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The plasma wake field excitation: Recent developments from
thermal to quantum regime
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Abstract. To describe the transverse nonlinear and collective self-consistent interac-
tion of a long relativistic electron or positron beam with an unmagnetized plasma, a
pair of coupled nonlinear differential equations were proposed by Fedele and Shukla
in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were
obtained within the quantum-like description provided by the thermal wave model
and the theory of plasma wake field excitation. The pair of equations comprises a
2D Schrödinger-like equation for a complex wave function (whose squared modulus
is proportional to beam density) and a Poisson-like equation for the plasma wake
potential. The dispersion coefficient of the Schrödinger-like equation is proportional
to the beam thermal emittance. More recently, Fedele–Shukla equations have been
further applied to magnetized plasmas, and solutions were found in the form of
nonlinear vortex states and ring solitons. They have been also applied to plasma
focusing problems and extended from thermal to quantum regimes. We present here
a review of the original approach, and subsequent developments.

1. Introduction
A self-consistent theory for the interaction between the
plasma wake field (PWF) and the driving long relativistic
electron (positron) beam in an unmagnetized, overdense,
collisionless plasma was proposed 21 years ago by
Fedele and Shukla (1992a,b). In the construction of
this theory a quantum-like approach was employed for
the relativistically charged particle beam propagation,
the so-called thermal wave model (TWM) (Fedele and
Miele 1991, 1992), which was a fresh approach capable
of describing the beam transport in terms of a com-
plex function, the so-called beam wave function (BWF),
whose squared modulus is proportional to the beam
density. The BWF is a solution to a Schrödinger-
like equation in which the dispersion coefficient is
replaced by the (thermal) emittance of the beam. The
TWM has been successfully applied to a number of
problems in beam physics and particle acceleration. To
provide a self-consistent description of our problem, one
needs to couple the Schrödinger-like equation with the
fluid equations that describe the PWF excitation in the
presence of the transverse profile of beam density. In
this way one obtains a consistent coupling between the
driving beam and the PWFs. Such treatment brought an
improvement since the earlier approaches (Chen et al.
1985; Katsouleas 1986; Chen 1987; Rosenzweig and

Chen 1989) did not take into account both the self-
consistent reaction of the wake field on the driver and
the spatial evolution of the beam. In the long beam
limit, i.e. when the wavelength of the wake field is
much smaller than the longitudinal beam length, the
longitudinal beam dynamics can be almost disregarded,
and the set of governing equations reduces to a pair of
partial differential equations comprising a Schrödinger-
like equation for the TWM and a Poisson-like equation
for the wake potential.

2. Fedele–Shukla equations (FSEs)
In the framework of TWM (Fedele and Miele 1991), the
spatiotemporal evolution of a long relativistic charged
particle beam with the transverse emittance ε, traveling
along the z-axis with the velocity βc ( with β ≈ 1),
through an overdense unmagnetized plasma, is described
by the following Schrödinger-like equation for BWF
Ψ (r⊥, ξ) (Fedele and Shukla 1992a,b):

iε
∂Ψ

∂ξ
= −ε2

2
∇2

⊥Ψ + Uw(r⊥, ξ)Ψ, (2.1)

where ∇⊥ is the transverse component of the gradi-
ent, ξ is the distance in the moving reference frame,
ξ = z − βc t, and Uw(r⊥, ξ) is the dimensionless plasma
wake potential energy normalized to m0γ0β

2c2 (m0
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and γ0 = 1/
√

1 − β2) are the electron rest mass and
the relativistic gamma factor, respectively). Note that
the transverse component of the plasma wake elec-
tric field induced by the beam is equal to W⊥ =
−(m0γβ

2c2/q)∇⊥Uw , where q is the charge of the single
particle of the beam (q = −e for electrons, and q = e for
positrons). In an analogy to the non-relativistic quantum
mechanics, ξ and ε play the role of time and Planck’s
constant, respectively, while in an analogy to the elec-
tromagnetic beam optics in a paraxial approximation,
ε plays the role of the inverse of the wavenumber
k−1 = λ/2π, and Uw plays the role of the refractive index
of the nonlinear medium so that (2.1) corresponds to
the well-known Fock–Leontovich equation (Shen 1984).
The BWF has the following meaning: If N is the total
number of particles of the beam, then the volumetric
number density of the beam is given by

ρb(r⊥, ξ) =
N

σz
|Ψ (r⊥, ξ)|2 , (2.2)

where σz is the beam length. Then the long beam
assumption implies kpσz � 1 (where kp is the plasma

wave number). According to (2.2), |Ψ (r⊥, ξ)|2 is pro-
portional to the transverse beam density profile. Using
the fluid theory, it can be shown that, within the linear
approximation, and in an overdense regime (i.e. n0 � ρb),
the plasma density perturbation, say n1, obeys the fol-
lowing adiabatic shielding condition (Chen et al. 1985):
n1(r⊥, ξ) ≈ (q/e) ρb(r⊥, ξ), where n0 is the unperturbed
plasma density. Therefore, the Poisson-like equation for
Uw can be cast in the form (Fedele and Shukla 1992a),

(
∇⊥

2 − k2
p

)
Uw =

N

n0γ0σz
|Ψ (r⊥, ξ)|2, (2.3)

where we have used (2.2). Equations (2.1) and (2.3)
describe the self-interaction of a long relativistic electron
(positron) beam traveling in a collisionless unmagnetized
plasma. Hereafter, we refer these equations as FSEs. If
we formally solve (2.3) for Uw , we find that it is a
functional of |Ψ |2, i.e. Uw = Uw[|Ψ |2]. Consequently, by
using the explicit form in (2.1) we obtain a nonlinear
Schrödinger equation, which in the general case may
be non-local.

3. Relevance of Fedele–Shukla equations for
the electron wave optics of non-laminar
beams

As shown above, the self-consistent interaction between
a beam and a medium (i.e. plasma) involves, through
the FSE, a branch of electron optics that describes the
situations in which the behavior of a beam containing
an extremely large number of charged particles is
affected by the electromagnetic interactions that are
established within such a system. On the other hand,
due to a large number of particles, the effects of a finite
temperature cannot be ignored. Therefore, in general,

the behavior of such a system is expected to be both
collective and affected by the thermal spreading among
the particles (thermal regimes). We refer to this branch
as electron optics in thermal regime (EOTR) (Fedele et al.
2013).

The conventional approach to EOTR is well estab-
lished and it has been applied in most of the sci-
entific and technological applications in accelerator
physics (Lawson 1976, 1988; Chao and Tigner 1998).
The thermal spreading introduces, at an arbitrary lon-
gitudinal position, an uncertainty in the electron ray
positions in the transverse plane. The configuration
of the envelope resulting from the electron ray mixing
resembles the pattern generated by the paraxial ray
diffraction in the beam of electromagnetic radiation.
From this conformity one may conclude that the stat-
istical behavior of charged particles in a paraxial beam,
which is a fully classical process, simulates the paraxial
diffraction in the beams of electromagnetic radiation.
The experimental evidence for this analogy is found
in all processes that are relevant to EOTR (Lawson
1976, 1988) and is also supported by the theoretical
kinetic descriptions by the Boltzmann/Vlasov equation
(Lawson 1988).

According to the previous sections, an alternative
theoretical description has been proposed by extend-
ing EOTR in the paraxial approximation to the wave
context. Utilizing the analogy between optics and mech-
anics, a quantization procedure has been performed
with TWM (Fedele and Miele 1991) to transit from
geometrical to wave description of EOTR, which was
the first time that EOTR was formulated in terms of
a wave description. With the use of TWM, a number
of linear and nonlinear problems in both conventional
and plasma-based particle acceleration were successfully
described (Fedele and Shukla 1992a,b; Fedele et al. 1993,
1995a,b, 2013). Furthermore, the TWM predictions have
been compared with tracking-code simulations and a fair
agreement has been demonstrated [the analysis has been
carried in both configuration- and phase spaces (Fedele
et al. 1995a; Jang et al. 2007, 2010)].

Remarkably, the self-consistent theory of the PWF
interaction provided by a pair of FSEs opened up a
novel approach to the wave formulation of EOTR, which
for the first time took into account the reaction of the
medium to the motion of the driving beam (Fedele
and Shukla 1992a,b; Fedele et al. 1995b). Then in the
local regime, i.e. for |∇⊥| � kp, the FSEs have been
reduced to a 2D cubic nonlinear Schrödinger equation
(Fedele and Shukla 1992a,b; Fedele et al. 1995b) cap-
able of describing the self-focusing/defocusing of the
driving relativistic electron (positron) beam in a cold
unmagnetized plasma, or to establish the condition for
the existence of a 2D stationary transverse profile (2D
solitons) and the Weibel instability threshold. It was
demonstrated that these physical circumstances were
determined by the competition between the dispersive
effects (i.e. related to the thermal energy provided by
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the thermal emittance spreading) and the eigenenergy
(i.e. the nonlinear effect produced by the beam, related
to the reaction of the medium on the beam). In a
strongly non-local regime, i.e. |∇⊥| � kp, a pair of
FSEs was reduced to an integro-differential nonlinear
non-local Schrödinger equation capable of describing,
for instance, the Bennett self-pinching equilibrium and
the self-broadening of the driving beam. The above
successes also led to the self-consistent description of
the longitudinal beam dynamics for a beam with a
finite length, so that the longitudinal dynamics was
non-negligible. For instance, it was very useful for the
prediction of soliton-like states of the charged particle
beams or to provide a wave key of reading for the
nonlinear and collective effects of coherent instabilities
in high energy accelerating devices (both conventional
and plasma-based). It provided the formulation of mod-
ulational instability in both deterministic and statistical
approaches, with the Landau-type damping playing a
fundamental role (Fedele et al. 1993; Johannisson 2004).

Recently, the TWM description, with an appropri-
ate pair of FSEs, of the self-consistent beam–plasma
interaction has been also developed for plasmas in
a strongly axial magnetic field (Fedele et al. 2011;
Tanjia et al. 2011). The collective vortex beam states
(orbital angular momentum states) have been predicted
for an arbitrary value of the integer effective vortex
charge.

More recently, the paraxial electron optics has been
extended to the quantum wave context with non-
negligible collective interactions among particles. There-
fore, the pair of FSEs has been extended to a spinorial
form (Fedele et al. 2012a,b; Jovanovic et al. 2012).
In this way, a quantum approach to relativistically
charged particle beams, named the Quantum Wave
Model (QWM) (Fedele et al. 2013), has been proposed
and applied to plasma lens for quantum beams (Tanjia
et al. 2013). In this approach, similar to TWM, the
space charge effects (both capacitive and inductive) are
taken into account within the Hartree’s mean field
approximation. However, the above QWM accounts
only for the quantum nature of a single particle,
including the single-particle uncertainty principle and
the spin of a single particle, while the collective quantum
nature of the system related to the overlapping of the
single-particle wave functions is disregarded. As a
consequence, for typical densities of charged particle
beams employed in the present generation of both con-
ventional accelerators and plasma-based acceleration
schemes, QWM is appropriate when the temperature
of the beam is sufficiently low to preserve the observab-
ility of the individual quantum nature of the particles,
but sufficiently high to make the overlapping of the
single-particle wave functions negligible. Actually, if
the quantum uncertainty of the single particle is not
concealed by the thermal spreading, within a paraxial
picture, one can attribute, to each electron ray, the
uncertainty in both the position on the transverse plane

and the slope relative to the direction of propagation. It
results that now the electron ray mixing is strongly af-
fected by the individual quantum nature of the particles,
and this picture corresponds to the analog of paraxial
diffraction of the light rays in radiation beams. Since
here the diffraction that is exhibited is of the quantum
nature, we call quantum paraxial diffraction the picture
associated with such a kind of mixing of electron rays
(Fedele et al. 2012a,b; Jovanovic et al. 2012; Jovanović
et al. 2013). It turns out that the spinorial FSEs may
be reduced to a 2D spinorial Schrödinger equation.
QWM has been recently applied to describe the self-
interaction of an electron or positron beam propagating
in a strongly magnetized plasma. Quantum ring solitons
as the 2D quantum vortex states associated with the
angular momentum (orbital plus spin) states have been
found, as well as the self-focusing conditions predicted
(Fedele et al. 2012a,b; Jovanovic et al. 2012; Jovanović
et al. 2013).

4. Conclusions
We summarized the main results obtained with the pair
of FSEs, including the subsequent developments with
applications to magnetized plasmas and plasma focusing
and recent extensions from thermal to quantum regime.
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