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For a class of non-conservative hyperbolic systems of partial differential equations
endowed with a strictly convex mathematical entropy, we formulate the initial-value
problem by supplementing the equations with a kinetic relation prescribing the rate
of entropy dissipation across shock waves. Our condition can be regarded as a
generalization to non-conservative systems of a similar concept introduced by
Abeyaratne, Knowles and Truskinovsky for subsonic phase transitions and by
LeFloch for non-classical undercompressive shocks to nonlinear hyperbolic systems.
The proposed kinetic relation for non-conservative systems turns out to be
equivalent, for the class of systems under consideration at least, to Dal Maso,
LeFloch and Murat’s definition based on a prescribed family of Lipschitz continuous
paths. In agreement with previous theories, the kinetic relation should be derived
from a phase-plane analysis of travelling-wave solutions associated with an
augmented version of the non-conservative system. We illustrate with several
examples that non-conservative systems arising in the applications fit in our
framework, and for a typical model of turbulent fluid dynamics we provide a detailed
analysis of the existence and properties of travelling waves which yields the
corresponding kinetic function.

1. Introduction

Certain nonlinear hyperbolic models arising in continuum physics and, in particular,
models describing complex fluid flows, do not take the standard form of conservation
laws but, instead, are nonlinear hyperbolic systems in non-conservative form

∂tu + A(u)∂xu = 0, x ∈ R, t � 0. (1.1)

Here, u = u(x, t) ∈ Ω is an unknown field taking values in a (convex and open)
domain Ω ⊂ R

N , while the matrix-valued field A = A(u) is given and, for each state
u, admits N real and distinct eigenvalues. It is well known that nonlinear hyperbolic
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equations do not admit smooth solutions, since propagating discontinuities arise in
finite time even from smooth initial data. For conservative systems, weak solutions
in the sense of distributions are sought. However, for non-conservative systems (1.1),
the distributional definition does not apply. A suitable notion of weak solutions was
proposed by Dal Maso, LeFloch, and Murat, which, together with several nonlinear
stability theorems, was presented in [20]. Non-conservative hyperbolic systems have
been the subject of active research in the past 15 years. The theory covers the
definition of weak solutions [20, 37–39, 43, 57], the existence of solutions to the
Riemann problem [20, 37], the initial-value problem [19, 37, 45], the uniqueness of
bounded variation solutions [6, 42] and their approximation via finite-difference
schemes [14,31,46]. In addition, many non-conservative models arising in continuum
mechanics have been systematically investigated, as such models play an important
role in the modelling of multi-phase flows and turbulent fluid dynamics [3, 7–9, 15,
16].

Building upon the above works, our purpose in the present paper is to consider a
restricted class of non-conservative systems of the form (1.1), characterized by the
property that a large family of additional entropy functions (conservation laws) is
also available. In other words, the systems to be considered below formally have
a conservative form if nonlinear combinations of the given equations are allowed.
However, the physical modelling dictates that non-conservative equations should
be used, and it is precisely under these conditions that a ‘kinetic relation’, as we
propose in the present paper, should enter into play.

The kinetic relations were initially introduced by LeFloch [41] for hyperbolic
systems of conservation laws in order to handle non-classical undercompressive
shocks, following earlier works by Abeyaratne and Knowles [1] and Truskinovsky
[56] for subsonic phase transitions. (See [6, 27,28,40–44] for details.)

The concept of a kinetic relation for non-conservative systems discussed herein
was actually first introduced by the authors in an unpublished manuscript. Later
on, this concept was investigated numerically by Aubert et al . [3, 9, 16], and the
control of the numerical dissipation of finite-difference schemes was extensively
addressed. Our purpose in the present paper is to provide the required theoretical
framework and demonstrate that the kinetic relation provides an efficient tool to
handle complex fluids.

Recall that the design and the properties of difference schemes suitable for the
numerical approximation of non-conservative systems (1.1) is very challenging. The
main source of difficulty lies in the fact that shock waves to non-conservative sys-
tems are small-scale dependent and the dissipation terms induced by the numerical
discretization tend to drive the propagation of the shocks. This phenomenon was
rigorously analysed for scalar equations by Hou and LeFloch [31]. On the other
hand, we emphasize that the Glimm scheme and front-tracking algorithms do not
contain any numerical dissipation and, actually, have been proven to converge to the
correct solutions [37,42,45]. The method based on the kinetic relation proposed in
the present paper allows one to extend to non-conservative systems the conclusions
made for non-classical shocks in [28,46] (and the references therein).

We begin with a general discussion of non-conservative hyperbolic systems arising
in continuum physics in order to motivate our general approach proposed in the next
section and developed on selected examples in the rest of this paper. The models
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of interest here naturally stand in a non-conservative form, and this is a direct
consequence of simplifying assumptions which are made in the derivation of these
models; these assumptions are also necessary if a tractable model is to be found.
Such assumptions typically originate in averaging procedures that intend to bypass
the description of intricate mechanisms taking place at microscopic scales. The
small-scale fluctuations that are thought to be of lesser interest induce dissipative
and/or relaxation phenomena at the macroscopic level, and can also be accounted
for as source terms.

Most (if not all) non-conservative hyperbolic models arising in the applications
admit (several distinct) entropy balance laws which are consistent with the under-
lying dissipative and relaxation mechanisms. These additional balance equations,
as we shall show, provide a natural approach to formulating additional general-
ized jump conditions built from entropy rate productions. Moreover, these entropy
functions are sufficient in number to allow for a complete set of jump relations.

The objectives and results in this paper are as follows. First of all, as mentioned
above, we restrict our attention to a class of non-conservative systems (defined
in § 3) which encompasses, however, most of the models encountered in the appli-
cations. To motivate the definition of the class of systems studied in this paper, we
observe that, in the applications we have in mind (e.g. multi-phase and multi-fluid
models):

(i) all but one of the equations (1.1) can be rewritten in a conservative form and,
moreover,

(ii) the system (1.1) is endowed with a mathematical entropy, i.e. a (strictly con-
vex) nonlinear function U = U(u) corresponding to an additional conservation
law satisfied by all smooth solutions.

For such systems, the concept of weak solutions introduced by Dal Maso et al . [20]
can be simplified. Therein, a family of Lipschitz continuous paths was necessary to
uniquely define the non-conservative product A(u)∂xu associated with the vector-
valued field u. In contrast, for our particular class of non-conservative systems, one
non-conservative product between scalar-valued functions only must be defined.
This structure allows us to simply supplement the model (1.1) with an additional
algebraic scalar equation which, for each shock wave, determines the entropy dissi-
pation rate associated with the entropy U . We call this additional jump condition
a kinetic relation and the entropy dissipation function a kinetic function. A precise
definition is given in § 3. The main result of this section is a proof of the existence
of a solution to the Riemann problem for (1.1) which satisfies the prescribed kinetic
relation. Our proof is a generalization of an argument given in [20] in the setting
of general families of paths.

It is remarkable that many models of interest arising in the applications take
the form considered in § 3, and this will be illustrated in § 2. In § 4, we focus on a
model of particular importance, which arises in turbulent fluid dynamics. Taking
into account the dissipation terms induced by the physical modelling, the existence
and properties of associated travelling waves are established. In § 5 we characterize
the right-hand states of travelling waves with fixed left-hand states, which leads us
to the desired kinetic relation. In turn, this provides us with the kinetic function
needed to apply the general theory in § 3.
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2. Non-conservative systems in fluid dynamics

To show the structure of the non-conservative systems of interest, it is worth begin-
ning with the shallow water equations with topography

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2 + 1
2gρ2) − gρ∂xa = 0,

}
(2.1)

where ρ and v are the mass density and the velocity of the fluid, respectively, and
the (prescribed) topography function a : R → R+ depends on the spatial variable x
and is assumed to be solely piecewise Lipschitz continuous. Here, g is the gravity
constant. The product gρ∂xa is a non-conservative product which is not defined in
a classical sense at points of discontinuity.

By setting u := (ρ, ρv), weak solutions should obey the following entropy inequal-
ity:

∂tU(u, a) + ∂xF(u, a) � 0,

U(u, a) := ρE(v) + ρa, e′(ρ) =
p(ρ)
ρ2 ,

F(u, a) := 1
2ρv3 + ρe(ρ)v + p(ρ)v + ρva.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

Another model with a closely related structure is

∂t(aρ) + ∂x(aρv) = 0,

∂t(aρv) + ∂x(aρv2 + ap(ρ)) − p(ρ)∂xa = 0,

}
(2.3)

which describes one-dimensional nozzle flows as well as compressible flows in porous
media. Again, the function a : R → R is solely piecewise Lipschitz continuous and
denotes here the nozzle cross-section or the porosity function, respectively.

By setting u := (aρ, aρv), weak solutions to (2.3) should obey the entropy
inequality

∂tU(u, a) + ∂xF(u, a) � 0,

U(u, a) = 1
2a2ρv2 + aρe(ρ),

F(u, a) = (U(u, a) + p(ρ))v.

⎫⎪⎬
⎪⎭ (2.4)

The systems (2.1) and (2.3) and closely related models with source terms have
received considerable attention over the past decade, from both analytical and
numerical standpoints. We refer the reader to [38] (in connection with the theory of
non-conservative systems), [4,11,14,21,25,26,33] (approximation by finite-difference
or finite volume schemes) and [22,32,47–50] (construction of a Riemann solver). In
particular, we refer the reader to [11] (and the references therein) for a comprehen-
sive review. We also refer the reader to [12,13,34,53,54].

We observe here that both models (2.1) and (2.3) fall within the following class
of non-conservative hyperbolic models with a singular source term:

∂tu + ∂xf(u, a) − g(u, a)∂xa = 0, (2.5)

where a is a given (piecewise Lipschitz continuous) function of the spatial variable
x and the unknown map u takes values in a convex and open domain Ωu ⊂ R

N ,
while f : Ωu × R → R

N and g : Ωu × R → R
N are given smooth mappings.
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Motivated by the structure of the above two examples, particularly the entropy
inequalities (2.2) and (2.4), and in order to develop a general theory, we assume
that the hyperbolic system (2.5) is endowed with a (sufficiently smooth) entropy
function U : Ωu × R → R and a corresponding entropy flux F : Ωu × R → R, so
that solutions to (2.5) satisfy the entropy inequality

∂tU(u, a) + ∂xF(u, a) � 0. (2.6)

The principal examples of interest arising in the form (2.5) in the applications do
admit such an entropy.

The above class is known to include, after the seminal work by Greenberg and
Leroux [25] and Gosse [23], the class of hyperbolic systems with source terms

∂tu + ∂xf(u) = g(u), (2.7)

which, by introducing the (rather trivial) function a(x) = x, indeed take the form
(cf. (2.5))

∂tu + ∂xf(u) − g(u)∂xa = 0. (2.8)

This non-conservative reformulation is useful for designing ‘well-balanced schemes’,
which properly account for the competition between the source term and the dif-
ferential hyperbolic operator in the large-time asymptotic t → +∞ [11,23–26]. The
(somewhat artificial but useful) system (2.8) admits a conserved entropy in the
scalar case n = 1, provided that the source g does not vanish, namely it suffices to
define U ′(u) := 1/g(u) and F ′(u) := f ′(u)/g(u).

As advocated by LeFloch [38] for the equations for nozzle flows (2.3), the pre-
scribed function a, being independent of the time variable, can be regarded as an
independent unknown of the following extended version of (2.5) in the extended
variable u := (u, a):

∂tu + ∂xf(u, a) − g(u, a)∂xa = 0,

∂ta = 0.

}
(2.9)

Assuming from now on that the matrix Duf(u, a) is diagonalizable for all u ∈ Ωu

and a ∈ R with real eigenvalues λ1(u, a), . . . , λn(u, a) and a full set of eigenvectors
r1(u, a), . . . , rn(u, a), it is obvious that (2.9) admits the same eigenvalues plus 0
(with multiplicity 1). Moreover, it admits a full set of eigenvectors if and only
if λj(u, a) �= 0 for all j = 1, . . . , n. In general, (2.9) is only weakly hyperbolic
and, due to possible resonance effects, difficulties arise even in tackling the simplest
initial-value problem, i.e. the Riemann problem; see the pioneering work of Isaacson
and Temple [32], as well as [22] for a general Riemann solver. In the rest of this
paper, our assumptions will explicitly exclude the resonance effect in solutions under
consideration.

While a rigorous definition of non-conservative products can wait until the fol-
lowing section, we shall provide here some preliminary discussion, based on an
observation by LeFloch [38] for the nozzle-flow equations and on the presentation
in Bouchut [11] for more general systems.

With this non-resonance assumption enforced, we then observe from (2.9) that the
variable a is a Riemann invariant associated with the eigenvalue λn+1(u, a) := 0. In
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other words, a stays constant across waves associated with any other (non-vanish-
ing) eigenvalue and, consequently, the non-conservative product g(u, a)∂xa only
needs to be defined for (n + 1)-contact discontinuities.

The entropy inequality (2.6) should be satisfied as an equality in the sense of
distributions across standing waves; hence,

F(u+, a+) − F(u−, a−) = 0. (2.10)

From the physical viewpoint, we can further investigate the validity of (2.10),
obtained as a direct consequence of the augmented form (2.9). To that purpose,
we specialize (2.10) firstly to the case of the shallow water equations (2.1)

m2

2ρ2
+

+ e(ρ+) +
p(ρ+)
ρ+

+ a+ =
m2

2ρ2
−

+ e(ρ−) +
p(ρ−)
ρ−

+ a−, (2.11)

where m =: ρ−v− = ρ+v+ denotes the mass, and secondly to the case of the
nozzle-flow equations (2.3):

m2

2a2
+ρ2

+
+ e(ρ+) +

p(ρ+)
ρ+

=
m2

2a2
+ρ2

−
+ e(ρ−) +

p(ρ−)
ρ−

, (2.12)

in which m := a−ρ−v− = a+ρ+v+. The above equations can be implicitly solved in
ρ+ away from resonance (see [11,22,47,48] for details) and stand at the very basis
of the design of well-balanced schemes.

Furthermore, in concrete experiments with fluid flows, for instance, in nozzles, it
is observed that an abrupt change (modelled therefore by a discontinuity) in the
topography function, the duct cross-section or the porosity function generally pro-
duces fine-scale features in solutions which may enter in competition with complex
dissipation phenomena such as friction. To account for such dissipation mecha-
nisms, the entropy law (2.2) or (2.4) can no longer be expressed as a conservation
law across the standing wave. The associated entropy dissipation rates are the so-
called ‘singular loss of momentum’ used by engineers and well-documented in the
applied literature. It is necessary, on the grounds of physical experiments, to replace
(2.12) by the more general condition

(aρv)+ − (aρv)− = 0, J = −(aρv)−κ(u−, a−), (2.13)

with

J := (aρv)+

(
1
2v2

+ + e(ρ+) +
p(ρ+)
ρ+

)
− (aρv)−

(
1
2v2

− + e(ρ−) +
p(ρ−)
ρ−

)
,

where the prescribed function κ : Ωu ×R → R+ defines mathematically the singular
loss of momentum. The extension relative to (2.11) is entirely analogous.

We continue this section with a more sophisticated model of compressible flows,
describing multi-fluid mixtures, where the variable a introduced previously now
stands for a fluid mass fraction. Following the celebrated review by Steward and
Wendroff [55], (stratified) multi-fluid models may be regarded as two distinct fluids
evolving with distinct velocities and distinct thermodynamic properties, each prop-
agating within ‘nozzles’ whose cross-sections, denoted by a ∈ (0, 1) and 1 − a(x, t),
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respectively, depend on the spatial as well as the time variables (see, for exam-
ple, [2]). For notational convenience, a is traditionally denoted by α1 (void fraction
of fluid 1) and (1 − a) by α2 (void fraction of fluid 2), with

α1(x, t) + α2(x, t) = 1.

Furthermore, the evolution of a is now described either via an algebraic closure
equation (based on the isobaric assumption; see [55] for details) or by considering
it as an independent variable governed by a supplementary evolution equation.
From the point of view of the present paper and in order to avoid instability issues
due to lack of hyperbolicity of the model, we adopt the second strategy, following
here [5, 52]. This approach has been investigated extensively in recent years (see
[10,21] and references therein).

In turn, the multi-fluid model under consideration takes the form

∂tα1 + VI(u)∂xα1 = λ(p2 − p1),
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1) − PI(u)∂xα1 = λ(u2 − u1) + ε∂x(µ1∂xu1),
∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2) − PI(u)∂xα2 = −λ(u2 − u1) + ε∂x(µ2∂xu2),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14)
where u := (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2) is the vector-valued unknown. Here,
the barotropic pressure laws pi = pi(ρi) are assumed to satisfy the monotonicity
condition p′

i(ρi) > 0. The relaxation parameter λ > 0 may take arbitrarily large
values, depending on the multi-fluid flow regime under consideration, while ε > 0
(the inverse of the Reynolds number) is usually small. Moreover, the (smooth)
functions VI : Ωu → R and PI : Ωu → R represent the interfacial velocity and
interfacial pressure, respectively. Following the original work by Ransom and Hicks
[52], one can set, for example,

VI(u) := 1
2 (u1 + u2), PI(u) := 1

2 (p1 + p2). (2.15)

It turns out that, independently of the precise form of the constitutive equations,
the system (2.14) admits five real eigenvalues, i.e.

VI(u), ui ± ci(ρi),

where c2
i (ρi) := p′(ρi) > 0, (as well as a basis of right eigenvectors) if and only if

|VI(u) − ui| �= ci(ρi), i = 1, 2. (2.16)

In other words, like the (much simpler) model (2.9), the principal (first-order) part
of (2.14) is only weakly hyperbolic if (2.16) is violated. Here again, we tacitly assume
that the solutions under consideration do not develop resonance phenomena.

One key constraint that arises in choosing the required closure laws for VI(u)
and PI(u) is the existence of a mathematical entropy pair associated with (2.14).
Interestingly, the total energy

U := α1ρ1E1(u) + α2ρ2E2(u)
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with Ei(u) := 1
2u2

i + ei(ρi) is an entropy for (2.14) if and only if the interfacial
closure laws VI(u) and PI(u) satisfy the interfacial compatibility condition

VI(u)(p2 − p1) + PI(u)(u2 − u1) = p2u1 − p1u2 (2.17)

for all states under consideration (see, for example, [17, 21]). Indeed, under the
assumption (2.17), smooth solutions of (2.14) satisfy the entropy balance law

∂tU(u) + ∂xF(u) = −λ(u2 − u1)2 − λ(p2 − p1)2 − D,

U(u) := (α1ρ1E1(u) + α2ρ2E2(u)),
F(u) := ((α1ρ1E1(u) + α1p1)u1 + (α2ρ2E2(u) + α2p2)u2),

D(u) := εµ1(∂xu1)2 + εµ2(∂xu2)2 − ε∂x(µ1α1∂xu1 + µ2α2∂xu2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)
The dissipation D formally converges to a non-positive measure when ε → 0 and/
or λ → +∞, so that in this limit we do have the entropy inequality

∂tU(u) + ∂xF(u) � 0. (2.19)

We conclude this section with another setting for complex compressible materials
which naturally gives rise to hyperbolic equations with viscous perturbations in
non-conserved form. The models under consideration may be regarded as natural
extensions of the usual Navier–Stokes (NS) equations. Such extensions make use of
N independent internal energies (ei)1�i�N for governing N independent pressure
laws (pi(τ, ei))1�i�N . These partial differential equation (PDE) models take the
generic form:

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x

(
ρu2 +

N∑
i=1

pi(τ, ei)
)

= ε∂x

( n∑
i=1

µi(τ, ei)∂xu

)
,

∂t(ρei) + ∂x(ρuei) + pi(τ, ei)∂xu = εµi(τ, ei)(∂xu)2,

(2.20)

where ρ > 0 denotes the density, u ∈ R is the velocity and τ = 1/ρ > 0 is the
specific volume. Here, ε > 0 denotes the inverse of the Reynolds number.

Several models from physics enter the proposed framework and can be distin-
guished according to the precise definition of the constitutive closure laws for the
pressures and the viscosities. Precise assumptions on the required state laws will be
addressed in § 4, which is devoted to the analysis of the travelling-wave solutions
of (2.20).

Models from plasma physics, where the temperature of the electron gases must
be distinguished from the temperature of the other heavy species, typically take
the form (2.20) with N = 2 [18]. Models from the physics of compressible turbulent
flows can also be seen to fall within the frame of PDEs (2.20). We refer the reader
to [7–9,15,16] for the mathematical and numerical analysis of several models ranging
from two distinct internal energies (the so-called laminar and turbulent energies)
to N > 2 different energies to account for a refined description of the turbulent
energy cascade. We also emphasize that multi-fluid models, such as those studied
in [10], enter the proposed framework.
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In most if not all the applications to complex compressible materials, ε, the
inverse of the Reynolds number modulating the strength of the viscous perturba-
tion, is a small parameter. Solutions of interest therefore exhibit stiff transition
zones, namely viscous shock layers and boundary layers. Viscous shocks cannot be
properly resolved for mesh refinements of practical interest and we are thus led to
study the limit ε → 0+ in the system (2.20).

There exist several ways to tackle the system (2.20) in the limit ε → 0+, depend-
ing on suitable change of variables. It can be seen that (2.20) can recast equivalently
as

A0(wε)∂tw
ε + A1(wε)∂xwε = ε∂x(D(wε)∂xwε) (2.21)

with A0 regular, or

∂tu
ε + ∂xF(uε) = εR(uε, ∂xuε, ∂xxuε). (2.22)

Namely, in (4.15), the diffusive operator is written in conservation form, while
A0(w) and A1(w) are not Jacobian matrices of some flux function. By contrast,
in (2.22) the first-order operator, but not the regularization terms, stand in conser-
vation form.

The precise definitions of the change of unknown w and u are addressed in § 4.
We just highlight at this stage that concerning the equivalent form (2.21), and
provided that suitable estimates on the sequence of solutions wε hold true, the
right-hand side is expected to vanish in the limit ε → 0+ in the usual sense of
the distributions. By contrast, the left-hand side in non-conservation form may
be handled due to the theory of family of paths introduced by LeFloch [38] and
Dal Maso et al . [20]. As far as the next equivalent form (2.22) is concerned, the
left-hand side now stands in conservation form and can be treated in the usual
sense of the distributions. In contradiction, the right-hand side can no longer be
expected to converge to 0, generally speaking, but is expected merely to converge
to a bounded Borel measure concentrated on the shocks of the limit solutions. The
next section provides a convenient framework for handling the required passage to
the limit in the PDEs (2.22).

3. Kinetic relations for non-conservative systems

Having in mind the examples described in the previous section, we present one of the
main contributions of the present paper, i.e. the concept of kinetic relations for non-
conservative systems, which allows us to rigorously define certain non-conservative
products arising in the applications.

Recall that weak solutions to non-conservative systems are defined in the class
of functions with bounded variation (BV). By standard regularity theorems, such
functions can be handled essentially as if they were piecewise Lipschitz continu-
ous. Henceforth, for simplicity of presentation, we restrict our attention to piece-
wise Lipschitz continuous functions and refer the reader to [20] for details of the
Dal Maso–LeFloch–Murat (DLM) theory.

For the simplicity of presentation, we restrict our attention to solutions defined
in the neighbourhood of a constant state in R

N which can be normalized to be the
origin. We denote by Bδ0 the ball centred at the origin and of small radius δ0 > 0.
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Dal Maso et al .’s definition is based on prescribing a family of Lipschitz continuous
paths φ = φ(s; u0, u1) ∈ Bδ0 (s ∈ [0, 1]), which allows one to connect any two points
u0, u1 in Bδ1 for some δ1 � δ0. In particular, it is assumed that

φ(0; u0, u1) = u0, φ(1; u0, u1) = u1. (3.1)

(See [20, 43] for the precise conditions, omitted in this short review.) As proposed
in [38], this family of paths should be determined from travelling-wave solutions of
an augmented model.

Indeed, it has been recognized that weak solutions u of (1.1) depend on the effect
of small scales that have been neglected at the hyperbolic level of modelling but
are taken into account in the augmented version

∂tu + A(u)∂xu = R(u, εux, ε2uxx, . . . ), (3.2)

where Rε = 0 if ε = 0. The family of paths determined by travelling-wave trajec-
tories yields precisely the ‘missing information’ required to set up the hyperbolic
theory.

A (piecewise Lipschitz continuous) function u = u(x, t) is called a weak solution
of the non-conservative system (1.1) if u satisfies the equations (1.1) in a classical
sense in the regions where it is Lipschitz continuous and, additionally, the following
generalization of the Rankine–Hugoniot jump relation holds along every curve of
the discontinuity of u. More precisely, for any shock wave connecting two states u0,
u1 at the speed Λ̄ = Λ̄(u0, u1),

u(x, t) =

{
u0, x < Λ̄t,

u1, x > Λ̄t,
(3.3)

we impose the generalized jump relation

−Λ̄(u1 − u0) +
∫ 1

0
A(φ(s; u0, u1))∂sφ(s; u0, u1) ds = 0. (3.4)

Note that in the conservative case when A(u) = Df(u) for some flux-function f
this relation reduces to

−Λ̄(u1 − u0) + f(u1) − f(u0) = 0,

which is independent of the paths φ and is the standard jump relation.
Based on the above definition, one can solve [20] the Riemann problem for (1.1),

corresponding to the piecewise constant initial data

u(x, 0) =

{
uL, x < 0,

uR, x > 0,
(3.5)

where uL, uR are constants in Bδ2 with δ2 � δ1. This construction generalizes Lax’s
standard construction for conservative systems [35, 36]. Recall that (admissible)
shock waves must be constrained by Lax shock inequalities (for some j = 1, . . . , N)

λj(u0) > Λ̄ > λj(u1). (3.6)
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The Riemann solver can then be used to design numerical schemes for the approx-
imation of the general initial-value problem, e.g. Glimm or front-tracking schemes.

In certain applications, it has been observed that the whole family of paths is not
required in order to define the non-conservative products that arise in the hyperbolic
system under consideration. It is precisely our purpose in the present paper to
introduce, for a particular class of non-conservative systems, a new definition of
weak solutions which imposes Rankine–Hugoniot jump relations in the form of
‘kinetic relations’ and does not require the knowledge of any ‘internal structure’ for
shock waves.

We shall assume that the non-conservative system under consideration formally
admits N conservation laws, so we consider the system

∂tu + ∂xf(u) = 0, (3.7)

which consists of conservation laws valid for smooth solutions only. Our goal is
to describe singular limits (3.2), where R = Rε is a non-conservative regulariza-
tion. More precisely, we shall supplement (3.7) with N jump relations, referred to
as ‘kinetic relations’, which determine the dynamics of shocks in weak solutions
to (3.7).

We suppose that in an open and convex domain U ⊂ R
N of the phase space, the

system (1.1) is strictly hyperbolic, with eigenvalues λ1(u) < · · · < λN (u) and basis
of eigenvectors li(u), ri(u). Let L ⊂ R be a compact set containing all speeds under
consideration in the problem.

Definition 3.1. A kinetic function is a Lipschitz continuous map Φ : U ×L → R
N

satisfying (for j = 1, . . . , N)

Φ(u, λj(u)) = 0, u ∈ U ,

|lj(u) · ∂ΛΦ(u, Λ)| � c1|Λ − λj(u)|, (u, Λ) ∈ U × L,

}
(3.8)

for some constant c1 > 0. Given a kinetic function Φ, a piecewise Lipschitz solution
u = u(x, t) ∈ U is called a Φ-admissible weak solution to (1.1) if the differential
equations (3.7) are satisfied in each region of continuity of u and, moreover, along
any curve of discontinuity of u, connecting some values u−, u+ at the speed Λ. The
following kinetic relation holds:

−Λ(u+ − u−) + f(u+) − f(u−) = Φ(u−, Λ). (3.9)

In certain applications, it may be more convenient to express the kinetic functions
in terms of the left- and right-hand states, that is, Φ = Φ(u−, u+). In the applica-
tions, the kinetic function Φ should be determined from travelling-wave solutions
of a specific system (3.2) and should be thought of as a ‘correction’ to the standard
Rankine–Hugoniot relation.

By introducing the Borel measure (denoted by µΦ
u) that vanishes in the regions

of continuity of u and has the mass Φ(u−, Λ) along its curves of discontinuity, we
easily see that definition 3.1 is equivalent to the requirement [40]

∂tu + ∂xf(u) = µΦ
u , (3.10)
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12 C. Berthon, F. Coquel and P. G. LeFloch

which is regarded as an equality between bounded measures. Note that we recover
the usual conservative case by simply choosing both Φ and µΦ

u to vanish identically.
In general, µΦ

u depends strongly on the function u.
In the rest of this section we study the case of genuinely nonlinear systems.

This assumption allows us to use the shock speed as a regular parameter along the
(generalized) Hugoniot curve.

Theorem 3.2. (A Riemann problem for non-conservative systems with kinetic re-
lations.) Suppose that (3.7) is a strictly hyperbolic system in a neighbourhood Bδ0

of the origin 0 and admits genuinely nonlinear characteristic fields only, i.e.

(∇λj · rj)(0) > 0, j = 1, . . . , N.

Let Φ = Φ(u, Λ) be a (Lipschitz continuous) kinetic function defined in the neigh-
bourhood Bδ0 × L for some sufficiently small δ > 0 by

L :=
⋃
j

Lj , Lj := (λj(0) − δ, λj(0) + δ).

Then, there exists δ1 � δ0 such that the Riemann problem (3.5), (3.7) with data
uL, uR ∈ Bδ1 admits a unique Φ-admissible weak solution in the class of piecewise
smooth solutions consisting of a combination of rarefaction waves and shock waves
satisfying the kinetic relation. Moreover, the corresponding wave curves are solely
Lipschitz continuous.

Clearly, under the assumptions of the above theorem, (3.8) implies that, for
j = 1, . . . , N ,

|lj(u) · Φ(u, Λ)| � c2|Λ − λj(u)|2, (λ, u) ∈ U × Lj , (3.11)

for some c2 > 0.

Proof. We want to generalize the proof given in [20] for general families of paths;
see also the related proof in [29] for non-classical shocks. We shall show that the
given set of jump conditions (3.9) suffices to determine a (generalized) Hugoniot
curve uniquely, and we shall investigate its tangency and regularity properties. The
rest of the proof (selection of the admissible part of the Hugoniot curve, actual
construction of the wave curves, Riemann solution) then follows as in [20] and will
be omitted.

We denote by λ̄j(u0, u1) and l̄j(u0, u1) the eigenvalues and left-eigenvectors of
the averaged matrix

A(u0, u1) :=
∫ 1

0
Df(u0 + m(u1 − u0)) dm.

In a neighbourhood of the point (u0, λj(u0)), we consider the kinetic relation

G(Λ, u1) := −Λ(u1 − u0) + f(u1) − f(u0) − Φ(u0, Λ) = 0. (3.12)
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Why many theories of shock waves are necessary 13

Fix some index i and let us restrict our attention to the (nonlinear) cone-like region
K determined by the two conditions on u1 ∈ Bδ1 :

|(u1 − u0) · li(u0, u1)| � C∗|Λ − λi(u0)|, |u1 − u0| + |Λ − λi(u0)| < δ2,

where a condition on C∗ > 0 will be imposed below. Observe that G(u0, λi(u0)) = 0.
Multiplying the generalized jump relation (3.12) by l̄i(u0, u1), we find

0 = l̄i(u0, u1) · (A(u0, u1) − Λ)(u1 − u0) − l̄i(u0, u1) · Φ(u0, Λ)

= (λ̄i(u0, u1) − Λ)l̄i(u0, u1) · (u1 − u0) − l̄i(u0, u1) · Φ(u0, Λ).

Therefore, we can express the shock speed Λ = Λ̄(u0, u1) in the form

0 = Λ̄ − λ̄i(u0, u1) +
l̄i(u0, u1) · Φ(u0, Λ̄)
l̄i(u0, u1) · (u1 − u0)

=: Ω(u1, Λ̄). (3.13)

Now, observe that the function Ω satisfies∣∣∣∣∂Ω

∂λ
(u1, Λ̄) − 1

∣∣∣∣ =
l̄i(u0, u1) · ∂λΦ(u0, Λ̄)
l̄i(u0, u1) · (u1 − u0)

� −c2O(1)
|u1 − u0| + |Λ̄ − λ̄i(u0)|
|l̄i(u0, u1) · (u1 − u0)|

,

where the constant O(1) depends only on the flux. Hence, we have

∂Ω

∂Λ
(u1, Λ̄) = 1 +

c2

C∗
O(1),

which is positive provided that c1 is sufficiently small. As a consequence, the implicit
function for Lipschitz continuous mappings applies and shows that the implicit
equation (3.13) determines the shock speed Λ̄ = Λ̄(u0, u1) uniquely.

Next, we consider the remaining components, corresponding to j �= i:

H(u0, u1) := lj(u0, u1) · (u1 − u0) − lj(u0, u1) · Φ(u0, Λ̄)
Λ̄(u0, u1) − λj(u0, u1)

.

Denoting by L(u0) the N × (N − 1) matrix of vectors lj(u0) for j �= i, we can
compute the differential of H as follows:

DH

Du1
(u0, u1) = L(u0) + O(1)|u1 − u0| + O(1)C1

|Λ̄(u0, u1) − λi(u0)|2
|Λ̄(u0, u1) − λj(u0)|

+ O(1)C1|Λ̄(u0, u1) − λi(u0)|
∣∣∣∣ ∂Λ̄

∂u1
(u0, u1)

∣∣∣∣
+ O(1)C1|Λ̄(u0, u1) − λi(u0)|2

∣∣∣∣ ∂Λ̄

∂u1
(u0, u1) − 1

2∇λi(u0)
∣∣∣∣,

where we have used that Λ̄(u0, u1) − λj(u0, u1) is bounded away from 0. Hence, we
find

∂H

∂u1
(u0, u1) = L(u0) + o(1) + o(1)

∣∣∣∣ ∂Λ̄

∂u1
(u0, u1)

∣∣∣∣.
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On the other hand, the u1-derivative of the shock speed satisfies

∂Λ̄

∂u1
(u0, u1) = 1

2∇λi(u0) + O(1)
|λ − λi(u0)|b+1

|li(u0, u1) · (u1 − u0)|

+ O(1)
|Λ̄ − λi(u0)|2

|li(u0, u1) · (u1 − u0)|2

+ O(1)
|Λ̄ − λi(u0)|

|li(u0, u1) · (u1 − u0)|
∂Λ̄

∂u1
(u0, u1),

which shows that
∂Λ̄

∂u1
(u0, u1) = 1

2∇λi(u0) + o(1).

In conclusion,
∂H

∂u1
(u0, u1) = L(u0) + o(1),

and the implicit function theorem applies to the set of equations H(u0, u1) = 0,
which therefore determines a unique shock curve s �→ u1 = u1(s; u0), defined locally
near u0. Near the base point u(0) = u0, the tangent of this curve is defined almost
everywhere and, due to the smallness of the constant c1 in (3.8), takes its values in
a small neighbourhood of the eigenvector ri(u0).

We now introduce a class of non-conservative system to which the framework
in the previous subsection can be applied. We assume that the first N − p equa-
tions in (1.1) take a conservative form, while the remaining p equations are non-
conservative. In other words, we set u = (v, w) and we consider the non-conservative
systems

∂tv + ∂xg(v, w) = 0,

∂tw + B(v, w)∂xv + C(v, w)∂xw = 0.

}
(3.14)

Here g = g(v, w) ∈ R
N−p while B = B(v, w), C = C(v, w) are p× (N −p) and p×p

matrix-valued mappings, respectively.
It must be stressed that the assumption made here refers directly to the set

of equations listed in (1.1) or to linear combinations of them. Of course, nonlinear
functions of the original variable u cannot be considered at this level of the analysis,
in general, since we seek discontinuous solutions.

Our second assumption is the existence of p mathematical entropy pairs. That
is, we assume that there exist k strictly convex functions Uk = Uk(v, w) together
with their associated flux Fk = Fk(v, w) such that

∂tUk(v, w) + ∂xFk(v, w) = 0, k = 1, . . . , p, (3.15)

holds for all smooth solutions to (3.8). We search for solutions satisfying the entropy
inequality

∂tUk(v, w) + ∂xFk(v, w) � 0, k = 1, . . . , p. (3.16)

Many of the models of interest take the form (3.8)–(3.16).
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Definition 3.3. Nonlinear hyperbolic systems in a non-conservative form that
have the structure (3.14) admit at least p mathematical entropies and satisfy the
non-degeneracy condition

det(∇wU1(v, w), . . . ,∇wUp(v, w)) �= 0 (3.17)

are called non-conservative systems endowed with a full set of entropies.

We now focus on the entropy dissipation associated with the entropies Uk. The
basic idea is to replace the non-conservative equations in system (3.8) with con-
servative equations for the entropy dissipation, with the latter involving a measure
source term. Of course, it is necessary for (v, w) �→ (v, U(v, w)) to define a change
of variable, say Uw �= 0.

Observe first that the inequality (3.16) implies a constraint on shock waves,
i.e. with the notation introduced in (3.3),

Ek(Λ; u0, u1) := −Λ(Uk(u1) − Uk(u0)) + Fk(u1) − Fk(u0) � 0 (3.18)

for all k = 1, . . . , p. On the other hand, the first N −p equations in (3.8) yield N −p
jump relations in the fully explicit form

−Λ(v1 − v0) + g(v1, w1) − g(v0, w0) = 0. (3.19)

Since p jump relations are ‘missing’, we supply them in the form

Ei(Λ; u0, u1) = Φi(Λ; u0) � 0, i = 1, . . . , p, (3.20)

which we refer to as a kinetic relation and where Φ is a given ‘constitutive’ func-
tion, called a ‘kinetic function’, to be determined in a case-by-case manner in the
examples.

Definition 3.4. Let Φ = (0, . . . , 0, Φ1, . . . Φp) be a kinetic function. A piecewise
Lipschitz continuous function u = (v, w) is called a Φ-admissible solution of the
non-conservative system (3.8) if it satisfies the equations in a classical sense in the
regions of continuity and if each propagating discontinuity satisfies the N − p jump
relations (3.19) together with the kinetic relations (3.20).

We reformulate the main result in a slightly weaker form that is adapted to the
present context, since it is natural to assume that the entropy dissipation is of cubic
order near the base point.

Corollary 3.5. (Riemann problem for non-conservative systems endowed with a
full set of entropies.) Consider a non-conservative system endowed with a full set
of entropies. Suppose that the system is strictly hyperbolic and genuinely nonlinear
in the neighbourhood of some state u∗ = (v∗, w∗). Let Φi = Φi(u0, u1) be a regular
function defined in the neighbourhood of each speed λj(u∗) for j = 1, . . . , N and
satisfying, for all u0, u1,

Φi(u0, λi(u0)) = 0,

∂ΛΦi(u0, Λ) = O(1)(Λ − λj(u0))2,

}
(3.21)
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where O(1) denotes a positive and bounded function. Then, the corresponding Rie-
mann problem admits a unique admissible solution in the class of piecewise smooth
solutions consisting of a combination of rarefaction waves and admissible shock
waves.

The theory in this section applies to the examples listed in § 2, at least when
the resonance effect is avoided. It is straightforward to include linearly degenerate
characteristic fields, provided that the kinetic function is chosen to vanish identically
for those fields.

4. Multi-pressure Navier–Stokes system

In this section, we establish the existence and uniqueness of the travelling-wave
solutions of the multi-pressure NS equations introduced in § 2, under fairly general
assumptions on the pressure and viscosity closure laws. The equations under con-
sideration were stated in (2.20). Each smooth pressure law pi(τ, ei), 1 � i � N , is
assumed to obey the second law of thermodynamics, namely

Ti(τ, ei) dsi = dei + pi(τ, ei) dτ, (4.1)

where Ti(τ, ei) > 0 is the corresponding temperature variable and si > 0 denotes
the specific entropy.

The map (τ, si) �→ ei(τ, si) is thus well defined and is assumed to be strictly
convex. In addition, the following asymptotic conditions are assumed:

lim
τ→0+

ei(τ, si) = +∞, lim
si→+∞

ei(τ, si) = +∞, lim
τ→+∞

ei(τ, si) = 0. (4.2)

It follows that

pi(τ, si) = −∂ei

∂τ
(τ, si) > 0, Ti(τ, si) =

∂ei

∂si
(τ, si) > 0. (4.3)

Furthermore, the following assumptions are introduced for any given τ > 0:

∂pi

∂si
(τ, si) > 0, (4.4)

N∑
i=1

∂2pi

∂τ2 (τ, s) > 0, (4.5)

lim
τ→0+

N∑
i=1

pi(τ, s) = +∞, lim
τ→+∞

N∑
i=1

pi(τ, s) = 0, (4.6)

lim
τ→0+

N∑
i=1

∂pi

∂τ
(τ, s) = −∞, lim

τ→+∞

N∑
i=1

∂pi

∂τ
(τ, s) = 0, (4.7)

lim
si→+∞

∂pi

∂τ
(τ, si) = −∞, (4.8)

where s = (s1, . . . , sN ). We refer the reader to [51] for general properties of the
fluid equations and the equation of state. Next, the viscosity laws are given smooth
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functions with

µi(τ, si) � 0, 1 � i � N, µ(τ, s) :=
N∑

i=1

µi(τ, si) > 0. (4.9)

To abbreviate the notation, the PDE system (2.20) is given in the condensed form

∂tv
ε + A(vε)∂xvε = εB(vε, ∂xvε, ∂xxvε),

with v in the phase space

Ωv = {v = (ρ, ρu, (ρei)1�i�N ) ∈ R
N+2; ρ > 0, ρu ∈ R, ρei > 0, 1 � i � N}.

The basic properties of (2.20) are summarized in the following statement.

Lemma 4.1. The underlying first-order part from (2.20) is hyperbolic in Ωv and
admits three distinct eigenvalues:

λ1(v) = u − c(v), λ2(v) = · · · = λN+1(v) = u, λN+2(v) = u − c(v), (4.10)

where we set

c2(v) =
N∑

i=1

−τ2 ∂pi

∂τ
(τ, si). (4.11)

The extreme fields are genuinely nonlinear, while the intermediate fields are linearly
degenerate. Then, smooth solutions of (2.20) satisfy the additional conservation law

∂t(ρE)ε + ∂x

(
{ρE}(vε) +

N∑
i=1

pi(τ ε, sε
i)u

ε

)
= ε∂x

( N∑
i=1

µi(τ ε, sε
i)u

ε∂xuε

)
, (4.12)

where the total energy reads

(ρE) =
(ρu)2

2ρ
+

N∑
i=1

ρei. (4.13)

Finally, the smooth solutions of (2.20) obey the N balance equations

∂t(ρsi)ε + ∂x((ρsi)εuε) = ε
µi(τ ε, sε

i)
Ti(τ ε, sε

i)
(∂xuε)2. (4.14)

As previously claimed, changes of variables with distinctive features allow the
recasting of (2.20) either in the equivalent form

A0(wε)∂tw
ε + A1(wε)∂xwε = ε∂x(D(wε)∂xwε), (4.15)

with A0 regular, or in the form

∂tu
ε + ∂xF(uε) = εR(uε, ∂xuε, ∂xxuε). (4.16)

We briefly discuss the changes of variables involved in (4.15) and (4.16). Concerning
(4.15), we first observe that summing the N governing equations for the internal
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energies yields

∂tρe + ∂xρeu +
N∑

i=1

pi∂xu = εµ(τ, s)(∂xu)2,

so that the following identities are easily checked:

µ(τ, s)(∂tρei +∂x(ρeiu)+pi(τ, si)∂xu)−µi(τ, si)
(

∂tρe+∂x(ρeu)+
N∑

i=1

pi∂xu

)
= 0,

1 � i � N − 1. (4.17)

Since ρe = ρE − (ρu)2/2ρ, the conservation laws for ρ, ρu and ρE supplemented
by the (N − 1) balance equations in (4.17) can be seen to give the equivalent form
stated in (4.15) when defining w = (ρ, ρ, ρE, (ρei)1�i�N−1). A direct calculation
shows that det A0(w) = µ(τ, s)n−1 > 0.

Concerning system (4.16), several changes of variables can be used and we advo-
cate in the following the change of variables v ∈ Ωv �→ u(v) ∈ Ωu, with u(v) =
(ρ, ρu, (ρsi)1�i�N ).

As emphasized in § 3, both approaches rely on the study of the travelling-wave
solutions of (2.20). Due to the frame invariance properties satisfied by the PDE
model (2.20), it suffices to analyse travelling-wave solutions associated with the
first extreme field. With this in mind, the main result of this section is as follows.

Theorem 4.2. (Travelling-wave solutions to the multi-pressure NS system.) Con-
sider the multi-pressure Navier–Stokes system (2.20) when the pressure satisfies the
positivity, convexity and asymptotic conditions (4.2)–(4.9). Let uL ∈ Ωu and σ ∈ R

be given such that

uL − σ

c(uL)
> 1, c2(uL) =

N∑
i=1

−τ2
L

∂p

∂τ
(τL, (si)L). (4.18)

Then, there exists a unique travelling-wave solution to (2.20) issuing from the left-
hand state uL and reaching some right-hand state uR ∈ Ωu with

0 <
uR − σ

c(uR)
< 1. (4.19)

The proof of this result will follow from the characterization of a positively invari-
ant compact set of Ωu. Then the LaSalle invariance principle applied in connec-
tion with a suitable Lyapunov function ensures the existence of a travelling wave.
Uniqueness is obtained as a simple consequence of the centre manifold theorem.

We gather here some of the notation used repeatedly hereafter and give the
precise form of the autonomous system which governs the viscous profiles we study
for existence. Simple but useful geometrical properties induced by the corresponding
vector field will be then put forward.

Due to Galilean invariance, it suffices to consider the case of a null velocity σ.
The precise form of the PDE system governing the travelling-wave solutions then
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follows when restricting our attention to solutions which depend solely on x:

(ρu)x = 0,

(ρu2 + p(τ, s))x = (µ(τ, s)ux)x,

Ti(τ, si)(ρsiu)x = µi(τ, s)(ux)2, 1 � i � N.

⎫⎪⎬
⎪⎭ (4.20)

The first equation in (4.20) implies that the relative mass flux ρu has a constant
value denoted by m = ρLuL. As already emphasized, we focus on travelling-wave
solutions associated with the first genuinely nonlinear field; namely, we consider
m > 0. Observe that the Lax condition (4.18) expressed for a null velocity σ reads

m > ρLcL.

Next, by integrating once the second equation in (4.20), the identity u = mτ
allows one to derive the following (N + 1)-dimensional autonomous system:

τ̇ =
1

µ(τ, s)
(p(τ, s) − p(τL, sL) + m2(τ − τL)) :=

1
µ(τ, s)

F(τ, s),

ṡi =
µi(τ, si)

µ2(τ, s)Ti(τ, si)
F2(τ, s), 1 � i � N,

⎫⎪⎪⎬
⎪⎪⎭ (4.21)

where dots denote differentiation with respect to the rescaled variable x/m that in
the following we shall refer to, with slight abuse of notation, as a time.

This dynamical system is endowed with the following open subset of R
N+1 which

will serve as a natural phase space:

Ω = {ω := (τ, s) ∈ R
N+1; τ > 0}. (4.22)

To shorten the notation, a given function Ψ of τ and s is simply denoted hereafter
by Ψ(ω).

Recall that the total viscosity µ(ω) is assumed to stay strictly positive over Ω.
Then, the regularity assumptions made on all the thermodynamic and viscosity
mappings ensure that the vector field in (4.21) is continuously differentiable.

The unique non-extensible solution of (4.21) with initial data ω0 in Ω is referred as
to the flow ω0t for the times t in the maximal interval of existence (t−(ω0), t+(ω0)).
The positive (respectively negative) semi-orbit γ+(ω0) (respectively, γ−(ω0)) classi-
cally denotes the set of states ω0 ·[0, t+(ω0)) = {ω0 ·t : 0 � t < t+(ω0)} (respectively,
ω0 · (t−(ω0), 0] = {ω0 · t : t−(ω0) < t � 0}), the orbit then being defined as γ(ω0) =
γ−(ω0) ∪ γ+(ω0). Finally, for each ω0 in Ω, the positive limit set (the so-called
�-limit set in what follows) of ω0 yields the definition �(ω0) :=

⋂
t>0 γ+(ω0 · t);

such a set is thus empty as soon as t+(ω0) is finite.
Before we enter the central part of the analysis, let us emphasize that the (N +

1) constitutive variables of (4.21) lie, during the whole evolution, within an N -
dimensional submanifold of Ω, the latter being entirely prescribed by the choice
of the initial data ω0 ∈ Ω. This is the argument of the following statement which
essentially reflects the conservation property met by the total energy (4.13).

Proposition 4.3. Let ω0 be a given state in Ω. Then the flow ω0 · t satisfies for
all time in its maximal interval of existence:

H(ω0 · t) = H(ω0), (4.23)
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where the regular mapping H : Ω → R is defined by

H(ω) = e(ω) − e(ωL) − 1
2m2(τ2 − τ2

L) + (m2τL + p(ωL))(τ − τL).

Proof. All the flows under consideration are at least continuously differentiable in
their maximal interval of existence. The additional conservation law (4.13) for the
total energy therefore applies and its differential form reads

{(E + τp(ω))ρu}x = { 1
2µ(u2)x}x. (4.24)

In view of the algebraic invariant ρu = m, (4.24), once integrated for a prescribed
ω0 in Ω between time zero and a given time t in (t−(ω0), t+(ω0)), can be seen to
read

{E + τp(ω)ρu}(t) − {E + τp(ω)ρu}(0) = {τ(µτ̇)}(t) − {τ(µτ̇)}(0)
= {τF(ω)}(t) − {τF(ω)}(0).

Since E denotes 1
2m2τ2 + ε(ω), the definition of F given in (4.21) easily yields the

required identity (4.23) after some rearrangements of the terms while, for conve-
nience, subtracting from both sides the constant εL + 1

2m2τ2
L + τLpL.

The above statement clearly implies that all the possible heteroclinic orbits
of (4.21) which connect the critical point ωL in the past are only made up of states
ω such that

H(ω) = H(ωL) = 0. (4.25)

To conclude these preliminary remarks, we point out an elementary but useful
geometrical property of the flows associated with (4.21), which will restrict possible
right-connecting states.

Lemma 4.4. Let ω0 be given in Ω. Then the subset of Ω defined by

Ω(ω0) = {ω ∈ Ω; s � s0, H(ω) = H(ω0)} (4.26)

is positively invariant.

The invariance of this region with respect to all positive semi-flows immediately
follows from the non-negativeness of the Nth last components of the vector field
entering the definition of (4.21). As a consequence, possible heteroclinic orbits con-
necting ωL in the past must lie entirely in

Ω(ωL) = {ω ∈ Ω; s � sL, H(ω) = 0}. (4.27)

The region (4.27) will play a central role in the derivation of positively invariant
compact sets.

Here, we exhibit some important features of the linearization LX(ωc) of the
vector field X at equilibrium points ωc, i.e. at states satisfying F(ωc) = 0. We
check, in particular, that such states are always non-hyperbolic points for which
the space R

N+1 denotes a direct sum of the eigenspaces associated with LX(ωc)
under the following non-degeneracy condition:

∂τF(ωc) = m2 + ∂τp(τc, sc) �= 0. (4.28)
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Towards that aim, let us state some basic facts concerning the linearization LX(ωc).
The requirement F(ωc) = 0 is easily seen to force all the partial derivatives of the
Nth last components of X to be identically zero (since these components are all
proportional to F2). Under the non-degeneracy condition (4.28), there consequently
exists only one non-trivial eigenvalue, namely ∂τF(ωc)/µ(ωc), while λ = 0 is a
semisimple eigenvalue of LX(ωc) of multiplicity N . Furthermore, the corresponding
eigenspaces T (ωc) and T c(ωc) are respectively the spans of e1 and e2, . . . , eN , where
{ei}1�i�N+1 stands for the canonical orthonormal basis of R

N+1.
Equipped with these results, the centre manifold theorem ensures the existence of

two locally invariant manifolds W(ωc) and Wc(ωc) (the so-called centre manifold)
of class at least C1 and C0, respectively, which go through ωc and are tangent to
T (ωc) and T c(ωc), respectively, at this point. The regularity properties above are
indeed inherited from the continuous differentiability of the vector field, according
to this theorem.

Assuming ∂τF(ωc) to be positive (respectively negative), i.e. assuming the cor-
responding sign for the unique non-trivial eigenvalue of LX(ωc), W(ωc) is classi-
cally referred as to the unstable (respectively, stable) manifold with superscript
‘u’ (respectively, ‘s’). Recall that the unstable manifold of a point is the manifold
composed of the totality of the orbits which tend exponentially fast to the point in
negative time, the stable manifold being defined conversely. Then, by well-known
topological considerations, two rest points, namely ωL and ωR, are connected by a
heteroclinic orbit γ precisely if γ ⊂ Wu(ωL) ∩ Ws(ωR).

An obvious requirement for the existence of a heteroclinic orbit connecting ωL in
the past is then

∂τF(ωL) = m2 + ∂τp(ωL) < 0,

but the validity of such an inequality is precisely the argument of the Lax condition
(4.18). Conversely, a possible connecting point ωR in the future is necessarily subject
to the condition ∂τF(ωR) > 0.

Now, since the unstable manifold Wu(ωL) is one dimensional, there exist locally
exactly two solutions of (4.21) which approach ωL as t → −∞. With respect to
the property of Wu(ωL) is tangential to e1, the associated almost horizontal orbits
approach ωL from the two opposite directions τ � τL and τ � τL. With clear nota-
tion, γ>(ωL) (respectively, γ<(ωL)) will denote the first (respectively, the second)
orbit.

The following assertion discards the solution converging to ωL for negative times
from the region τ � τL. Note that such a result precisely precluded expansion
shocks in order to admit viscous profiles.

Proposition 4.5. There is no heteroclinic orbit of the dynamical system (4.21) in
the domain N := {ω ∈ Ω : τ � τL, s � sL}.

Consequently, only the second solution can give rise to a heteroclinic orbit. Since
the vector field X : Ω → R

N+1 is Lipschitz continuous, the uniqueness part of the
celebrated Picard–Lindelöf theorem readily gives the following.

Corollary 4.6. There exists at most one heteroclinic orbit of the dynamical sys-
tem (4.21) which connects ωL in the past.
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The proof of proposition 4.5 will follow from the following statement.

Lemma 4.7. Any given state ω distinct from ωL in the set {τ � τL, s � sL} obeys
F(ω) > 0.

Proof. Observe that the positiveness assumption (4.5) on the Grüneisen numbers
implies that, for all ω in the region under interest (s � sL),

f(τ) := F(τ, sL) � F(ω) (4.29)

with equality if and only if s = sL. In particular, for τ = τL we have F(τL, s) > 0
as soon as s > sL. Next, considering τ > τL, the identity

f ′(τ) = m2 + ∂τp(τ, sL)

clearly yields, under the assumption (4.4) of positive fundamental derivatives, that
∂2

ττp(τ, s) > 0 for all ω ∈ Ω, and therefore

f ′(τ) � f ′(τL) = m2 − (ρLcL)2 > 0,

due to the Lax condition (4.18). It immediately follows that f(τ) � f(τL) =
F(ωL) = 0 as soon as τ � τL with equality to zero if and only if τ = τL. The
inequality (4.29) then gives the required conclusion.

Proof of proposition 4.5. Let nω be the unit inward normal at the following hyper-
surfaces: {τ = τL, s � sL} and {τ � τL, s = sL} for all states in these sets.
Note that these sets are the lower part of the boundary of N . In view of the def-
inition of the vector field, lemma 4.7 implies that, for such states, X(ω) · nω � 0.
As a (well-known) consequence, N stays invariant for all positive semi-flows. The
required conclusion follows again from lemma 4.7, which says that no critical point
exists in N .

We now stress another important consequence of the local properties of the phase
portrait at the rest point ωL. By opposition to the states in the orbit γ>(ωL); the
second orbit γ<(ωL) emanating from the region τ � τL is by definition made of
states ω that, at least when close enough to but distinct from ωL, give rise to a
compression: locally F(ω) < 0 in view of the governing equation for τ . In turn, this
simple observation implies that the viscous profile under consideration must remain
uniformly compressive. This claim is a consequence of the following statement.

Lemma 4.8. The set

I = {ω ∈ Ω : τ < τL, s � sL, F(ω) � 0} (4.30)

is positively invariant under the action of the dynamical system (4.21).

Proof. The above assertion is trivial for states ω0 ∈ I which satisfy F(ω0) = 0.
Considering states ω0 with the property F(ω0) < 0, we observe that the positive
semi-flow ω0 · t necessarily satisfies F(ω0 · t) < 0 for all time in [0, t+(ω0)). Indeed,
assuming the existence of a finite time tc in this interval with the property F(ω0 ·
tc) = 0 would result in a critical point ω0 · tc for the dynamical system (4.21). But,
by the Lipschitz-continuity property of the vector field in Ω, it is well known that
such a point cannot be reached in finite time.
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The orbit γ<(ωL) is therefore trapped in the region I. We now establish that,
in addition, this orbit must remain within a compact subset K of I. This will
imply that γ<(ωL) is relatively compact. Well-known considerations imply that the
associated �-limit set is non-empty, compact and connected. The existence of K
primary stems from the following result.

Lemma 4.9. Let ω0 be a given state in Ω. Then the positive semi-orbit γ+(ω0) has
no limit point in the set {τ = 0}.

This assertion immediately gives that the orbit γ<(ωL) has the same property.

Proof. For all time t in [0, t+(ω0)), the positive semi-flow ω0 · t is known to obey
H(ω) = H(ω0) < ∞ and s � s0. With respect to the positivity of all the tempera-
tures Ti = ∂siH, we immediately get

h(τ) := H(τ, s0) � H(τ, s),

with the property that h(τ) goes to infinity as τ goes to zero (see the asymptotic
condition (4.6)).

Assume that γ+(ω0) ∩ {τ = 0} is non-empty. As a consequence, for all ε >
0 there exists tε ∈ (0, t+(ω0)) such that 0 < τ |ω0·tε < ε. Necessarily there exists
ε0 > 0 so that h(τ |ω0·tε0

) > H(ω0) and this gives rise to the contradiction with the
preservation of H(ω0) along the orbit.

We have proven that any given positive semi-flow of the dynamical system (4.21)
with initial data ω0 in Ω satisfies t+(ω0) = ∞ (since s > s0). We now conclude
with the existence (and therefore uniqueness) of the required viscous profile.

Proposition 4.10. There exists a state ωR in H−1(0) ∩ F−1(0) which is connected
by γ<(ωL) in the future.

Proof. We first establish that the specific entropy vector s stays upper bounded
along all positive semi-flows with initial data in I. For fixed τ in (0, τL), the con-
ditions (4.3) and (4.5) show that H(τ, s) increases arbitrarily with s. The same
steps as those involved in the previous proof apply to give the required result. As
a consequence, γ<(ωL) must be included in a compact subset, namely K, of the
positively invariant region I. This orbit is, therefore, relatively compact and its
�-limit set is non-empty. This limit set must be included in H−1(0). To conclude,
observe that τ , when understood as a mapping of the variable ω, trivially yields
a Lyapunov function on I where, by construction, F(ω) � 0. The LaSalle invari-
ance principle applied in connection with this Lyapunov function then ensures that
the non-empty �-limit set is included in {ω ∈ I : F(ω) = 0}. This establishes the
existence of ωR.

5. End states for viscous layers with varying viscosity

The existence (and uniqueness up to translation) of travelling-wave solutions to the
multi-pressure NS equations was established in the previous section for N viscosity
laws satisfying the non-degeneracy condition (4.9). Given ωL a fixed state in Ω
and a velocity σ according to the condition (4.18), we aim here at characterizing
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the subset of Ω made of all the states ωR that can be reached in the future by a
travelling wave with speed σ and connecting ωL in the past. We naturally expect
the exit state ωR to depend on the specific form of the N -tuple of viscosity laws.
The dynamical system (4.21) shows that such a dependence lies in the ratios of
the viscosity laws. As a consequence, possible states ωR to be reached in the future
from a fixed ωL (at some speed σ) generically depend on N − 1 degrees of freedom.
The set of exit states we are seeking is thus expected to have (N − 1)-dimensions.

It will be convenient to study the projection of this set onto the following positive
cone of R

N (understood as the space of the specific entropies s = (s1, . . . , sN )) with
origin sL:

S+(s) = {s ∈ R
N | s = sL + λa, a ∈ SN

+ , λ � 0}. (5.1)

Here, SN
+ denotes the (positive) part of the unit sphere in R

N defined by

SN
+ = {a ∈ R

N
+ ; ‖a‖ = 1}.

For all possible entropies sR in the cone (5.1), the existence simply comes from
the property that the heterocline solutions of theorem 4.2 obey sR � sL and a
strict inequality holds for (at least) one specific entropy si (1 � i � N).

We show hereafter that the projection in the half cone (5.1) of the states ωR that
can be reached when varying the definition of the N viscosity laws is a smooth
manifold with co-dimension 1:

C = {s ∈ S+(s) | s = sL + Λ0(a)a, a ∈ SN
+ }, (5.2)

for some suitable mapping Λ0(a) : a ∈ SN
+ �→ Λ0(a) ∈ R for which a precise defini-

tion will be given latter on. The derivation of the proposed manifold is performed
in two steps. In the first step, we analyse closely all the critical points (τc, sc) of
the dynamical system (4.21), i.e. the solutions of

F(τc, sc) = 0, (5.3)

without reference to a precise N -tuple of viscosity laws.
We emphasize that eligible critical points that can be reached from the state ωL

in the past must preserve the total energy as stated in (4.25). Such states must
therefore solve in addition

H(τc, sc) = 0 with sR � sL. (5.4)

Analysing the solution of (5.3), (5.4) will yield the manifold (5.2).
In a second step, we shall establish that any given value s in the proposed man-

ifold can actually be achieved for at least one suitable N -tuple of viscosity laws.
As a consequence, the manifold (5.2) is made entirely of all the specific entropy sR
that can be reached in the future by a travelling-wave solution with speed σ and
issued from ωL, when varying the definition of the N viscosity laws.

Let us outline the content of this section. We first analyse the mappings s ∈
S+(s) �→ τF (s) ∈ R+ that solve

F(τF (s), s) = 0. (5.5)
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We then characterize the mapping s ∈ S+(s) �→ τH(s) ∈ R+ which solves

H(τH(s), s) = 0. (5.6)

Equipped with these two families of functions, we shall consider the existence values
of the specific entropy sc in S+(s) that satisfy τF (sc) = τH(sc), namely values of
s that simultaneously solve (5.5) and (5.6). We now state the main result of this
section.

Theorem 5.1. Assume that the thermodynamical conditions (4.2)–(4.8) are satis-
fied. Then there exists a unique map T ∈ C0(K̄, R∗

+)∩C1(K, R∗
+), where K ⊂ S+(s)

is given by

K = {s ∈ S+(s) | s = sL + λa, a ∈ SN
+ , λ ∈ ]0, Λ0(a)[}, (5.7)

for some smooth application Λ0 ∈ C1(SN
+ , R∗

+) with the following properties:

(i) H(T (s), s) = 0 for all s ∈ K̄,

(ii) F(T (s), s) = 0 for all s ∈ C, where

C = {s ∈ S+(s) | s = sL + Λ0(a)a, a ∈ SN
+ }. (5.8)

In addition, T obeys

(iii) F(T (sL), sL) = 0,

(iv) F(T (s), s) < 0 for all s ∈ K.

The mapping Λ0 : SN
+ → R

∗
+ will be constructed in the course of the proof.

Rephrasing the above result, the function T (s) with s ∈ C makes F and H vanish
simultaneously, so that all the values s in the smooth manifold C are candidates
for being reached in the future from the state ωL via a travelling wave with speed
σ for a suitable choice of the N viscosity laws.

We now show that all the values s in the manifold C, defined by (5.8), are actually
eligible candidates for entering the definition of the specific entropy in exit states ωR.

Lemma 5.2. With a state ωL being given in Ω and a velocity σ being prescribed
according to (4.18), for any given s ∈ C there exists at least one relevant definition
of the N -tuple of viscosity laws which yields a travelling-wave solution with speed σ
issued from ωL and connecting a state ωR in the future with sR = s.

Proof. The proof of this result makes use of particular viscosity laws in the form

µi(τ, si) = µ0
i Ti(τ, si), µ0

i � 0, 1 � i � N. (5.9)

The non-degeneracy condition (4.9) is satisfied as soon as

N∑
i=1

µ0
i > 0, (5.10)

since each of the temperature laws Ti(τ, si) is assumed to be positive. Without loss
of generality, we assume µ0

N > 0.
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We stress that viscosity laws which depend linearly on the temperature naturally
arise in the kinetic theory for dilute gases. We refer the reader to [30].

Observe that viscosity laws in the special form (5.9) let each specific entropy
evolve according to

ṡi =
µ0

i

µ2(τ, s)
F2(τ, s), 1 � i � N.

We thus infer the following (N − 1) balance equations linking the evolution of the
first (N − 1) specific entropies si to the last one:

ṡi =
µ0

i

µ0
N

ṡN , 1 � i � N − 1.

Since the ratios µ0
i /µ0

N are constant real numbers, we deduce that(
si − µ0

i

µ0
N

sN

)
(ξ) = sL

i − µ0
i

µ0
N

sL
N for all ξ ∈ R.

We therefore end up with (N − 1) jump relations

sR
i − sL

i =
µ0

i

µ0
N

(sR
N − sL

N ), 1 � i � N. (5.11)

We emphasize at this stage that sR
N − sL

N > 0 in view of our assumption µ0
N > 0.

From the jump relation (5.11), we therefore get

sR − sL =
sR

N − sL
N

µ0
N

⎛
⎜⎝

µ0
1
...

µ0
N

⎞
⎟⎠ , (5.12)

which is obviously in the form Λ0(a)a, for a in SN
+ , given by

a =
1√∑N

j=1(µ
0
j )2

(µ0
j )1�j�N .

Now, up to some relabelling in the viscosity in order to allow µ0
N to vanish, any

given a ∈ SN
+ gives rise to an admissible N -tuple of viscosity coefficients. This

concludes the proof.

Remark 5.3. The identity (5.12) shows in addition that the mapping a �→ Λ0(a)
can be built as soon as the jump in the last specific entropy sR

N −sL
N is known. This

evaluation can be performed numerically (see, for example, [8]).

We now give a proof of the main result of this section, namely theorem 5.1.
Towards this aim, and as already claimed, we propose to first study for existence in
SN

+ the roots τ(s) of F(τ, s) = 0. Then we shall study their distinctive properties
by investigating the values of H(τ(s), s).
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Proposition 5.4. There exist two maps, which we denote by τ±, belonging to
C1(D ∪ {sL}, R∗

+) ∩ C0(D̄, R∗
+), where D is the subset of S+(sL) defined by

D = {s ∈ S+(sL) | s = sL + λa, a ∈ SN
+ , λ ∈ (0, Λ̄(a))} (5.13)

for some Λ̄ ∈ C1(SN
+ , R∗

+) with Λ̄(a) > Λ0(a) for all a ∈ SN
+ , so that

F(τ±(s), s) = 0, s ∈ D̄.

In addition, these two families of roots are interlaced according to

(i) τ−(s) < τ+(s) < τL for all s ∈ D \ {sL},

(ii) τ+(s) = τL in D̄ if and only if s = sL with τ−(sL) < τ+(sL) = τL,

(iii) τ−(s) = τ+(s) in D̄ if and only if s = sL + Λ̄(a)a, a ∈ SN
+ .

Again, the map Λ̄ : SN
+ → R

∗
+ will be built in the course of the proof. But, from

now on notice that K̄ ⊂ D. We shall show that, for fixed s ∈ D̄, F(τ, s) = 0 only
admits τ±(s) as roots and cannot be solved in τ for values of s in S+(sL) \ D̄. As
a consequence, all the critical points (τ(s), s) of (4.21) are necessarily achieved for
s ∈ D̄ so that τ(s) must coincide with either τ−(s) or τ+(s) for suitable values of
s ∈ D̄: i.e. such that H(τ−(s), s) = 0 or H(τ+(s), s) = 0. In this way, let us state
some properties of H with respect to the above two families of roots.

Proposition 5.5. Using the notation in propositions 5.1 and 5.4, we have

(i) H(τ+(sL), sL) = 0,

(ii) H(τ+(s), s) > 0 for all s ∈ D̄ \ {sL},

while

(iii) H(τ−(s), s) < 0 for all s ∈ K ∪ {sL},

(iv) H(τ−(s), s) = 0 for all s ∈ C = {s ∈ D | s = sL + Λ0(a)a, a ∈ SN
+ },

(v) H(τ−(s), s) > 0 for all s ∈ D̄ \ K̄.

Put in other words, the critical points of the differential system (4.21) necessarily
coincide with the set {τ+(sL), sL} and {(τ−(s), s) | s ∈ C}. Keeping this in mind,
we next analyse the roots τ(s) of H(τ(s), s). The following claim states that H
admits three distinct branches of roots in K̄. Particular attention is paid to singling
out a branch T obeying the requirements

T (sL) = τ+(sL) together with T (s) = τ−(s) for all s ∈ C, (5.14)

as put forward in proposition 5.5.

Proposition 5.6. There exist three maps in C0(K̄, R∗
+) ∩ C1(K, R∗

+) respectively
denoted by Ť , T , T̂ : K̄ → R

∗
+, so that

(i) H(T (s), s) = H(Ť (s), s) = H(T̂ (s), s) = 0 for all s ∈ K̄.
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These are interlaced with the roots τ±(s) of F as follows:

(ii) Ť (s) < τ−(s) < T (s) < τ+(s) < T̂ (s) for all s ∈ K,

(iii) Ť (sL) < T (sL) = τ+(sL) = T̂ (sL),

(iv) Ť (s) = τ−(s) = T (s) < T̂ (s) for all s ∈ C.

Observe that the intermediate mapping T fulfils the requirements (5.14) so that
theorem 5.1 is established.

We now give the proofs of propositions 5.4–5.6. Proposition 5.4 relies on the
following two technical lemmas.

Lemma 5.7. For all fixed s ∈ S+(sL), F(·, s) admits a unique minimum in τ . We
define τ̄(s) < τL for all s ∈ D̄, where τ̄ ∈ C1(S+(sL), R∗

+). This minimum obeys
the following conditions:

(i) F(τ̄(s), s) < 0 for all s ∈ D ∪ {sL},

(ii) F(τ̄(s), s) = 0 for all s ∈ Γ := {s ∈ S+(sL) | s = sL + Λ̄(a)a, a ∈ SN
+ },

(iii) F(τ̄(s), s) > 0 for all s ∈ S+(sL) \ D̄,

where the set D has been defined in proposition 5.4.

Lemma 5.8. For all fixed s ∈ S+(sL), F(·, s) is strictly decreasing (respectively,
strictly increasing) for all τ ∈ (0, τ̄(s)) (respectively, for all τ > τ̄(s)) and achieves
the following limits:

lim
τ→0+

F(τ, s) = +∞, lim
τ→+∞

F(τ, s) = +∞.

As a consequence, F(τ, s) = 0 can be solved in τ only when s ∈ D̄, with exactly one
solution when s ∈ Γ and exactly two solutions τ±(s) for s ∈ D̄\Γ . These solutions
define two maps

τ± ∈ C0(D̄, R∗
+) ∩ C1(D ∪ {sL}, R∗

+)

with the following properties:

1. τ−(s) < τ̄(s) < τ+(s) < τL for all s ∈ D,

2. τ−(s) = τ̄(s) = τ+(s) < τL for all s = sL + Λ̄(a)a, a ∈ SN
+ ,

3. τ−(sL) < τ̄(sL) < τ+(sL) = τL.

We now establish lemma 5.7, noting that the set D entering the proposition 5.5
will be explicitly derived in the course of the proof.

Proof of lemma 5.7. Let s be fixed in S+(s). With respect to the smoothness of the
internal energies, the map τ �→ F(·, s) is at least of class C2(R∗

+). Easy calculations
then yield for all τ > 0:

∂F
∂τ

(τ, s) =
∂p

∂τ
(τ, s) + m2,

∂2F
∂τ2 (τ, s) =

∂2p

∂τ2 (τ, s).
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On the one hand, the map

τ �→ ∂F
∂τ

(τ, s)

is strictly increasing in view of the genuine nonlinearity assumption (4.4) for the
total pressure. On the other hand, assumptions (4.7) on the asymptotic behaviour
of ∂p/∂τ imply that

lim
τ→0+

∂F
∂τ

(τ, s) = −∞ and lim
τ→+∞

∂F
∂τ

(τ, s) = m2 > 0.

As a consequence, for all s ∈ S+(sL), there exists a unique τ̄(s) > 0 such that

∂F
∂τ

(τ̄(s), s) = 0.

This defines a map τ̄ in C1(S+(sL), R∗
+) due to the implicit function theorem. Note

that the assumption (4.18) on the relative Mach number implies that ∂τF(τL, sL) >
0, while ∂τF(τ̄(sL), sL) = 0. Therefore, hypothesis (4.5) ensures that

τ̄(sL) < τL. (5.15)

Next, we construct the set D ⊂ S+(sL) introduced in proposition 5.5 when studying
for existence the zeros of s ∈ S+(sL) �→ F(τ̄(s), s). In this way, we first notice that
by definition of τ̄(s) for all s ∈ S+(sL) we have

F(τ̄(s), s) = p(τ̄(s), s) − p(τL, sL) − ∂p

∂τ
(τ̄(s), s)(τ̄(s) − τL).

Introducing the auxiliary function φ : R+ × SN
+ → S+(sL) defined by

φ(λ, a) = F(τ̄(sL + λa), sL + λa),

straightforward calculations give

∂φ

∂λ
(λ, a) =

∑
1�i�N

(
∂pi

∂si
ai +

( ∑
1�j�N

∂2pj

∂τ2

∂τ̄

∂si
+

∂2pi

∂τ∂si

)
ai

)
. (5.16)

But differentiating the identity ∂τp(τ̄(s), s) = −m2, valid for all s ∈ S+(sL),
easily implies that (5.16) reduces to

∂φ

∂λ
(λ, a) =

∑
1�i�N

∂pi

∂si
(τ̄(sL + λa), sL + λa)ai. (5.17)

This derivative is therefore strictly positive for all a ∈ SN
+ , as follows from (4.5).

Next, with respect to the strict convexity in τ of the total pressure and the property
(5.15) expressing that τ̄(sL) < τL, we get

φ(0,a) = p(τ̄(sL), sL) − p(τL, sL) − ∂p

∂τ
(τ̄(sL), sL)(τ̄(sL) − τL) < 0.

To conclude, we need to check that for all a ∈ SN
+ the map λ �→ φ(λ, a) achieves

positive values for finite values of λ. Indeed, the implicit function theorem will thus
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ensure the existence of a map Λ̄ ∈ C1(SN
+ , R∗

+) which is well defined in D with the
following property:

φ(Λ̄(a),a) = 0 for all a ∈ SN
+ (5.18)

with φ(λ, a) < 0 (respectively, φ(λ, a) > 0) for all λ < Λ̄(a) (respectively, λ >
Λ̄(a)). This is plainly the required result. To establish the validity of (5.18), we
show that for all a ∈ SN

+ there exists λ	(a) > 0 such that

τ̄(sL + λ	(a)) = τL. (5.19)

Indeed, for such values of λ, φ reduces to

φ(λ	(a),a) = p(τL, s) − p(τL, sL) > 0,

as follows from (4.5). To derive (5.19), we introduce the auxiliary smooth function
θ ∈ C1(R+, R) defined for all a ∈ SN

+ by

θ(λ) =
∂p

∂τ
(τL, sL + λa) + m2.

For any given a in SN
+ , we establish the existence of solutions to θ(λ) = 0,

λ	(a) being chosen to be, for instance, the smallest smallest possible solution. The
existence of such solutions readily follows from the assumption (4.18) on the relative
Mach number, ensuring that θ(0) > 0, while the asymptotic condition (4.7) ensures
θ(λ) < 0 for large enough λ. Note that the solutions under consideration are strictly
positive. In addition, since Λ̄(a) < λ	(a) for all a ∈ SN

+ , we obtain

τ̄(s) < τL, s ∈ D̄, (5.20)

which concludes the proof of lemma 5.7.

Proof of lemma 5.8. Let s in S+(sL) be given. By the definition of τ̄(s), F(·, s)
achieves the monotonicity properties stated in lemma 5.8; the required limits imme-
diately follow from the asymptotic conditions (4.6). Consideration of the sign of
F(τ̄(s), s) (as we proposed earlier) obviously implies that for fixed s ∈ S+(sL)
the equation F(τ, s) = 0 has exactly two solutions τ−, τ+ in D̄ \ Γ so that
τ− < τ̄(s) < τ+; this equation has exactly one solution, namely τ̄(s), when s ∈ Γ ,
and has no solution whenever s ∈ S+(sL)\D̄. In addition, using the notation intro-
duced in the proof of lemma 5.7, it can easily be seen that the following limits hold
true:

lim
λ→Λ̄(a)−

τ±(sL + λa) = τ̄(sL + Λ̄(a)a) for all a ∈ SN
+ . (5.21)

These observations allow for the definition of two maps τ± : D̄ → R
∗
+ satisfying

F(τ±(s), s) = 0 for all s ∈ D̄,

and so that

τ−(s) < τ̄(s) < τ+(s), s ∈ D̄ \ Γ ; τ−(s) = τ̄(s) = τ+(s), s ∈ Γ. (5.22)

Then the above inequalities yield ∂τF(τ±(s), s) �= 0 for all s ∈ D ∪ {sL} in view
of (5.22), so that the implicit function theorem ensures that τ± ∈ C1(D∪{sL}, R∗

+),
while (5.21) gives that τ± ∈ C0(D̄, R∗

+).
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Next, focusing on some given s ∈ D̄ \ {sL}, we observe that

F(τL, s) = p(τL, s) − p(τL, sL) > 0

so that, necessarily, either τL < τ−(s) or τ+(s) < τL. In addition, the identity
F(τL, sL) = 0 expresses that either τ−(sL) = τL or τ+(sL) = τL. But lemma 5.7
ensures that τ̄(s) < τL for all s ∈ D̄. This concludes the proof.

Equipped with these two lemmas, the proof of proposition 5.4 is essentially com-
pleted: the required inequality Λ̄(a) > Λ0(a) for all a ∈ SN

+ will be deduced from
the derivation of the set K we propose hereafter. We shall need the following tech-
nical result.

Lemma 5.9. For all s ∈ Γ , H(τ̄(s), s) > 0.

This statement actually indicates that there is no critical point on Γ .

Proof. To shorten the notation, let us introduce

ε(τ, s) =
N∑

i=1

εi(τ, si),

and consider the auxiliary function ψ ∈ C1(Γ, R) defined for all s ∈ Γ by

ψ(s) = ε(τ̄(s), s) − ε(τL, s) + HL(τ̄(s) − τL) − 1
2m2(τ̄(s)2 − τ2

L).

Here we set
HL = m2τL + p(τL, sL),

so that H(τ, s) may be recast as

H(τ̄(s), s) = ψ(s) + ε(τL, s) − ε(τL, sL).

With respect to the identity F(τ̄(s), s) = 0 valid for all s ∈ Γ (see lemma 5.7(ii)),
we have

HL = p(τ̄(s), s) + m2τ̄(s),

m2(τ̄(s) − τL) = p(τL, sL) − p(τ̄(s), s),

}
(5.23)

which give successively, for all s ∈ Γ ,

ψ(s) = ε(τ̄(s), s) − ε(τL, s) + (τ̄(s) − τL)(p(τ̄(s), s) + 1
2m2(τ̄(s) − τL))

= ε(τ̄(s), s) − ε(τL, s) + (τ̄(s) − τL)(p(τ̄(s), s) − 1
2 (p(τ̄(s), s) − p(τL, sL))).

Moreover, the two identities

F(τ̄(s), s) = 0 and
∂F
∂τ

(τ̄ , s) = 0,

valid for all s ∈ Γ , are easily seen to give, for the s under consideration,

p(τ̄(s), s) − p(τL, sL) = (τ̄(s) − τL)
∂p

∂τ
(τ̄(s), s).
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Consequently, for all s ∈ Γ ,

ψ(s) = ε(τ̄(s), s) − ε(τL, s) + (τ̄(s) − τL)p(τ̄(s), s) − 1
2 (τ̄(s) − τL)2

∂p

∂τ
(τ̄(s), s).

To conclude, we show that

H(τ̄(s), s) = θ(τ̄(s), s) + ε(τL, s) − ε(τL, sL) > 0. (5.24)

Since
∂εi

∂si
(τL, si) = Ti(τL, si) > 0,

we have ε(τL, s) − ε(τL, sL) > 0 for all s ∈ Γ because sL �∈ Γ . Indeed, observe that
lemma 5.8 implies that equality to zero holds if and only if s = sL but sL �∈ Γ .

To show (5.24), we study the following auxiliary function: Ψ ∈ C1(R∗
+, R), setting,

for fixed s ∈ Γ ,

Ψ(τ) = ε(τ, s) − ε(τL, s) + (τ − τL)p(τ, s) − 1
2 (τ − τL)2

∂p

∂τ
(τ, s).

Easy calculations give

∂Ψ

∂τ
(τ) = − 1

2 (τ − τL)2
∂2p

∂τ2 (τ, s) � 0,

with Ψ(τL) = 0. Consequently, Ψ(τ) > 0 for all τ < τL. Since τ̄(s) < τL (see
lemma 5.7), Ψ(τ̄(s)) > 0 for all s ∈ Γ , and we thus obtain the required inequality:
H(τ̄(s), s) > 0.

Proof of proposition 5.5. We first establish the required properties of H related
to the branch of solutions τ+. With respect to the identity τ+(s) = τ̄(s) for all
s ∈ Γ , the technical lemma 5.9 allows us to restrict ourselves to s ∈ D̄ \ Γ where
τ+ is continuously differentiable. For such s, the identity F(τ+(s), s) = 0 can be
equivalently re-expressed as

m2(τ+(s) − τL) = (p(τL, sL) − p(τ+(s), s)). (5.25)

Let us evaluate H(τ+(s), s) as follows:

H(τ+(s), s) = ε(τ+(s), s)−ε(τL, sL)+(τ+(s)−τL)(p(τ+(s), s)+ 1
2m2(τ+(s)−τL)),

where ε(τ, s) =
∑N

i=1 εi(τ, si). Using (5.25), we then obtain

H(τ+(s), s) = ε(τ+(s), s) − ε(τL, sL) − 1
2m2 (p2(τ+(s), s) − p2(τL, sL)).

Let us introduce the auxiliary function Θ : R
∗
+ × D̄ → R by setting

Θ(τ, s) = ε(τ, s) − 1
2m2 p2(τ, s),

so that, for all s ∈ D̄,

H(τ+(s), s) = Θ(τ+(s), s) − Θ(τL, sL), (5.26)
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with s �→ Θ(τ+(s), s) ∈ C1(D̄ \ Γ, R). Since τ+(sL) = τL by lemma 5.8, (5.26) can
equivalently be written as

H(τ+(s), s) = Θ(τ+(s), s) − Θ(τ+(sL), sL).

Moreover, for all s ∈ D̄ \ Γ we have

∂

∂si
θ(τ+(s), s) =

∂τ+

∂si
(s)

∂H
∂τ

(τ+(s), s) +
∂H
∂si

(τ+(s), s)

= −∂τ+

∂si
(s)F(τ+(s), s) +

∂εi

∂si
(τ+(s), s)

=
∂εi

∂si
(τ+(s), s)

= Ti(τ+(s), s) > 0, (5.27)

where we have used the identity F(τ+(s), s) = 0. Consequently, we deduce that

θ(τ+(s), s) − θ(τ+(sL), sL) � 0 for all s ∈ D̄ \ Γ

with equality to zero if and only if s = sL (see lemma 5.8). Combining the previous
steps with lemma 5.9 gives the required properties (i) and (ii).

We now derive the remaining properties of H related to τ−. Observe that the
technical lemma 5.9 immediately gives

H(τ−(s), s) > 0, s ∈ Γ, (5.28)

since τ−(s) = τ̄(s) for the s under consideration. We can now obtain the following
estimate:

H(τ−(sL), sL) < 0. (5.29)

To prove lemma 5.9, let us introduce the following auxiliary function ψ : R
∗
+ → R,

setting
ψ(τ) = H(τ, sL).

Since ψ′(τ) = −F(τ, sL) for all τ > 0, lemma 5.8 is easily seen to imply that ψ
strictly increases in (τ−(sL), τ+(sL)) with H(τ+(sL), sL) = 0, as just established.
This yields inequality (5.29).

To conclude the proof, we follow exactly the same steps as those developed in
the proof of lemma 5.7 devoted to the derivation of the subset K ∈ S+(sL).

We introduce the following auxiliary function defined by

Φ(λ, a) = H(τ−(sL + λa), sL + λa), a ∈ SN
+ , λ ∈ [0, Λ̄(a)[ .

Note that this function is continuously differentiable on its domain of definition
since, in view of lemma 5.8, the function (τ, λ) �→ τ−(sL + λa) is differentiable.
Straightforward calculations then give

∂Φ

∂λ
(λ, a) = −F(τ−(sL + λa), sL + λa)

( ∑
1�i�N

∂τ−

∂si
ai

)

+
∑

1�i�N

Ti(τ−(sL + λa), sL + λa)ai. (5.30)
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But the identity F(τ−(sL+λa), sL+λa) = 0 holds true by definition for all a ∈ SN
+

and λ ∈ [0, Λ̄(a)], so that (5.30) reduces to

∂Φ

∂λ
(λ, a) =

∑
1�i�N

Ti(τ−(sL + λa), sL + λa)ai > 0.

With respect to the inequalities (5.28) and (5.29), the implicit function theorem
implies the existence of a map Λ0 ∈ C1(SN

+ , R∗
+) with the following properties:

Φ(Λ0(a),a) = 0, a ∈ SN
+ ,

together with Φ(λ, a) < 0 for all λ ∈ [0, Λ0(a)[ and Φ(λ, a) > 0 for all λ ∈
]Λ0(a), Λ̄(a)]. This concludes the proof of proposition 5.5.

Proof of proposition 5.6. With respect to the identity ∂τH(τ, s) = −F(τ, s) valid
for all (τ, s) ∈ R

∗
+ × K, lemma 5.8 immediately implies that the smooth map

τ �→ H(τ, s) (s being fixed in K) strictly decreases in ]0, τ−(s)[ and ]τ+(s), +∞[,
while it strictly increases in ]τ−(s), τ+(s)[ with the following limits:

lim
τ→0+

H(τ, s) = +∞ and lim
τ→∞

H(τ, s) = −∞

in view of the asymptotic conditions (4.2). In addition, for all s ∈ K, we infer from
proposition 5.5 that H(τ−(s), s) < 0 and H(τ+(s), s) > 0. These observations
allow the definition of three maps, namely Ť , T , T̂ : K → R

∗
+, with the following

properties:

H(Ť (s), s) = H(T (s), s) = H(T̂ (s), s) = 0, s ∈ K,

together with

0 < Ť (s) < τ−(s) < T (s) < τ+(s) < T̂ (s), s ∈ K.

Next, using the notation introduced in the proof of lemma 5.7, we first compute,
for all a ∈ SN

+ ,

lim
λ→0+

Ť (sL + λa) < lim
λ→0+

T (sL + λa) = lim
λ→0+

T̂ (sL + λa) = τ+(sL),

since H(τ−(sL), sL) < H(τ+(sL), sL) = 0 in view of (iii) and (i) in proposition 5.5.
In the same way, we get

lim
λ→Λ0(a)

Ť (sL + λa) = lim
λ→Λ0(a)

T (sL + λa)

= τ−(sL + Λ0(a)a)

< lim
λ→Λ0(a)

T̂ (sL + λa),

since H(τ−(s), s) = 0 < H(τ+(s), s) for all s ∈ C, in view of proposition 5.5. To
conclude, we have to establish the smoothness properties put forward in proposi-
tion 5.6. In view of the monotonicity properties of τ �→ H(τ, s) we have just estab-
lished for all s ∈ K that all three maps are obviously in C1(K, R∗

+) ∩C0(K̄, R∗
+) due

to the implicit function theorem. This concludes the proof of proposition 5.6.
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23 L. Gosse. A well-balanced scheme using non-conservative products designed for hyperbolic
systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001),
339–365.

24 L. Gosse and G. Toscani. Asymptotic-preserving and well-balanced schemes for radiative
transfer and the Rosseland approximation. Numer. Math. 98 (2004), 223–250.

25 J. M. Greenberg and A. Y. Leroux. A well-balanced scheme for the numerical processing
of source terms in hyperbolic equations. SIAM J. Numer. Analysis 33 (1996), 1–16.

26 J. M. Greenberg, A. Y. Leroux, R. Baraille and A. Noussair. Analysis and approximation
of conservation laws with source terms. SIAM J. Numer. Analysis 34 (1997), 1980–2007.

27 B. T. Hayes and P. G. LeFloch. Non-classical shocks and kinetic relations: scalar conserva-
tion laws. Arch. Ration. Mech. Analysis 139 (1997), 1–56.

28 B. T. Hayes and P. G. LeFloch. Nonclassical shocks and kinetic relations: finite difference
schemes. SIAM J. Numer. Analysis 35 (1998), 2169–2194.

29 B. T. Hayes and P. G. LeFloch. Nonclassical shocks and kinetic relations: strictly hyperbolic
systems. SIAM J. Math. Analysis 31 (2000), 941–991.

30 J. O. Hirschefelder, C. F. Curtiss and R. B. Bird. Molecular theory of gases and liquids
(Wiley, 1959).

31 T. Y. Hou and P. G. LeFloch. Why non-conservative schemes converge to wrong solutions:
error analysis. Math. Comput. 62 (1994), 497–530.

32 E. Isaacson and B. Temple. Nonlinear resonance in systems of conservation laws. SIAM J.
Appl. Math. 52 (1992), 1260–1278.

33 S. Jin and X. Wen. An efficient method for computing hyperbolic systems with geometrical
source terms having concentrations. J. Computat. Math. 22 (2004), 230–249.

34 D. Kröner, P. G. LeFloch and M. D. Thanh. The minimum entropy principle for compress-
ible fluid flows in a nozzle with discontinuous cross-section. Math. Model. Numer. Analysis
42 (2008), 425–442.

35 P. D. Lax. Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10
(1957), 537–566.

36 P. D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock
waves, Regional Conference Series in Applied Mathematics, vol. 11 (Philadelphia, PA:
SIAM, 1973).

37 P. G. LeFloch. Entropy weak solutions to nonlinear hyperbolic systems in non-conservative
form. Commun. PDEs 13 (1988), 669–727.

38 P. G. LeFloch. Shock waves for nonlinear hyperbolic systems in non-conservative form.
Preprint no. 593 (Minneapolis, MN: Institute for Mathematics and Its Applications, 1989).

39 P. G. LeFloch. An existence and uniqueness result for two nonstrictly hyperbolic systems.
In Nonlinear evolution equations that change type (ed. B. L. Keyfitz and M. Shearer), IMA
Volumes in Mathematics and Its Applications, vol. 27, pp. 126–138 (Springer, 1990).

40 P. G. LeFloch. Propagating phase boundaries: formulation of the problem and existence
via the Glimm method. Arch. Ration. Mech. Analysis 123 (1993), 153–197.

41 P. G. LeFloch. An introduction to non-classical shocks of systems of conservation laws.
In An introduction to recent developments in theory and numerics for conservation laws,
Lecture Notes in Computational Science and Engineering, vol. 5, pp. 28–72 (Springer, 1999).

42 P. G. LeFloch. Hyperbolic systems of conservation laws. In The theory of classical and
non-classical shock waves, Lectures in Mathematics ETH Zürich (Basel: Birkhäuser, 2002).
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