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Direct numerical simulations (DNS) of turbulent thermal convection in a Pr=0.7 fluid
up to Ra= 1012 are used to study the statistics of thermal plumes. At various vertical
locations in a cylindrical set-up with aspect ratio Γ = width/height = 1/3, plumes
are identified and their properties extracted. It is found that plumes are much less
likely to be emitted from plate regions with large wind shear. Close to the plates, the
plumes have a unimodal log–normal distribution, whereas at more central locations
the distribution becomes weakly bimodal, which can be traced back to clustering of
the plumes and influence of the large-scale circulation. The number of hot plumes
decreases with height. The width of the plumes scales with Ra approximately as Nu−1,
indicating that it is determined by the thermal boundary layer thickness.
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1. Introduction
Rayleigh–Bénard (RB) convection (Ahlers, Grossmann & Lohse 2009; Lohse & Xia

2010; Chillà & Schumacher 2012) is a system in which a fluid is heated from below
and cooled from above and convection arises due to the density differences induced by
the different temperatures. This system is used to model natural convection, preserving
most of the relevant phenomena while reducing the complexity of the problem. As is
commonly done and well justified, we adopt the Boussinesq approximation, i.e. the
fluid properties are assumed to be independent of the temperature except in the
buoyancy term of the momentum equation.

RB convection features ubiquitous coherent structures, which continue to survive in
strong turbulence. The most prevalent structures are thermal plumes and large-scale
circulation (LSC). The thermal plumes and LSC are intrinsically coupled (Grossmann
& Lohse 2004), as thermal plumes cluster to form a LSC (Parodi et al. 2004; Xi, Lam
& Xia 2004) and fragment in the bulk (Bosbach, Weiss & Ahlers 2012). In addition,
both thermal and shear instabilities can result in the emission of buoyant fluid parcels,
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as was shown by Hunt et al. (2003), who distinguished between plumes and puffs.
Here this distinction is not made, and all buoyant parcels are classified as plumes,
irrespective of the mechanism behind their origin. Zhou, Sun & Xia (2007) divided
the plumes into ‘sheet’ or ‘line’ plumes of elongated shape and circular ‘mushroom’
plumes. They showed that the plumes are predominantly sheetlike close to the plates
and mushroomlike higher in the system. Eventually the numbers of both types of
plumes are shown to decrease with height. We will connect this phenomenon to the
clustering of plumes by using a plume identification criterion and image segmentation.

The concept of thermal plumes has been used to directly and indirectly derive
scaling laws for the heat flux by Castaing et al. (1989) and Grossmann & Lohse
(2004), respectively. This is because the contribution of thermal plumes to the total
heat flux, relative to that of the LSC, is substantial (Belmonte, Tilgner & Libchaber
1993). It is generally assumed that thermal plumes have a characteristic width equal to
that of the thermal boundary layer, which stems from the understanding that thermal
plumes are detached thermal boundary layers. This assumption is used by Castaing
et al. (1989) and Grossmann & Lohse (2004) to derive scaling laws for the heat flux
through the system. We attempt to extract the plume width and thereby substantiate
this assumption.

The dynamics of plumes is complex. Plumes move not only vertically but also
horizontally, being advected by the LSC, as was observed by Sano, Wu & Libchaber
(1989). In addition, the dynamics of the LSC is highly non-trivial (Brown, Nikolaenko
& Ahlers 2005; Ahlers et al. 2009; Sugiyama et al. 2010), affecting the collective
motion of the thermal plumes through an opposing pressure gradient. This complicates
the simple (two-dimensional) picture of a stationary LSC with thermal plumes moving
alongside it that was sketched by Kadanoff (2001) (see figure 1), as Ching et al.
(2004) and Emran & Schumacher (2012) have shown that plumes are found in the
centre of the cell and even throughout the entire volume. Recently, Ostilla-Mónico
et al. (2014) found in a Taylor–Couette (TC) flow that the boundary layer transition
from laminar to turbulent occurs in plume-ejecting locations at lower driving than
in the wind-sheared region. It was shown by Eckhardt, Grossmann & Lohse (2007)
that RB is analogous to TC, which raises the question of whether this phenomenon
can also be observed in RB. Because the driving in RB is less efficient than in
TC, turbulent boundary layers, such as those seen in RB by Ahlers et al. (2012), are
difficult to observe due to the required high Ra and long averaging time. This prevents
a study in RB convection comparable to the TC flow study by Ostilla-Mónico et al.
(2014). However, it is possible to study the connection between wind shear and
plume ejection and hence gain insights into how shear is related to thermal plumes
and in turn to boundary layer turbulence. The turbulent boundary layer in RB is an
important ingredient in expected heat flux scaling arguments by Kraichnan (1962)
and Grossmann & Lohse (2011) for the ultimate regime.

2. Method
Direct numerical simulations (DNS) of the Boussinesq equations were performed

using a second-order staggered finite difference scheme by Verzicco & Camussi (1999,
2003) that is energy conserving. The governing equations in dimensionless form are

∂tui + uj∂jui =−∂ip+
√

Pr
Ra
∂2

j ui + θδi3, (2.1)

∂tθ + uj∂jθ = 1√
Ra Pr

∂2
j θ, (2.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.176


Plume emission statistics in turbulent Rayleigh–Bénard convection 7

Hot plate

Cold plate

LSC
C

ol
d 

pl
um

es

H
ot plum

es

Impacting Wind-shearing Ejecting

FIGURE 1. (Colour online) Sketch of a confined Rayleigh–Bénard system with Γ ≈ 1. A
large-scale circulation and plume paths are indicated, as well as the positions of the three
different horizontal boundary regions: impacting, wind-shearing and ejecting. The corner
rolls are not shown.

where ê3 is the unit vector that is antiparallel to gravity, ui is the velocity normalized
by the free-fall velocity

√
gβ1L, t is the time normalized by the free-fall time√

L/(gβ1) and θ is the temperature normalized by 1, the temperature difference
between the top and bottom plates. The control parameters of the system are the
non-dimensional temperature difference, i.e. the Rayleigh number Ra = gβ1L3/(νκ),
the Prandtl number Pr = ν/κ of the fluid and the aspect ratio Γ = D/L, where L is
the height of the sample and D is its width, g is the gravitational acceleration, β is
the thermal expansion coefficient, ν is the kinematic viscosity and κ is the thermal
diffusivity. The boundary conditions chosen are no-slip conditions on all walls for
the velocity, adiabatic conditions on the sidewall and isothermal conditions on the
horizontal plates for temperature. The numerical set-up has a Prandtl number of
Pr= 0.7 and an aspect ratio of Γ = 1/3. In addition, for fixed Ra, a low-aspect-ratio
domain is computationally less demanding than a large-aspect-ratio domain due to
the smaller volume. The resolutions used are up to 1536× 512× 2048 for Rayleigh
number Ra = 1012 with clustering of grid points near the boundaries similar to the
previous high-Ra DNS of Stevens, Lohse & Verzicco (2011). The Nusselt number Nu,
which quantifies the area-averaged heat flux, is calculated as both an area average of
the convective term, Nu=√Ra Pr 〈uzθ〉r,φ,t + 1, and a line average on the horizontal
plates of the diffusive term, Nu = −〈∂zθ |z=0,L〉r,φ,t. We verify these results for Nu
by also calculating Nu through the kinetic and thermal dissipation rates (Shraiman
& Siggia 1990; Siggia 1994). Horizontal cross-sections of ur,φ,z(r, φ) and θ(r, φ)
are used that have a time interval of 0.5 free-fall time. This interval is tested for
statistical independence and shown to be sufficient. The number of cross-sections
required for statistical convergence is approximately 100.

Figure 2 shows the compensated Nu as a function of Ra compared with previous
results obtained at Γ =1/2. It is apparent that the heat fluxes for Γ =1/3 and Γ =1/2
are within the error bars of the data. In addition, no transition in the Nu(Ra) scaling
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FIGURE 2. (Colour online) Compensated Nusselt number Nu/Ra1/3 as a function of Ra.
The blue squares indicate the DNS data for Γ = 1/2 of Stevens et al. (2011); the data
used in this paper for Γ =1/3 is represented by the orange triangles; the solid black curve
is the result of the Grossmann–Lohse fit for Pr= 0.7 from Stevens et al. (2013).

towards the steeper scaling (the so-called ultimate regime) is observed, and the system
can be considered to be in the classical regime, i.e. the boundary layers are not yet
turbulent, consistent with the theoretical expectation at Ra61012 (Grossmann & Lohse
2000, 2001, 2011; Stevens et al. 2013).

Various methods for detecting plumes have been used previously, as reviewed by
Ching et al. (2004). We define a thermal plume as the set of coordinates P where
θ(r, φ)− 〈θ〉r,φ > cθRMS and

√
Ra Pr uz(r, φ)θ(r, φ)> c Nu, as Huang et al. (2013) did

in their study on confined RB convection. This criterion selects coordinates based on
a high temperature anomaly and an excess of convective heat flux. Only hot plumes in
the lower half of the domain are considered. The empirical constant c was chosen to
be 0.8 in Huang et al. (2013), but here we take c= 1.2 to better separate the plumes
from the background and emphasize their core structure. In addition, this choice of c
matches the absolute value of the plume with the thermal boundary layer thickness,
as will become apparent later on. A similar threshold based only on uzθ was used
by Emran & Schumacher (2012), where they found no qualitative differences in their
results when the threshold was varied by two orders of magnitude. Along the lines of
what was already shown there, quantitatively our results do depend on the value of
threshold c. In figure 3(d–f ) the results of applying this criterion to the temperature
snapshots shown in figure 3(a–c) are depicted. It should be noted that this method
of extracting thermal plume information limits the analysis to treating the plume as a
two-dimensional entity, although in reality it is three-dimensional.

3. Plume size as a function of vertical position
Previous studies have revealed a log–normal distribution for the area of the plume

(Zhou et al. 2007), for the length of the plumes (Bosbach et al. 2012) and for the
spacing between the plumes (Puthenveettil & Arakeri 2005). These results suggest that
the three quantities are intrinsically related to each other. The log–normal distribution
suggests a fragmentation process that can be dealt with by the central limit theorem.
The physical mechanism resulting in this distribution is that the fluctuations, acting

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.176


Plume emission statistics in turbulent Rayleigh–Bénard convection 9

0.5

(a) (b) (c)

(d) (e) ( f )

0.6 0.7 0.8 0.9 0.50 0.55 0.60 0.65 0.70 0.48 0.50 0.52 0.54 0.56

FIGURE 3. Temperature field snapshots for Ra = 1011 at (a) z/L = 0.004, (b) z/L =
0.04 and (c) z/L = 0.2; hot and cold are indicated by red and blue, respectively, with
colour maps displayed above the corresponding snapshots. Detection of thermal plumes
P corresponding to the temperature field snapshots in (a)–(c) are shown in (d)–(f ),
respectively, where white indicates a plume.

on all scales, fragment the plumes (Zhou & Xia 2010). When modelling this process,
the fragmentations are iterated, and a new sample is drawn from some distribution
at each individual fragmentation. After many of these iterations, in each of which the
plume area is always subdivided, a log–normal distribution results. We use the data at
Ra= 1011 to analyse the resulting plume area distribution as a function of z, because
this gives the optimum available Ra with respect to minimum sidewall influence and
the amount of statistics collected.

In figure 4(a) we plot the probability density functions of the plume areas at three
vertical locations for Ra = 1011. Closest to the plate, the distribution is unimodal
and log–normal, which is illustrated by the quite accurate Gaussian fit to the data in
the semi-log plot. Higher in the cell, the distribution becomes weakly bimodal. We
interpret the second mode, indicating a larger plume area, as a reflection of plume
clustering, which is a signature of the LSC, as the large-scale roll contains clusters
of hot plumes in its upwelling region. The small area peaks indicate the existence
of fragmented smaller plumes traversing the bulk. This view is supported by the
data displayed in figure 4(b), where the most probable area is plotted as a function
of the vertical location z. For all z, the most probable area is characterized by the
smaller plumes, as in all of these bimodal distributions at Ra = 1011 the right peak
is considerably smaller than the left one. In figure 4(b) the thermal boundary layer
thickness λθ based on the time- and volume-averaged Nu is shown. It can be seen
that for Ra = 1011 there is a region, extending much beyond λθ , where the most
probable area is nearly constant. Beyond that region, the area of the small plumes
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FIGURE 4. (Colour online) (a) Probability density functions (PDF) of the plume areas AP
(normalized by the total area) at different vertical locations z indicated in the legend for
Ra = 1011; the solid curve is a log–normal fit to the data at z/L = 0.002, and the grey
dashed line indicates the characteristic plume area Ac. (b) The most probable value (Mo)
of the PDF at each of the measured z values; the blue dashed line indicates the mean
thermal boundary layer thickness λθ = 1/(2Nu).

decreases with height, a reflection of the fact that thermal plumes dissipate most of
their energy near the plates (Kaczorowski & Wagner 2009) and are weakened through
molecular and turbulent diffusion while moving towards the bulk of the flow higher
in the cell (Tilgner, Belmonte & Libchaber 1993). The small plumes either become
smaller or cluster to become part of the LSC, thus driving it.

The clustering is further highlighted by the behaviour of the plume number Np as a
function of height z, plotted in figure 5(a). It can be seen that Np decreases strongly
with z in the bulk, indicating the clustering and dissipation of plumes. In addition,
there appears to be a region close to the lower boundary where Np is approximately
constant. The vertical extent of this region decreases with Ra, which signifies the
relation of this region to the boundary layer thickness. Close to the upper boundary,
Np displays a steep drop-off, the location of which depends on Ra: the hot plumes
travel further in the vertical direction for higher Ra. In figure 5(b), the normalized N ′p
is plotted as function of z/λθ . Here N ′p is the number of plumes normalized by Np at
z/λθ = 4.5. The profiles for Ra= 1011 and Ra= 1012 look strikingly similar, hinting
at a universal profile for high Ra.

4. Scaling of the plume width with Ra

One could think of two parameters that determine the area of a plume. Close to
the plates and thus for line plumes, the length of the plumes should be determined
by the domain width D= LΓ , while their thickness is determined by the width λθ of
the thermal boundary layer, characterized by λθ =L/(2Nu). The resulting characteristic
non-dimensional plume area is then Ac= LΓ/(2Nu). Illustratively, Ac is the area of a
plume that is as long as the diameter of the cell and as wide as the thermal boundary
layer. This characteristic plume area is indicated in figure 4(a). It can be seen that
most of the plume areas are smaller than Ac; either the plume length, the plume width
or both can differ from the dimensional expectation. Conceptually, the line plumes can
be understood as detached thermal boundary layers of similar width; cf. Grossmann

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.176


Plume emission statistics in turbulent Rayleigh–Bénard convection 11

10–2 10–1 100
100

101

102

103

1010

1011

1012

100 101 102 103

10–2

10–1

100

FIGURE 5. (Colour online) (a) The number Np of hot plumes plotted as a function of
height z/L for Ra = 1010, 1011 and 1012; the error bars increase with increasing height
but are omitted from the last few data points for clarity. (b) The normalized number of
plumes, N ′p, plotted as a function of z/λθ , where N ′p is the number of plumes normalized
by Np at z/λθ = 4.5.

& Lohse (2000). This has also been observed by Shishkina & Wagner (2008) using a
different method. We expect that the observation that Ac approximately separates the
two distributions at higher z/L is coincidental, as the assumptions associated with the
definition of Ac are not applicable to plumes at this height.

As the absolute value of a quantity obtained from any thermal plume identification
depends on the threshold, we compare the scaling of the width with the scaling of Nu.
To be more precise, we compare the plume width with the thermal boundary layer
thickness λθ , which scales approximately as λθ/L∼ Ra−0.31 for the data points Ra=
109, 1010 and 1011. The data for Ra= 1012 are not used in this analysis due to lack
of statistical convergence.

The data at z/L = 0.002 are inside (for Ra = 109 and Ra = 1010) or on the
edge (for Ra = 1011) of the thermal boundary layer. It is non-trivial to extract
the width of the plumes from the results of the plume detection method used, as
displayed in figure 3(d). We obtain the average plume width WP by defining D as
a so-called distance transform on P and T as a so-called thinning operation on P.
These are defined as follows. For every plume element, the distance transform
D gives the Euclidean distance to the closest non-plume element (figure 7b); the
thinning operation T reduces P to minimally connected lines (figure 7a). These
minimally connected lines are set to 1 and the rest of T is set to zero. The resulting
set characterizes the ‘backbone’ of the plume. The plume width is obtained from
WP = 2〈(D :T )/(T :T )〉t, where D : T denotes the componentwise inner product
of D and T , namely

∑
i,j DijTij with the sum

∑
i,j taken over all points of the set

P. An alternative approach that gives identical results involves iterating over all the
coordinates in T and time-averaging the minimum distance to the edge of a plume
in P, which is more intuitive but much slower computationally.

The data are obtained at absolute vertical positions, constant for each Ra value.
Consequently, the vertical position relative to the boundary layer thickness varies,
as the boundary layer thickness decreases with Ra. In figure 4(b) we see that the
most probable plume area can be approximated as constant between z/L= 10−3 and
10−2, revealing insensitivity to the vertical position over a substantial range. However,
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FIGURE 6. (Colour online) (a) Thermal boundary layer thickness λθ/L = 1/(2Nu) and
plume thickness WP, as defined in the text, plotted as functions of Ra; the solid black line
represents Ra−0.31, where the exponent is obtained from a fit to the λθ points. (b) Mean
plume area inside the sliding window conditioned on the shear velocity outside the plume,
〈AP∩C | uC\P〉, for two values of Ra.

this insensitivity is only for the plume area and not for the plume width. Therefore,
performing the analysis at a fixed vertical position introduces an uncertainty that is
added to the data. The uncertainty is obtained from the variation of the plume width
between z/L= 0.002 and 0.004 and is included in the error bar on each data point in
figure 6(a), where the results of the plume width quantification are shown. The results
demonstrate that the scaling of WP is similar to the scaling of λθ . We emphasize
that the close similarity of the absolute values is incidental, as the absolute value of
WP depends on c. On the other hand, this shows that c = 1.2 is a reasonable value
for c. The scaling of WP agrees approximately with that of λθ , which shows that
the method used for plume identification provides the expected results and that it is
the length of the plumes that gives rise to the deviations from Ac as a characteristic
plume area.

5. Relation between wind shear and plume emission locations
The boundary layer of RB convection can conceptually be divided into three

regions, namely the ejecting, wind-shearing and impacting regions, as Ostilla-Mónico
et al. (2014) has shown for TC flow, which has similar topology. We refer to
figure 1 for an indication of these regions in RB convection. In the ejecting region,
the plumes are emitted from the corresponding boundary layer, whereas in the
impacting regions, the descending current and thermal plumes originating from the
opposite boundary impact the boundary layer under consideration. Between these two
regions is the wind-shearing region, where the large-scale wind shear is high and
the velocity is predominantly horizontal. In TC flow, Ostilla-Mónico et al. (2014)
used this classification to rationalize the different boundary layer profiles found in
each of these regions. As the ejecting region is defined by the emission of a large
number of thermal plumes and the wind-shearing region is defined by high shear,
this classification implies that regions of high shear emit fewer plumes than regions
with low shear. This is opposite to what is observed in pressure-driven flows, where
it is the high shear that results in bursts of momentum, concentration or temperature
being emitted from the boundary layer into the bulk. This effect of plume emission
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FIGURE 7. (Colour online) (a) Thinning operation T , indicated by the thin lines, on an
arbitrary subset of the domain at z/L= 0.004; here T is drawn on P for clarity, and we
emphasize that T equals 1 on the thin lines and 0 elsewhere. (b) Distance function D
on the same subset as in (a); the dark shading inside the plumes reflects the distance of
the location to the edge of the plume in units of λθ .

being anticorrelated with large shear will now be quantified using our numerical data.
A circle C with diameter Dc = 0.05 LΓ is used as a non-overlapping sliding window
in which the mean shear velocity outside a plume, uC\P = 〈√(u2

φ + u2
r )〉C\P, and the

plume area in that circle, AP∩C, are calculated. The velocity and area are normalized
with the free-fall velocity and total area, respectively. For the shear velocity, only
the area in the circle outside of the plume is considered, to avoid the contribution
that the plume makes to the shear. We focus on the effect of the large-scale flow on
the plumes by considering only the shear outside of a plume in the circle average.
One of the contributions is the horizontal inflow near the boundary due to continuity.
Conditioning AP∩C on uC\P gives 〈AP∩C | uC\P〉 averaged over r, φ and t, a quantity that
can be used to quantify and study the effect of shear on plume emission. We find that
only the amplitude of 〈AP∩C | uC\P〉 depends on Dc; in contrast, the trend does not, as
long as 1�Dc/Γ � 1/(2Nu). The analysis is performed on the data at z/L= 0.002,
which is inside or on the edge of the viscous boundary layer for Ra= 1010 and 1011.
At this height, the horizontal velocity can be interpreted as being proportional to the
vertical gradient of horizontal velocity, averaged over 0 6 z/L 6 0.002. In figure 6(b),
the quantity 〈AP∩C | uC\P〉 is plotted for these two values of Ra. The trend is clear:
regions of the boundary layer where the large-scale shear is high emit fewer plumes
than regions where the shear is low. We emphasize that this analysis only accounts
for the emitted plumes; plumes originating from the opposing plate that impact the
boundary layer may display different behaviour, although we expect the behaviour to
be similar.

6. Summary
In summary, we have studied three-dimensional thermal plumes using their

cross-sections with horizontal planes at different heights in a cylindrical RB system.
We have shown that the log–normal distribution of the thermal plume areas becomes
weakly bimodal at higher vertical locations. This observation, together with the decline
in the number of plumes, shows that there is clustering of plumes not only during a
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transient, as was studied by Parodi et al. (2004), but also in a statistically stationary
state. In addition, the weakly bimodal distribution indicates that plumes either cluster
or lose energy while traversing the system. Both these mechanisms result in the
number of plumes decreasing with increasing vertical position, an observation noted
here and previously by Zhou et al. (2007). As was used in scaling law derivations
by Castaing et al. (1989) and Grossmann & Lohse (2004), the assumption that
the width of the plumes close to the plates is determined by the thermal boundary
layer thickness is shown to be reasonable. The length of the plumes is not simply
determined by the domain size; it originates from the flow structure and from the
instability mechanism (Bosbach et al. 2012). The plumes are more likely to be
emitted in regions of low shear, an observation used by Ostilla-Mónico et al. (2014)
in TC flow to study the transition into turbulence of the boundary layers. The turbulent
boundary layer is an important ingredient in the asymptotic scaling laws of Kraichnan
(1962) and Grossmann & Lohse (2011), and our finding supports the classification
of different horizontal regions of the boundary layer into ejecting, wind-shearing and
impacting regions in RB convection as well. It provides an argument for conceptually
dividing the RB cell not only vertically into bulk and boundary layer regions, but also
horizontally into the aforementioned three regions. The existence of different boundary
layer properties in these regions and their relative sizes can play an important role in
understanding the transition to the ultimate regime in RB convection.
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