
TLP 16 (5–6): 619–635, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000478

619

Query answering in resource-based
answer set semantics�

STEFANIA COSTANTINI

DISIM, Università di L’Aquila

(e-mail: stefania.costantini@univaq.it)

ANDREA FORMISANO

DMI, Università di Perugia — GNCS-INdAM

(e-mail: formis@dmi.unipg.it)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

In recent work we defined resource-based answer set semantics, which is an extension to

answer set semantics stemming from the study of its relationship with linear logic. In fact,

the name of the new semantics comes from the fact that in the linear-logic formulation every

literal (including negative ones) were considered as a resource. In this paper, we propose a

query-answering procedure reminiscent of Prolog for answer set programs under this extended

semantics as an extension of XSB-resolution for logic programs with negation.1 We prove

formal properties of the proposed procedure.

Under consideration for acceptance in TPLP.

KEYWORDS: Answer Set Programming, Procedural Semantics, Top-down Query-answering

1 Introduction

Answer set programming (ASP) is nowadays a well-established programming

paradigm based on answer set semantics (Gelfond and Lifschitz 1988; Marek

and Truszczyński 1999), with applications in many areas (cf., e.g., (Baral 2003;

Truszczyński 2007; Gelfond 2007) and the references therein). Nevertheless, as

noted in (Gebser et al. 2009; Bonatti et al. 2008), few attempts to construct a goal-

oriented proof procedure exist, though there is a renewal of interest, as attested,

e.g., by the recent work presented in (Marple and Gupta 2014). This is due to

the very nature of the answer set semantics, where a program may admit none

or several answer sets, and where the semantics enjoys no locality, or, better, no

Relevance in the sense of (Dix 1995): no subset of the given program can in general

be identified, from where the decision of atom A (intended as a goal, or query)

� This research is partially supported by YASMIN (RdB-UniPG2016/17) and FCRPG.2016.0105.021
projects.

1 A preliminary shorter version of this paper appeared in (Costantini and Formisano 2014).

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


620 S. Costantini and A. Formisano

belonging or not to some answer set can be drawn. An incremental construction

of approximations of answer sets is proposed in (Gebser et al. 2009) to provide

a ground for local computations and top-down query answering. A sound and

complete proof procedure is also provided. The approach of (Bonatti et al. 2008)

is in the spirit of “traditional” SLD-resolution (Lloyd 1993), and can be used with

non-ground queries and with non-ground, possibly infinite, programs. Soundness

and completeness results are proven for large classes of programs. Another way to

address the query-answering problem is discussed in (Lin and You 2002). This work

describes a canonical rewriting system that turns out to be sound and complete

under the partial stable model semantics. In principle, as the authors observe, the

inference procedure could be completed to implement query-answering w.r.t. stable

model semantics by circumventing the lack of Relevance. A substantially different

approach to ASP computation is proposed in (Gebser and Schaub 2006) where

the authors define a tableau-based framework for ASP. The main aim consists in

providing a formal framework for characterizing inference operations and strategies

in ASP-solvers. The approach is not based on query-oriented top-down evaluation,

indeed, each branch in a tableau potentially corresponds to a computation of an

answer set. However, one might foresee the possibility of exploiting such a tableau

system to check answer set existence subject to query satisfaction.

A relevant issue concerning goal-oriented answer-set-based computation is related

to sequences of queries. Assume that one would be able to pose a query ?− Q1

receiving an answer “yes”, to signify that Q1 is entailed by some answer set of the

given program Π. Possibly, one might intend subsequent queries to be answered in

the same context, i.e. a subsequent query ?−Q2 might ask whether some of the answer

sets entailing Q1 also entails Q2. This might go on until the user explicitly “resets”

the context. Such an issue, though reasonable in practical applications, has hardly

been addressed up to now, due to the semantic difficulties that we have mentioned.

A viable approach to these problems takes inspiration from the research on RASP

(Resource-based ASP), which is a recent extension of ASP, obtained by explicitly

introducing the notion of resource (Costantini and Formisano 2010). A RASP

and linear-logic modeling of default negation as understood under the answer set

semantics has been introduced in (Costantini and Formisano 2013). This led to the

definition of an extension to the answer set semantics, called Resource-based Answer

Set Semantics (RAS). The name of the new semantics comes from the fact that in

the linear-logic formulation every literal (including negative ones) is considered as a

resource that is “consumed” (and hence it becomes no more available) once used in

a proof. This extension finds an alternative equivalent definition in a variation of the

auto-epistemic logic characterization of answer set semantics discussed in (Marek

and Truszczyński 1993).

We refer the reader to (Costantini and Formisano 2015) for a discussion of the

new semantics from several points of view, and to (Costantini and Formisano 2016)

for a summary of its formal definition. Under resource-based answer set semantics

there are no inconsistent programs, i.e., every program admits (resource-based)

answer set. Consider for instance the program Π1 = {old ← not old}. Under the

answer set semantics, Π1 is inconsistent (has no answer sets) because it consists

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 621

of a unique odd cycle and no supported models exists. If we extend the program

to Π2 = {old ← not old . old ← not young .} then {old} is an answer set: in fact,

the first rule is overridden by the second rule which allows old to be derived.

Under the resource-based answer set semantics the first rule is ignored in the first

place: in fact, Π1 has a unique resource-based answer set which is the empty set.

Intuitively, this results from interpreting default negation notA as “I assume that

A is false” or, in autoepistemic terms (Marek and Truszczyński 1991a; Marek

and Truszczyński 1991b) “I believe that I don’t believe A”. So, since deriving A

accounts to denying the assumption of notA, such a derivation is disallowed as

it would be contradictory. It is not considered to be inconsistent because default

negation is not negation in classical logic: in fact, the attempt of deriving A from

notA in classical logic leads to an inconsistency, while contradicting one’s own

assumption is (in our view) simply meaningless, so a rule such as the one in

Π1 is plainly ignored. Assume now to further enlarge the program, by obtaining

Π3 = {old ← not old . old ← not young . young ← old .}. There are again no answer

sets, because by combining the last two rules a contradiction on young is determined,

though indirectly. In resource-based answer set semantics there is still the answer

set {old}, as the indirect contradiction is ignored: having assumed not young makes

young unprovable.

In standard ASP, a constraint such as ← L1, . . . , Lh where the Lis are literals

is implemented by translating it into the rule p ← not p, L1, . . . , Lh with p fresh

atom. This is because, in order to make the contradiction on p harmless, one of

the Lis must be false: otherwise, no answer set exists. Under resource-based answer

set semantics such a transposition no longer works. Thus, constraints related to a

given program are not seen as part of the program: rather, they must be defined

separately and associated to the program. Since resource-based answer sets always

exist, constraints will possibly exclude (a-posteriori) some of them. Thus, constraints

act as a filter on resource-based answer sets, leaving those which are admissible with

respect to given constraints.

In this paper we discuss a top-down proof procedure for the new semantics. The

proposed procedure, beyond query-answering, also provides contextualization, via a

form of tabling; i.e., a table is associated with the given program, and initialized

prior to posing queries. Such table contains information useful for both the next and

the subsequent queries. Under this procedure, ?−A (where we us assume with no loss

of generality that A is an atom), succeeds whenever there exists some resource-based

answer set M where A ∈ M. Contextualization implies that given a sequence of

queries, for instance ?− A, ?− B, both queries succeed if there exists some resource-

based answer set M where A ∈M ∧B ∈M: this at the condition of evaluating ?−B

on the program table as left by ?−A (analogously for longer sequences). In case the

table is reset, subsequent queries will be evaluated independently of previous ones.

Success of ?−A must then be validated with respect to constraints; this issue is only

introduced here, and will be treated in a future paper.

Differently from (Gebser et al. 2009), the proposed procedure does not require

incremental answer set construction when answering a query and is not based

on preliminary program analysis as done in (Marple and Gupta 2014). Rather, it

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


622 S. Costantini and A. Formisano

exploits the fact that resource-based answer set semantics enjoys the property of

Relevance (Dix 1995) (whereas answer set semantics does not). This guarantees that

the truth value of an atom can be established on the basis of the subprogram it

depends upon, and thus allows for top-down computation starting from a query.

For previous sample programs Π2 and Π3, query ?− old succeeds, while ?− young

fails. W.r.t. the top-down procedure proposed in (Bonatti et al. 2008), we do not

aim at managing function symbols (and thus programs with infinite grounding), so

concerning this aspect our work is more limited.

As answer set semantics and resource-based answer set semantics extend the

well-founded semantics (Van Gelder et al. 1991), we take as a starting point XSB-

resolution (Swift and Warren 2012; Chen and Warren 1993), an efficient, fully

described and implemented procedure which is correct and complete w.r.t. the well-

founded semantics. In particular, we define RAS-XSB-resolution and discuss its

properties; we prove correctness and completeness for every program (under the

new semantics). We do not provide the full implementation details that we defer to

a next step; in fact, this would imply suitably extending and reworking all operative

aspects related to XSB. Thus, practical issues such as efficiency and optimization

are not dealt with in the present paper and are rather deferred to future work of

actual specification of an implementation. The proposed procedure is intended as a

proof-of-concept rather than as an implementation guideline.

RAS-XSB resolution can be used for answer set programming under the software

engineering discipline of dividing the program into a consistent “base” level and

a “top” level including constraints. Therefore, even to readers not particularly

interested in the new semantics, the paper proposes a full top-down query-

answering procedure for ASP, though applicable under such (reasonable) limitation.

In summary, RAS-XSB-Resolution:

• can be used for (credulous) top-down query-answering on logic programs

under the resource-based answer set semantics and possibly under the answer

set semantics, given the condition that constraints are defined separately from

the “main” program;

• it is meant for the so-called “credulous reasoning” in the sense that given,

say, query ?− A (where A is an atom), it determines whether there exists any

(resource-based) answer set M such that A ∈M;

• it provides “contextual” query-answering. It is possible to pose subsequent

queries, say ?− A1, . . . , ?− An; if they all succeed, there exists some (resource-

based) answer set M such that {A1, . . . , An} ⊆ M; this extends to the case

when only some of them succeed, where successful atoms are all in M and

unsuccessful ones are not;

• does not require either preliminary program analysis or incremental answer-

set construction, and does not impose any kind of limitation over the class

of resource-based answer set programs which are considered (for answer set

programs, there is the above-mentioned limitation on constraints).

This paper is organized as follows. After a presentation of resource-based answer

set semantics in Section 2, we present the proposed query-answering procedure

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 623

in Section 3, and conclude in Section 4. In the rest of the paper, we refer to

the standard definitions concerning propositional general logic programs and ASP

(Lloyd 1993; Apt and Bol 1994; Gelfond 2007). If not differently specified, we

implicitly refer to the ground version of a program Π. We do not consider “classical

negation”, double negation not notA, disjunctive programs, or the various useful

programming constructs added over time to the basic ASP paradigm (Simons et al.

2002; Costantini and Formisano 2011; Faber et al. 2011).

2 Background on Resource-based ASP

The denomination “resource-based” answer set semantics (RAS) stems from the

linear logic formulation of ASP proposed in (Costantini and Formisano 2013)

which constituted the original inspiration for the new semantics. In this perspective,

the negation notA of some atom A is considered to be a resource of unary amount,

where:

• notA is consumed whenever it is used in a proof, thus preventing A to be

proved, for retaining consistency;

• notA becomes no longer available whenever A is proved.

Consider for instance the following well-known sample answer set program

consisting of a ternary odd cycle and concerning someone who wonders where

to spend her vacation:

beach ← not mountain . mountain ← not travel . travel ← not beach .

In ASP, such program is inconsistent. Under the new semantics, there are three

resource-based answer sets: {beach}, {mountain}, and {travel}. Take for instance

the first one, {beach}. In order to derive the conclusion beach the first rule can

be used; in doing so, the premise not mountain is consumed, thus disabling the

possibility of proving mountain , which thus becomes false; travel is false as well,

since it depends from a false premise.

We refer the reader to (Costantini and Formisano 2015) for a detailed discussion

about logical foundations, motivations, properties, and complexity, and for examples

of use. We provide therein characterizations of RAS in terms of linear logic, as a

variation of the answer set semantics, and in terms of autoepistemic logic. Here we

just recall that, due to the ability to cope with odd cycles, under RAS it is always

possible to assign a truth value to all atoms: every program in fact admits at least

one (possibly empty) resource-based answer set. A more significant example is the

following (where, albeit in this paper we focus on the case of ground programs,

for the sake of conciseness we make use of variables, as customary done to denote

collections of ground literals/rules). The program models a recommender agent,

which provides a user with indication to where it is possible to spend the evening,

and how the user should dress for such an occasion. The system is also able to take

user preferences into account.

The resource-based answer set program which constitutes the core of the system is

the following. There are two ternary cycles. The first one specifies that a person can

be dressed either formally or normally or in an eccentric way. Only old-fashioned

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


624 S. Costantini and A. Formisano

persons dress formally, and only persons with a young mind dress in an eccentric

way. Later on, it is stated by two even cycles that any person can be old-fashioned

or young-minded, independently of the age that, by the second odd cycle, can be

young, middle, or old. The two even cycles interact, so that only one option can

be taken. Then, it is stated that one is admitted to an elegant restaurant if (s)he is

formally dressed, and to a disco if (s)he is dressed in an eccentric way. To spend the

evening either in an elegant restaurant or in a disco one must be admitted. Going

out in this context means either going to an elegant restaurant (for middle-aged or

old people) or to the disco for young people, or sightseeing for anyone.

formal dress(P ) ← person(P ), not normal dress(P ), old fashioned(P ).

normal dress(P ) ← person(P ), not eccentric dress(P ).

eccentric dress(P ) ← person(P ), not formal dress(P ), young mind(P ).

old(P ) ← person(P ), notmiddleaged(P ).

middleaged(P ) ← person(P ), not young(P ).

young(P ) ← person(P ), not old(P ).

old fashioned(P ) ← person(P ), not young mind(P ), not noof(P ).

noof(P ) ← person(P ), not old fashioned(P ).

young mind(P ) ← person(P ), not old fashioned(P ), not noym(P ).

noym(P ) ← person(P ), not young mind(P ).

admitted elegant restaurant(P ) ← person(P ), formal dress(P ).

admitted disco(P ) ← person(P ), eccentric dress(P ).

go disco(P ) ← person(P ), young(P ), admitted disco(P ).

go elegant restaurant(P ) ← person(P ), admitted elegant restaurant(P ).

go elegant restaurant(P ) ← person(P ), middleaged(P ), admitted elegant restaurant(P ).

go sightseeing(P ) ← person(P ).

go out(P ) ← middleaged(P ), go elegant restaurant(P ).

go out(P ) ← old(P ), go elegant restaurant(P ).

go out(P ) ← young(P ), go disco(P ).

go out(P ) ← go sightseeing(P ).

The above program, if considered as an answer set program, has a (unique) empty

resource-based answer set, as there are no facts (in particular there are no facts

for the predicate person to provide values for the placeholder P ). Now assume that

the above program is incorporated into an interface system which interacts with a

user, say George, who wants to go out and wishes to be made aware of his options.

The system may thus add the fact person(george) to the program. While, in ASP

the program would become inconsistent, in RASP the system would, without any

more information, advise George to go sightseeing. This is, in fact, the only advice

that can be extracted from the unique resource-based answer set of the resulting

program. If the system might obtain or elicit George’s age, the options would

be many more, according to the hypotheses about him being old-fashioned or

young-minded. Moreover, for each option (except sightseeing) the system would

be able to extract the required dress code. George might want to express a

preference, e.g., going to the disco. Then the system might add to the program the

rule

preference(P ) ← person(P ), go disco(P ).

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 625

and state the constraint ← not preference(P ) that “forces” the preference to be

satisfied, thus making George aware of the hypotheses and conditions under which

he might actually go to the disco. Namely, they correspond to the unique resource-

based answer set where George is young, young-minded and dresses in an eccentric

way.

However, in resource-based answer set semantics constraints cannot be modeled

(as done in ASP) as “syntactic sugar”, in terms of unary odd cycles involving

fresh atoms. Hence, they have to be modeled explicitly. Without loss of generality,

we assume, from now on, the following simplification concerning constraints. Each

constraint ← L1, . . . , Lk , where each Li is a literal, can be rephrased as simple

constraint ← H , where H is a fresh atom, plus rule H ← L1, . . . , Lk to be added to

the given program Π. So, H occurs in the set SΠ of all the atoms of Π.

Definition 2.1

Let Π be a program and C = {C1, . . . ,Ck} be a set of constraints, each Ci in the

form ← Hi.

• A resource-based answer set M for Π is admissible w.r.t. C if for all i � k

Hi �∈M.

• The program Π is called “admissible” w.r.t. C if it has an admissible answer

w.r.t. C.

It is useful for what follows to evaluate RAS with respect to general properties

of semantics of logic programs introduced in (Dix 1995), that we recall below. A

semantic SEM for logic programs is intended as a function which associates a logic

program with a set of sets of atoms, which constitute the intended meaning.

Definition 2.2

Given any semantics SEM and a ground program Π, Relevance states that for all

literals L it holds that SEM(Π)(L) = SEM(rel rul (Π;L))(L).

Relevance implies that the truth value of any literal under that semantics in a

given program, is determined solely by the subprogram consisting of the relevant

rules. The answer set semantics does not enjoy Relevance (Dix 1995). This is one

reason for the lack of goal-oriented proof procedures. Instead, it is easy to see that

resource-based answer set semantics enjoys Relevance. Resource-based answer set

semantics, like most semantics for logic programs with negation, enjoys Reduction,

which simply assures that the atoms not occurring in the heads of a program are

always assigned truth value false. Another important property is Modularity, defined

in (Dix 1995) as follows (where the reduct ΠM of program Π w.r.t. set of atoms M):

Definition 2.3

Given any semantics SEM, a ground program Π let Π = Π1 ∪Π2 where for every

atom A occurring in Π2, rel rul (Π;A) ⊆ Π2. We say that SEM enjoys Modularity if

it holds that SEM(Π) = SEM(ΠSEM(Π2)
1 ∪Π2).

If Modularity holds, then the semantics can be always computed by splitting a

program in its subprograms (w.r.t. relevant rules). Intuitively, in the above definition,

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


626 S. Costantini and A. Formisano

the semantics of Π2, which is self-contained, is first computed. Then, the semantics of

the whole program can be determined by reducing Π1 w.r.t. SEM(Π2). We can state

(as a consequence of Relevance) that resource-based answer set semantics enjoys

Modularity.

Proposition 2.1

Given a ground program Π let Π = Π1 ∪Π2, where for every atom A occurring in

Π2, rel rul (Π;A) ⊆ Π2. A set M of atoms is a resource-based answer set of Π iff

there exists a resource-based answer set S of Π2 such that M is a resource-based

answer set of ΠS
1 ∪Π2.

Modularity also impacts on constraint checking, i.e. on the check of admissibility

of resource-based answer sets. Considering, in fact, a set of constraints {C1, . . . ,Cn},
n > 0, each Ci in the form← Hi, and letting for each i � n rel rul (Π;Hi) ⊆ Π2, from

Proposition 2.1 it follows that, if a resource-based answer set X of Π2 is admissible

(in terms of Definition 2.1) w.r.t. {C1, . . . ,Cn}, then any resource-based answer set

M of Π such that X ⊆M is also admissible w.r.t. {C1, . . . ,Cn}. In particular, Π2 can

be identified in relation to a certain query:

Definition 2.4

Given a program Π, a constraint ← H associated to Π is relevant for query ?− A if

rel rul (Π;A) ⊆ rel rul (Π;H).

3 A Top-down Proof Procedure for RAS

As it is well-known, the answer set semantics extends the well-founded semantics

(wfs) (Van Gelder et al. 1991) that provides a unique three-valued model 〈W+,W−〉,
where atoms in W+ are true, those in W− are false, and all the others are undefined.

In fact, the answer set semantics assigns, for consistent programs truth values to the

undefined atoms. However, the program can be inconsistent because of odd cyclic

dependencies. The improvement of resource-based answer set semantics over the

answer set semantics relies exactly on its ability to deal with odd cycles that the

answer set semantics interprets as inconsistencies. So, in any reasonable potential

query-answering device for ASP, a query ?− A to an ASP program Π may be

reasonably expected to succeed or fail if A belongs to W+ or W−, respectively. Such

a procedure will then be characterized according to how to provide an answer when

A is undefined under the wfs.

An additional problem with answer set semantics is that query ?−A might locally

succeed, but still, for the lack of Relevance, the overall program may not have

answer sets. In resource-based answer set semantics instead, every program has one

or more resource-based answer set: each of them taken singularly is then admissible

or not w.r.t. the integrity constraints. This allows one to perform constraint checking

upon success of query ?− A.

We will now define the foundations of a top-down proof procedure for resource-

based answer set semantics, which we call RAS-XSB-resolution. The procedure has

to deal with atoms involved in negative circularities, that must be assigned a truth

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 627

value according to some resource-based answer set. We build upon XSB-resolution,

for which an ample literature exists, from the seminal work in (Chen and Warren

1993) to the most recent work in (Swift and Warren 2012) where many useful

references can also be found. For lack of space XSB-resolution is not described

here. XSB in its basic version, XOLDTNF-resolution (Chen and Warren 1993) is

shortly described in (Costantini and Formisano 2016). We take for granted basic

notions concerning proof procedures for logic programming, such as for instance

backtracking. For the relevant definitions we refer to (Lloyd 1993). Some notions

are however required here for the understanding of what follows. In particular, it is

necessary to illustrate detection of cycles on negation.

Definition 3.1 (XSB Negative Cycles Detection)

• Each call to atom A has an associated set N of negative literals, called the

negative context for A, so the call takes the form (A,N).

• Whenever a negative literal notB is selected during the evaluation of some

A, there are two possibilities: (i) notB �∈ N: this will lead to the call (B,N ∪
{notB}); (ii) notB ∈ N, then there is a possible negative loop, and B is called

a possibly looping negative literal.

• For the initial call of any atom A, N is set to empty.

In order to assume that a literal notB is a looping negative literal, that in XSB

assumes truth value undefined, the evaluation of B must however be completed,

i.e. the search space must have been fully explored without finding conditions for

success or failure.

Like in XSB, for each program Π a table T(Π) records useful information about

proofs. As a small extension w.r.t. XSB-Resolution, we record in T(Π) not only

successes, but also failures. XSB-resolution is, for Datalog programs, correct and

complete w.r.t. the wfs. Thus, it is useful to state the following definition.

Definition 3.2

Given a program Π and an atom A, we say that

• A definitely succeeds iff it succeeds via XSB- (or, equivalently, XOLDTNF-)

resolution, and thus A is recorded inT(Π) with truth value true. For simplicity,

we assume A occurs in T(Π).

• A definitely fails iff it fails via XSB- (or, equivalently, XOLDTNF-) resolution,

and thus A is recorded in T(Π) with truth value false. For simplicity, we

assume notA occurs in T(Π).

To represent the notion of negation as a resource, we initialize the program table

prior to posing queries and we manage the table during a proof so as to state that:

• the negation of any atom which is not a fact is available unless this atom has

been proved;

• the negation of an atom which has been proved becomes unavailable;

• the negationof an atom which cannot be proved is always available.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


628 S. Costantini and A. Formisano

Definition 3.3 (Table Initialization in RAS-XSB-resolution)

Given a program Π and an associated table T(Π), Initialization of T(Π) is

performed by inserting, for each atom A occurring as the conclusion of some

rule in Π, a fact yesA (where yesA is a fresh atom).

The meaning of yesA is that the negation notA of A has not been proved. If

yesA is in the table, then A can possibly succeed. Success of A “absorbs” yesA and

prevents notA from succeeding. Failure of A or success of notA “absorbs” yesA as

well, but notA is asserted. T(Π) will in fact evolve during a proof into subsequent

states, as specified below.

Definition 3.4 (Table Update in RAS-XSB-resolution)

Given a program Π and an associated table T(Π), referring to the definition of

RAS-XSB-resolution (cf. Definition 3.5 below), the table update is performed as

follows.

• Upon success of subgoal A, yesA is removed from T(Π) and A is added to

T(Π).

• Upon failure of subgoal A, yesA is removed from T(Π) and notA is added to

T(Π).

• Upon success of subgoal notA, yesA is removed fromT(Π) and notA is added

to T(Π). However:

- if notA succeeds by case 3.b, then such modification is permanent;

- if notA succeeds either by case 3.c or by case 3.d, then in case of failure

of the parent subgoal the modification is retracted, i.e. yesA is restored in

T(Π) and notA is removed from T(Π).

We refer the reader to the examples provided below for a clarification of the

table-update mechanism. In the following, without loss of generality we can assume

that a query is of the form ?−A, where A is an atom. Success or failure of this query

is established as follows. Like in XSB-resolution, we assume that the call to query A

implicitly corresponds to the call (A,N) where N is the negative context of A, which

is initialized to ∅ and treated as stated in Definition 3.1.

Definition 3.5 (Success and failure in RAS-XSB-resolution)

Given a program Π and its associated tableT(Π), notions of success and failure and

of modifications to T(Π) are extended as follows with respect to XSB-resolution.

(1) Atom A succeeds iff yesA is in T(Π), and one of the following conditions

holds.

(a) A definitely succeeds (which includes the case where A is present inT(Π)).

(b) There exists in Π either fact A or a rule of the form A← L1, . . . , Ln, n > 0,

such that neither A nor notA occur in the body and every literal Li, i � n,

succeeds.

(2) Atom A fails iff one of the following conditions holds.

(a) yesA is not present in T(Π).

(b) A definitely fails.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 629

(c) There is no rule of the form A ← L1, . . . , Ln, n > 0, such that every literal

Li succeeds.

(3) Literal notA succeeds if one of the following is the case:

(a) notA is present in T(Π).

(b) A fails.

(c) notA is allowed to succeed.

(d) A is forced to failure.

(4) Literal notA fails if A succeeds.

(5) notA is allowed to succeed whenever the call (A, ∅) results, whatever sequence

of derivation steps is attempted, in the call (A,N ∪{notA}). I.e., the derivation

of notA incurs through layers of negation again into notA.

(6) A is forced to failure when the call (A, ∅) always results in the call (A, {notA}),
whatever sequence of derivation steps is attempted. I.e., the derivation of notA

incurs in notA directly.

From the above extension of the notions of success and failure we obtain RAS-

XSB-resolution as an extended XSB-resolution. Actually, in the definition we exploit

XSB (or, more precisely, XOLDTNF), as a “plugin” for definite success and failure,

and we add cases which manage subgoals with answer undefined under XSB. This is

not exactly ideal from an implementation point of view. In future work, we intend to

proceed to a much more effective integration of XSB with the new aspects that we

have introduced, and to consider efficiency and optimization issues that are presently

neglected.

Notice that the distinction between RAS-XSB-resolution and XSB-resolution is

determined by cases 3.c and 3.d of Definition 3.5, which manage literals involved in

negative cycles. The notions of allowance to succeed (case 5) and of forcing to failure

(case 6) are crucial. Let us illustrate the various cases via simple examples:

• Case 3.c deals with literals depending negatively upon themselves through

other negations. Such literals can be assumed as hypotheses. Consider, for

example, the program a← not b. b← not a. Query ?−a succeeds by assuming

not b, which is correct w.r.t. (resource-based) answer set {a}. If, however, the

program is a← not b, not e. b← not a. e. then, the same query ?− a fails upon

definite failure of not e, so the hypothesis not b must be retracted. This is, in

fact, stated in the specification of table update (Definition 3.4).

• Case 3.d deals with literals depending negatively upon themselves directly. Such

literals can be assumed as hypotheses. Consider, for example, the program

p ← a. a ← not p.. Query ?− a succeeds because the attempt to prove

not p comes across not p (through a), and thus p is forced to failure. This is

correct w.r.t. resource-based answer set {a}. Notice that for atoms involved

in negative cycles the positive-cycle detection is relaxed, as some atom in the

cycle will either fail or been forced to failure. If however the program is

p ← a. a ← not p, not q. then, the same query ?− a fails upon definite failure

of not q, so the hypothesis not p must be retracted. This is in fact stated in the

specification of table update (Definition 3.4).

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


630 S. Costantini and A. Formisano

We provide below a high-level definition of the overall proof procedure

(overlooking implementation details), which resembles plain SLD-resolution.

Definition 3.6 (A naive RAS-XSB-resolution)

Given a program Π, let assume as input the data structure T(Π) used by the proof

procedure for tabling purposes, i.e. the table associated with the program. Given

a query ?− A, the list of current subgoals is initially set to L1 = {A}. If in the

construction of a proof-tree for ?− A a literal Lij is selected in the list of current

subgoals Li, we have that: if Lij succeeds then we take Lij as proved and proceed

to prove Lij+1
after the related updates to the program table. Otherwise, we have to

backtrack to the previous list Li−1 of subgoals.

Conditions for success and failure are those specified in Definition 3.5. Success and

failure determine the modifications toT(Π) specified in Definition 3.4. Backtracking

does not involve restoring previous contents of T(Π), as subgoals which have been

proved can be usefully employed as lemmas. In fact, the table is updated only when

the entire search space for a subgoal has been explored. The only exception concerns

negative subgoals which correspond to literals involved in cycles: in fact, they are

to considered as hypotheses that could later be retracted. For instance, consider the

program

q ← not a, c. q ← not b. a← not b. b← not a.

and query ?−q. Let us assume clauses are selected in the order. So, the first clause for

q is selected, and not a is initially allowed to succeed (though involved in a negative

cycle with not b). However, upon failure of subgoal c with consequent backtracking

to the second rule for q, lemma notA must be retracted from the table: this in fact

enables not b to be allowed to succeed, so determining success of the query.

Definition 3.7

Given a program Π and its associated table T(Π), a free query is a query ?− A

which is posed on Π when the table has just been initialized. A contextual query is a

query ?−B which is posed on Π leaving the associated table in the state determined

by former queries.

Success of query ?− A means (as proved in Theorem 3.1 below) that there exist

resource-based answer sets that contain A. The final content ofT(Π) specifies literals

that hold in these sets (including A). Precisely, the state of T(Π) characterizes a

set ST(Π)A
resource-based answer sets of Π, such that for all M ∈ ST(Π)A

, and for

every atom D, D ∈ T(Π) implies D ∈ M and notD ∈ T(Π) implies D �∈ M.

Backtracking on ?−A accounts to asking whether there are other different resource-

based answer sets containing A, and implies making different assumptions about

cycles by retracting literals which had been assumed to succeed. Instead, posing a

subsequent query ?− B without resetting the contents of T(Π), which constitutes a

context, accounts to asking whether some of the answer sets in ST(Π)A
also contain

B. Posing such a contextual query, the resulting table reduces previously-identified

resource-based answer sets to a possibly smaller set ST(Π)A∪B whose elements include

both A and B (see Theorem 3.2 below). Contextual queries and sequences of

contextual queries are formally defined below.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 631

Definition 3.8 (Query sequence)

Given a program Π and k > 1 queries ?− A1, . . . , ?− Ak performed one after the

other, assume that T(Π) is initialized only before posing ?− A1. Then, ?− A1 is a

free query where each ?−Ai, is a contextual query, evaluated w.r.t. the previous ones.

To show the application of RAS-XSB-resolution to single queries and to a

query sequence, let us consider the sample following program Π, which includes

virtually all cases of potential success and failure. The well-founded model of this

program is 〈{e}, {d}〉 while the resource-based answer sets are M1 = {a, e, f, h, s} and

M2 = {e, h, g, s}.
r1. a← not g.

r2. g ← not a.

r3. s← not p.

r4. p← h.

r5. h← not p.

r6. f ← not a, d.

r7. f ← not g, e.

r8. e.

Initially,T(Π) includes yesA for every atom occurring in some rule head:T(Π) =

{yesa ,yesb,yesc,yese,yesf ,yesg ,yesp,yesh ,yess}. Below we illustrate some derivations.

We assume that applicable rules are considered from first (r1) to last (r8) as they are

ordered in the program, and literals in rule bodies from left to right.

Let us first illustrate the proof of query ?−f. Each additional layer of ?− indicates

nested derivation of A whenever literal notA is encountered. In the comment, we

refer to cases of RAS-XSB-resolution as specified in Definition 3.5. Let us first

consider query ?− f.

?− f.

?− not a, d. % via r6
Subgoal not a is treated as follows.
?−?− a.

?−?− not g. % via r1
?−?−?− g.

?−?−?− not a. % via r2. not a succeeds by case 3.c, T(Π) =T(Π) ∪ {not a}\{yesa}
Subgoal d gives now rise to the following derivation.
?− d. % d fails by case 2.b, so the parent goal f fails.

Backtracking is however possible, as there exists a second rule for f.

?− not g, e. % via r7
?−?− g.

?−?− not a. % via r2
?−?−?− a.

?−?−?− not g. % via r1.Thus, not g succeeds by case 3.c.T(Π) =T(Π) ∪ {not g}\
{yesg}
Now, the second subgoal e remains to be completed:

?− e. % e succeeds by case 1.b, and the overall query f succeeds by case 1.b.

T(Π) =T(Π) ∪ {e, f} \ {yese, yesf }
Assuming now to go on to query the same context, i.e. without re-initializing T(Π),

query ?− g quickly fails by case 2.a since not g ∈ T(Π). Query ?− e succeeds

immediately by case 1.a as e ∈ T(Π). We can see that the context we are within

corresponds to resource-based answer set M1. Notice that, if resetting the context,

?− g would instead succeed as by case 1.b as not a can be allowed to succeed by case

3.c. Finally, a derivation for ?− s is obtained as follows:

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


632 S. Costantini and A. Formisano

?− s.

?− not p. % via r3
?−?− p.

?−?− h. % via r4
?−?− not p. % via r5, not p succeeds by case 3.d, and p is forced to failure

T(Π) =T(Π) ∪ {not p} \ {yesp, yesh}.
Then, at the upper level, s and h succeed by case 1.b, andT(Π)∪{s}\{yess}. Notice

that forcing p to failure determines not p to succeed, and consequently allows h to

succeed (where h is undefined under the wfs). The derivation of h involves the tricky

case of a positive dependency through negation.

3.1 Properties of RAS-XSB-resolution

Properties of resource-based answer set semantics are strictly related to properties

of RAS-XSB-resolution. In fact, thanks to Relevance we have soundness and

completeness, and Modularity allows for contextual query and locality in constraint-

checking. Such properties are summarized in the following Theorems (whose proofs

can be found in (Costantini and Formisano 2016)).

Theorem 3.1

RAS-XSB-resolution is correct and complete w.r.t. resource-based answer set

semantics, in the sense that, given a program Π, a query ?− A succeeds under

RAS-XSB-resolution with an initialized T(Π) iff there exists resource-based answer

set M for Π where A ∈M.

Theorem 3.2

RAS-XSB-resolution is contextually correct and complete w.r.t. resource Answer Set

semantics, in the sense that, given a program Π and a query sequence ?− A1, . . . ,

?− Ak , k > 1, where {A1, . . . , Ak} ⊆ SΠ (i.e. the Ais are atoms occurring in Π), we

have that, for {B1, . . . , Br} ⊆ {A1, . . . , Ak} and {D1, . . . , Ds} ⊆ {A1, . . . , Ak}, the queries

?− B1, . . . , ?− Br succeed while ?− D1, . . . , ?− Ds fail under RAS-XSB-resolution,

iff there exists resource-based answer set M for Π where {B1, . . . , Br} ⊆ M and

{D1, . . . , Ds} ∩M = ∅.

This result extends immediately to queries including negative literals such as notH ,

H ∈ SΠ. We say that a query sequence contextually succeeds if each of the involved

queries succeeds in the context (table) left by all former ones.

We defer a discussion of constraint checking to a future paper. Notice only that,

given an admissible program Π and a constraint ← C (where C is an atom), success

of the query ?−notC in a certain context (given byT(Π)) means that this constraint

is fulfilled in the admissible resource-based answer sets Π selected by that context.

If the context where ?− notC is executed results from a query ?− A, this implies by

Theorem 3.2 that ← C is fulfilled at least one admissible resource-based answer set

including A. So, in admissible programs one should identify and check (a posteriori)

constraints that are relevant to the query according to Definition 2.4.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 633

4 Concluding Remarks

A relevant question about RAS-XSB-resolution is whether it might be applicable

to non-ground queries and programs. By resorting to standard unification, non-

ground queries on ground programs can be easily managed. In future work

we intend however to extend the procedure to non-ground programs without

requiring preliminary program grounding. This should be made possible by

the tabling mechanism, which stores ground positive and negative intermediate

results, and by Relevance and Modularity of resource-based answer set

semantics.

An important issue is whether RAS-XSB-resolution might be extended to plain

ASP. Unfortunately, ASP programs may have a quite complicated structure: the

effort of (Gebser et al. 2009) has been, in fact, that of performing a layer-based

computation upon some conditions. Many answer set programs concerning real

applications are however already expressed with constraints at the top layer, as

required by our approach.

A comparison with existing proof procedures can be only partial, as these

procedures cope with any answer set program, with its involved internal structure. So,

overall our procedure imposes less ’a priori’ conditions and has a simple definition,

but this is obtained by means of a strong preliminary assumption about constraints.

However, as the expressive power and complexity remain the same, our approach

might constitute a way of simplifying implementation aspects without significant

losses in “practical” expressiveness.

We intend to investigate an integration of RAS-XSB-resolution with principles

and techniques introduced in (Bonatti et al. 2008), so as to further enlarge its

applicability to what they call finitary programs, which are a large class of non-

ground programs with function symbols. In fact, this approach allows programmers

to make use of popular recursive definitions which are common in Prolog, and

makes ASP technology even more competitive with respect to other state-of-the-art

techniques.

In summary, we have proposed the theoretical foundations of a proof procedure

related to a reasonable extension of answer set programming. The procedure has

been obtained by taking as a basis XSB-resolution and its tabling features. Future

work includes a precise design of a RAS-XSB-resolution implementation. Our

objective is to realize an efficient inference engine, that should then be checked

and experimented on (suitable versions of) well-established benchmarks (see, e.g.,

(Calimeri et al. 2016)). We intend in this sense to seek an integration with XSB, and

with well-established ASP-related systems (cf. the discussion in (Giunchiglia et al.

2008)), already used for the implementation of the procedure proposed in (Bonatti

et al. 2008).

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068416000478

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


634 S. Costantini and A. Formisano

References

Apt, K. R. and Bol, R. N. 1994. Logic programming and negation: A survey. J. Log.

Prog. 19/20, 9–71.

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving.

Cambridge University Press, New York, NY, USA.

Bonatti, P. A., Pontelli, E. and Son, T. C. 2008. Credulous resolution for answer set

programming. In Proc. of AAAI 2008, D. Fox and C. P. Gomes, Eds. AAAI Press, 418–423.

Calimeri, F., Gebser, M., Maratea, M. and Ricca, F. 2016. Design and results of the fifth

answer set programming competition. Artif. Intell. 231, 151–181.

Chen, W. and Warren, D. S. 1993. A goal-oriented approach to computing the well-founded

semantics. J. Log. Prog. 17, 2/3&4, 279–300.

Costantini, S. and Formisano, A. 2010. Answer set programming with resources. J. of Logic

and Computation 20, 2, 533–571.

Costantini, S. and Formisano, A. 2011. Weight constraints with preferences in ASP. In

Proc. of LPNMR’11. LNCS, vol. 6645. Springer, Vancouver, Canada, 229–235.

Costantini, S. and Formisano, A. 2013. RASP and ASP as a fragment of linear logic. J. of

Applied Non-Classical Logics 23, 1-2, 49–74.

Costantini, S. and Formisano, A. 2014. Query answering in resource-based answer set

semantics. In Proc. of the 29th Italian Conference on Computational Logic. CEUR, Torino,

Italy. Also appeared in the 7th Workshop ASPOCP 2014.

Costantini, S. and Formisano, A. 2015. Negation as a resource: a novel view on answer set

semantics. Fundam. Inform. 140, 3-4, 279–305.

Costantini, S. and Formisano, A. 2016. Online supplementary materials for “Query

Answering in Resource-Based Answer Set Semantics”. TPLP archives . See also the arXiv

version in http://arxiv.org/abs/1608.01604, CoRR.

Dix, J. 1995. A classification theory of semantics of normal logic programs I-II. Fundam.

Inform. 22, 3, 227–255 and 257–288.

Faber, W., Leone, N. and Pfeifer, G. 2011. Semantics and complexity of recursive aggregates

in answer set programming. Artificial Intelligence 175, 1, 278–298.

Gebser, M., Gharib, M., Mercer, R. E. and Schaub, T. 2009. Monotonic answer set

programming. J. Log. Comput. 19, 4, 539–564.

Gebser, M. and Schaub, T. 2006. Tableau calculi for answer set programming. In Proc. of

ICLP 2006, S. Etalle and M. Truszczyński, Eds. LNCS, vol. 4079. Springer, Seattle, USA,

11–25.

Gelfond, M. 2007. Answer sets. In Handbook of Knowledge Representation. Chapter 7.

Elsevier, Amsterdam, The Netherlands, 285–316.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proc. of the 5th Intl. Conf. and Symposium on Logic Programming, R. Kowalski and

K. Bowen, Eds. MIT Press, Seattle, USA, 1070–1080.

Giunchiglia, E., Leone, N. and Maratea, M. 2008. On the relation among answer set

solvers. Ann. Math. Artif. Intell. 53, 1-4, 169–204.

Lin, F. and You, J. 2002. Abduction in logic programming: A new definition and an abductive

procedure based on rewriting. Artificial Intelligence 140, 1/2, 175–205.

Lloyd, J. W. 1993. Foundations of Logic Programming , 2nd ed. Springer, New York, USA.

Marek, V. W. and Truszczyński, M. 1991a. Autoepistemic logic. J. of the ACM 38, 3,

587–618.

Marek, V. W. and Truszczyński, M. 1991b. Computing intersection of autoepistemic

expansions. In Proc. LPNMR 1991. MIT Press, Washington, D.C., USA, 35–70.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478


Query answering in resource-based answer set semantics 635

Marek, V. W. and Truszczyński, M. 1993. Reflective autoepistemic logic and logic

programming. In Proc. of LPNMR 1993, A.Nerode and L.M.Pereira, Eds. The MIT Press,

115–131.

Marek, V. W. and Truszczyński, M. 1999. Stable logic programming - an alternative logic

programming paradigm. Springer, Berlin, Heidelberg, 375–398.

Marple, K. and Gupta, G. 2014. Dynamic consistency checking in goal-directed answer set

programming. Theory and Practice of Logic Programming 14, 4-5, 415–427.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artificial Intelligence 138, 1-2, 181–234.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic programming.

Theory and Practice of Logic Programming 12, 1-2, 157–187.

Truszczyński, M. 2007. Logic programming for knowledge representation. In Logic

Programming, 23rd Intl. Conference, ICLP 2007, V. Dahl and I. Niemelä, Eds. Springer,

76–88.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. J. ACM 38, 3, 620–650.

https://doi.org/10.1017/S1471068416000478 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000478

