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Fully resolved measurements of turbulent boundary layers are reported for the
Reynolds number range Reτ = 6000–20 000. Despite several decades of research
in wall-bounded turbulence there is still controversy over the behaviour of streamwise
turbulence intensities near the wall, especially at high Reynolds numbers. Much
of it stems from the uncertainty in measurement due to finite spatial resolution.
Conventional hot-wire anemometry is limited for high Reynolds number measurements
due to limited spatial resolution issues that cause attenuation in the streamwise
turbulence intensity profile near the wall. To address this issue we use the nano-scale
thermal anemometry probe (NSTAP), developed at Princeton University to conduct
velocity measurements in the high Reynolds number boundary layer facility at the
University of Melbourne. The NSTAP has a sensing length almost one order of
magnitude smaller than conventional hot-wires. This enables us to acquire fully
resolved velocity measurements of turbulent boundary layers up to Reτ = 20 000.
Results show that in the near-wall region, the viscous-scaled streamwise turbulence
intensity grows with Reτ in the Reynolds number range of the experiments. A second
outer peak in the streamwise turbulence intensity is also shown to emerge at the
highest Reynolds numbers. Moreover, the energy spectra in the near-wall region show
excellent inner scaling over the small to moderate wavelength range, followed by a
large-scale influence that increases with Reynolds number. Outer scaling in the outer
region is found to collapse the energy spectra over high wavelengths across various
Reynolds numbers.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
Wall-bounded turbulent flows are ubiquitous in nature and technological applications.

In many of these applications the Reynolds number is high, namely of the order of
105–107, which is out of reach for direct numerical simulations (DNS). An alternative
approach, which is not as computationally demanding as DNS, yet captures much
of the three-dimensional motions in a turbulent flow, is large eddy simulation (LES).
However, the only economical way to perform high Reynolds number LES in the
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presence of the wall is to compute the outer layer and empirically model the
inner layer using wall models (Piomelli & Balaras 2002). This calls for reliable
measurements very close to the wall at high Reynolds number to improve our
understanding of the underlying physics of these fluid flows.

Several decades of research in wall-bounded turbulence has proved that acquiring
unambiguous high-Re experimental data, especially close to the wall, is challenging.
That is partially due to the fact that the size of the smallest-scale motions, which
are predominant near the wall, decreases with the increase in Reynolds number. This
leads to uncertainty in measurement of turbulence intensities very close to the wall
as a result of finite spatial resolution of various experimental techniques. Friction
Reynolds number in wall-bounded turbulence is defined as the ratio of the largest
to the smallest scales, Reτ = δ/(ν/uτ ) (where δ is the boundary layer thickness, ν
is the kinematic viscosity and uτ is the friction velocity). In the laboratory, one
way to achieve high Reynolds number is through decreasing the size of the smallest
scales (∼ν/uτ ) and using very small sensors for the measurements. This approach
has been followed in the Princeton Superpipe and High Reynolds Number Testing
Facility (HRTF), where as a result, the conventional hot-wires are excessively large
to resolve the smallest-scale motions at the highest Reynolds numbers. A nano-scale
thermal anemometry probe (NSTAP) was developed by Bailey et al. (2010) to
overcome this problem, and has been widely used for high-Re measurements in pipe
and boundary layer flows ever since (Hultmark et al. 2012, 2013; Rosenberg et al.
2013; Vallikivi, Ganapathisubramani & Smits 2015a; Vallikivi, Hultmark & Smits
2015b). An alternative approach to increase Re is to increase the size of the largest
scales (∼δ), which necessitates construction of very large wind tunnels such as the
large University of Melbourne wind tunnel (Nickels et al. 2005), the Flow Physics
Facility at the University of New Hampshire (Vincenti et al. 2013) and the CICLoPE
facility at the University of Bologna (Talamelli et al. 2009). In spite of following the
above-mentioned approaches, the spatial resolution issue has remained unavoidable
at the highest Reynolds numbers. For example, the viscous-scaled sensor length,
l+ = luτ/ν, for NSTAP at Reτ > 68 000 in the Superpipe is greater than 30 (where l
is the sensor length), and the conventional hot-wire’s viscous-scaled length is greater
than 20 for the highest Reτ achievable in the mentioned large wind tunnels, leading
to significant attenuation of energy in the near-wall region (Hutchins et al. 2009;
Vincenti et al. 2013; Örlü et al. 2017).

As a result of spatial resolution limitations in high-Re turbulence measurements,
the near-wall scaling of turbulence intensities, especially the streamwise turbulence
intensity u2, is still under discussion. The distribution of u2+= u2/u2

τ shows a distinct
peak referred to as the ‘inner peak’, u2+

max, in the near-wall region at the inner
normalised wall distance z+= zuτ/ν≈ 15. Lee & Moser (2015) compiled results from
several DNS studies in turbulent pipe, channel and boundary layer flows showing
an increasing trend with Reτ for u2+

max with a log–linear relation in the Reynolds
number range Reτ = 1000–5200. Review of the experimental studies, on the other
hand, is less conclusive mainly because of spatial resolution issues. While most of
the studies show that u2+

max exhibits a weak Re dependence (Klewicki & Falco 1990;
De Graaff & Eaton 2000; Metzger et al. 2001; Hutchins & Marusic 2007; Willert
et al. 2017), some researchers have reported that it is invariant with Re (Fernholz &
Finley 1996; Mochizuki & Nieuwstadt 1996; Hultmark et al. 2012, 2013; Vallikivi
et al. 2015b).

Apart from the inner peak, a second outer peak in u2+ has been reported for
very high Reynolds number turbulent wall-bounded flows (e.g. Morrison et al. 2004;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.508
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Metzger, McKeon & Holmes 2007; Hultmark et al. 2012; Vallikivi et al. 2015b;
Willert et al. 2017). However, the presence of this peak and as to whether it is a
peak or a plateau is still unclear since spatial resolution in many of these studies
degrades at the very high-Re measurements. According to Hutchins et al. (2009)
the spatial resolution filtering extends to wall distances higher than the immediate
near-wall region and may produce an artificial outer peak by attenuating the turbulence
intensity profile in the near-wall region while leaving the log layer virtually unaffected
(see figure 5 in Hutchins et al. (2009)). The prediction of a second outer peak arising
at high Reynolds number would be notable as it may indicate the presence of new
outer phenomena (Marusic et al. 2010b; Hultmark et al. 2012).

In an attempt to attain fully resolved measurements we combine both approaches
previously followed to avoid spatial resolution problems. The NSTAP is employed
to conduct velocity measurements in the large University of Melbourne wind tunnel.
The measurements cover a friction Reynolds number range Reτ = 6000–20 000 and the
viscous-scaled sensor length is in the range l+ = 2.5–3.5, which is unique for these
high values of Reynolds number. This allows us to compare the current results with
the DNS data close to the wall and reveal that the inner peak in u2+ (for turbulent
boundary layers up to Reτ = 20 000) closely follows the increasing trend previously
reported by Lee & Moser (2015) from DNS results. Moreover, comparison of the pre-
multiplied energy spectra from fully resolved measurements and DNS in the Reynolds
number range 500–20 000 at z+≈ 15 shows that the inner scaling collapses the spectra
over the very small to moderate wavelength range, followed by a large-scale influence
that grows with Reynolds number.

2. Experimental methods
2.1. Flow facility

Experiments were conducted in the high Reynolds number boundary layer wind
tunnel located at the University of Melbourne. This tunnel has a working section
of nominally 27 m × 2 m × 1 m. Upstream flow is carefully conditioned before
passing through a three-dimensional contraction with an area reduction ratio of 6.2.
The free-stream turbulence intensity (

√
u2/U∞) is less than 0.05 % at the start of

the working section and in the range of 0.15–0.2 % at x = 22 m from the start of
the working section for the free-stream flow range of 10–40 m s−1. Measurements
were made on the tunnel floor at varying streamwise locations between 6 and 22 m
downstream of the tripped inlet at free-stream velocities U∞ = 20 and 30 m s−1.
The flow is tripped at the entrance to the working section by a 35 mm wide stripe
of P40 grit sand paper (with a grit size of 425–500 µm) to produce a canonical
boundary layer. As the working section is operated above atmospheric pressure
a zero pressure gradient is maintained by bleeding the top wall boundary layer,
resulting in a constant free-stream mean velocity along the entire working section
maintained to within ±0.5 %.

The anemometry probe is positioned with respect to the wall before commencing
a measurement using a depth measuring displacement microscope from Titan Tool
Supply with a positioning accuracy of ±1 µm. A stepper motor traverse with a
RENISHAW RGH24-type linear optical encoder was used to position the probe.
Positional accuracy of the encoder is ±0.5 µm and that of the traverse is ±5 µm.
Further details of the facility are given by Marusic et al. (2015).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.508


394 M. Samie and others

2.2. Probes
Nano-scale thermal anemometry probes (NSTAPs) manufactured at Princeton
University with the sensing element length of 60 µm along with a standard boundary
layer hot-wire probe were employed for the measurement of velocity fluctuations.
Design and fabrication of the NSTAP are described by Vallikivi & Smits (2014).
The viscous-scaled sensor length l+ was between 2.4 and 3.5 for the NSTAP for
various Reynolds numbers ranging Reτ = 6000–20 000. Therefore, the small-scale
motions are fully resolved in all the NSTAP measurements (Chin et al. 2009).
Standard hot-wires were also used for comparison, consisting of slightly modified
Dantec 55P15 single-normal boundary layer type probes with prong tip spacing of
1.5 mm. Wollaston wires were soldered to the prong tips and etched to reveal a
2.5 µm diameter, 0.5 mm long platinum sensing element in the middle, leading
to a length-to-diameter ratio of 200 to minimise end-conduction effect (Ligrani &
Bradshaw 1987; Hutchins et al. 2009); l+ for the standard hot-wires is between 20
and 29.

2.3. Constant temperature anemometry
Anemometry probes are operated with two constant temperature anemometers
throughout the measurements. An in-house Melbourne University constant temperature
anemometer (MUCTA) was used to operate the standard hot-wires with an overheat
ratio of 1.8. The NSTAP was operated using a Dantec Streamline constant temperature
anemometer system in the 1 : 1 bridge mode with an external resistor and the overheat
ratio set to 1.6. The system responses of both MUCTA and Dantec anemometers
were verified using a square-wave electronic test to ensure a second-order response.
A frequency response (based on the −3 dB cutoff) was between 15 and 30 kHz for
the standard hot-wires operated with the MUCTA, and between 150 and 200 kHz for
the NSTAP operated with the Dantec system in quiescent air.

Hot-wire signals were sampled using an analogue to digital converter (DT9836 from
Data Translation) with a resolution of 16 bits in the range of ±10 V. The sampling
frequency was set to fs = 50 kHz for the free-stream velocity U∞ = 20 m s−1 and
fs = 80 kHz for U∞ = 30 m s−1. In order to avoid aliasing in the sampled signals,
they were low-pass filtered using an 8-pole Butterworth filter from Frequency Devices,
Inc. model 9002 at fc = fs/2 before sampling. This leads to a viscous-scaled filtering
frequency in the range of 0.85< f+c = fcν/u2

τ < 0.99 for U∞= 20 m s−1 and f+c ≈ 0.74
for U∞ = 30 m s−1. Therefore, it was ensured that the entire energetic frequencies
were resolved for all the measurements, following Hutchins et al. (2009) who showed
that the energy content beyond f+max ≈ 1/3 is negligible across various Reynolds
numbers. The total sampling time at each wall-normal location z is given by T and
is outer normalised to give the boundary layer turnovers TU∞/δ. In order to obtain
converged statistics and partially converged spectra, this number should be large to
capture several hundreds of the largest structures past the probe. In the present study
TU∞/δ = 12 000–15 000 for all measurements.

Calibration of the anemometry probes was performed statically inside the tunnel
in the free stream against a Pitot-static tube before and after each full traverse.
Fourth-order polynomial curves were fitted to the calibration data. In order to account
for the calibration drift, the anemometry probe was periodically traversed to the
free stream (every sixth measurement point), during the boundary layer profile
measurement, and sampled against the Pitot-static tube to obtain calibration points
at the profile measurement speed. This procedure provides a time record of the
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Fully resolved measurements of turbulent boundary layer 395

Reτ x U∞ ν/uτ uτ TU∞/δ 1t+ l+ l/ηmin Probes N Symbols/
(m) (m s−1) (µm) (m s−1) lines

6000 6.3 20 23.6 0.69 14 400 0.58 21 9.9 HW — ——
2.5 1.2 NSTAP (avg.) 4

10 000 13 20 24.4 0.66 12 500 0.54 21 9.9 HW — ——
2.5 1.2 NSTAP (avg.) 4

14 500 21 20 25.2 0.65 14 000 0.51 20 9.4 HW — ——
2.4 1.1 NSTAP (avg.) 3

20 000 21 30 17.2 0.93 12 500 0.68 29 14 HW — ——
3.5 1.6 NSTAP (avg.) 5

TABLE 1. Summary of the experimental conditions.

probe’s drift during the profile measurement, which can later be extrapolated to
all calibration speeds to obtain the modified calibration curve at each speed. This
procedure is described in detail by Talluru et al. (2014). Drift for the current NSTAP
measurements was always less than 0.5 % between consecutive periodic free-stream
checks and less than 2 % between the pre- and post-calibrations. Moreover, the
drift for the 2.5 µm diameter hot-wire measurements was always less than 1 %
between pre- and post-calibration. The temperature was measured continuously in
the undisturbed free stream for the entire duration of the experiment using a DP25
series thermocouple from Omega, USA with a resolution of 0.1 ◦C. The temperature
variation throughout the measurements was within ±1.5 ◦C for the measurements
conducted at the nominal velocity of 20 m s−1 and ±3 ◦C for those conducted at
the nominal velocity of 30 m s−1. The correction scheme for temperature variations
proposed by Hultmark & Smits (2010) was employed and no significant change in the
results was observed with and without applying the temperature correction scheme.

2.4. Experimental conditions
Table 1 summarises the experimental conditions of all the measurements. Wall-normal
traverses were made at three streamwise locations downstream of the tripped inlet
given by x. U∞ is the free-stream velocity and uτ is the friction velocity. The
measured mean velocity U is fitted to the composite profile of Chauhan, Monkewitz
& Nagib (2009) by a least-squares procedure (with log-law constants κ = 0.384 and
B= 4.17) to determine uτ and δ, where δ is the boundary layer thickness, which is
inherently larger than δ99. R-squared values were not smaller than 0.9997 for the curve
fits in various cases. Chauhan et al. (2009) have shown that the uτ values obtained
by this method are within ±2 % of those determined by direct oil-film interferometry
measurements. We compared the estimated uτ with that directly measured with a
floating element at x= 21 m at U∞= 20 m s−1 in this facility by Baars et al. (2016)
and observed an agreement to within ±1 %. Baars et al. (2016) also verified the
value of κ in this facility independently by comparing the floating element data
with the Coles–Fernhols relation of the form U+

∞
= 1/κ ln(Reθ) + C. The probe

length is shown in table 1 in viscous scaling (l+) and in terms of the smallest
measured Kolmogorov length scale (l/ηmin) at each Reynolds number. The friction
Reynolds number Reτ =uτδ/ν is calculated using the fitted composite profile. Multiple
measurement repeats were carried out at each Reynolds number with different NSTAP
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FIGURE 1. (Colour online) (a) Inner normalised mean velocity U+ against inner
normalised wall distance z+. The straight line indicates the log law U+= 1/0.384 ln(z+)+
4.17. (b) Velocity defect law against outer normalised wall distance z/δ. The straight
line corresponds to the relation U+ = 2.3 − 1/0.384 ln(z/δ). , NSTAP, Reτ = 6000;

, NSTAP, Reτ = 10 000; , NSTAP, Reτ = 14 500; , NSTAP, Reτ = 20 000; - - - -,
DNS of turbulent boundary layer at Reτ = 2500 from Sillero, Jiménez & Moser (2013).
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FIGURE 2. (Colour online) Inner normalised turbulence intensity profile u2+ against (a)
inner normalised wall distance z+ and (b) outer normalised wall distance z/δ. The dotted
line corresponds to u2+

max = 5.4− 0.642 log(zmax/δ) and the straight line indicates u2+ =

1.95− 1.26 log(z/δ). Other lines are the same as in figure 1.

probes (the number of these repeats is given by N in table 1) and one measurement
with the standard hot-wire. Validation of the NSTAP and selection of reliable NSTAPs
have been achieved through the procedure detailed in appendix A. Repeats of the
reliable NSTAPs are averaged to obtain the averaged NSTAP statistics and energy
spectra at each Reτ .

3. Results and discussion
3.1. Mean flow and streamwise turbulence intensity

Figures 1(a) and 1(b) show the mean velocity profiles as measured by the NSTAP
together with the DNS of boundary layer data from Sillero et al. (2013) at Reτ ≈ 2500
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FIGURE 3. (Colour online) Dependence of maximum of u2+ on Reτ . , NSTAP;E, DNS
of turbulent boundary layer from Sillero et al. (2013); @, DNS of channel flow from
Lozano-Durán & Jiménez (2014); C, DNS of channel flow from Lee & Moser (2015);
——, u2+

max = 3.54 + 0.646 log(Reτ ); - - - -, u2+
max = 3.66 + 0.642 log(Reτ ) from Lee &

Moser (2015).

in inner normalised and velocity defect form, respectively. Figures 2(a) and 2(b) show
the turbulence intensity profiles scaled with uτ at various Reτ against viscous and
outer normalised wall distance, respectively. A good outer-scaling collapse is observed
for nominally z/δ > 0.2 in the Reynolds number range Reτ = 2500–20 000. In the
overlap region one observes that the streamwise turbulence intensity profiles follow
the logarithmic relation

u2+ = B1 − A1 log(z/δ), (3.1)

with A1 = 1.26 and B1 = 1.95 for 6000 6 Reτ 6 20 000. This logarithmic behaviour
of the streamwise turbulence intensity has been previously demonstrated by Hultmark
et al. (2012), Marusic et al. (2015) and Vallikivi et al. (2015b), among others. NSTAP
measurements exhibit a clear growth of the inner peak in the streamwise turbulence
intensity, u2+

max, located at z+ ≈ 15 with increasing Reτ . As l+ < 3.5 (i.e. the near-
wall region is fully resolved) for all the NSTAP measurements, we can compare the
trend in u2+

max from our results with that from the DNS results at lower Reynolds
numbers. The inner peak values scaled on uτ are plotted against Reτ in figure 3 for
the data from the current study as well as those from various DNS studies. Error bars
correspond to 95 % confidence interval calculated for the finite number of experiment
repeats N at each Reτ assuming a t distribution for the experiment repeats (Coleman
& Steele 2009). It is evident that our experimental results extend the log–linear trend
of u2+

max previously reported for the DNS data by Lee & Moser (2015) and Lozano-
Durán & Jiménez (2014). Dependence of the peak of u2+ on Reτ was fitted to the
boundary layer DNS and our higher Re data to obtain

u2+
max = 3.54+ 0.646 log(Reτ ). (3.2)
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FIGURE 4. (Colour online) Upper bound for the outer peak of streamwise turbulence
intensity indicated by the pentagrams for various Reynolds numbers. The inset shows the
zoomed view of the region bounded by the rectangle demonstrating the slope (Sint) and x
(z+p int

) and y (u2
p
+

int
) coordinates of the intersection of the tangent line (to the intermediate

region) with the logarithmic relation for Reτ = 6000. Straight solid lines correspond to
(3.1) for Reτ = 6000, 10 000, 14 500 and 20 000; straight dot-dashed lines indicate the
logarithmic tangent lines to the intermediate region (100 6 z+ 6 3.9Re1/2

τ ) of turbulence
intensity profiles. Other lines are as in figure 1.

This relation is shown in figure 3 together with the relation u2+
max= 3.66+ 0.646 log(Reτ )

proposed by Lee & Moser (2015). One can see that the agreement between (3.2) and
the fit by Lee & Moser (2015) is within the measurement uncertainty.

Now we address the controversies regarding the outer peak in u2+. One can see that
locating the outer peak accurately is challenging due to the lack of smoothness of the
intensity profiles in the experimental results, and certainly, only the highest Reynolds
number case shown in figure 2 shows any possible sign of an outer peak. This issue
can be remedied by attempting to find an upper bound for the outer peak instead of
the peak itself by drawing a tangent line to the inflection point in the intermediate
region of u2+ (located in the viscous scaled wall-normal range 100 6 z+ 6 3.9Re1/2

τ ),
and intersecting it with the logarithmic relation as shown in figure 4. To this end, we
first need to find the inflection point in the intermediate region of u2+. The inflection
point is associated with the point where d2(u2+)/d(log(z+))2 crosses zero and also
d(u2+)/d(log(z+)) adopts its maximum; d(u2+)/d(log(z+)) and d2(u2+)/d(log(z+))2
for NSTAP results as well as DNS of boundary layer (at Reτ = 2500) are plotted
against z+ in figures 5(a) and 5(b), respectively. One can see that the zero crossing in
d2(u2+)/d(log(z+))2 occurs around z+=180 and is a weak function, if not independent,
of Reτ for Reτ = 2500–20 000. Figure 5(c) shows d2u2+/dz+2, which is proportional
to the viscous transport. It appears that the viscous transport is virtually Reynolds
number invariant in the intermediate region and becomes zero at nominally z+ = 180.
After locating the inflection point, a tangent line is fitted to four to five experimental
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FIGURE 5. (Colour online) (a) Inner normalised first derivative of the streamwise
turbulence intensity with respect to log(z+). (b) Inner normalised second derivative of
the streamwise turbulence intensity with respect to log(z+). (c) Inner normalised second
derivative of the streamwise turbulence intensity with respect to z+, which is also
proportional to the viscous transport. Lines are as in figure 1.

points in the turbulence intensity profile neighbouring the inflection point with it in
the middle, as shown in figure 4. The tangent line is extended in z+ until it intersects
with the logarithmic equation (3.1). The emergence and existence of a second peak
in the turbulence intensity with Reτ is evaluated from the Reτ scaling of the ordinate
and abscissa of the intersection point and the slope of the tangent line. Note that
since there is no apparent logarithmic region for u2+ of the DNS boundary layer we
cannot obtain an intersection at this relatively low Reτ ; hence, only the tangent line
to the intermediate region is shown in figure 4 for the DNS. Figures 6(a) and 6(b)
show the Reτ dependence of the intensity (shown by u2

p
+

int
) and the viscous-scaled

location (shown by z+p int
) of the intersections, respectively. The Reynolds number

dependence of the slope of the tangent logarithmic line Sint is shown in figure 6(c).
It is interesting to see that the slope increases with Reτ with negative values for low
Reynolds numbers, and it crosses zero at Reτ ≈ 18 000. This trend shows that a hump
will eventually emerge in the intermediate region of u2+ at high Reynolds numbers.
Now the intensity and location of the intersection points and the slope values against
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FIGURE 6. (Colour online) Reynolds number dependence of (a) the ordinate of the
intersection of the tangent line to the turbulence intensity profile at its inflection point
with the logarithmic equation (3.1) given by u2

p
+

int
; (b) the abscissa of the intersection

point given by z+int; (c) the slope of the tangent lines in the intermediate region, Sint. ,
experimental data from current study; ‹, slope of the tangent line to the intermediate
region of turbulence intensity profile for the DNS data shown in figure 4(b); – · –, curve
fits to the intersection values in (a) and (b) and slope of the logarithmic tangents as a
function of Reτ in (c).

Reτ can be fitted using appropriate functions to obtain

u2
p
+

int
=−3.06+ 0.99 log(Reτ ), (3.3a)

z+p int
= 32.66Re0.27

τ , (3.3b)
Sint =−2.74+ 0.28 log(Reτ ), (3.3c)

which are shown by the dot-dashed lines in figure 6(a–c) respectively. It is noted
again that the mentioned intersection point is not the second outer peak or the start
of the logarithmic region but a geometrical upper bound for the second outer peak.
In fact, we are interested in the intermediate region itself rather than the location and
value of the outer peak, and the intersection that we find is a reference point from
which the logarithmic curve fit to the intermediate region is plotted. The intersection
can be determined with more accuracy since locating the outer peak is challenging,
particularly for low Reynolds number flows. Marusic et al. (2013) used z+ = 3Reτ 1/2

as the lower bound of the logarithmic region and Mathis, Hutchins & Marusic (2010)
used z+ = 3.9Reτ 1/2 as the location of the outer peak. Therefore, an exponential
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FIGURE 7. (Colour online) Comparison of u2+ for the SLTEST surface layer (at Reτ ≈
106), Superpipe (at Reτ ≈ 105) and CICLoPE pipe experiments (at Reτ ≈ 40 000) with
the logarithmic model of (3.1) (——), the intermediate region correlation of (3.4) (– · –)
and the curve fit proposed by Alfredsson et al. (2011) (- - - -). The curve fit proposed by
Alfredsson et al. (2011) is shown for Reτ = 105 and 106.

function is used here to find the correlation for the Reynolds number trend of z+p int
since it is analogous to the outer peak location.

Having (3.3) one can determine the logarithmic tangent line to the intermediate
region for any Reτ > 6000 using

u2+ = u2
p
+

int
+ Sint log

(
z+

z+p int

)
. (3.4)

Equations (3.3) and (3.4) are used to predict the intermediate region in the turbulence
intensity profile for Reτ = 40 000, 105 and 106. This region (shown with dot-dashed
lines) together with the logarithmic region (shown with solid lines) for these Reynolds
numbers are shown in figure 7, where they are compared with the CICLoPE data from
Willert et al. (2017) (pipe facility) at Reτ = 40 000, Superpipe data from Hultmark
et al. (2012) at Reτ ≈ 105 and the SLTEST data from Metzger et al. (2007) and
Hutchins et al. (2012) at Reτ ∼O(106). The agreement between the model predictions
and the SLTEST data in the intermediate region is very good; moreover, although this
model was developed based on the boundary layer data, acceptable agreement is seen
between its predictions and the Superpipe and CICLoPE data. Also shown in figure 7
are the curve fits proposed by Alfredsson, Segalini & Örlü (2011) (shown with dashed
lines) for Reτ = 105 and 106.

Equations (3.2) and (3.3a) can be used to predict whether, at sufficiently high
Reτ , the outer peak overcomes the inner peak. The extrapolated results in figure 8
show that such a phenomenon happens around Reτ = 108. Note that since we are
using an upper bound for the outer peak, i.e. (3.3a), this is a lower bound for the
predicted Reτ . In fact, as recently discussed by Marusic, Baars & Hutchins (2017),
if we adopt the near-wall peak slope in (3.2) following a gradient of A1/2 (A1 is the
slope in the logarithmic relation in (3.1)), then the outer peak will never reach the
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FIGURE 8. (Colour online) Comparison of the Reynolds number dependence of the inner
peak given by (3.2) (——) and the ordinate of the intersection of the tangent line to the
intermediate region and the log region curve fit given by (3.3a) (– · –). Symbols are as
in figures 3 and 6.

inner peak. Furthermore, one should acknowledge that these predictions are valid if
the inner and the outer peak trends remain unchanged up to these extreme values for
Reτ . Such questions remain controversial since accurate near-wall measurements up
to high Reτ face significant challenges (Morrison et al. 2004; Metzger et al. 2007;
Marusic, Mathis & Hutchins 2010a; Hultmark et al. 2012). This makes any prospect
of this phenomenon tentative. Nonetheless, according to the NSTAP data and the
atmospheric surface layer data of Metzger & Klewicki (2001), it is unlikely that this
phenomenon happens at laboratory scale or any terrestrial Reτ .

3.2. Spatial resolution filtering of turbulence intensity in near-wall region

Several correction schemes for spatial filtering of single component hot-wire
measurements have been proposed recently (Monkewitz, Duncan & Nagib 2010; Chin
et al. 2011; Segalini et al. 2011; Smits et al. 2011; Philip et al. 2013). Comparisons
of these corrections are given by Miller, Estejab & Bailey (2014). Here we restrict
our assessment to the correction scheme of Smits et al. (2011).

Figure 9 shows u2+ as measured with the NSTAP and the 2.5 µm diameter hot-wire
together with the Smits et al. (2011) corrected hot-wire profiles for various Reτ . It
is noted that the NSTAP results are not corrected for spatial resolution since their
associated l+ is small enough to ensure that all the small-scale energy content is
resolved. It can be seen that the correction works reasonably well for measurements
at Reτ = 6000, 10 000 and 14 500 where the inner normalised hot-wire length l+HW ≈

20. However, for Reτ = 20 000 with l+HW = 29, its performance degrades, resulting in
an underestimation of the turbulence intensity around the inner peak (z+ = 15). Our
results indicate that this correction scheme (validated for up to Reτ = 10 000 in the
original paper) works well for Reτ up to at least 14 500 but may not be as accurate
for higher Reynolds numbers.
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FIGURE 9. (Colour online) Streamwise turbulence intensity measured with the hot-wires
and the NSTAP probes at various Reτ . ——, uncorrected hot-wire data; · · · · · ·, corrected
hot-wire data for spatial resolution using the scheme proposed by Smits et al. (2011);

, NSTAP, Reτ = 6000; , NSTAP, Reτ = 10 000; , NSTAP, Reτ = 14 500; ,
NSTAP, Reτ =20 000. (a) Reτ =6000, (b) Reτ =10 000, (c) Reτ =14 500, (d) Reτ =20 000.

3.3. Skewness and kurtosis
For completeness we also show skewness (Su) and kurtosis (Ku) profiles of the
streamwise velocity signals against inner-scaled wall distance z+ in figures 10(a) and
10(b). In these figures, skewness and kurtosis as measured by the NSTAP and the
2.5 µm diameter conventional hot-wire are compared at various Reynolds numbers.
It appears that spatial resolution affects both Su and Ku in the near-wall region up to
z+≈ 200, but beyond this (z+> 200) good agreement is observed between the NSTAP
and the conventional hot-wire. These results are consistent with the observations of
Talamelli et al. (2013) about the effect of spatial filtering on the skewness and
kurtosis in turbulent wall-bounded flows. It should also be noted that in the skewness
profiles, a near-wall negative region (which diminishes with Reτ ) is seen in the
NSTAP results for all the Reynolds numbers, while the conventional hot-wire cannot
resolve this due to spatial filtering.

3.4. Energy spectra
3.4.1. Near-wall region

We start this section with a dimensional analysis for the streamwise energy spectrum
φuu in the near-wall region. This analysis is similar to that presented by Perry, Henbest
& Chong (1986) for the logarithmic wall region; however, we apply it to the near-wall
region. The spectrum can be separated into three wavenumber domains.
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FIGURE 10. (Colour online) Comparison of (a) skewness, Su, and (b) kurtosis, Ku, as
measured by 2.5 µm diameter hot-wires (——) and the NSTAP at various Reτ . Reynolds
numbers are Reτ = 6000 ( ), 10 000 ( ), 14 500 ( ) and 20 000 ( ) and the arrow
direction indicates the increase in Reτ . Skewness and kurtosis curves have been shifted in
the ordinate axis for clarity.

(i) Small wavenumber (large wavelength) motions. In this domain, although near the
wall, the boundary layer thickness is important since the contributing large-scale
motions are of the order of the boundary layer thickness, δ. Hence, the relevant
variables are energy spectrum φuu, streamwise wavenumber kx, friction velocity
uτ , kinematic viscosity ν, wall distance z and boundary layer thickness δ. A
dimensional analysis leads to

kxφuu

u2
τ

= f1(kxz, z+, z/δ)= f1(k+x z+, z+, z+/δ+). (3.5)

Equation (3.5) implies that in the near-wall region over the small wavenumber
domain, kxφuu/u2

τ is dependent on Reτ as well as k+x and z+.
(ii) Moderate to high wavenumber (moderate to small wavelength) motions. In this

wavenumber domain in the near-wall region, the relevant variables are φuu, kx,
uτ , z and ν. Here, since z/δ � 1 for sufficiently high Reτ , δ is not important.
Therefore, a dimensional analysis yields

kxφuu

u2
τ

= f2(kxz, z+)= f2(k+x z+, z+). (3.6)

Therefore, in this domain kxφuu/u2
τ can be expressed in terms of k+ and z+ only.

(iii) Very high wavenumber (very small wavelength) motions. In this range of
motions, φuu is dependent on wavenumber kx, Kolmogorov’s length scale η
and Kolmogorov’s velocity scale vη. Here, vη = (νε)1/4 and η= (ν3/ε)1/4, where
ν is kinematic viscosity and ε is the dissipation rate. With these variables two
non-dimensional parameters can be considered such that

kxφuu

v2
η

= f3(kxη)= f3(k+x η
+). (3.7)

It is shown in appendix B that in the near-wall region and the inertial sublayer,
η+ and v+η can be expressed as functions of inner normalised wall distance z+,
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FIGURE 11. (Colour online) Comparison of pre-multiplied energy spectra at z+≈ 15 from
various Reynolds numbers and flow geometries. The arrow indicates increase in Reτ for
the NSTAP spectra.

independent of Reτ , i.e. η+ = hη(z+) and v+η = hv(z+). Therefore, equation (3.7)
can be rewritten as

kxφuu

u2
τ

= [hv(z+)]2f3(k+x hη(z+)), (3.8)

which shows that in this wavenumber domain, similar to moderate to high
wavenumber motions, kxφuu/u2

τ is a function of k+ and z+ and independent of
Reτ .

The above arguments indicate that at a fixed z+ in the near wall, kxφuu(k+)/u2
τ

(or equivalently kxφuu(λ
+

x )/u
2
τ where λx = 2π/kx is the wavelength) curves should

collapse over medium to very high wavenumbers (medium to very low wavelengths)
when various Reτ are compared, and Reτ dependence is expected in the low
wavenumber (high wavelength) end of the spectra only. Since small-scale energy
can be significantly affected by spatial resolution (as documented by Chin et al.
(2009) and Hutchins et al. (2009)), the data here may be helpful to clarify the
small-scale behaviour in the near wall. The inner-scaled, pre-multiplied energy
spectra kxφuu/u2

τ are plotted against streamwise wavelength, λ+x , in figure 11 at
the peak turbulence intensity location, z+ ≈ 15 for the experimental data (Reτ = 6000,
10 000, 14 500 and 20 000) as well as channel DNS data of Hoyas & Jiménez
(2006) at Reτ = 550, 2000 and boundary layer DNS data of Sillero et al. (2013)
at Reτ = 2500. Taylor’s frozen turbulence hypothesis (Taylor 1938) is employed to
deduce spatial spectra from the time series data obtained from the stationary hot-wire
for the experimental spectra, while spatial information is used to construct spectra
from DNS. Here, spectra are plotted in pre-multiplied form so that equal areas
equate to equal contributions to the turbulence intensities on the semilogorithmic plot:∫
∞

0 φuu dkx =
∫
∞

0 kxφuu d(log kx)=
∫
∞

0 kxφuu d(log λx)= u2.
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FIGURE 12. (Colour online) Reynolds number dependence of pre-multiplied energy
spectra as measured with the NSTAP at (a) z+≈24, (b) z+≈92, (c) z+≈180, (d) z+≈280.
Lines are as in figure 11. The arrow indicates increase in Reτ .

All the spectra appear to collapse well for the wavelengths below λ+x ≈ 700 and
the experimental spectra (Reτ > 6000) collapse well for the wavelengths below
λ+x ≈ 15 000. This is consistent with the dimensional analysis. Moreover, in the
high wavelength end of the spectra an increasing trend with Reτ is evident. These
observations are consistent with the experimental study of Hutchins et al. (2009) in
the boundary layer flow (up to Reτ ≈ 19 000) where hot-wire sensors with lengths of
22 wall units were used, and for the lower Reynolds number DNS studies of Hoyas
& Jiménez (2006) (up to Reτ ≈ 2000) in the channel flow, and Chin, Monty & Ooi
(2014) (up to Reτ ≈ 2000) in the pipe flow. It is not clear why the DNS and the
experimental spectra diverge for 103 < λ+x < 104. This may be due to use of Taylor’s
frozen turbulence hypothesis in experimental spectra. The peak of the inner normalised
pre-multiplied energy spectra is seen to remain constant at kxφuu/u2

τ ≈ 2.2 at the inner
normalised wavelength λ+x ≈ 850 within measurement uncertainty. It should also be
noted that the small-scale energy is not only invariant with Reτ but independent of
the flow geometry, since channel and boundary layer flow spectra in the small-scale
region appear to collapse well. This behaviour in the u-spectra at z+ ≈ 15 explains
the increasing trend with Reτ for the peak u2+ in the near-wall region; there is an
increasing amount of large-scale superimposed energy as Reτ increases while the
small-scale energy content appears to be universal. Figure 12 shows the same plots
for the experimental data at other inner normalised wall distance locations. It can
be seen that the kxφuu/u2

τ curves collapse for wavelengths below λ+x ≈ 15 000 up to
z+ = 280 for the Reynolds number range 6000 6 Reτ 6 20 000.
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FIGURE 13. (Colour online) Compensated Kolmogorov’s universal scaling for the
streamwise energy spectra at Reτ = 6000, 10 000, 14 500, 20 000 at (a) z/δ ≈ 0.05, (b)
z/δ ≈ 0.1, (c) z/δ ≈ 0.15, (d) z/δ ≈ 0.4. Saddoughi & Veeravalli (1994) found the
Kolmogorov constant to be K0 = 0.49, which is slightly higher than our result which is
K0 = 0.48. The arrow indicates increase in Reτ .

3.4.2. The k−5/3
x power scaling law

Hutchins et al. (2009) have shown that limited spatial resolution of hot-wires can
affect the k−5/3

x power scaling region by attenuating the so-called ‘spectral bump’ in
the Kolmogorov-scaled energy spectra (Saddoughi & Veeravalli 1994), resulting in
misleading estimates of −5/3 regions. Here, the NSTAP length is shorter than the
Kolmogorov length scale in the logarithmic and outer regions where k−5/3

x power
scaling is expected to hold (see figure 17(a) for inner normalised Kolmogorov length
scale values across the boundary layer thickness at varying Reτ ); hence, we inspect
this scaling across a range of Reynolds numbers in turbulent boundary layers. The
mean rate of turbulent kinetic energy dissipation (ε) is estimated using local isotropy,
which allows ε to be determined from integration of the one-dimensional dissipation
spectrum D(kx) (Townsend 1976), i.e.

ε = 15ν
∫
∞

0
D(kx) dkx = 15ν

∫
∞

0
k2

xφuu dkx. (3.9)

Figure 13 shows the compensated Kolmogorov-scaled streamwise energy spectra at
four outer-scaled wall-normal locations for various Reynolds numbers. The −5/3
scaling law appears as a horizontal line in this form of compensated spectra. One can
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FIGURE 14. (Colour online) Pre-multiplied spectra for the streamwise velocity kxφuu/uτ
against inner-scaled wavelength λ+x and wall distance z+ at (a) Reτ = 6000, (b) Reτ =
10 000, (c) Reτ = 14 500 and (d) Reτ = 20 000. ‘+’ indicates the inner energy site.

see that a clear −5/3 scaling is elusive for z/δ6 0.15, i.e. the logarithmic region, in
the Reτ range of this study. Only at z/δ = 0.4, which is located in the wake region,
are apparent regions of plateau observed. Vallikivi et al. (2015a), however, found
that for high Reynolds number turbulent boundary layer and pipe flows at z/δ = 0.5,
energy spectra have an exponent that is closer to −1.5 than to −5/3. The plateau
level in our results, which equates to Kolmogorov’s constant K0, changes with Reτ
from 0.52 for Reτ = 6000 to 0.48 for Reτ = 14 500 and 20 000 (the plateau values are
determined by fitting a horizontal line to the flat portions of the compensated spectra
at z/δ= 0.4). This is probably because in the lower Reτ cases, the separation between
large energetic scales and small dissipative scales is insufficient. The Kolmogorov
constant for the highest Reτ (K0 = 0.48) is slightly lower than that reported by
Saddoughi & Veeravalli (1994) (K0 = 0.49) in their extremely high-Reτ boundary
layer experiment. This insufficient scale separation might be part of the reason for
the weak Reynolds number dependence of the Kolmogorov constant reported in the
literature (Sreenivasan 1995).

3.4.3. Spectrograms
In an attempt to provide an overview of the energy distribution across various

wavelengths and wall distances, and also the effect of Reτ on the energy distribution,
contour maps of the pre-multiplied energy spectra kxφuu/u2

τ are plotted against
inner-scaled wall distance (z+) and inner-scaled streamwise wavelength in figure 14
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FIGURE 15. (Colour online) Iso-contours of kxφuu/u2
τ against (a) inner-scaled wavelength

λ+x and wall distance z+ at the contour levels of 2, 1.4, 0.9, 0.68 and 0.45, (b) δ-scaled
wave length λx/δ and wall distance z/δ at the contour levels of 0.9, 0.68 and 0.45 for
various Reτ . Reynolds numbers are 6000 ( ), 10 000 ( ), 14 500 ( ) and 20 000 ( ).

for Reτ = 6000–20 000. Here the magnitude of kxφuu/u2
τ is indicated using colour

variations. These contour maps show a distinct near-wall peak in the spectrogram
for all Reynolds numbers (indicated with white ‘+’ symbols) known as the ‘inner
energy site’, which occur at a nominally fixed inner-scaled wall distance z+≈ 13 and
inner-scaled wavelength λ+x ≈ 1000 at a fixed energy level kxφuu/u2

τ ≈ 2.2. This wall
distance corresponds to approximately the peak in the broadband turbulence intensity,
and is related to the near-wall energetic cycle of streaks and quasi-streamwise
vortices (Kline et al. 1967; Jiménez & Pinelli 1999). In order to acquire better
comprehension of the Reτ effect on the near-wall energy spectral density, iso-contours
of pre-multiplied energy for the spectral surfaces shown previously are now
shown in figure 15(a) for various Reτ . Five contour levels corresponding to
kxφuu/u2

τ = 0.45, 0.68, 0.9, 1.4 and 2 are shown, and colour gradients are used to
indicate Reτ variations. The four sets of contours (four Reynolds numbers) show
very good collapse on the left-hand side of the inclined dashed line. However, if
we look to the right of the dashed line, it is evident that there is an increasing
amount of high wavelength energy with Reτ extending across all wall heights. This
high wavelength energy in the near-wall region is the footprint of an emergent ‘outer
energy site’, growth of which with Reτ is evident in figure 14. Hutchins & Marusic
(2007) reported emergence of an outer peak associated with this outer energy site
at higher Reynolds numbers, and Mathis, Hutchins & Marusic (2009) later proposed
the location of the peak to be Reτ dependent as z+ ≈

√
15Reτ , which coincides with

the geometric centre of the logarithmic region. More recently, Vallikivi et al. (2015a)
reported that the location of the outer spectral peak at high Reynolds numbers
marks the start of a broad plateau. This latter observation is consistent with the
outer spectral region at Reτ = 20 000 in our results. However, Reτ = 20 000 is only
sufficient to see the emergence of this broad plateau which would be expected from
the results of Vallikivi et al. (2015a) to become more prominent at higher Reynolds
numbers. Figure 15(b) shows a Reynolds number comparison of three contour levels
corresponding to kxφuu/u2

τ = 0.45, 0.68, 0.9 against outer-scaled wavelength and wall
distance. It is evident that the outer-scaled spectra collapse well in the outer region
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(showing existence of an outer-scaling similarity) and gradually separate at lower z/δ
and λx/δ. This is consistent with the attached eddy hypothesis model of Perry et al.
(1986).

4. Conclusions

Nano-scale thermal anemometry probes (NSTAPs) were employed to measure the
streamwise velocity fluctuations in the large University of Melbourne wind tunnel in
the Reynolds number range Reτ = 6000–20 000. This enabled viscous-scaled sensor
lengths in the range l+ = 2.4–3.5, ensuring that all the energetic small scales in the
near-wall region are resolved. To validate the NSTAPs, several measurement repeats
at each Reynolds number were performed, and mean velocity U and streamwise
turbulence intensity u2 as measured by the NSTAPs were compared with those
measured by conventional 2.5 µm diameter hot-wires, which were used as baselines.
Those NSTAPs that agreed with the 2.5 µm diameter hot-wires in the logarithmic
and outer regions of u2 were deemed reliable and their results were averaged to
obtain the averaged NSTAP results at each Reτ . NSTAP results revealed that in
the near-wall region the streamwise turbulence intensity normalised with uτ (u2+)
increases monotonically with Reτ in the Reynolds number range of the experiments,
and the near-wall peak in u2+ was found to follow a log–linear relation with Reτ
consistent with that recently reported from various DNS results by Lee & Moser
(2015). Moreover, profiles of u2+ against outer-scaled wall distance z/δ in the
logarithmic and outer regions collapsed well, following a logarithmic decay of the
form u2+ = B1 − A1 log(z/δ), with A1 = 1.26 and B1 = 1.95 in the logarithmic region.
A logarithmic curve fit was proposed for the intermediate region (1006 z+6 3.9Re1/2

τ )
of the turbulence intensity profile. Extrapolating the fit showed a clear outer peak at
Reynolds number Reτ = O(106), exhibiting very good agreement with atmospheric
surface layer data. A correction scheme for u2+ acquired with insufficient spatial
resolution by Smits et al. (2011) was used to correct 2.5 µm diameter hot-wire
data and comparison was made with those from the NSTAPs. This revealed a good
performance of the correction scheme up to Reτ = 14 500; however, at Reτ = 20 000
(for the hot-wire viscous-scaled length l+HW = 29) the corrected turbulence intensity
profile slightly underestimated the fully resolved counterpart measured by the NSTAP.
Skewness and kurtosis as measured by the NSTAP and conventional hot-wires were
compared at various Reynolds numbers and it was shown that finite hot-wire length
affects these profiles only in the viscous-scaled wall height range z+< 200 for l+6 29.

Streamwise velocity energy spectra were investigated in the near-wall region
(z+ 6 300). Consistent with dimensional analysis, the energy spectra in the near-wall
region were found to be functions of only inner normalised wall distance and
wavenumber, in the very high to moderate wavenumbers range. This was confirmed
by fully resolved experimental spectra. When u-spectra of various Reynolds numbers
from experiment were compared at fixed viscous-scaled wall distances, in the
near-wall region (z+ 6 300) inner-scaling collapsed the spectra for small to moderate
wavelengths (large to moderate wavenumbers), while the spectra exhibited an
increasing trend with Reτ for large wavelengths. These large-scale energy contributions
in the u-spectra, which increase with Reτ , are attributed to the footprint of large-scale
features in the inertial sublayer, and are responsible for the growth of the turbulence
intensity inner peak with Reτ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.508


Fully resolved measurements of turbulent boundary layer 411

A Reynolds number comparison of compensated Kolmogorov-scaled u-spectra was
also made at different wall distances, showing that there is no clear −5/3 scaling in
the energy spectra within the logarithmic region for turbulent boundary layer flows
in the Reynolds number range Reτ = 6500–20 000. Only in the wake region, namely
at z/δ = 0.4, was an apparent plateau in the compensated Kolmogorov-scaled spectra
for the higher Reynolds number cases (Reτ = 14 500 and 20 000) observed with
the Kolmogorov constant K0 = 0.48, consistent with that reported by Saddoughi &
Veeravalli (1994).

Finally, pre-multiplied u-spectra, kxφuu, as contour plots were analysed with different
scalings. Comparison of the spectra against inner-scaled wavelength λ+x and wall
distance z+ depicted a clear near-wall peak (with the energy level kxφuu ≈ 2.2)
associated with the near-wall peak in u2+ for various Reynolds numbers. Iso-contours
of pre-multiplied energy for the spectral surfaces were compared for various Reynolds
numbers in viscous and δ scaling. It was shown that the spectra of various Reτ with
viscous scaling collapse in the near-wall region for low to moderate wavelengths,
while δ-scaled iso-countours collapsed in the outer region over moderate to high
wavelengths.
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Appendix A
Here we describe the procedure carried out to validate the NSTAP probes.

Several NSTAP probes together with 2.5 µm diameter hot-wires were used for
the measurement of streamwise velocity fluctuations at each Reynolds number. Mean
velocity U and streamwise turbulence intensity u2 as measured by the NSTAPs were
compared to those measured by the hot-wires. These comparisons are shown in figure
16, only for Reτ = 20 000, as an example. The mean velocity profiles measured
by all the NSTAPs agree with that measured by the standard hot-wire; however,
comparison of the turbulence intensity profiles revealed discrepancies between some
of the NSTAPs and the hot-wires in the logarithmic and outer region. Hutchins et al.
(2009) have shown that the effect of spatial resolution in the logarithmic and outer
region of the streamwise turbulence intensity profile acquired with hot-wires with
viscous-scaled length up to l+ ≈ 150 is minimal. This can be explained by the fact
that the energy-containing motions in these regions are of the order of the boundary
layer thickness, which is normally orders of magnitude larger than the conventional
hot-wires in large facilities like the one used in the current study. Hence, we expect
to observe minimal difference between NSTAP and 2.5 µm diameter hot-wire in the
logarithmic and outer region, despite better spatial resolution of the NSTAP. Those
NSTAPs that are in agreement with the 2.5 µm diameter hot-wire in the logarithmic
and outer region of u2+ are deemed reliable, and their results are averaged to obtain
the averaged NSTAP statistics and energy spectra at each Reynolds number. The
anomalous behaviour of individual NSTAP sensors is consistent with a resonance
peak in the Dantec-NSTAP response. This resonance was not observed in the still air
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FIGURE 16. (Colour online) Validation of the NSTAP. (a) Inner normalised streamwise
mean velocity, U+, against inner normalised wall distance, z+. (b) Inner normalised
streamwise turbulence intensity, u2+, against z+.
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FIGURE 17. (Colour online) (a) Inner normalised Kolmogorov length scale, η+, and (b)
inner normalised Kolmogorov velocity scale, v+η , against z+ at Reτ = 6000, 10 000, 14 500
and 20 000. Dashed lines correspond to approximation equations η+= (κz+)1/4 in (a) and
v+η = (κz+)−1/4 in (b) obtained from balancing production and dissipation in logarithmic
region (Perry et al. 1986). The arrows indicate increase in Reτ .

square wave response, but could be present in higher velocity flow. Such behaviour
was observed only in a small number of wires. Characterisation of this behaviour
was limited by the operating parameters of the Dantec system and remains an open
topic for further investigation.

Appendix B
Figure 17 shows the inner normalised Kolmogorov length scale (η+) and velocity

scale (v+η ) against inner normalised wall distance (z+) for various Reynolds numbers
from the well-resolved NSTAP measurements. To estimate η+ and v+η an estimate of
the mean rate of dissipation of the turbulent kinetic energy (ε) is required. This is
achieved with the aid of local isotropy assumption, which permits estimation of ε by
integrating the dissipation spectra using (3.9). One can see in figure 17 that both η+
and v+η exhibit good collapse for z+ 6 500.
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