial bodies such as asteroids reflect the opti-
cal signals from the stars. Deep-space explorers can achieve real-time celestial navigation
by receiving these signals and processing them (Fang et al., 2017). Because they are not
limited by ground stations, the celestial autonomous navigation methods are particularly

https://doi.org/10.1017/S0373463320000478 Published online by Cambridge University Press

https://orcid.org/0000-0002-1098-722X
https://orcid.org/0000-0003-3563-3601
mailto:liujin@wust.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0373463320000478&domain=pdf
https://doi.org/10.1017/S0373463320000478


NO. 1 MARS’S MOONS-INDUCED TIME DISPERSION ANALYSIS 189

important in the approach phase of deep space exploration (Yan et al., 2016). Traditional
celestial autonomous navigation methods include angle measurement (Konopliv et al.,
2011; Yu et al., 2014; Wang et al., 2017), speed measurement (Long et al., 2000; Chen
et al., 2019; Christian, 2019), and distance measurement (Sheikh et al., 2006; Liu et al.,
2015a; Sun et al., 2016; Zhang et al., 2019). But these methods fail to provide the radial
navigation information (such as distance and velocity) between the spacecraft and the target
celestial body in the approach phase of deep space exploration. To solve this problem, the
direct light of the Sun and the reflected light of the planet are compared to obtain the dis-
tance and velocity information of the spacecraft relative to the target celestial body. In 2015,
Liu proposed a solar Doppler velocity difference method (Liu et al., 2015b). Subsequently,
many scientific research institutes also carried out research in this field and achieved a
series of results. Ning proposed a novel differential Doppler measurement that aided celes-
tial navigation method for spacecraft during the approach phase (Ning et al., 2018b). Kang
proposed a Doppler velocity measurement based on the double measurement model and its
integrated navigation (Kang et al., 2017). Pantalone and Cedeno used Doppler frequency
shifting of the Fraunhofer lines for celestial navigation (Pantalone and Kudenov, 2018).
In 2017, inspired by the idea of Doppler velocity difference, Liu developed the solar time
difference of arrival (TDOA) navigation method (Liu et al., 2017b). The solar TDOA nav-
igation uses light-intensity meters to receive photons directly emitted from the Sun and
solar photons reflected by Mars, and measures the arrival time of the two respectively.
The difference between them can reflect the radial distance information. Ning also carried
out related research in this field, and proposed a solar oscillation time-delay measurement-
assisted celestial navigation method (Ning et al., 2017; Ning et al., 2018a). In addition,
these methods can also be used for relative navigation (Liu et al., 2017a; Wang et al., 2020;
Yu et al., 2019). In summary, solar difference navigation has become a research hotspot.

In te solar difference navigation, the establishment of measurement models is an impor-
tant work (Liu et al., 2020). In 2017, in the original of the solar TDOA navigation concept
proposed by Liu, the shapes of the Sun and Mars were ignored. Under these conditions, a
TDOA measurement model was constructed. However, the time difference of arrival at dif-
ferent locations at the solar surface is different. And the shape of the Sun has an impact on
the TDOA measurement model. In response to this problem, two years later, Liu approx-
imated the Mars’s moons (Phobos and Deimos) to a point, and treated the Sun as a huge
sphere. Under these conditions, Liu established a time dispersion model caused by the solar
sphere, and the error analysis of the solar TDOA navigation was carried out (Liu et al.,
2019).

However, this is not the reality, and the shape of the Mars’s moons are not points.
In fact, the shapes of the Mars’s moons cannot be ignored, nor can they be regarded as
spherical. Their shapes affect the measurement of the solar TDOA and the accuracy of the
solar TDOA navigation. In this paper, starting from the basic principle of the measure-
ment method of the solar TDOA, the solar TDOA measurement model proposed in Ref
(Liu et al., 2019) is modified by differential geometry and geometric optics. The shapes of
Mars’s moons are fitted as accurately as possible. The solar TDOA measurement model
based on the nonspherical Mars’s moons is developed. And the time dispersion caused by
the nonspherical Mars’s moons for the solar TDOA navigation is analysed. To improve
navigation performance, this analysis can be used to compensate for errors.

This article is divided into six parts. After the introduction, we present the coordinate
system used in this article in Section 2. In Section 3, we present the measurement model
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of the solar TDOA and the basic principles of time dispersion caused by non-spherical the
Mars’s moons. Section 4 analyses and proves the properties of the time dispersion model
caused by the nonspherical Mars’s moons. Section 5 shows the corresponding simulation
results and analysis, and finally draws conclusions.

2. CALCULATION COORDINATE SYSTEM. To facilitate navigation calculation,
the calculation coordinate system is established as shown in Figure 1. The Mars’s moons
are ellipsoids, and the origin of the calculated coordinate system is the Mars’s moons cen-
troid. The solar centroid is on the z-axis, and the spacecraft is on the y–z plane. The x-axis
is perpendicular to the y–z plane and forms a right-handed coordinate system with it.

Using the space rectangular coordinate system established in Figure 1, the parametric
equations of the Mars’s moons are shown as⎧⎨

⎩
x = a sin ϕ cos θ

y = b sin ϕ sin θ (0 ≤ ϕ ≤ π , 0 ≤ θ < 2π )
z = c cos ϕ

(1)

Since the Mars’s moons are ellipsoids, the three semi-axes are defined as a, b, and c, and
their values are 13·5 km, 10·7 km and 9·6 km, respectively.

As shown in Figure 2, c is used as the radius to make the spherical surface. Passing
arbitrary point P at the surface of the ellipsoid makes the plane β perpendicular to the z-
axis. The plane β has a line of intersection with the spherical surface. Take O as the vertex
and the intersection line as the base circle to form a cone. The angle between the conical
generatrix and the z-axis is ϕ.

As shown in Figure 3, we use O as the centre of the circle, and draw circles a and b,
respectively. The point B is the intersection of the large circle radius surface OM and the
small circle. Making MN perpendicular to OX, the pedal is N . And making BP perpendic-
ular to MN, the pedal is P. Then the locus of point P is the ellipsoid section, and ∠XOM
is θ .

3. BASIC PRINCIPLE OF TIME DISPERSION. In this section, we establish a 3D
model with the Mars’s moons considered as ellipsoids. And we introduce the basic principle
of Mars’s moons-induced time dispersion for the solar TDOA navigation.

The Mars’s moons are not the points, but the ellipsoids. For different points at the surface
of the Mars’s moons, the solar TDOAs are different, which leads to the time dispersion
caused by the Mars’s moons for the solar TDOA navigation. Using the coordinate system
established in the Section 2, the basic principle is shown in Figure 4. Assume that the
starting point of both direct sunlight and reflected light is the centre of the Sun. Point P is
the reflected point at the surface of the Mars’s moons. Points S and E represent the solar
centroid and the spacecraft, respectively.

Then we derive the expression of the solar TDOA relative to the reflection point.
Suppose two solar photons leave point S at time t0. A solar photon flies directly to the
spacecraft, which is captured at point E at time t1. The other is reflected by the Mars’s
moons (point P) at time tP and captured at point E at time t. The difference between time t
and t1 is the solar TDOA.

The sunlight comes from the centre of the Sun (point S). Assume that the solar photons
pass through the Mars’s moons and reach the centroid O of Mars’s moons. The direct
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Figure 1. Space rectangular coordinate system.

Figure 2. Ellipsoid.

flight distance of the solar photon is |ES|, and the corresponding flight time is t1 − t0. The
reflected flight distance of the solar photon is |OS| + |EO|, and the corresponding flight
time is (tP − t0) + (t − t0). The ideal TDOA is shown as

c(t − t1) = c(tP − t0) + c(t − tP) − c(t1 − t0)

= |SO| + |EO| − |ES|

= zs +
√

y2
e + z2

e −
√

y2
e + (ze − zs)2

(2)
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Figure 3. Ellipsoid section.

Figure 4. Principle of time dispersion.

In fact, the reflection of sunlight is at the surface of the Mars’s moons, not in the centre of
the Mars’s moons. More precisely, the actual TDOA is shown as

c(t − t1) = c(tP − t0) + c(t − tP) − c(t1 − t0) = |SP| + |EP| − |ES|

=
√

x2 + y2 + (z − zs)2 +
√

x2 + (y − ye)2 + (z − ze)2 −
√

y2
e + (ze − zs)2

=
√

x2 + y2 + z2 + z2
s − 2zzs +

√
x2 + y2 + y2

e + z2 + z2
e − 2yye − 2zze

−
√

y2
e + z2

e + z2
s − 2zsze

(3)
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Figure 5. Y–Z plane cross section on the Mars’s moons.

And point P(x, y, z) satisfies the following equation

x2

a2 +
y2

b2 +
z2

c2 = 1 (4)

where a, b, and c = three semi-axis lengths of Mars’s moons, respectively.
We use the spherical polar coordinate system established in Section 2. A schematic

diagram on the Y–Z plane is shown in Figure 5. The point O is the centre of the Mars’s
moons, the point S is the centre of the Sun, ST2 is the tangent line, T2 is the point of
tangency, E is the spacecraft, ET1 is the tangent line, T1 is the point of tangency, and point
P(x, y, z) is a point at the surface of the Mars’s moons.

When point P ∈ ∠T2OS corresponds to the ellipsoidal surface and ∠EPO is greater than
π/2, the area where the two points satisfy both conditions is the coincident area of the two
areas. That is, the areas that can be both direct sunlight and reflected on the spacecraft, as
shown in Equation (12):

θ1 = a cos
c

rSMn
(5)

S1 = {P|∠POS ≤ T2OS = θ1} (6)
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S2 = {P|∠POE ≤ T2OE} (7)

S12 = {P|∠POS ≤ T2OS = θ1, ∠POE ≤ T2OE} (8)

In Equation (8) can be rewritten as

0 < θ < θ1 (9)

∠EPO >
π

2
(10)

We define ∠EPO as θ2. In Equation (10) can be rewritten as

θ2 = a cos

(√
x2 + (y − ye)

2 + (z − ze)
2
)2

+
(√

x2 + y2 + z2
)2

−
(√

y2
e + z2

e

)2

2
√

x2 + (y − ye)
2 + (z − ze)

2
√

x2 + y2 + z2
>

π

2

(11)
According to In Equations (9) and (11), the coincident area, S12, can be presented as

S12 = S1 ∩ S2 =
{

P
∣∣∣0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ θ1, θ2 ≥ π

2

}
(12)

where rSMn = Sun-to-Mars’s moons distance, θ1 = angle of the Sun directly on the Mars’s
moons, S1 = area where Mars’s moons can be irradiated by the Sun, θ2 = angle at which
Mars’s moons can reflect on the spacecraft, S2 = area where Mars’s moons can reflect on
the spacecraft, and S12 = coincident area.

In summary, we can combine Equations (1), (3) and (9) to calculate the TDOA in this
coincident area and analyse the time dispersion caused by the Mars’s moons for the solar
TDOA navigation. In practical application, both the direct light and the reflected light
are received by the spacecraft. According to the probability distribution of time disper-
sion, the direct light is processed by delay and expansion to simulate the reflected light.
Then, the reflected light and the simulated light are cross-correlated to provide the velocity
information.

4. THEORETICAL ANALYSIS. In this section, we theoretically analyse two faces,
including the shapes of the Mars’s moons and the Mars’s moons-to-spacecraft distance.
The shapes of the Mars’s moons on the time dispersion are given as Theorem 1. The
relationship between the time dispersion caused by the Mars’s moons and the Mars’s
moons-to-spacecraft distance given as Theorem 2. Proofs are given respectively.

THEOREM 1: The time dispersion caused by the Mars’s moons is uncorrelated to the
position of the starting point at the solar surface.

Proof. Assume that there are two points M (xs1, ys1, zs1) and N (xs2, ys2, zs2) at the solar
surface. The two points A(x1, y1, z1) and B(x2, y2, z2) are at the surface of the Mars’s
moons, and the coordinates of the spacecraft is E(xe, ye, ze). We define the time dispersion
width as the difference between the maximum value and the minimum value of the TDOA.
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The principle of the time dispersion is shown in Section 3. The time dispersion width TW
of the two points on the Sun can be expressed as

TWM =
1
C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

√
(x1 − xs1)

2 + (y1 − ys1)
2 + (z1 − zs1)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(xe − xs1)
2 + (ye − ys1)

2 + (ze − zs1)
2

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

√
(x2 − xs1)

2 + (y2 − ys1)
2 + (z2 − zs1)

2

+
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

−
√

(xe − xs1)
2 + (ye − ys1)

2 + (ze − zs1)
2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
C

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(x1 − xs1)

2 + (y1 − ys1)
2 + (z1 − zs1)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(x2 − xs1)
2 + (y2 − ys1)

2 + (z2 − zs1)
2

−
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

TWN =
1
C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

√
(x1 − xs2)

2 + (y1 − ys2)
2 + (z1 − zs2)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(xe − xs2)
2 + (ye − ys2)

2 + (ze − zs2)
2

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

√
(x2 − xs2)

2 + (y2 − ys2)
2 + (z2 − zs2)

2

+
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

−
√

(xe − xs2)
2 + (ye − ys2)

2 + (ze − zs2)
2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
C

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(x1 − xs2)

2 + (y1 − ys2)
2 + (z1 − zs2)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(x2 − xs2)
2 + (y2 − ys2)

2 + (z2 − zs2)
2

−
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

The difference in time dispersion width between the two points of the Sun is expressed by
�TW−MN as

�TW−MN = TWM − TWN

=
1
C

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(x1 − xs1)

2 + (y1 − ys1)
2 + (z1 − zs1)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(x2 − xs1)
2 + (y2 − ys1)

2 + (z2 − zs1)
2

−
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

⎞
⎟⎟⎟⎟⎟⎟⎠
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− 1
C

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(x1 − xs2)

2 + (y1 − ys2)
2 + (z1 − zs2)

2

+
√

(x1 − xe)
2 + (y1 − ye)

2 + (z1 − ze)
2

−
√

(x2 − xs2)
2 + (y2 − ys2)

2 + (z2 − zs2)
2

−
√

(x2 − xe)
2 + (y2 − ye)

2 + (z2 − ze)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
C

⎛
⎜⎜⎜⎜⎜⎜⎝

√
(x1 − xs1)

2 + (y1 − ys1)
2 + (z1 − zs1)

2

−
√

(x2 − xs1)
2 + (y2 − ys1)

2 + (z2 − zs1)
2

+
√

(x2 − xs2)
2 + (y2 − ys2)

2 + (z2 − zs2)
2

−
√

(x1 − xs2)
2 + (y1 − ys2)

2 + (z1 − zs2)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
C

⎛
⎜⎝

x2
1−2x1xs1+y2

1 −2y1ys1+z2
1−2z1zs1−x2

2+2x2xs1−y2
2 +2y2ys1−z2

2+2z2zs1√
(x1−xs1)

2+(y1−ys1)
2+(z1−zs1)

2+
√

(x2−xs1)
2+(y2−ys1)

2+(z2−zs1)
2

+ x2
2−2x2xs2+y2

2 −2y2ys2+z2
2−2z2zs2−x2

1+2x1xs2−y2
1 +2y1ys2−z2

1+2z1zs2√
(x2−xs2)

2+(y2−ys2)
2+(z2−zs2)

2+
√

(x1−xs2)
2+(y1−ys2)

2+(z1−zs2)
2

⎞
⎟⎠

≈ 2
C

(x1 − x2) (xs2 − xs1) + (y1 − y2) (ys2 − ys1) + (z1 − z2) (zs2 − zs1)√
(x1 − xs1)

2 + (y1 − ys1)
2 + (z1 − zs1)

2

≈ 0 (15)

From these equations, we can see that the time dispersion width difference between two
points at the solar surface is almost unchanged, which indicates that the time dispersion
profile of any point at the solar surface is almost the same. And the time dispersion width
of any point at the solar surface is also constant. Analysing Equation (15), we calculate that
the magnitude of the error is about 10−8 s.

The time dispersion at a point on the Sun is defined as the difference between the
maximum and minimum values of the TDOA:

TW =
1
C

⎛
⎝

√
x2

1 + y2
1 + (z1 − zs)

2 +
√

x2
1 + (y1 − ye)

2 + (z1 − ze)
2

−
√

x2
2 + y2

2 + (z2 − zs)
2 −

√
x2

2 + (y2 − ye)
2 + (z2 − ze)

2

⎞
⎠ (16)

where the solar coordinate is (0, 0, zs), and the coordinates of the spacecraft is (0, ye, ze).
Assume f is the component of TW, it can be expressed as

f =
√

x2 + y2 + (z − zs)
2 +

√
x2 + (y − ye)

2 + (z − ze)
2 (17)

Finding the maximum and minimum values of f respectively, we can find the time
dispersion of a point on the Sun. Taking Equation (1) into f , we get

f =
√

x2 + y2 + (z − zs)
2 +

√
x2 + (y − ye)

2 + (z − ze)
2

=
√

(a sin θ cos ϕ)2 + (b sin θ sin ϕ)2 + (c cos θ − zs)
2

+
√

(a sin θ cos ϕ)2 + (b sin θ sin ϕ − ye)
2 + (c cos θ − ze)

2 (18)
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Taking partial derivatives for f, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fθ =
a2 sin θ cos θ cos2 ϕ + b2 sin θ cos θ sin2 ϕ − (c cos θ − zs) c sin θ√

(a sin θ cos ϕ)2 + (b sin θ sin ϕ)2 + (c cos θ − zs)
2

+
a2 sin θ cos θ cos2 ϕ + (b sin θ sin ϕ − ye) b cos θ sin ϕ − (c cos θ − zs) c sin θ√

(a sin θ cos ϕ)2 + (b sin θ sin ϕ − ye)
2 + (c cos θ − ze)

2
= 0

fϕ =
−a2 sin2 θ sin ϕ cos ϕ + b2 sin2 θ sin ϕ cos ϕ√

(a sin θ cos ϕ)2 + (b sin θ sin ϕ)2 + (c cos θ − zs)
2

+
−a2 sin2 θ sin ϕ cos ϕ + (b sin θ sin ϕ − ye) b sin θ cos ϕ√
(a sin θ cos ϕ)2 + (b sin θ sin ϕ − ye)

2 + (c cos θ − ze)
2

= 0

(19)
We can obtain the solutions as {

θ = 0
ϕ = 0 (20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan θ =
bye

c
(

ze +
√

y2
e + z2

e

)
ϕ =

π

2

(21)

Considering the boundary points of the ellipsoid, the maximum and minimum points are
finally obtained as {

θ = π
2

ϕ = 0 (22)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan θ =
bye

c
(

ze +
√

y2
e + z2

e

) ≈ b
4c

ϕ =
π

2

(23)

By taking Equation (22) and Equation (23) into Equation (18), the maximum and minimum
values of f can be obtained as

fMax =
√

a2 + 02 + (0 − zs)
2 +

√
a2 + (0 − ye)

2 + (0 − ze)
2 =

√
a2 + z2

s +
√

a2 + y2
e + z2

e

(24)

fMin =

√(
b sin

(
actan

b
4c

))2

+
(

c cos
(

actan
b
4c

)
− zs

)2

+

√(
b sin

(
actan

b
4c

)
− ye

)2

+
(

c cos
(

actan
b
4c

)
− ze

)2

(25)
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The time dispersion width TW can then be expressed as

TW = fMax − fMin =
1
C

⎛
⎜⎜⎜⎜⎝

√
a2 + z2

s +
√

a2 + y2
e + z2

e

−
√(

b sin
(
actan b

4c

))2
+

(
c cos

(
actan b

4c

) − zs
)2

−
√(

b sin
(
actan b

4c

) − ye
)2

+
(
c cos

(
actan b

4c

) − ze
)2

⎞
⎟⎟⎟⎟⎠ (26)

It can be seen from this equation that the value in the time dispersion width TW expression
is unchanged, that is, the time dispersion at any point on the Sun is constant. The time
dispersion width of the point at the solar surface is given as follows.

For the convenience of analysis, Equation (26) can be simplified as

TW =
1
C

⎛
⎝√

a2 + z2
s −

√(
b sin

(
actan b

4c

))2
+

(
c cos

(
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4c
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)2

+
√

a2 + y2
e + z2

e −
√(

b sin
(
actan b

4c

) − ye
)2

+
(
c cos

(
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4c
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)2

⎞
⎠

=
1
C

⎛
⎜⎜⎜⎜⎜⎝

zs

√
1 + a2

z2
s
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√
(b sin(actan b

4c ))
2

z2
s

+ 1 − 2c cos(actan b
4c )
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+ (c cos(actan b

4c ))
2

z2
s

+ze

√
a2

z2
e
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e

z2
e
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√√√√√ (b sin(actan b
4c ))

2

z2
e
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z2
e

+ y2
e

z2
e
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4c ))

2
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e

− 2c cos(actan b
4c )
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+ 1

⎞
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≈ 1
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⎛
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⎞
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⎛
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2c cos
(
actan b

4c
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+ yeb sin(actan b

4c )
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+zs

(
1
2

a2−(b sin(actan b
4c ))

2−(c cos(actan b
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2

z2
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)
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(
1
2

a2−(b sin(actan b
4c ))

2−(c cos(actan b
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2

z2
e

)

⎞
⎟⎟⎟⎟⎠ (27)

During the approach phase, the magnitude of zs is approximately on the order of 108 km,
the magnitude of ze is approximately 106 km, and the magnitude of C is 105 km/s. So, the
estimated the magnitude of time dispersionTW is approximately 10−5 s.

In summary, the time dispersion caused by the Mars’s moons is uncorrelated to the
position of the starting point at the solar surface.

This completes the proof of Theorem 1. �

THEOREM 2: The time dispersion width is unrelated to the Mars’s moons-to-spacecraft
distance.

Proof. Let rEMn be the Mars’s moons-to-spacecraft distance. During the approach of the
spacecraft to the Mars’s moons, the Mars’s moons-to-spacecraft distance rEMn is constantly
changing. With rEMn as a variable, the time dispersion width is analysed.
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The time dispersion is shown in Section 3. Taking the Mars’s moons-to-spacecraft
distance rEMn as a variable, the time dispersion, Equation (4) can be expressed as

TW =
1
C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(√
x2

1 + y2
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√
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√

x2
e + y2
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2
)
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√
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2
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2
)

⎞
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√
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⎞
⎠

=
1
C

⎛
⎜⎝

x2
1+y2
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√
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√
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⎞
⎠

≈ 1
C

((y2 − y1) sin α + (z2 − z1) cos α) (28)

where α = Sun-Mars’s moons-spacecraft angle.
It can be seen from this equation that the time dispersion width is unrelated to the Mars’s

moons-to-spacecraft distance. But the time dispersion width is related to the Sun-Mars’s
moons-spacecraft angle.

This completes the proof of Theorem 2. �

5. SIMULATION RESULTS. In this section, we study the effect of time dispersion
caused by the Mars’s moons on the solar TDOA navigation. The simulation conditions are
as follows: (1) We use the Mars Pathfinder in the United States as a reference and its initial
orbit elements are shown in reference Ning et al. (2016). The simulation time is from 00: 00:
00·000 UTCG on July 1, 1997, to 16: 55: 00·000 UTCG on July 4, 1997, as the approach
phase of the American Mars Pathfinder is in this time interval; (2) The Mars mission in
2018 is simulated (Ma et al., 2019). The elements of its initial orbit are shown in Table 1.
The orbit epoch time is at 23: 59: 56·000 UTGG on May 15, 2018. The simulation time is
from 00: 00: 00·000 UTCG on January 28, 2019, to 02: 37: 30·591 UTCG on February 1,
2019. The orbit data of the Mars Pathfinder and the Mars mission in 2018 are generated
by the Systems Tool Kit (STK). In the last experiment, the orbit data are from the Mars
mission in 2018. The other data are from the Mars Pathfinder. The three semi-axis lengths
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Table 1. Initial orbit elements

Orbit element Value

Semi-major axis 885,552,000 km
Eccentricity 0·831317
Inclination 21·7902◦
Right ascension of the ascending node 353·168
Argument of periapsis 254·541◦
True anomaly 346·612◦

of Phobos are 13·5 km, 10·7 km and 9·6 km, and the three semi-axis lengths of Deimos are
7·5 km, 6·0 km and 5·5 km.

In this section, we first analyse the time dispersion caused by Phobos and Deimos,
and then analyse some factors that affect time dispersion, such as the Mars’s moons-to-
spacecraft distance, the Sun-Mars’s moons-spacecraft angle, the attitude of Mars’s moons,
the shapes of Mars’s moons and the solar flare. Finally, we compare the 3D TDOA model
with the point model.

5.1. Time dispersion caused by Mars’s moons. Since the Mars’s moons is not a point,
the 3D TDOA model established in this article treats the Mars’s moons as an ellipsoid.
The Mars’s moons include Phobos and Deimos. The difference between the two is that
the lengths of the three axes are different. In this subsection, we study the time dispersion
caused by Phobos and Deimos, respectively.

Figure 6 shows the time dispersion caused by Phobos at 00: 00: 00·000 UTCG on July
1, 1997. It can be seen from Figure 6 that the time dispersion on Phobos is a sharp peak.
The diffusion width of time is 0·063 ms, and the diffusion width of position caused by this
is about 19 km. Figure 7 shows the time dispersion caused by Deimos. It can be seen from
Figure 7 that this is not consistent with the time dispersion caused by the Phobos. The
profile, diffusion width and probability distributions have all changed, which proves that
the three-axis lengths of the Mars’s moons have a certain effect on the time dispersion. The
time diffusion width caused by Deimos is 0·034 ms, and the corresponding diffusion width
of position is approximately 10 km. Figure 8 shows the relationship between the TDOA
and time, and the relationship between the dispersion width and time, respectively. From
Figure 8, we can see that the TDOA and dispersion width both decrease with time. Because
the time comes, the spacecraft gets closer to the Mars’s moons. The distance between them
is getting shorter.

5.2. Time dispersion width of different points of the Sun. As the Sun is a huge sphere,
the point position at the solar surface causes the time dispersion to change. In this subsec-
tion, we study the time dispersion caused by the Mars’s moons at different points at the
solar surface, and the width of time dispersion caused by the Mars’s moons at the point of
the Sun.

Figure 9 shows the time dispersion width distribution of different points at the solar
surface. From Figure 9, we can see that with the changing of the solar coordinates, the
size of the dispersion width is basically unchanged, about 63 us. The error is quite small,
as demonstrated in Subsection 4·1. We take a few points of different solar coordinates as
(0, 0, rSMn-R), (0, R, rSMn), (R, 0, rSMn) and (0, -R, rSMn), where R is 695,500 km. We
take the middle point of the experimental data as the centre time, and take 0·03 ms as a
unit for drawing. And time the dispersion profiles of these points are drawn as shown in
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Figure 6. Time dispersion caused by Phobos.

Figure 7. Time dispersion caused by Deimos.

Figure 8. TDOA and dispersion width versus time.
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Figure 9. Time dispersion width distribution of Sun.

(a) (b)

(c) (d)

Figure 10. Time dispersion at different points: (a) Sun coordinates are (0, 0, rSMn-R); (b) Sun coordinates are
(0, -R, rSMn); (c) Sun coordinates are (R, 0, rSMn); (d) Sun coordinates are (0, R, rSMn).

Figures 10(a)– 10(d). We can see that the time dispersion profiles of these points remain
almost unchanged, and the time dispersion width is basically the same. The magnitude of
the error is 10−8 s. The analysis in Subsection 4.1 is being validated.
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(a) (b)

(c)

(e)

(d)

Figure 11. Time dispersion versus the Mars’s moons-to-spacecraft distance: (a) Distance is 104 km;
(b) Distance is 105 km; (c) Distance is 106 km; (d) Distance is 107 km; (e) Distance is 108 km.

5.3. Impact of the Mars’s moons-to-spacecraft distance. During the approach of the
spacecraft to the Mars’s moons, the Mars’s moons-to-spacecraft distance changes. In this
subsection, we study the relationship between time dispersion and the Mars’s moons-to-
spacecraft distance.

Figures 11(a)–11(e) show the relationship between time dispersion and the Mars’s
moons-to-spacecraft distance. The Sun-Mars’s moons-spacecraft angle is 26·5◦. From
Figures 11(a)–11(e), we can see that as the Mars’s moons-to-spacecraft distance increases,
the spread width of the time dispersion, the profile shape and the probability distributions
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Time dispersion versus the Sun-Mars’s moons-spacecraft angle: (a) Angle is π /12; (b)
Angle is π /4; (c) Angle is 5π /12; (d) Angle is 7π /12; (e) Angle is 3π /4; (f) TDOA and dispersion
width versus the angle.

are basically the same, while the TDOA increases. Thus, the time dispersion width
is approximately unrelated to the Mars’s moons-to-spacecraft distance, as analysed in
Subsection 4.2.

5.4. Impact of the Sun-Mars’s moons-spacecraft angle. During the approach of the
spacecraft to the Mars’s moons, both the Mars’s moons-to-spacecraft distance and the
Sun-Mars’s moons-spacecraft angle change. In this subsection, we study the relation-
ship between time dispersion and the Sun-Mars’s moons-spacecraft angle. The Mars’s
moons-to-spacecraft distance is 1·712*106 km.
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Figure 13. TDOA versus the Sun-Mars’s moons-spacecraft angle in different shapes.

Figures 12(a)– 12(f) show the relationship between TDOA and the Sun-Mars’s
moons-spacecraft angle, and the relationship between time dispersion and the Sun-
Mars’s moons-spacecraft angle. From Figures 12(a)–12(e), we can see that as the
Sun-Mars’s moons-spacecraft angle increases, the TDOA and the profile shape change, and
the time dispersion width decreases. It can be seen from Figure 12(f) that as the Sun-Mars’s
moons-spacecraft angle increases, the expectation value of the TDOA and dispersion width
both decrease with the approximation of a straight line. That is, the Sun-Mars’s moons-
spacecraft angle is approximately proportional to the solar TDOA and the time dispersion
width.

5.5. Impact of the Sun-Mars’s moons-spacecraft angle. As the spacecraft approaches
the Mars’s moons, the Sun-Mars’s moons-spacecraft angle changes, and this affects the
solar TDOA. In this subsection, we study the relationship between the Sun-Mars’s moons-
spacecraft angle and the solar TDOA under the ellipsoid and the diamond.

Figure 13 shows the relationship between TDOA and the Sun-Mars’s moons-spacecraft
angle under the ellipsoid and the diamond. As shown in Figure 13, we can see that no
matter whether the shapes of the Mars’s moons are ellipsoids or diamonds, the solar TDOA
decreases as the Sun-Mars’s moons-spacecraft angle increases. The values of the TDOA
are very close and basically coincide. We can see that the values of the difference curves
are quite small, all on the 10−6 s order of magnitude and below. And the minimum value is
7·66*10−8 s when the Sun-Mars’s moons-spacecraft angle is between π /2 and 2π /3.

5.6. Influence of Mars’s moons attitude. The three-axes lengths of the Mars’s moons
are fixed, but the attitude of the Mars’s moons cannot be determined. In this subsection, we
study the influence of Mars’s moons attitude on the time dispersion under the ellipsoid and
the diamond.

Figures 14(a)–14(f) show the effect of the attitude of the Mars’s moons on the time
dispersion when the Mars’s moons are ellipsoids or diamonds. It can be seen from
Figures 14(a)–14(f) that the time dispersion differs depending on the attitude of the Mars’s
moons. When the major axis and the minor major axis change, the distribution of the TDOA
is different, and both the shapes and the probability distributions change. Table 2 shows the
impact of the attitude of Mars’s moons on the mathematical expectations of TDOA, which
are calculated by weighting. From Table 2, we can see that magnitude of the expectation
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Time dispersion versus Mars’s moons attitude: (a) major: x-axis, minor: y-axis (ellipsoid);
(b) major: y-axis, minor: z-axis (ellipsoid); (c) major: z-axis, minor: x-axis (ellipsoid); (d) major: x-axis,
minor: y-axis (diamond); (e) major: y-axis, minor: z-axis (diamond); (f) major: z-axis, minor: x-axis
(diamond).

of the TDOA between the two attitudes is about 10−6 s. Therefore, the attitude of Mars’s
moons has influence on the solar TDOA.

5.7. Influence of the Mars’s moons shapes. The actual shape of the Mars’s moons
are potato shaped. That is, the surface of Mars’s moons has depressions, but 3D TDOA
model is an ellipsoid with no depressions. In fact, with comparing the potato shape with
the ellipsoid, we find that the potato shape is located between the ellipsoid and the diamond.
This subsection studies the influence of Mars’s moons shapes on the time dispersion.

Figure 15 shows the impact of the Mars’s moons shapes on time dispersion. As shown
in Figures 15(a)–15(c), the influence of the Mars’s moons shapes on the time dispersion
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Table 2. Mathematical expectation of TDOA versus attitude

Attitude Mathematical expectation of TDOA/s

major: x-axis, minor: y-axis (ellipsoid) 10·80558401
major: y-axis, minor: z-axis (ellipsoid) 10·80557652
major: z-axis, minor: x-axis (ellipsoid) 10·80556662
major: x-axis, minor: y-axis (diamond) 10·80558022
major: y-axis, minor: z-axis (diamond) 10·80557776
major: z-axis, minor: x-axis (diamond) 10·80556784

(a) (b)

(c)

Figure 15. Time dispersion versus Mars’s moons shapes: (a) ellipsoid; (b) sphere; (c) diamond.

makes the shapes and probability distributions of the time dispersion in different shapes
slightly different. But the diffusion width of the time dispersion and the distribution range
in these shapes are the same. And the distribution of the TDOA is different in different
shapes, and the distribution is basically smooth. Therefore, we study the expectations of
the time dispersion of the three shapes. The difference in expectation of the time dispersion
between the ellipsoid and the diamond is 10−6 s, which means that the position error is
300 m. Then the difference in expectation of the time dispersion between the potato shape
and the ellipsoid model is about 150 m. This error is small for navigation. So, the 3D TDOA
model is relatively accurate.

5.8. Influence of solar flare. Solar activity is inevitable. So, we must consider its
impact when we use sunlight for navigation. In this subsection, we study the influence of
solar flare on the time dispersion.
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(a) (b)

(c) (d)

Figure 16. Time dispersion versus solar flare: (a) three flares; (b) one flare; (c) three flares; (d) one flare.

Figures 16(a) and 16(b) are images of the Sun during flare eruption, and Figures 16(c)
and 16(d) show the impact of solar flare on the time dispersion. We use these two images for
experiments, map the entire image to three-dimensional space and study the time dispersion
analysis within a certain threshold. As shown in Figures 16(c) and 16(d), we can see that
the solar flare for time dispersion caused by the Mars’s moons is influential. The multiple
flares on the Sun cause several diffusion segments. The larger the area of a flare on the Sun,
is larger the range, and the wider the time dispersion width of the solar TDOA. Besides,
the greater the brightness of a flare on the Sun, the greater the probability of the TDOA.

5.9. Comparison between the 3D model and the point model. The point model is not
accurate, which causes high position error. The 3D TDOA model is more accurate than
the point model in both the ellipsoid and diamond. In this subsection, the orbit data of the
Mars mission in 2018 is used to study the time dispersions of ellipsoid, diamond and point
models.

Figure 17 shows the comparison between the point model and the 3D model, which is
under the ellipsoid and the diamond. From Figures 17(a) and 17(b), we can see that the dis-
tribution of the time dispersion between the ellipsoid and the diamond is different. But the
distribution range is the same, and the distribution is smooth. Table 3 shows the compari-
son of the time dispersion expectation between the 3D TDOA model and the point model.
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(a) (b)

Figure 17. Time dispersion of ellipsoid and diamond: (a) ellipsoid; (b) diamond.

Table 3. Time dispersion expectation of ellipsoid and diamond

Parameter Value/s

Ellipsoid expectation 1·5688254149
Diamond expectation 1·5688256419
Point model 1·5688443862
Average of ellipsoid and diamond expectation 1·5688255284
Difference between ellipsoid and diamond 2·27*10−7

Difference between point model and mean 1·886*10−5

According to the calculation of the expectation values of the ellipsoid and diamond, we
can see from Table 3 that the difference between the two is 2·27*10−7 s, which represents
a position error of 68 m. This error is negligible, which proves that the 3D TDOA model is
accurate. The point model is much different from the expectation value of the ellipsoid or
the diamond. If we use the average value of the ellipsoid and the diamond as the standard,
then the point model error is 1·89*10−5 s, which represents a position error of 5·66 km.
Thus, the point model is very inaccurate.

6. CONCLUSION. The Mars’s moons model causes time dispersion. The time disper-
sion of the TDOA caused by the Mars’s moons (Phobos and Deimos) has a certain effect on
the solar TDOA navigation, which leads to a reduction in navigation accuracy. Therefore,
this paper establishes an accurate 3D TDOA model. Theoretical analysis and simulation
experiments confirm the properties of time dispersion of the TDOA caused by the Mars’s
moons.

The 3D TDOA model established in this paper is meaningful as it is reflected in the fol-
lowing aspects: (1) compared with the point model, the 3D TDOA model is more accurate.
The point model error is 5·66 km, while the 3D TDOA model error is within 70 m. The sim-
ulation results are conducive to the improvement of navigation accuracy; (2) The 3D TDOA
model treats the Mars’s moons asellipsoids, and the actual shape of the Mars’s moons are
potato shaped, which are located between the ellipsoid and the diamond. Simulation results
confirm that the accuracy is quite close to the actual situation.

It can be seen from the simulation experiments that the factors that have a large impact
on the 3D TDOA model are: (1) the three-axes lengths of the Mars’s moons. When the
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three-axes lengths change greatly, the time dispersion is greater; (2) the attitude of the
Mars’s moons. When the major axis and the minor major axis change, the distribution of
the TDOA is different, and both the shapes and the probability distributions change; (3) the
Sun-Mars’s moons-spacecraft angle. As the Sun-Mars’s moons-spacecraft angle increases,
the TDOA changes, the time dispersion width decreases and the profile shape changes;
(4) the flare erupting on the Sun. Flares on the Sun cause several diffusion segments. These
factors must be accurately estimated in navigation. The three-axes lengths and attitude
data of the Mars’s moons are provided by the astronomical database. The solar flare data
can be obtained by the onboard CCD. And the Sun-Mars’s moons-spacecraft angle can be
estimated by the navigation system.

It can be seen from the simulation experiments that the Mars’s moons-to-spacecraft
distance has little influence on the 3D TDOA model. As the Mars’s moons-to-spacecraft
distance increases, the spread width of the time dispersion, the profile shape and the prob-
ability distribution are basically the same. This factor has little influence on navigation
accuracy and do not require accurate estimation.
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