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Particle-resolved direct numerical simulations are employed to investigate the
particle–particle drag force in the bidisperse gas–particle suspensions where the particles
are smooth and the single-particle velocity distribution function is Maxwellian. The
particle Reynolds number ranges from 6.7 to 123.8, and in this range the particle inertia is
high enough that the lubrication force is not essential. It is found that the relation derived
by the kinetic theory of granular flow (KTGF) highly overestimates the particle–particle
drag force. This is because the pre-collision velocities of colliding particles are not
completely uncorrelated with each other. From the time sequence of collision events, it
is observed that the particle pair that has just collided will probably collide again after
a short time due to the restriction of the particle motion in dense suspensions. Since
the post-collision velocities of the first collision cannot relax entirely in such a short
time, the relative velocity before the subsequent collision is statistically smaller than
the domain-averaged relative velocity. Consequently, the particle–particle drag force is
over-predicted when the domain-averaged relative velocity is used. For this reason, this
work assumes that the particle–particle drag force is determined by the relative velocity
within a local region near large particles. When the local region is set to be the spherical
shells centred on the centres of large particles and with an outer radius of a mean free path
of small particles, the KTGF-based relation can reasonably predict the particle–particle
drag force.

Key words: fluidized beds, particle/fluid flows, kinetic theory

1. Introduction

Gas–particle suspensions are widespread in nature and industrial applications. Examples
of the former include snowstorms, sandstorms and pyroclastic flows. Typical examples
of the latter are fluidized-bed operations for the classification of particles, olefin
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polymerization and co-gasification of coal and biomass. In general, the particles contained
in these suspensions are polydisperse, which, under the gas–particle drag force and the
gravity force, gives rise to relative velocities between particles of different types. For
brevity, the relative velocity refers to the velocity difference of different particle types if
not otherwise specified. In dense suspensions, the collision frequency between different
particle types is high, and the relative velocity is significantly reduced by collisions.
The relative velocity is the key characteristic of the segregation phenomenon (Beetstra,
van der Hoef & Kuipers 2007; Mehrabadi, Tenneti & Subramaniam 2016; Mehrabadi &
Subramaniam 2017). Segregation is desired in the classification of particles, but should be
avoided in the process where various particle types need to be well mixed, such as olefin
polymerization and co-gasification of coal and biomass. In the literature, the multi-fluid
model (MFM) (Iddir & Arastoopour 2005; Chao et al. 2011; Zhao & Wang 2021), in
which the gas and the particles are treated as interpenetrating continuous phases, is one
of the most prevalent methods for studying segregation. In MFM, the transport equations
of each particle type are established, and the closure relations are obtained by the kinetic
theory of granular flow (KTGF) or by experiments. The gas–particle drag force and the
particle–particle drag force are equally crucial to reproducing the segregation phenomenon
(Mehrabadi et al. 2016). However, studies on the particle–particle drag force are relatively
rare. Here, the particle–particle drag force is the mean collision force between different
particle types per unit volume. In this paper, the particle–particle drag force is studied by
a set of fully resolved methods. The gas flow is resolved to a much smaller scale than the
smallest particle diameter, the motion of each particle is tracked by the discrete element
method (DEM), and the collisions between particles are simulated by the soft-sphere
model (Tsuji, Kawaguchi & Tanaka 1993; Zhu et al. 2007; Zhou et al. 2010).

In the literature, KTGF is the primary way to obtain the correlation of the
particle–particle drag force. The KTGF is based on the classic kinetic theory of gases,
which is exhaustively discussed in the book of Chapman & Cowling (1970). The main
feature that distinguishes the KTGF from gas is the consideration of the energy dissipation
in collisions (Lun et al. 1984; Lun 1991; Garzo 2019). Jenkins & Mancini (1987, 1989)
first extended the kinetic theory of monodisperse granular flows to binary granular flows.
The proposed closure relations, including the relation of the particle–particle drag force,
assume the equipartition of the kinetic energy of the peculiar motion, which indicates
that the product of the granular temperature and the particle mass is the same for all
particle types. Here, the peculiar motion refers to the velocity of a particle relative to
the reference frame where the mean velocity of particles is zero. This assumption is
strictly valid for a gas in the uniform steady state and not subjected to any external
force (Chapman & Cowling 1970), but maybe invalid for granular systems (Feitosa &
Menon 2002; Montanero & Garzo 2003; Galvin, Dahl & Hrenya 2005). For this reason,
many researchers derived the closure relations of the non-equipartition energy (Iddir
& Arastoopour 2005; Songprawat & Gidaspow 2010; Chao et al. 2011; Chen, Mei &
Wang 2017). To simplify the integral of the collision term, all these relations neglected
or partly neglected the relative velocity between different particle types and hence may
only apply to the systems where the relative velocity is small compared with the peculiar
velocity (Zhao & Wang 2020; Solsvik & Manger 2021). Recently, the closure relations
at the first approximation, where the single-particle velocity distribution function (VDF)
is assumed Maxwellian, are rigorously derived without any mathematical simplification
by Zhao & Wang (2021). Therefore, their relations could apply to the full range of
the relative velocity. Unlike the above works, Syamlal (1987) derived a relation for the
particle–particle drag force by assuming that all particles of each particle type have
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the same velocity. It is worth noting that the relation proposed by Syamlal (1987) is
the only particle–particle drag relation that includes the contribution from interparticle
friction. Although the mathematical method for the derivation of the particle–particle
drag force becomes more and more refined, a priori analysis of the obtained relations
is still lacking. To the authors’ knowledge, only Mehrabadi et al. (2016) compared the
predictions of the relation proposed by Syamlal (1987) with the data of particle-resolved
direct numerical simulations (PR-DNSs). They found that the relation of Syamlal (1987)
seriously underestimates the particle–particle drag force due to neglecting the peculiar
particle velocity. In this work, PR-DNSs of suspensions containing smooth particles are
conducted, and the relation of Zhao & Wang (2021) is examined and improved based on
simulation results.

The lubrication force arises when the gap between two approaching particles is very
small compared with the particle size and tends to infinity as the gap size decreases to zero
in theory. In practice, the growth of the lubrication force is limited by the breakdown of the
continuity hypothesis and other reasons. As indicated in Koch (1990), the fractional change
in the relative velocity between two approaching particles due to the lubrication force
equals −C/St. Here, C is a constant of order unity for gas, and the Stokes number, defined
as St = dρU0/(9μ), characterizes the importance of particle inertia. In the expression of
St, d, ρ, U0 and μ represent the particle diameter, the particle mass density, the initial
relative velocity between the two approaching particles and the dynamic viscosity of the
fluid, respectively. When St is comparable to C, the relative velocity decreases significantly
before the collision. As a result, the particle–particle drag force is very small compared
with the gas–particle drag force and hence is not important. In the present study, the Stokes
number ranges from 40.5 to 665.1 by estimating U0 with the square root of the granular
temperature, and consequently the lubrication force has little effect on the particle–particle
drag force. In addition, the lubrication force has an impact on the microstructure of
suspensions and therefore indirectly influences the particle–particle drag force. For the
low-Stokes-number suspensions, it takes a long time for the particle pairs close to each
other to overcome the lubrication force and separate, which leads to an enormous value
of the radial distribution function at contact. In the current range of Stokes number, the
particle inertia allows a particle pair to approach and separate with a negligible effect of
the lubrication force, and as a result the microstructure of the suspensions approaches that
of hard-sphere fluids (Koch & Hill 2001). We should also note that the system size of the
suspensions is sufficiently small to ensure that the homogeneous state of the suspensions
is stable (Koch & Sangani 1999; Garzo 2015; Fullmer & Hrenya 2017).

The paper is structured as follows. In § 2, a brief review of the derivation of the
momentum equation and the particle–particle drag relation is given. In § 3, the simulation
method is explained in detail. In § 4, the particle–particle drag relation of Zhao & Wang
(2021) is validated against simulation results, and a new methodology is proposed. In § 5,
MFM simulations are performed to verify the proposed model. In the last section, the
important aspects of the present work are summarized.

2. Derivation of the momentum equation and the particle–particle drag relation

For completeness, a brief review of the derivation of the momentum equation for a
particular particle type is shown as follows, and readers can refer to Garzo, Dufty &
Hrenya (2007), Marchisio & Fox (2013) and Zhao & Wang (2021) for more details.
The single-particle VDF of particle type i is denoted by fi(ci, r, t), and fi(ci, r, t) dci dr
is equivalent to the probable number of particles in the velocity and position element
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dci dr at time t. Similarly, the two-particle VDF is represented by f (2)ij (ci, ri, cj, rj, t), and

f (2)ij (ci, ri, cj, rj, t) dci dri dcj drj equals the probable number of the particle pairs in which
the two particles are respectively lying in velocity and position elements dci dri and dcj drj.
The spatio-temporal evolution of the single-particle VDF is described by the Boltzmann
equation

∂fi
∂t

+ ci · ∇rfi + ∇ci · (ai fi) = ∂e fi
∂t
, (2.1)

where ∇r and ∇ci · are the gradient with respect to the position r and the divergence with
respect to the velocity ci, respectively, and ai is the acceleration of a particle of type i due
to the external force, such as the gas–particle drag force. The term on the right-hand side
represents the rate at which the single-particle VDF is changed by collisions and has the
following form:

∂e fi
∂t

=
∑

j

∫∫
g·k>0

[
1
e2

ij
f (2)ij (cb

i , r, cb
j , r − dijk, t)− f (2)ij (ci, r, cj, r + dijk, t)

]
d2

ij(g · k) dk dcj.

(2.2)

Here, eij is the coefficient of restitution, dij is the arithmetic mean diameter, k is the unit
vector directed from the centre of a particle of type i to the centre of a particle of type j
and g = ci − cj. The superscript b denotes the property before the inverse collision, and the
prime will be used to indicate the property after the direct collision. The inverse collision
is defined as collisions after which the pre-collision velocities (cb

i , cb
j ) are changed into

(ci, cj), and the direct collision is defined as collisions after which the pre-collision
velocities (ci, cj) are changed into (c′

i, c′
j).

Let ψi be any particle property. In general, ψi is a function of ci and invariable with r
and t. The mean value of ψi, i.e. the hydrodynamic property of particle type i, is defined
by

ni〈ψi〉 =
∫
ψi fi dci, (2.3)

where ni is the particle number density. Multiplying ψi and integrating over ci on both
sides of (2.1) yields the transport equation of particle type i

∂ni〈ψi〉
∂t

+ ∇r · (ni〈ψici〉)− ni〈ai · ∇ciψi〉 = Ψi(ψi). (2.4)

Using Taylor expansion and neglecting the second-order and higher-order terms, the
collision source term Ψi can be decomposed into a collision source termΦi and a collision
flux term Ω i as follows:

Ψi(ψi) = Φi(ψi)− ∇r · Ω i(ψi), (2.5)

where

Φi(ψi) =
∑

j

d2
ij

∫∫∫
g·k>0

(ψ ′
i − ψi)χij

(
fi fj − dij

2
k · fi fj∇r ln

fi
fj

)
(g · k) dk dcj dci,

(2.6)

Ω i(ψi) =
∑

j

d3
ij

2

∫∫∫
g·k>0

(ψ ′
i − ψi)χij

(
−fi fj + dij

2
k · fi fj∇r ln

fi
fj

)
k(g · k) dk dcj dci.

(2.7)
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In the above equations, the correlation of the pre-collision velocities is neglected, i.e. the
assumption of molecular chaos, and therefore the two-particle VDF can be written as the
product of the two single-particle VDFs with the pair correlation function χij. For inertial
particles, the assumption of molecular chaos is valid when the total solid volume fraction
is very small (φ � 0.1). The reason for this is twofold. First, the collision interval is
long enough so that post-collision velocities can relax completely. Second, the particle
motion is less restricted, leading to a low probability of repeated collisions. Both of these
two aspects weaken the correlation between pre-collision velocities. However, for dense
systems, the assumption of molecular chaos may be invalid (Chapman & Cowling 1970).
When ψi = mici where mi is the particle mass, the momentum equation for particle type i
is obtained from (2.4) and (2.5) and reads

∂φiρiui

∂t
+ ∇r · (φiρiuiui) = −∇r · pi + φiρi〈ai〉 + Φ i(mici). (2.8)

Here, ui = 〈ci〉, and φiρi = nimi, where φi and ρi are respectively the particle volume
fraction and the particle mass density. The stress tensor pi = φiρi〈C iC i〉 + Ω i(mici) in
which the peculiar velocity C i = ci − ui. Φ i(mici) is the particle–particle drag force
experienced by particle type i per unit volume and is the focus of the present study.

In a collision, the relation between the pre-collision velocity ci and post-collision
velocity c′

i is

c′
i = ci − mj

mi + mj
(1 + eij)(g · k)k. (2.9)

The present study considers the particle–particle drag force at first approximation, so the
gradient terms in (2.6) and (2.7) are neglected. Substituting equation (2.9) into the equation
of Φ i(mici), the integral form of the particle–particle drag force is finally given by

Φ i(mici) = −
∑

j

d2
ij

mimj

mi + mj
(1 + eij)

∫∫∫
g·k>0

χijfi fj(g · k)2k dk dcj dci. (2.10)

It should be noted that, due to symmetry, Φ i is zero when i = j, which means that only
collisions between different particle types contribute to the particle–particle drag force. At
the first approximation, the single-particle VDF is Maxwellian and reads

fi = ni

(2πTi)
3/2 e−(ci−ui)

2 /(2Ti), (2.11)

where Ti is the granular temperature and defined by

Ti = 〈C2
i 〉

3
. (2.12)

Note that the equipartition of the kinetic energy of the peculiar motion indicates miTi =
mjTj. Zhao & Wang (2021) rigorously derived the particle–particle drag relation from
(2.10) and (2.11) without any mathematical approximations, and it is given as

fij = −2πd2
ij

mimj

mi + mj
(1 + eij)ninj(Ti + Tj)χij

[
1√
π

(
1
2

+ 1
4〈g∗〉2

)
e−〈g∗〉2

+
( 〈g∗〉

2
+ 1

2〈g∗〉 − 1
8〈g∗〉3

)
erf (〈g∗〉)

]
〈g∗〉, (2.13)

in which g∗ = g/
√

2(Ti + Tj) and the error function is defined by erf (〈g∗〉) =
(2/

√
π)
∫ 〈g∗〉

0 e−y2
dy. Notice that the summation notation is dropped in (2.13) since
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bidisperse mixtures are considered in this study, and fij represents the particle–particle
drag force on the particle type i exerted by j per unit volume. For the latter analysis, the
number of collisions per time per unit volume between particle types i and j is denoted
by Nij, and Nij/ni, named the collision frequency, is the average number of collisions
experienced by a particle of type i with particle type j. The relation of Nij/ni proposed
by Zhao & Wang (2020) is

Nij

ni
=

√
2πd2

ijnj
√

Ti + Tjχij

[
e−〈g∗〉2 + √

π

(
g∗ + 1

2〈g∗〉
)

erf (〈g∗〉)
]
. (2.14)

When the particle distribution is homogeneous and isotropic, the pair correlation
function only depends on the radial distance and degenerates into the radial distribution
function. For the contact value of the radial distribution function, Lebowitz (1964)
proposed the following expression for a mixture of hard spheres:

χij = 1
1 − φ

+ 3didj

(1 − φ)2(di + dj)

(
φi

di
+ φj

dj

)
, (2.15)

where the total solid volume fraction φ = φi + φj. Simulation results show that, in the
current parameter range, χij is invariant with respect to the Reynolds number, and the
prediction error of (2.15) is less than 5 %, indicating that the microstructure of
the suspensions is close to binary hard-sphere fluids. Therefore, (2.15) is employed in
the calculations of the particle–particle drag force and the collision frequency.

3. Simulation method

The second-order accurate immersed boundary-lattice Boltzmann method (IB-LBM)
developed by Zhou & Fan (2014) is employed to solve the gas flow, and the particle motion
is tracked by the DEM. The particle collision is simulated by the soft-sphere model and
resolved by 8 LBM time steps, each containing 15 DEM time steps. The reader can refer to
the document of MFIX (Garg et al. 2012) for more details. The accuracy of these methods
is proved by simulating flow past arrays of rotating spheres (Zhou & Fan 2015a,b) and
gas–particle suspensions (Duan et al. 2020; Zhao, Chen & Zhou 2021). When the gap size
between a pair of particles becomes comparable to the grid size, the flow in the gap is not
fully resolved, and consequently the lubrication force cannot be correctly computed. In
this situation, a theoretical formula (Guazzelli & Morris 2012) is adopted to compensate
for the unresolved part of the lubrication force and is given by

F l
ij = −3πμ

2

(
didj

di + dj

)2
(g · k)k

|ri − rj| − dij
, (3.1)

where μ is the dynamic viscosity of the gas. The detailed implementation can be found in
Nguyen & Ladd (2002), Simeonov & Calantoni (2012) and Brandle de Motta et al. (2013)

Initially, a particle configuration, the microstructure of which is identical to that of
a bidisperse hard-sphere fluid, is generated by the Monte Carlo procedure in a fully
periodic cube (Hill, Koch & Ladd 2001), and the particle velocity is set to zero. Then,
the gas and particle phases start to move freely under gravity and an upward pressure
gradient. Since the particle density is larger than the gas, the particle phase accelerates
downward relative to the gas phase, and therefore the slip velocity between the gas and
particle phases increases. The increase rate of the slip velocity decreases because the
gas–particle drag force increases with the slip velocity. Finally, the increase rate of the
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slip velocity is close to zero, and the slip velocity is statistically stationary. The value
of the gravitational acceleration is varied so that different particle Reynolds numbers are
obtained. The reported particle Reynolds number is computed after the flow reaches its
statistically steady state. The pressure gradient is dynamically adjusted in simulations
to keep the total volumetric flux of the flow constant (Fullmer et al. 2017). The flow
simulated in this study corresponds to sedimentation or fluidization in a fully periodic
domain, depending on whether the constant is zero or not. Note that the physics should
not change with the constant. The quantities of interest are first averaged over a period
of simulation time after the statistically stationary state is reached and then averaged over
three different initial particle configurations. For instance, the mean particle–particle drag
force is computed as follows:

fij =

3∑
s=1

N∑
k=1

Ni∑
m=1

Nj∑
n=1

F c
im,jn(tk, s)

3NV
, (3.2)

where F c
im,jn(tk, s) is the collision force on no. m particle of type i exerted by no. n particle

of type j at time tk for the initial particle configuration s, where N is the number of time
slices, Ni and Nj are, respectively, the particle numbers of type i and j and V is the volume
of the computation domain. As was always done for the gas–particle drag force, fij is
normalized by the Stokes drag force as follows:

Fc
ij = fij · U i

3πμdiU2
i ni
, (3.3)

in which U i is the superficial gas velocity relative to particle type i, and equals (1 −
φ)(ug − ui). Here, ug is the gas velocity. It is found from simulation results that the ratio
of the particle–particle drag force to the gas–particle drag force is 0.16 (maximum 0.20),
0.31 (maximum 0.36) and 0.37 (maximum 0.42) for dl/ds = 1.2, 1.6 and 2, respectively,
which indicates that the particle–particle drag force cannot be neglected in predicting the
segregation phenomenon.

The ratio of the particle mass density to the gas density is fixed at 1000, ensuring that
the effect of the lubrication force on the particle collision is quite small in the current
range of the Reynolds number. In order to keep the suspensions homogeneous and save
computational costs, the edge length of the computation domain is chosen to be five times
the diameter of large particles. The effect of the domain size on the particle–particle drag
force is studied in Appendix A. The particle collision is assumed elastic and frictionless.
The ranges of other parameters are listed in table 1. In LBM simulations, the quantities are
in lattice units, and the conversion between lattice units and physical units can be readily
achieved by exploiting the fact that key dimensionless numbers are the same between
different systems of units. According to the law of similarity, the physics obtained from
a case applies to the cases with the same geometry and key dimensionless numbers,
regardless of what the values of physical quantities are. Therefore, only the critical
geometry parameters and key dimensionless numbers are provided in table 1.

It has been found that the relative velocity 〈g〉, the granular temperature Ts(Tl) and the
particle–particle drag force fsl are less sensitive to the grid resolution. Here, the subscripts
s and l respectively denote small and large particles. For the case of φ = 0.3 and 〈Rep〉 ≈
113.5, relative to the results at the grid resolution of ds/20, the deviations of 〈g〉, Ts(Tl) and
fsl at the grid resolution of ds/12 are 5.7 %, 0.2 %(1.1 %) and 0.6 %, respectively, and the
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φ 0.1, 0.2, 0.3
xs 0.1, 0.3, 0.5
dl/ds 1.2, 1.6, 2
〈Rep〉 6.7 ∼ 123.8
Sths/Sthl 42.9 ∼ 729.1/44.5 ∼ 895.5
Stcs/Stcl 7.5 ∼ 98.5/13.5 ∼ 330.1

Table 1. The parameter ranges in the present study. The subscripts s and l respectively denote small and large
particles. Here, φ is the total solid volume fraction, and xs is the ratio of the solid volume fraction of small
particles to the total solid volume fraction, that is, xs = φs/φ; 〈Rep〉 represents the mean particle Reynold
number defined based on the Sauter mean diameter 〈d〉32 and the mean of the superficial relative velocity
〈U〉; 〈d〉32 = 1/(

∑
i xi/di) and 〈U〉 = ∑

i xiU i; Sthi is the hydrodynamic Stokes number with the expression
of diρiUi/(18μFdi), where Fdi is the gas–particle drag force normalized by the Stokes drag force, i.e. 3πμdiU i;
Sthi is the ratio of the particle inertial response time to the flow time scale; Stci is the collision Stokes number
with the expression of d2

i ρi
∑

j Nij/(18μFdini), representing the ratio of the particle inertial response time to
the inter-collision time. When dl/ds = 1.2 or 1.6, only the cases of xs = 0.3 are simulated.

deviations at the grid resolution of ds/16 are 0.8 %, 0.5 %(1.1 %) and 0.6 %, respectively.
In this study, the grid size of ds/16 is adopted.

4. Application of the particle–particle drag relation to bidisperse gas–particle
suspensions

Figures 1(a) and 1(b) respectively show the collision frequency between small and large
particles and the particle–particle drag force of small particles at various 〈Rep〉 and
φ. The volume fraction of small particles xs is around 0.3, and the particle diameter
ratio is 2. For other cases listed in table 1, that is, xs = 0.1, xs = 0.5, dl/ds = 1.2 and
dl/ds = 1.6, similar behaviour is found and therefore they are not shown for brevity. As
the particle Reynolds number increases, the granular temperature increases. Consequently,
the collision frequency and the particle–particle drag force increase. The predictions of
the collision frequency by (2.14) agree well with the simulation results. However, (2.13)
seriously overestimates the particle–particle drag force, especially when the total solid
volume fraction is high, and its deviations at φ = 0.1, 0.2 and 0.3 are 34 %, 68 % and
89 %, respectively.

For the cases in figure 1, the mean of the skewness and the mean of the kurtosis (the
kurtosis of the normal distribution, i.e. 3, is subtracted) of the single-particle VDFs are
both smaller than 0.1, indicating the assumption of the Maxwellian is valid. The ratio
of the granular temperature in the streamwise direction to the non-streamwise direction
is 1.15 on average. However, there is no apparent correlation between the ratio and the
total solid volume fraction, which is inconsistent with the tendency of in the deviations of
(2.13) shown in figure 1(b), and hence the slight anisotropy is not the cause of the poor
performance of (2.13). Before further analysis, the mean free path of particle type i, in the
reference frame of the mass centre of particle type j, will first be derived. The mean free
path is the mean distance travelled by a particle between successive collisions during a
given time and is defined by

li = ni〈vi〉	t
ni	t/τi

, (4.1)

where τi is the collision interval and equals to ni/(Nii + Nij). In the reference frame of
the mass centre of particle type j, the velocity of a particle of type i, denoted by vi, is
ci − uj, and the mean of vi is the relative velocity 〈g〉. The mean of the module of vi is
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Figure 1. Simulated and predicted values of (a) the collision frequency between small particles and large
particles and (b) the particle–particle drag force of small particles exerted by large particles at various 〈Rep〉
and φ. The collision frequency is normalized by ν/d2

sl, where ν is the kinematic viscosity of the gas and the
particle–particle drag force is normalized by the Stokes drag force. The volume fraction of small particles xs is
around 0.3, and the particle diameter ratio is 2. The circle, square and triangle symbols respectively correspond
to φ = 0.1, 0.2 and 0.3. Solid and void symbols respectively denote the simulation results and the predictions
by the equations of Zhao & Wang (2020, 2021), i.e. (2.14) in (a) and (2.13) in (b).

then computed from (2.3) and (2.11) with ci and ui replaced by vi and 〈g〉 respectively. By
the integral method in Glansdorff (1962), Zhao & Wang (2020), the final form of 〈vi〉 is

〈vi〉 =
√

2Ti

π
e−〈g〉2/(2Ti) +

(
〈g〉 + Ti

〈g〉
)

erf
( 〈g〉√

2Ti

)
. (4.2)

We should note that, when 〈g〉 = 0, the above equation reduces to the form 〈vi〉 =
2
√

2Ti/π, which is the relation of 〈Ci〉 proposed in the book of Chapman & Cowling
(1970).

Figure 2 shows the collisions between a small particle, labelled by m, and large particles
during 20τsl. Here, τsl is the mean of the collision interval between small particles and
large particles and equals ns/Nsl. Once a small particle collides with a large particle, over
the following time, the small particle will probably be trapped within the space around the
large particle, and bounce back and forth, with a much shorter interval than τsl, among the
large particle and its neighbours. For example, during the time period t/τsl = 14.8 ∼ 18.8,
the small particle m is trapped within the space between the large particles of no. 13 and
no. 21, and in turn collides with them by an interval of 0.44τsl. Note that other small
particles also play a role in trapping the small particle m. Similar phenomena can also
be found in the time periods t/τsl = 0.1 ∼ 1.6 (0.21τsl) and 8.7 ∼ 11.7(0.43τsl), and
these time periods are named the time period of trapping for brevity (indicated by the
shadows in figure 2). Under the prerequisite condition of τsl < τps, a shorter collision
interval gives a smaller relative velocity. This is because the collisions between different
particle types reduce their relative velocity. Here, τps is the small-particle relaxation time
and can be roughly estimated by d2

sρs/(18μFds) (Zaichik et al. 2009). It can be calculated
by simulation results that τps/τsl ∼ O(10) in this case. Consequently, it is expected that the
relative velocity over the time period of trapping is statistically smaller than the relative
velocity over the entire time period. Because most of the collision events occur during
the time period of trapping, it is more reasonable to use the relative velocity over this
time period instead of that over the entire time period. By fitting (2.13) and (2.14) with
polynomials, it has been found that for 〈g∗〉 < 1 in this study, Nij is insensitive to 〈g∗〉 and
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Figure 2. The collisions between a small particle, labelled by the subscript m, and large particles during
20τsl for the case of φ = 0.3, xs ≈ 0.3, dl/ds = 2 and 〈Rep〉 ≈ 69.2. The shadows indicate the time periods
of trapping. (a) The instantaneous change of the minimum distance between the small particle m and large
particles, normalized by the arithmetic mean diameter dsl. Here, |rsm − rl|min/dsl = 1 implies the collision
between the small particle m and a large particle. (b) Number of the particles that collided with the small
particle m. Circles and squares respectively denote small and large particles. According to the time sequence
of collisions, the shown particles are labelled by no. 1, 2, 3, . . . .

fij almost linearly increases as 〈g∗〉. Therefore, with the mean of the relative velocity over
the entire time period, (2.14) well predicts the collision frequency, but (2.13) significantly
overestimates the particle–particle drag force. Considering that the small particle that
has just collided with a large particle will collide with other particles on average at the
location ls away from the large particle, and then be probably bounced back and trapped,
in what follows, the relative velocity during the time period when the relative distance
of the particle pair is smaller than a mean free path ls is assumed to be relevant to the
particle–particle drag force.

The position and velocity of each particle in a computational domain are collected
after a statistically stationary state has been reached, and then the relative velocity
of each particle pair of different size, g = cs − cl, is binned in terms of the distance
|rs − rl| and θk, which is the angle between k and the flow direction. Recall that k is
the unit vector along rl − rs. Figure 3 shows the geometry of the left part of a bin in
two dimensions, denoted by 	A, and the geometry in three dimensions is obtained by
rotating 	A around the z-axis. Figure 4 is the contour plot of the mean of the relative
velocities within each bin, 〈g〉(θk, |rs − rl|), normalized by that within the entire domain,
〈g〉. Because the distribution of the relative velocity is symmetrical about the z-axis of the
spherical coordinate system (θk, |rs − rl|, ϕ) shown in figure 3, the x and y components
of 〈g〉(θk, |rs − rl|) and 〈g〉 are close to zero. As discussed earlier, a small particle is
easily trapped within the space around a large particle, and statistically has a velocity
close to that of the large particle. As a result, the regions of the low relative velocity
are formed near large particles, as shown in figure 4. As the total solid volume fraction
increases, the distance that the trapped small particle is allowed to travel becomes smaller
and smaller, and therefore the regions of low relative velocity gradually shrink. In the
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s

g = cs – cl
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z (〈g〉)
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�θk

ϕ

k

rl

O1

�A

O2

l

Figure 3. Geometry of the left part of a bin in two dimensions, which is denoted by 	A and indicated by
the shadowed area. Here, O1 is the origin of a fixed coordinate system, and O2 is the origin of a spherical
coordinate system (θk, |rs − rl|, ϕ), co-moving with large particles. The z-axis of the spherical coordinate
system coincides with the flow direction. The geometry of a bin in three dimensions is obtained by rotating	A
around the z-axis.

streamwise direction, the collision force, which hinders the growth of the relative velocity,
decreases with θk approaching π/2, and therefore the relative velocity increases under the
action of the gas–particle drag force, as shown in figure 4. The mean free path signified
by the dotted line decreases as φ increases since the collision frequency increases with
φ. The modules of the mean relative velocities within the mean free path, denoted by
〈g〉(|rs − rl| < ls), respectively equal 0.93〈g〉, 0.88〈g〉 and 0.78〈g〉 when φ = 0.1, 0.2 and
0.3. With 〈g〉(|rs − rl| < ls), the predictions of (2.13) will be smaller and hence become
closer to the simulation results. However, before doing that, the effect of the anisotropy
observed in figure 4 on the particle–particle drag force is first discussed.

By symmetry, the collision forces cancel each other in the directions perpendicular
to the flow direction, and therefore only the streamwise component contributes to the
particle–particle drag force. The streamwise component of the collision force varies with
the polar angle as the function cos θk, and consequently the relative velocity also changes
as a function of θk, as mentioned above. It is necessary to consider the correlation between
the two functions in calculating the particle–particle drag force. For example, the relative
velocity is large around θk = π/2, but the streamwise component of the collision force
in this region is close to zero. Therefore, it can be expected that (2.13) will overestimate
the particle–particle drag force by neglecting the anisotropic distribution of the relative
velocity. A feasible way to consider the correlation is first to compute the particle–particle
drag forces at different polar angles and then sum them up. Assuming the single-particle
VDF at each polar angle is Maxwellian, the derivation process of the particle–particle drag
force at a specific polar angle is given as follows:

fsl = −d2
sl

msml

ms + ml
(1 + esl)χsl

∫∫∫
g·k>0

fsfl(g · k)2k dk dcl dcs

= −d2
sl

msml

ms + ml
(1 + esl)

χslnsnl

(2π)3(TsTl)
3/2

∫∫∫
g·k>0

× e−[cs−us(θk)]2/(2Ts)−[cl−ul(θk)]2/(2Tl)(g · k)2k dk dcl dcs. (4.3)
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Figure 4. Contour plot of the relative velocity of particle pairs of different size in a polar coordinate system
(θk, |rs − rl|). The meanings of θk and |rs − rl| are described in figure 3. The subscript z denotes the
streamwise direction. The dotted line indicates |rs − rl| = ls, where ls is the mean free path of small particles
and calculated by (4.1) and (4.2). Here, xs ≈ 0.3, dl/ds = 2, 〈Rep〉 ≈ 70.7 and (a) φ = 0.1, (b) φ = 0.2,
(c) φ = 0.3.

Note that us and ul vary with θk in this equation. By the integral method employed in
Glansdorff (1962) and Zhao & Wang (2020), the above equation can be transformed into

fsl = C
∫

e−(Ts+Tl)/(2TsTl)(G−〈G〉)2 dG
∫∫

g·k>0
e−[g−〈g〉(θk)]2/(2(Ts+Tl))(g · k)2k dg dk,

(4.4)

where G = (Tscl + Tlcs)/(Ts + Tl), and dcl dcs = dG dg according to the Jacobian
determinant. Here, C is the constant before the integral sign of (4.3). The integral of
g is carried out in the spherical coordinates where the z-axis coincides with k and is
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given as

fsl = C
(

2πTsTl

Ts + Tl

)3/2 ∫∫
g·k>0

e−g′2/(2(Ts+Tl))(g · k)2k dg′ dk

= 2πC
(

2πTsTl

Ts + Tl

)3/2 ∫
g·k>0

e−g′2/(2(Ts+Tl))(g cos θg)
2g′2 sin θg′ dθg′ dg′k dk. (4.5)

From g · k = [〈g〉(θk) + g′] · k, i.e. g cos θg = 〈g〉(θk) cosψk + g′ cos θg′ , we have that g ·
k > 0 is equivalent to cos θg′ > −〈g〉(θk) cosψk/g′. Here,ψk is the angle between 〈g〉(θk)
and k. Let x = cos θg′ , (4.5) is changed into

fsl = 2πC
(

2πTsTl

Ts + Tl

)3/2 ∫
D

e−g′2/(2(Ts+Tl))[〈g〉(θk)2g′2cos2ψk + g′4x2

+ 2〈g〉(θk)g′3 cosψkx] dx dg′k dk. (4.6)

Here, D is the domain of integration. When 0 < ψk < π/2

D = {−1 < x < 1, 0 < g′ < 〈g〉(θk) cosψk}

∪
{
−〈g〉(θk) cosψk

g′ < x < 1, 〈g〉(θk) cosψk < g′ < +∞
}
. (4.7)

When π/2 < ψk < π

D =
{
−〈g〉(θk) cosψk

g′ < x < 1,−〈g〉(θk) cosψk < g′ < +∞
}
. (4.8)

Equation (4.6) can be integrated by parts, and it is found that the results in both situations,
i.e. 0 < ψk < π/2 and π/2 < ψk < π, are the same

fsl = −2πd2
sl

msml

ms + ml
(1 + esl)nsnl(Ts + Tl)χsl

∫ {
1√
π

cos2θk e−[〈g∗〉(θk) cos θk]2

+
[

cos θk

2〈g∗〉(θk)
+ 〈g∗〉(θk)cos3θk

]
erf [〈g∗〉(θk) cos θk]

+ A cos θk

2〈g∗〉(θk)
+ A〈g∗〉(θk)cos3θk

}
sin θk〈g∗〉(θk) dθk, (4.9)

where the integrand function multiplied by dθk is the particle–particle drag force at θk. In
the above equation, cosψk is replaced by cosψk = A cos θk since 〈g〉(θk) is parallel with
〈g〉. Here, A = 1 when 〈g〉(θk) is in the direction of 〈g〉, and A = −1 when 〈g〉(θk) is in
the opposite direction of 〈g〉.

To compute the particle–particle drag force, the integral in (4.9) is discretized
numerically, and the mean of the relative velocity in each discrete interval 	θk within the
range |rs − rl| < ls, represented by 〈g〉(θk, |rs − rl| < ls), is substituted into the discrete
equation. Figure 5 shows the comparison between predictions and simulation results for
all simulation cases in this study. The square points are computed by substituting the
mean of the relative velocity within the range |rs − rl| < ls, i.e. 〈g〉(|rs − rl| < ls), into
(2.13), and therefore do not include the effect of the anisotropy. The predictions by (4.9)
are the most accurate with a mean error of 8 % (maximum 25 %), and the prediction
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Figure 5. Predictions versus simulation results for the particle–particle drag force of small particles. Circles,
squares and triangles respectively represent the predictions calculated by (2.13) with 〈g〉, (2.13) with 〈g〉(|rs −
rl| < ls) and (4.9) with 〈g〉(θk, |rs − rl| < ls). The dotted line is the bisector line y = x. The parameter range
is shown in table 1.

by (2.13) with 〈g〉 is the worst with a mean error of 61 % (maximum 109 %). The
predictions by (2.13) with 〈g〉(|rs − rl| < ls) are between the predictions by (2.13) and
(4.9) with a mean error of 32 % (maximum 48 %), which indicates that the anisotropy
of the relative-velocity distribution cannot be neglected. Note that (4.9) still slightly
overestimates the particle–particle drag force. This may be caused by hydrodynamic
interactions between particle pairs.

To apply (4.9) in MFM simulations, the relative velocity within a mean free path of
small particles ls, i.e. 〈g〉(θk, |rs − rl| < ls), must be adequately resolved, which implies
that the grid size should be much smaller than ls. For the case shown in figure 4(c), the
mean free path is only 1.28dsl, leading to a grid size of a small fraction of a large-particle
diameter. It is infeasible to use such a fine grid in MFM simulations mainly due to the
huge computational cost. With this in mind, the relative velocity 〈g〉 in (2.13) is replaced
by an effective relative velocity, denoted as α〈g〉, in order to make the predictions of (2.13)
agree with those of (4.9), that is

fsl(α〈g〉) = fsl[〈g〉(θk, |rs − rl| < ls)]. (4.10)

The factor α is solved by iteration. With φ increasing, the probability of repeated collisions
increases since the particle motion is more restricted. Consequently, the correlation
between pre-collision velocities becomes stronger, and accordingly, the factor α decreases,
as seen in figure 6. The effect of xs on α is twofold. First, the effect of xs is the same
as the effect of φ because the total particle number density increases with xs. Second,
as xs increases, the collisions between small particles become more frequent, and small
particles relax more quickly. This is because the collisions between like particles help
a post-collision pair to recover their statistically stationary velocities. If the correlation
between pre-collision velocities is mainly controlled by the relaxation process of small
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Figure 6. Variation of the factor α, defined by (4.10), with the total solid volume fraction φ at different volume
fractions of small particles xs. The error bar characterizes the standard deviation derived from the cases of
different particle diameter ratios and particle Reynolds numbers. The dotted lines are the fitting curves given
by (4.11).

particles, the correlation becomes weaker and therefore α increases. As shown in figure 6,
the factor α decreases with xs, which indicates the first effect dominates the correlation
between pre-collision velocities. Note that the particle diameter ratio and the Reynolds
number have a minor effect on α. The factor α is approximately fitted by a linear function
of φ and xs, which is given as

α = −1.363φ − 0.3875xs + 1.089. (4.11)

The predictions of (2.13) with α〈g〉 where α is computed by (4.11) are close to that of
(4.9), and deviate from simulation results by 10 % on average (23 % maximum).

5. Model assessment

In order to assess the performance of the model proposed in this study, we implement the
model

fij = −2πd2
ij

mimj

mi + mj
(1 + eij)ninj(Ti + Tj)χij

[
1√
π

(
1
2

+ 1
4α2〈g∗〉2

)
e−α2〈g∗〉2

+
(
α〈g∗〉

2
+ 1

2α〈g∗〉 − 1
8α3〈g∗〉3

)
erf (α〈g∗〉)

]
α〈g∗〉

α = −1.363φ − 0.3875xs + 1.089, (5.1)

in MFIX-MFM and perform MFM simulations. The cases of φ = 0.1 ∼ 0.3, xs ≈ 0.3,
dl/ds = 2 and 〈Rep〉 ≈ 70.7 are chosen. For comparison, the input parameter settings and
boundary conditions are consistent with the PR-DNSs. Assuming the gas is air and the
gravitational acceleration equals 9.81 m s−2, the input parameters in lattice units are
converted into those in physical units and listed in table 2. The gas–particle drag force
is calculated by the model of Beetstra et al. (2007), which is appropriate for bidisperse
suspensions that are inertial and homogeneous. Benyahia (2008) compared the predictions
of several kinetic theories with molecular dynamic data and found the kinetic theory of
Iddir & Arastoopour (2005) is the most accurate one. Consequently, the kinetic theory
of Iddir & Arastoopour (2005) is adopted in the present study. The grid size of 2.5dl is
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φ 0.1, 0.2, 0.3

xs 0.3
ds 388 μm, 467 μm, 564 μm
dl 776 μm, 933 μm, 1129 μm
L 3.84 mm, 4.65 mm, 5.64 mm
ρf 1.29 kg m−3

ρp 1290 kg m−3

μ 19.1 × 10−6 Pa s
g 9.81 m s−2

	p 4.90 Pa, 11.8 Pa, 21.5 Pa
e 1
Cf 0
t 2s

Table 2. The input parameter settings for MFM simulations. Here, g is the gravitational acceleration, and 	p
is the pressure drop across the entire domain, which is used to drive the flow; e and Cf represent the coefficient
of restitution and the friction coefficient, respectively; t is the total simulation time.

chosen, and it has been found that the domain-averaged quantities do not change as the
grid size decreases to 0.5dl.

Besides the model of this study and Zhao & Wang (2021), the models of Syamlal (1987)
and Iddir & Arastoopour (2005) are also tested. Note that when α = 1, (5.1) degenerates
to the model of Zhao & Wang (2021), i.e. (2.13). The models of Syamlal (1987) and Iddir
& Arastoopour (2005) are respectively given as

fij = −d2
ij

mimj

mi + mj
(1 + eij)ninjχij

(
π

2
+ π2Cf

8

)
〈g〉〈g〉, (5.2)

fij = −
√

πd2
ij

4
mimj

mi + mj
(1 + eij)ninjχij

(
1

TiTj

)3/2

R2〈g〉, (5.3)

R2 = 1

2A3/2
ij D2

ij

+
3B2

ij

A5/2
ij D3

ij

+
15B4

ij

A7/2
ij D4

ij

+ · · · , (5.4)

Aij = Ti + Tj

2TiTj
, Bij = mjTj − miTi

2(mi + mj)TiTj
, Dij =

m2
i Ti + m2

j Tj

2(mi + mj)
2TiTj

. (5.5a–c)

In (5.2), the model of Syamlal (1987), Cf denotes the friction coefficient and equals
zero in the present study. And in (5.3), the model of Iddir & Arastoopour (2005), the
terms including the gradients of the particle number density and granular temperature
are neglected because the studied suspensions are homogeneous. In addition, the granular
temperature in the paper of Iddir & Arastoopour (2005) includes the particle mass, while
the granular temperature in this paper, i.e. Ti, does not.

Figures 7(a), 7(b) and 7(c) respectively plot the dimensionless relative velocity, the
particle–particle drag force and the gas–particle drag force as functions of φ. For
convenience, the abbreviations ZW, IA and S are introduced to respectively represent
the models of Zhao & Wang (2021), Iddir & Arastoopour (2005) and Syamlal (1987).
As shown in figure 7(a,b), model S highly underestimates the particle–particle drag force
due to neglecting the granular temperature. Consequently, the relative velocity predicted
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Figure 7. The relative velocity (a), particle–particle drag force of small particles and gas–particle drag force
are shown as functions of the total solid volume faction. Here, the relative velocity is non-dimensionalized by
the Sauter mean diameter and kinematic viscosity to give the particle Reynold number, and the gas–particle
drag force is normalized by the Stokes drag force. The abbreviations ZW, IA and S denote the models of Zhao
& Wang (2021), Iddir & Arastoopour (2005) and Syamlal (1987), respectively.

by model S is much higher than that of PR-DNSs. As discussed in this paper, model
ZW overpredicts the particle–particle drag force by neglecting the correlation between
pre-collision velocities and hence underpredicts the relative velocity. The particle–particle
drag force predicted by model IA is reasonably good for φ = 0.1 and 0.2 but too high for
φ = 0.3. In the derivation process of Iddir & Arastoopour (2005), the Taylor expansion is
applied to the Maxwell distribution function and some simplifications are made, such as
the module of the relative velocity |ci − cj| replaced by |C i − C j|. The readers can refer
to the paper of Zhao & Wang (2020) for more details. In fact, model IA should be the
same as model ZW if no approximation is made. A comparison between the predictions
of model IA and those of model ZW shows that the approximations made by Iddir &
Arastoopour (2005) are inaccurate. Hence the good agreement of model IA for φ = 0.1
and 0.2 is just a coincidence. The model proposed in this study shows good agreement for
the particle–particle drag force but underpredicts the relative velocity for φ = 0.1 and 0.2.
The reason for this underestimate is due to the inaccuracy of the gas–particle drag model.
As shown in figure 7(c), the model of Beetstra et al. (2007) overpredicts the gas–particle
drag force of large particles for φ = 0.1 and 0.2. Since the particle velocity increases
with the gas–particle drag force, the large-particle velocity is overestimated, leading to
an underestimated relative velocity. This is also the reason why the particle–particle drag
forces predicted by model ZW and model IA gradually approach PR-DNSs as φ decreases
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while the relative velocities do not show this trend. At φ = 0.3, where the model of
Beetstra et al. (2007) is accurate, the relative velocity predicted by the present model is
in good agreement with PR-DNSs, verifying the accuracy of the model proposed in this
study.

6. Conclusion

In this work, bidisperse gas–particle suspensions containing smooth particles are
simulated by a set of fully resolved methods to examine and improve the particle–particle
drag relation derived from KTGF. The computational domain is a small and fully periodic
cube that corresponds to a grid in fine MFM simulations. Three total solid volume
fractions of 0.1, 0.2 and 0.3 are chosen. The particle Reynolds number ranges from
6.7 to 123.8, and in this range the Stokes number is high so that the lubrication force
has a neglectable effect. Under these conditions, the microstructure of the suspensions
approaches binary hard-sphere fluids. It is found that the relation derived from the KTGF
predicts the collision frequency well but highly overestimates the particle–particle drag
force with a mean error of 61 % (maximum 109 %). This is caused by the fact that the
pre-collision velocities of colliding particles are not entirely independent of each other.
The particle pair that has just collided is likely to collide again after being bounced back
by other particles. The interval between the two successive collisions is so short that
the post-collision velocities of the first collision cannot relax completely, leading to the
pre-collision relative velocity of the second collision being statistically smaller than the
domain-averaged relative velocity. Therefore, the KTGF-based relation overestimates the
particle–particle drag force when the domain-averaged relative velocity is used.

Considering that a post-collision small particle is bounced back after travelling a mean
free path on average, this work proposes to use the relative velocity within spherical shells
centred on the centres of large particles and with an outer radius of a mean free path of
small particles, to compute the particle–particle drag force. The relative velocity within
this local region varies as θk, the angle between the vector connecting a particle pair and
the flow direction, and its mean is smaller than the domain-averaged relative velocity.
In order to consider the anisotropic distribution of the relative velocity, the
particle–particle drag forces at different θk are first calculated and then summed up. The
predictions of this new methodology are in good agreement with simulation results with
a mean error of 8 % (maximum 25 %). It is noted that the relative velocity in such a local
region cannot be resolved even in fine MFM simulations. For this reason, the effective
relative velocity is introduced and fitted as a function of the total solid volume fraction and
the volume fraction of small particles based on the predictions of the new methodology.
The relation of Zhao & Wang (2021) with this effective relative velocity, i.e. (5.1), can be
used in MFM simulations for predictive purposes. It is found by comparing the results of
MFM simulations against PR-DNSs that (5.1) shows a significant improvement compared
with existing relations in the literature and can give accurate predictions for the relative
velocity.

In the present study, the particle surface is assumed to be smooth. However, many
particles encountered in nature and industry are frictional. Friction between particles
contributes to the particle–particle drag force in two aspects. First, the frictional force
is part of the particle–particle drag force when the collision is oblique and the line
connecting the particle pair is not parallel with the flow direction. Second, friction
enhances energy dissipation. Consequently, the granular temperature decreases, and so
does the particle–particle drag force. The relation of Syamlal (1987) only includes the first
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Figure 8. (a) The relative velocity (right axis) and the granular temperature (left axis), in dimensionless form,
are plotted as functions of the domain size. (b) The simulated and predicted values of the particle–particle drag
force experienced by small particles as functions of the domain size. The error bars in this and the following
figure represent the standard deviation for five cases with different initial particle configurations.

aspect by neglecting the granular temperature. It is a non-trivial task to include both two
aspects into the particle–particle drag force in a mathematically rigorous way. This is left
for future work.
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Appendix A. The effect of domain size on the particle–particle drag force

To examine the effect of the domain size on the particle–particle drag force, suspensions
of φ = 0.2, xs ≈ 0.1, dl/ds = 1.6 and 〈Rep〉 ≈ 38.3 are simulated. The edge length of
the computational domains ranges from 5dl to 10dl. It is mentioned in § 3 that, for the
case of φ = 0.3 and 〈Rep〉 ≈ 113.5, the maximum deviation at the gird size of ds/12,
relative to the results at the gird size of ds/20, is just 5.7 %. For the case studied in this
section, the deviations should be smaller since the required grid resolution decreases as φ
or 〈Rep〉 decreases. Therefore, the gird size of ds/12 is adopted to save computational
costs. Figure 8(a) presents the granular temperature and the relative velocity, both in
dimensionless form, as functions of L/dl, which is the ratio of the domain size to the
large-particle diameter. It can be seen that, as L/dl increases, the trend of the relative
velocity is unclear, but the granular temperatures of both small and large particles slowly
increase. The increase of the granular temperature with domain size was first pointed out
theoretically by Caflisch & Luke (1985) and later evidenced by the simulation results
of Ladd (1996). The reason for this increase is still under debate and beyond the scope
of this work. The readers can refer to the review of Guazzelli & Hinch (2011) for more
information. It should be noted that the suspensions in the previous studies are dilute and
in the Stokes regime. The results presented here indicate that the increase of the granular
temperature also occurs in dense suspensions at moderate Reynolds numbers.
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Figure 9. The structure factors of κ = 2π/L are given as functions of the domain size. Here, θ‖ and θ⊥ are
the structure factors in the streamwise and spanwise directions, respectively. For reference, the structure factor
predicted by Ashcroft & Langreth (1967) for a binary hard-sphere fluid is given by circles. The slight fluctuation
of the theoretical values is caused by the minor change of xs.

The particle–particle drag force as a function of L/dl is shown in figure 8(b). The
simulated particle–particle drag force barely changes with L/dl because the increment
of the granular temperature is minimal. Both the relation of Zhao & Wang (2021) and the
present method using the relative velocity within a mean free path, i.e. 〈g〉(θk, |rs − rl| <
ls), overestimate the particle–particle drag force, and the overestimation is more severe
in the case of L/dl > 7. In the case of L/dl ≤ 7, the prediction errors are respectively
55 % and 12 % for Zhao & Wang (2021) and this study, and in the case of L/dl > 7, the
prediction errors are respectively 65 % and 17 %, showing a marked improvement.

The increase of the prediction error with the domain size is caused by the inhomogeneity
induced by instability. To find the evidence of inhomogeneity, two measures of the particle
configuration are calculated and compared with the theoretical values. The first measure is
the contact value of the radial distribution function and is used to quantify the short-range
structure. It is found that, in the current range of L/dl, the simulated contact value agrees
very well with the formula of Lebowitz (1964), i.e. (2.15), indicating that no short-range
change occurs. The second measure is the structure factor between small and large particles
and is defined by

Ssl(κ) =
〈

1√
NsNl

Ns∑
m=1

Nl∑
n=1

eIκ·(rsm−rln)

〉
, (A1)

where κ and I denote the wave vector and the imaginary unit, respectively. Since the
instability occurs first for the largest wavelength (the smallest wavenumber) possible, the
structure factors of κ = 2π/L are reported

θ‖ = Ssl(2π ez/L), θ⊥ = [Ssl(2π ex/L)+ Ssl(2π ey/L)]/2. (A2a,b)

In this equation, θ‖ and θ⊥ are respectively the structure factors in the streamwise and
spanwise directions, and the set of {ex, ey, ez} is the basis of a Cartesian coordinate system.
The structure factors θ‖ and θ⊥ are also used by Koch & Sangani (1999) to identify
inhomogeneous structures. Figure 9 shows the simulated values of θ‖ and θ⊥ as functions
of L/dl. Also shown are the values for a binary hard-sphere distribution, calculated by
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the theoretical formula of Ashcroft & Langreth (1967). The theoretical formula is not
shown here due to its complex form, and the readers can refer to the original paper of
Ashcroft & Langreth (1967) and the paper of Bressel, Wolter & Reich (2015) for more
information. As shown in figure 9, the simulated values of θ⊥ are in good agreement with
the theoretical values, which means that the distribution of the relative position between
small and large particles on the horizontal plane is homogeneous. The simulated values
of θ‖ increase with L/dl and obviously deviate from the theoretical values when L/dl > 7,
indicating the critical length scale of the onset of instability for the simulated case is
approximately 7dl. When clusters are developed, the distributions of the relative velocity
and the granular temperature in space are not generally homogeneous. For example, their
values are small in a cluster but large at the surface of a cluster (Liu & Hrenya 2018).
Therefore, using domain-averaged quantities to calculate the particle–particle drag force
is not appropriate. It can be seen from figure 8(b) that our method is more robust than that
of Zhao & Wang (2021) in the current range of domain size. This may be attributed to
the use of the relative velocity in a local region, the distribution of which should be less
affected by the instability.
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