
An exceptional Siegel–Weil formula and
poles of the Spin L-function of PGSp6

Wee Teck Gan and Gordan Savin

Compositio Math. 156 (2020), 1231–1261.

doi:10.1112/S0010437X20007186

https://doi.org/10.1112/S0010437X20007186 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007186
https://doi.org/10.1112/S0010437X20007186


Compositio Math. 156 (2020) 1231–1261

doi:10.1112/S0010437X20007186

An exceptional Siegel–Weil formula and
poles of the Spin L-function of PGSp6

Wee Teck Gan and Gordan Savin

Abstract

We show a Siegel–Weil formula in the setting of exceptional theta correspondence.

Using this, together with a new Rankin–Selberg integral for the Spin L-function of

PGSp6 discovered by Pollack, we prove that a cuspidal representation of PGSp6 is a

(weak) functorial lift from the exceptional group G2 if its (partial) Spin L-function has

a pole at s = 1.

1. Introduction

Let F be a totally real number field, and A its ring of adèles. Let π ∼=
⊗

v πv be an irreducible

cuspidal automorphic representation of the group PGSp6(A), which is unramified outside a finite

set S of places (including all real places). Since the Langlands dual group of PGSp6 is Spin7(C),

there is an associated semisimple conjugacy class sv in Spin7(C) for v /∈ S; this is the Satake

parameter of the local component πv. If r denotes the eight-dimensional spin representation of

Spin7(C), the partial Spin L-function corresponding to π is defined to be the product

LS(s, π,Spin) =
∏
v/∈S

1

det(1− r(sv)q−sv )
,

where qv is the order of the residual field of the local field Fv.

It is well known that the stabilizer in Spin7(C) of a generic vector in the spin representation

is the exceptional group G2(C), giving a well-defined conjugacy class of embeddings

ι : G2(C) −→ Spin7(C).

Therefore, as a special case of the Langlands functoriality principle, if LS(s, π,Spin) has a simple

pole at s = 1, then one expects π to be a functorial lift from an exceptional group of absolute

type G2 defined over F . We note that every such group is given as the automorphism group of an

octonion algebra O over F , and by the Hasse principle, the number of isomorphism classes of

such groups is 2n, where n is the number of real places of F .

As explained in a recent paper of Chenevier [Che19, § 6.12], if π is a tempered cuspidal

representation of PGSp6 such that for almost all places v, the Satake parameter sv of πv belongs

to ι(G2(C)) (or more accurately, the conjugacy class sv meets ι(G2(C))), then LS(s, π,Spin) will
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have a pole at s = 1 and so one expects such a tempered π to be a functorial lift from G2. In

this paper we also prove a slightly weaker version of this expectation.

Theorem 1.1. In the above setting, suppose that π is a cuspidal automorphic representation of

PGSp6 such that LS(s, π,Spin) has a pole at s = 1. Then there exist an octonion algebra O over

F and a cuspidal automorphic representation π′ of Aut(O) such that the Satake parameters of

π′ are mapped by ι to those of π (i.e. π is a weak functorial lift of π′).

If the cuspidal representation π of PGSp6 is tempered, then the following statements are

equivalent:

(a) for almost all places v, the Satake parameter sv of πv is contained in ι(G2(C));

(b) there exist an octonion algebra O over F and a cuspidal automorphic representation π′ of

Aut(O) such that π is a weak functorial lift of π′.

Since the local Langlands classification is not known for G2 or for PGSp6, this is essentially

the best possible result one can expect at the moment. However, if π is unramified everywhere or

if it corresponds to a classical Siegel modular form of level one, then π is a functorial lift. Special

cases of this result were previously obtained by Ginzburg and Jiang [GJ01], Gan and Gurevich

[GG09] and Pollack and Shah [PS18].

Our proof of Theorem 1.1 is based on the following three ingredients:

(1) an exceptional theta correspondence for the dual pair Aut(O) × PGSp6 arising from the

minimal representation Π of a group of absolute type E7 [GS05, HKM14, Sah92];

(2) a Siegel–Weil formula proved in this paper (see Theorem 1.2 below);

(3) an integral representation of the Spin L-function of π recently discovered by Pollack [Pol17].

In greater detail, let J be the exceptional Jordan algebra of 3 × 3 hermitian symmetric

matrices with coefficients in an octonion algebra O. By the Koecher–Tits construction, the

algebra J gives rise to an adjoint group G of absolute type E7, with a maximal parabolic

subgroup P = MN , such that the unipotent radical N is commutative and isomorphic to J .

Since G is adjoint, the conjugation action of M on N is faithful, and M is isomorphic to the

similitude group of the natural cubic norm form on J . Thus the natural action of Aut(O) on J

gives an embedding of Aut(O) into M . The centralizer of Aut(O) is PGSp6. To see this, observe

that the centralizer of Aut(O) in J is the Jordan subalgebra JF of 3 × 3 symmetric matrices

with coefficients in F . The group PGSp6 arises from JF by the Koecher–Tits construction. This

gives the dual pair

Aut(O)× PGSp6 ⊂ G

alluded to in item (1) above.

We can now describe another dual pair in G. Let D be a quaternion algebra over F , and

assume that we have an embedding i : D → O. The centralizer of D in Aut(O) is isomorphic to

D1, the group of norm-1 elements in D. Conversely, the centralizer (i.e. the pointwise stabilizer)

of D1 in O is i(D) ⊂ O. Thus the centralizer of D1 in J is the Jordan subalgebra JD of 3 × 3

hermitian symmetric matrices with coefficients in D, and the centralizer of D1 in G is a group

GD of absolute type D6 arising from JD by the Koecher–Tits construction. Thus we have a dual

pair

D1 ×GD −→ G.

1232

https://doi.org/10.1112/S0010437X20007186 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007186


An exceptional Siegel–Weil formula

Indeed, the two dual pairs we have described fit into the following seesaw diagram, where the
vertical lines represent inclusions of groups:

Aut(O) GD

D1 PGSp6

The Siegel–Weil formula mentioned in item (2) above concerns the global theta lift Θ(1) of
the trivial representation of D1 to GD, obtained by restricting the minimal representation Π
of G to the dual pair D1 × GD. Roughly speaking, Θ(1) is the space of automorphic functions
on GD obtained by averaging the functions in Π over D1(F )\D1(A). We prove that Θ(1) is an
irreducible automorphic representation of GD and determine its local components (as abstract
representations) by computing the corresponding local theta lifts. We have not computed the
local theta lift for complex groups, and this is the source of the restriction in the paper to totally
real fields F . The Siegel–Weil formula identifies the functions in Θ(1) as residues of certain
Siegel–Eisenstein series.

More precisely, since GD arises from JD by the Koecher–Tits construction, it contains a
maximal parabolic subgroup with abelian unipotent radical isomorphic to JD. Let ED(s, f) be
the degenerate Eisenstein series attached to this maximal parabolic subgroup, where s ∈ R and f
varies over all standard sections of the corresponding degenerate principal series representation
ID(s). In [HS20], it was proved that ED(s, f) has at most a simple pole at s = 1, and the residual
representation

ED := {Ress=1ED(s, f) : f ∈ ID(s)}

was completely determined. Our main result is the following Siegel–Weil identity in the space of
automorphic forms of GD.

Theorem 1.2. For fixed quaternion F -algebra D, we have:

ED =
⊕
i:D→O

Θ(1).

Here the sum is taken over all isomorphism classes of embeddings i : D → O into octonion
algebras over F .

We emphasize that D is fixed here but O varies. If D is split (i.e. a matrix algebra) then O
is also split, and there is only one term on the right. In general, the number of summands on
the right is equal to 2m, where m is the number of real places v of F such that Dv is a division
algebra.

At this point, we need the result of Pollack [Pol17]: there exists a quaternion algebra D
such that the partial spin-L-function LS(π, s,Spin) is given as an integral, over PGSp6, of a
function h ∈ π against the Eisenstein series ED(s, f). Thus, if the L-function has a pole at
s = 1, then the integral of h against the elements of ED is non-zero. The Siegel–Weil identity (i.e.
Theorem 1.2) then implies that π appears in the exceptional theta correspondence for the dual
pair Aut(O)× PGSp6, for some O containing D. Since this exceptional theta correspondence is
known to be functorial for spherical representations (see [LS19] and [SW15]), this completes the
proof that π is a weak lift from a group of absolute type G2.
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2. Groups

2.1 Octonion algebra
Let F be a field of characteristic 0, and D be a quaternion algebra over F . It is a four-dimensional
associative and non-commutative algebra over F which comes equipped with a conjugation map
x 7→ x with associated norm N(x) = xx = xx and trace tr(x) = x+ x. Moreover, N : D → F is
a non-degenerate quadratic form.

An octonion algebra O over F is obtained by doubling the quaternion algebra D. More
precisely, fix a non-zero element λ in F . As a vector space over F , O is a set of pairs (a, b) of
elements in D. The multiplication is defined by the formula

(a, b) · (c, d) = (ac+ λdb̄, ād+ cb).

If x = (a, b), then the conjugation map is x̄ = (ā,−b), so that N(x) = x · x̄ = N(a) − λN(b) is
the norm and tr(x) = x + x̄ = tr(a) the trace on O. In particular, O is split if λ is a norm of
an element in D. Every element x of O satisfies its characteristic polynomial t2− tr(x)t+N(x).
The automorphism group Aut(O) of the F -algebra O is an exceptional group of the Lie type
G2. It is a simple linear algebraic group of rank 2 which is both simply connected and adjoint.
The algebra D is naturally a subalgebra of O, consisting of all x = (a, 0). Let D1 be the group of
norm-1 elements in D. Then any g ∈ D1 acts as an automorphism of O by g · (a, b) = (a, bḡ) for
all (a, b) ∈ O. The subgroup D1 ⊂ Aut(O) is precisely the pointwise stabilizer of the subalgebra
D ⊂ O.

2.2 Albert algebra
An Albert algebra is an exceptional 27-dimensional Jordan algebra J over F . It can be realized
as the set of matrices

A =

α x z̄

x̄ β y

z ȳ γ

 ,

where α, β, γ ∈ F and x, y, z ∈ O. The determinant A 7→ detA defines a natural cubic form on
J . Let M be the similitude group of this cubic form. It is a reductive group of semisimple type
E6. The M -orbits in J are classified by the rank of the matrix A. Without going into a general
definition of the rank, we say that A 6= 0 has rank 1 if A2 = tr(A) ·A. Explicitly, this means that
the entries of A satisfy the equalities

N(x) = αβ, N(y) = βγ, N(z) = γα, γx̄ = yz, αȳ = zx, βz̄ = xy.

2.3 Dual pairs
Assume that G is a reductive group over F , adjoint and of absolute type E7, arising from the
Albert algebra J via the Koecher–Tits construction. For our purposes it will be more convenient
to realize G as a quotient, modulo one-dimensional center C ∼= F×, of a reductive group G̃
acting on the 56-dimensional representation W = F + J + J + F . In particular, G acts on the
projective space P(W ). Let P be a maximal parabolic and P̄ its opposite, defined as fixing
the points (1, 0, 0, 0) and (0, 0, 0, 1) in P(W ). Then P = MN , where N is the unipotent radical
and M = P ∩ P̄ a Levi subgroup. Then M is isomorphic to the similitude group of the cubic
form det on J , and N ∼= J , as M -modules.

Recall that we have constructed O by doubling a quaternion subalgebra D. Let JF and JD be
the subalgebras consisting of all elements in J with off-diagonal entries in F and D, respectively.
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Let J0 = F be the scalar subalgebra of J . Consider a sequence of simple, simply connected groups

D1 ⊂ Aut(O) ⊂ Aut(J),

where an element in Aut(O) acts on the off-diagonal entries of elements in J . The pointwise
stabilizers in J of these three groups are, respectively,

JD ⊃ JF ⊃ J0 = F.

Observe that Aut(J) naturally acts on W , giving an embedding Aut(J) ⊂ G̃. The centralizers
in G̃ of the three groups in the sequence are, respectively,

G̃D ⊃ GSp6(F ) ⊃ GL2(F ).

These three groups act on the 32-, 14- and four dimensional subspaces of W obtained by replacing
J by JD, JF and J0, respectively. It is worth mentioning that the four-dimensional representation
of GL2(F ) is the symmetric cube of the standard two-dimensional representation, twisted by
det−1. The group G̃D acts on

WD = F + JD + JD + F.

It is worth noting that the action of G̃D on WD is not faithful (it has µ2 ⊂ D1 as its kernel).
A detailed description of G̃D/µ2 and its action on WD can be found in Pollack’s paper [Pol17].
Let GD be the quotient of G̃D by the center C ∼= F× of G̃. Then D1 ×GD is a dual pair in G,
as mentioned in the introduction.

Let PD = MDND = GD ∩ P . With the identification N ∼= J fixed, we have ND
∼= JD. The

group PD is a maximal parabolic subgroup of type A5.

3. Minimal representation

Let F be a real or p-adic field. Let I(s) be the degenerate principal series representation of G
attached to P , where s ∈ R. We normalize s as in [Wei03] so that the trivial representation is a
quotient and a submodule at s = 9 and s = −9 respectively, whereas the minimal representation
Π is a quotient and a submodule at s = 5 and s = −5, respectively. Note, however, that the
group G is simply connected in [Wei03], whereas our G is adjoint here.

3.1 Unitary model
Fix ψ : F → C×, a non-trivial additive character, unitary if F = R. After identifying N ∼= J
and N̄ ∼= J (note that the resulting actions of M on J are dual to each other), any A ∈ J ∼= N̄
defines a character of N given by

ψA(B) = ψ(tr(A ◦B)) = ψB(A)

for B ∈ J ∼= N , where A ◦B denotes the Jordan multiplication. Every unitary character of N is
equal to ψA for some A. Let Ω ⊆ J ∼= N̄ be the set of rank-1 elements in J . A unitary model of
the minimal representation is H = L2(Ω) [Sah92]. Here only the action of the maximal parabolic
P = MN is obvious: the group M acts geometrically,

π(m)(f)(A) = χ(m)f(m−1A),

for f ∈ Π and for some character χ : M → R×, while B ∈ J ∼= N acts on f by multiplying it by
ψB.
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3.2 Smooth model
We have the following theorem [KS15].

Theorem 3.1. Let Π be the subspace of G-smooth vectors in the unitary minimal representation
H. Then

C∞c (Ω) ⊂ Π ⊂ C∞(Ω).

If F is p-adic, then

ΠN
∼= Π/C∞c (Ω) as M -modules.

If A ∈ J is non-zero, then any continuous functional ` on Π such that `(B · f) = ψA(B) · `(f) for
all B ∈ N and f ∈ Π is equal to a multiple of the evaluation map δA(f) = f(A). In particular,
` = 0 if A is not of rank 1.

3.3 Spherical vector
It is not so easy to characterize the subspace Π ⊂ C∞(Ω). However, we can describe a spherical
vector in Π in the split case. The algebra O is obtained by doubling the matrix algebraD =M2(F )
with λ = 1. Assume firstly that F is a p-adic field. Let O be the ring of integers in F and $
a uniformizing element. We have an obvious integral structure on D (the lattice of integral
matrices), and hence on O, the integral lattice being the set of pairs (a, b) where a, b ∈ M2(O).
This lattice is a maximal order in O. Now we have an integral structure on J so that J(O) is the
set of elements A ∈ J such that the diagonal entries are integral, and the off-diagonal entries are
contained in the maximal order in O. The greatest common divisor (GCD) of entries of A ∈ J(O)
is simply the largest power $n dividing A, that is, such that A/$n is in J(O). We have the
following theorem [SW07].

Theorem 3.2. Assume that G is split and F a p-adic field. Assume the conductor of ψ is O.
Then the spherical vector in Π is a function f◦ ∈ C∞(Ω) supported in J(O). Its value at A ∈ Ω
depends on the GCD of entries of A. More precisely, if the GCD of the entries of A is $n, and
q is the order of the residual field, then

f◦(A) = 1 + q3 + · · ·+ q3n.

Since Π is generated by f◦ as a P -module, and the action of P on Π is easy to describe, this
theorem gives us a good handle on Π.

Assume now that F = R; in this case, one has a similar result due to Dvorsky and Sahi
[DS99]. For every a ∈ M2(R), let ‖a‖2 be the sum of squares of its entries. For x = (a, b) ∈ O,
let ‖x‖2 = ‖a‖2 + ‖b‖2. Extend this to A ∈ J by

‖A‖2 = α2 + β2 + γ2 + ‖x‖2 + ‖y‖2 + ‖z‖2.

Let K3/2(u) denote the modified Bessel function of the second kind. Recall that K3/2(u) is greater
than 0, for u > 0, and rapidly decreasing as u → +∞. Then we have the following result [DS99,
Theorem 0.1].

Theorem 3.3. Assume that G is split and F = R. Then the spherical vector in Π is a function
f◦ ∈ C∞(Ω) given by

f◦(A) = ‖A‖−3/2K3/2(‖A‖).
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4. Local theta lifts: p-adic case

In this section let F be a p-adic field, so that the octonion algebra O is split. We are interested
in understanding the theta lift of the trivial representation of D1 to the group GD.

4.1 ND-spectrum
A crucial step is to understand the ND-spectrum of the minimal representation Π. In this case
we have an exact sequence of P -modules

0 → C∞c (Ω) → Π → ΠN → 0.

The characters of ND
∼= JD are identified with the elements in JD using the trace paring, as we

did for J . We shall only need three characters, denoted by ψ1, ψ2 and ψ3, corresponding to the
elements ±1 0 0

0 0 0

0 0 0

 ,

±1 0 0

0 ±1 0

0 0 0

 and

±1 0 0

0 ±1 0

0 0 ±1


of rank 1, 2 and 3, respectively. We need to allow signs to capture all possible orbits of rank 1,
2 and 3 in the real case. The following lemma is one of the key ingredients in this paper, and we
emphasize that we do not assume that D is split here.

Lemma 4.1. Let Π be the minimal representation of G. Then:

(i) ΠND,ψ3 = 0;

(ii) ΠND,ψ2
∼= C∞c (D1), as D1-modules;

(iii) if D is a division algebra, then ΠND,ψ1
∼= C, as D1-modules.

Proof. Let ωi ⊆ Ω be the set of all A ∈ Ω such that the restriction of ψA to ND is equal to ψi.
Because ψi is not the trivial character, the set ωi is (Zariski) closed in Ω. Hence,

ΠND,ψi
∼= C∞c (ωi).

It remains to determine each ωi. Let us start with i = 3. Then ω3 consists of all A ∈ Ω such that

A =

±1 x −z
−x ±1 y

z −y ±1

 ,

where x = (0, a), y = (0, b) and z = (0, c) for some a, b, c ∈ D. Since A ∈ Ω, we further have
A2 = tr(A)A. Looking at the off-diagonal terms, we get the equations

yx = ±z, zy = ±x and xz = ±y.

But the products yx, zy and xz have the second coordinate equal to 0. Hence z = x = y = 0.
But then A cannot be a rank-1 matrix. Hence ω3 is empty, and this proves (i).

For (ii) we see analogously that y = z = 0. Now A has rank 1 if and only if the first
2 × 2 minor is 0. This gives x2 = ±1. Writing this out, with x = (0, a) we see that λaā = ±1.
Hence ω2 is identified with the set of all elements in D with a fixed non-zero norm. This is a
principal homogeneous space for D1. This establishes (ii). In the last case it is easy to see that
x = y = z = 0. 2
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We now derive a consequence. Let Θ(1) be the maximal quotient of Π on which D1 acts
trivially; it is naturally a GD-module. Lemma 4.1 implies that

Θ(1)ND,ψ3 = 0 and Θ(1)ND,ψ2 = C.

Let ID(s) be the degenerate principal series representation of GD attached to PD normalized
as in [Wei03]. In particular, the trivial representation is a quotient for s = 5 and a submodule
for s = −5. The inclusion Π → I(−5) composed with the restriction of functions from G to GD
gives a non-zero D1-invariant map Π → ID(−1), which clearly factors through Θ(1). By [Wei03]
and [HS20], ID(−1) has a composition series of length 2. The unique irreducible submodule Σ
has ND-rank 2. We have the following corollary.

Corollary 4.2. The above construction gives a surjective GD-equivariant map

Θ(1) → Σ ⊂ ID(−1)

whose kernel has ND-rank no greater than 1. If D is a division algebra, then Θ(1) ∼= Σ.

Proof. It remains to prove the last statement. The spherical, rank-2 representation Σ is the
classical theta lift of the trivial representation of the quaternionic form of Sp(4) [Yam11]. Using
the theta correspondence, it is easy to check that ΣND,ψ1

∼= C. Thus, from Lemma 4.1(iii) it
follows that the kernel of the map Θ(1) → Σ has ND-rank 0, that is, ND acts trivially. Since D1

is compact, Θ(1) is a summand of the minimal representation. By the classical result of Howe
and Moore the minimal representation cannot contain non-zero vectors fixed by ND. Thus the
kernel is trivial. 2

4.2 Local lifts for split D
We shall strengthen here the result of Corollary 4.2 by showing that Θ(1) ∼= Σ even when D is
split, in which case G is also split.

Let T ⊂ G be a maximal split torus, so we have the associated root groups. Furthermore,
D1 ∼= SL2 and it is conjugated to a root SL2. Without loss of generality, we can assume that
SL2 corresponds to the highest root for some choice of positive roots. Let T1 = SL2 ∩ T . Then
the centralizer of T1 in G is a Levi subgroup L of semisimple type D6. The Levi subgroup L is
contained in two maximal parabolic subgroups: Q = LU and its opposite Q̄ = LŪ . The unipotent
radical U is a two-step unipotent group with the center U1 given by the root group corresponding
to the highest root. Similarly, the center of Ū is the root subgroup Ū1 corresponding to the lowest
root. These two root groups U1 and Ū1 generate SL2. We identify T1

∼= GL1 so that x ∈ GL1

acts on U/U1 as multiplication by x.
The conjugation action of L on U1 and Ū1 is given by a character and its inverse; this

character is given by x 7→ x2 when restricted to T1 ⊂ L. Hence GD is the kernel of this
character, which is the derived group of L. Since G is of adjoint type, GD acts faithfully on
U/U1 (a 32-dimensional spin representation). Note that the representation U/U1 is not WD, the
32-dimensional representation of G̃D, from § 2.3.

More precisely, recall that the center of Spin12 can be identified with µ2 × µ2 in such a way
that the outer automorphism exchanges the two µ2, and fixes the diagonal µ∆

2 . The quotient of
Spin12 by µ∆

2 is the special orthogonal group SO12. On the other hand, the quotient of Spin12

by µ2 = µ2 × {1} and that by µ′2 = {1} × µ2 are isomorphic (being isomorphic via the outer
automorphism). Then one has

GD ∼= Spin12/µ2 and L ∼= T1 ×µ2 GD ∼= GL1 ×µ′2 (Spin12/µ2),
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so that L has connected center. On the other hand, the group G̃D from § 2.3 is given by

G̃D ∼= GL1 ×µ2 Spin12.

As we mentioned in § 2.3, the action of G̃D on WD is not faithful.
We now need a result on the restriction of Π to the maximal parabolic subgroup Q = LU . By

[MS97, Theorem 6.1], the space of U1-coinvariants of Π, an L-module, sits in an exact sequence

0 → C∞c (ω) → ΠU1 → ΠU → 0,

where ω is the L-orbit of highest weight vectors in Ū/Ū1. The action of L on C∞c (ω) arises from
the natural action of L on ω twisted by an unramified character.

Let QD = LDUD be a maximal parabolic subgroup in GD stabilizing the line through a point
v ∈ ω. Note that the Levi factor LD of QD is also of type A5 (like that of PD). The action of
QD on the line gives a homomorphism χ : QD → GL1. Thus the stabilizer in GD × GL1 of v
consists of all pairs (g, x) such that g ∈ QD and χ(g) = x. Since GD ×GL1 acts transitively on
ω, it is easy to see that the following theorem holds.

Theorem 4.3. The normalized Jacquet functor ΠU1 , as a GD × GL1-module, has a two-step
filtration with the following quotient and submodule, respectively:
• ΠU = Π(GD) ⊗ | · |2 ⊕ | · |3, where Π(GD) is the minimal representation of GD, and | · | is

the absolute value character of GL1;
• IndGDQDC

∞
c (GL1), where C∞c (GL1) is the regular representation of GL1 (and the induction

is normalized).

Now we can prove the following result which strengthens Corollary 4.2 and which is needed
later.

Proposition 4.4. Assume that we are in the p-adic case with D split. Then Θ(1) is irreducible
and isomorphic to Σ, the representation of GD of ND-rank 2 that appears as the unique
irreducible quotient of ID(1).

Proof. Let π be an irreducible representation of SL2 and Θ(π) the corresponding big theta lift.
We first note that Θ(π) is always non-trivial, as a simple consequence of Lemma 4.1. Moreover,
Θ(π)ND,ψ2 is isomorphic to π∨, so that it is infinite-dimensional if and only if π is.

Let J(s) be the principal series for SL2 normalized so that the trivial representation is a
quotient for s = 1 and a submodule for s = −1. Likewise, let JD(s) denote the degenerate
principal series associated to QD, normalized so that the trivial representation occurs at JD(±5).

If −s 6= 2, 3, then Theorem 4.3 implies by way of the Frobenius reciprocity that

Hom(Θ(J(−s)),C) ∼= HomSL2(Π, J(−s)) ∼= Hom(JD(s),C)

as GD-modules. For generic s, both J(−s) and JD(s) are irreducible and the above identity
implies that

Θ(J(−s)) ∼= JD(s)

for such s. It follows from Lemma 4.1 that JD(s)ND,ψ2 is infinite-dimensional for such s. However,
since the restriction of JD(s) to ND is independent of s, it follows that JD(s)ND,ψ2 is in fact
infinite-dimensional for all s.
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Now if π is a submodule of J(−s) with −s 6= 2, 3, then it follows that

Hom(Θ(π),C) ∼= HomSL2(Π, π) ⊂ HomSL2(Π, J(−s)) ∼= Hom(JD(s),C),

so that Θ(π) is a quotient of JD(s). In particular, for π = 1 the trivial representation, we
may take s = 1 to deduce that Θ(1) is a quotient of JD(1). Since we know that Θ(1)ND,ψ2 is
one-dimensional whereas JD(1)ND,ψ2 is infinite-dimensional, we conclude that Θ(1) is isomorphic
to the unique irreducible quotient of JD(1) which has ND-rank 2. In particular, Θ(1) is irreducible
and isomorphic to Σ, the unique quotient of ID(1). 2

As a side remark, the representations JD(s) have UD-rank 3. However, since Π has ND-rank
2, it follows that the two parabolic subgroups PD and QD are not conjugate in GD. But the two
principal series ID(s) and JD(s) share all small-rank subquotients – the trivial representation,
the minimal representation and the rank-2 representation Σ – as the above argument shows.

5. Global lifting

Assume now that F is a global field, with its local completions denoted by Fv, and let A be the
ring of adèles over F .

5.1 Global theta lifting
Let Π = ⊗Πv be the restricted tensor product of minimal representations over all local places v
of F , where Πv ⊂ C∞(Ωv), as in Theorem 3.1. Every element in Π is a finite linear combination of
pure tensors f = ⊗fv, where fv = f◦v for almost all places v. There is a unique (up to a non-zero
scalar) embedding θ : Π → A(G(F )\G(A)) of Π into the space of automorphic functions of
uniform moderate growth.

We restrict θ(f) to the dual pair D1×GD and, for every h ∈ A(D1(F )\D1(A)), consider the
function Θ(f, h) on GD defined by

Θ(f, h)(gD) =

∫
D1(F )\D1(A)

θ(f)(gDg) · h̄(g) dg.

If this is to be of any use, we require the function θ(f)(gDg) · h̄(g) to be of rapid decay on
D1(F )\D1(A) and of moderate growth on GD(F )\GD(A). This condition is clearly satisfied if
D1 is anisotropic or if h is a cusp form. It is also satisfied for a regularized theta lift, to be
constructed in the next section. Namely, for any finite place v, we will construct an element
z in the Bernstein center of SL2(Fv), such that for any f ∈ Π, the function θ(z · f)(g1g) is of
rapid decay on D1(F )\D1(A) and of moderate growth on GD(F )\GD(A). (See Proposition 6.1,
and the discussion of this particular dual pair thereafter.) In particular, in all these cases, the
following integral is convergent:∫

ND(F )\ND(A)

∫
D1(F )\D1(A)

|θ(z · f)(ng) · h̄(g)| dg dn.

5.2 Fourier expansion
Let ψ : A/F → C× be a non-trivial character. Then any A ∈ J(F ) defines a character ψA of
N(F )\N(A) by ψA(B) = ψ(tr(A ◦B)) for all B ∈ N(A) ∼= J(A). For every ϕ ∈ A(G(F )\G(A)),
let

ϕA(g) =

∫
N(F )\N(A)

ϕ(ng) · ψA(n) dn
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be the Fourier coefficient corresponding to A. We have a Fourier expansion

θ(f)(g) = θ(f)0(g) +
∑

A∈Ω(F )

θ(f)A(g).

By uniqueness of local functionals (Theorem 3.1), for every A ∈ Ω(F ) there exists a non-zero
scalar cA such that

θ(f)A(g) = cA
∏
v

(gv · fv)(A).

This formula is particularly useful if gv ∈M(Fv), for then (gv · fv)(A) = χv(gv) · fv(g−1
v ·A) for

the character χv of M(Fv).
Let ψ2 and ψ3 be the rank-2 and rank-3 characters of ND(A), as in the local case. Recall

that x ∈ O is a pair x = (y, z) of elements in D, and N(x) = N(y) − λN(z) for some λ ∈ F×.
Let ϕND,ψi denote the global Fourier coefficient with respect to these two characters. Let ω2(F )
be the set of all rank-1 matrices ±1 x 0

−x ±1 0

0 0 0

 ∈ J(F )

such that x = (0, a) and λN(a) = ±1 (for only one choice of sign, depending on ψ2), that is, the
2× 2 minor is 0. Then we have a global version of Lemma 4.1.

Lemma 5.1. For every f ∈ Π, θ(f)ND,ψ3 = 0 and

θ(f)ND,ψ2(g) =
∑

B∈ω2(F )

θ(f)B(g).

5.3 Non-vanishing of the theta lift
We shall prove non-vanishing of the (regularized) theta lift by computing the Fourier coefficient

Θ(f, h)ND,ψ2(1) =

∫
ND(F )\ND(A)

∫
D1(F )\D1(A)

θ(f)(ng) · h̄(g) · ψ̄2(n) dg dn.

Since this integral is absolutely convergent, we can reverse the order of integration. Then, using
Lemma 5.1, we obtain

Θ(f, h)ND,ψ2(1) =

∫
D1(F )\D1(A)

∑
B∈ω2(F )

θ(f)B(g) · h̄(g) dg.

Lemma 5.2. Fix

A =

±1 x 0

−x ±1 0

0 0 0

 ∈ ω2(F ),

where x = (0, a), a ∈ D satisfies λN(a) = ±1.
For every automorphic form h and every f ∈ Π we have∫

D1(F )\D1(A)

∑
B∈ω2(F )

θ(f)B(g)h̄(g) dg = cA

∫
D1(A)

f(g−1A)h̄(g) dg,

where the second integral is absolutely convergent.
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Proof. Since ω2(F ) is a principal homogeneous D1(F )-space, the identity formally follows by
unfolding the left-hand side and using the formula for θ(f)A(g) as a product of local functionals
given above. Hence it remains to discuss the issue of absolute convergence.

We may assume that f =
⊗

v fv is a pure tensor. For each place v, observe that if g ∈ SL2(Fv),
then g−1A is obtained from A by replacing x by xg. Hence, g 7→ g−1A gives a closed embedding
of SL2(Fv) into J(Fv), with image contained in Ωv. In particular, this image is bounded away
from the vertex 0 of the cone Ωv. Since h is of moderate growth on SL2(Fv), to show that the
integral in question is absolutely convergent, we need to show that g 7→ fv(g

−1A) is a Schwartz
function on SL2(Fv). For this, it suffices to show that as a function on the cone Ωv, fv is rapidly
decreasing toward infinity, as we shall explain below.

In greater detail, assume first that v is a finite place. Due to Nv-smoothness, fv ∈ Πv is
supported on a lattice in Jv (and thus vanishes toward infinity). It follows that g 7→ fv(g

−1A)
is a compactly supported function on SL2(Fv). Moreover, let S be a finite set of places containing
all archimedean places such that for v /∈ S, all data is unramified: D(Fv) is split, λ ∈ O×v ,
a ∈ GL2(Ov), ψv has the conductor Ov, fv = f◦v , and h is right SL2(Ov)-invariant. Here Ov is the
maximal order in Fv. It follows from Theorem 3.2 that g 7→ f◦v (g−1A) is the characteristic function
of SL2(Ov) for all v /∈ S. Thus if we normalize the local measures so that vol(SL2(Ov)) = 1 for
all v /∈ S, then ∫

D1(A)
|f(g−1A)h̄(g)| dg =

∫
D1(AS)

|fS(g−1A)h̄(g)| dg,

where the subscript S denotes the product of the local data over all places v ∈ S.
Consider now the case where v is a real place. We need to show that C 7→ fv(C) is of rapid

decay in ‖C‖, where C ∈ Ω(R). To that end, let mv ∈ M(R) such that C = m−1
v · A. Then, up

to a non-zero constant c, independent of C,

fv(C) = c · χv(mv)
−1 · θ(f)A(mv)

for the character χv of M(R). Now observe that mv can be taken to be a product of an element
kv in a maximal compact subgroup of M(R) and an element zv in Zv, the identity component
of the center of M(R). We fix an isomorphism ν : Zv → R+ such that the conjugation action of
zv ∈ Zv on N(R) is given by multiplication by ν(zv). Now, in order to prove that fv is rapidly
decreasing toward infinity, we shall give a global argument exploiting the automorphic form θ(f)
(though a local proof is also possible). Namely, it suffices to show that zv 7→ θ(f)A(zvkv) is
rapidly decreasing as ν(zv) →∞, with bounds independent of kv. This can be proved using the
usual method of integration by parts, as in [MW95, p. 30, Lemma].

More precisely, if X ∈ J ∼= n, then the X-derivative of the character ψA is a multiple of ψA.
Using the definition of the Fourier coefficient and integration by parts, one obtains that

θ(f)A(zvkv) is a multiple of (RY · θ(f))A(zvkv) · ν(zv)
−1,

where Y = k−1
v Xkv and RY denotes the right Y -derivative of the automorphic form θ(f). We can

repeat this procedure to get any negative power of ν(zv). The rapid decay follows from the fact
that θ(f) is of uniform moderate growth, and the fact that Y = k−1

v Xkv is a linear combination
of vectors in any fixed basis of n, with bounded coefficients, as kv runs over the maximal compact
subgroup in M(R).

Finally, suppose that g ∈ SL2(R) belongs to the double coset of the diagonal matrix
(t 0

0 1/t

)
,

t > 0, in the Cartan decomposition of SL2(R). If we assume for simplicity that λ = 1, so that a
in x = (0, a) can be taken to be the identity matrix, then ‖xg‖2 = t2 + 1/t2 (on the nose) and
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‖g−1A‖ = t + 1/t. In particular, t < ‖g−1A‖ < t + 1 for t > 1. Hence, the rapid decay toward
infinity of fv (as a function on Ωv) implies that g 7→ fv(g

−1A) has rapid decay on SL2(R), as
desired. 2

We are now ready to prove the non-vanishing of the global theta lift. Assume firstly that h
is a cusp form. Then we have shown that

Θ(f, h)ND,ψ2(1) =

∫
D1(AS)

fS(g−1A)h̄(g) dg

for some large finite set of places. Since for every v ∈ S the local fv can be an arbitrary
compactly supported smooth function on Ωv, the integral will not vanish for some choice of
data. Now consider the regularized theta integral Θ(z · f, h), where h is in an automorphic form,
not necessarily cuspidal, and z is an element of the Bernstein center of SL2(Fv) for a particular
fixed finite place v (see the next section for the construction of z). The corresponding Fourier
coefficient is

Θ(z · f, h)ND,ψ2(1) =

∫
D1(A)

(z · f)(g−1A)h̄(g) dg.

Let Kv be a sufficiently small open compact subgroup of SL2(Fv) such that fv is Kv-invariant.
Then z · fv = α · fv, where α is a Kv bi-invariant, compactly supported function on SL2(Fv). Let
α∨(g) = ᾱ(g−1) and define z∨ · h = α∨ · h. Using the convergence guaranteed by Lemma 5.2,∫

D1(A)
(z · f)(g−1A)h̄(g) dg =

∫
D1(A)

f(g−1A)(z∨ · h)(g) dg,

and this can again be arranged to be non-zero, provided z∨ · h 6= 0. Hence we have proved the
following theorem.

Theorem 5.3. If h is a non-zero cusp form on D1(A), then Θ(f, h) 6= 0 for some f ∈ Π. If h is
a (not necessarily cuspidal) automorphic form such that z∨ · h 6= 0, then Θ(z · f, h) 6= 0 for some
f ∈ Π.

Remark. The main reason for introduction of the regularized theta lift is to be able to handle
the lift of h = 1 in the case where D is split. In this case we can take all data to be the
simplest possible: λ = 1, the matrix A with a = (0, x) with x the identity matrix, etc. Then
the non-vanishing of the theta lift is achieved with the spherical vector f◦∞ at any real place.

Indeed, if g ∈ SL2(R) belongs to the double coset of the diagonal matrix
(t 0

0 1/t

)
, with t > 0,

in the Cartan decomposition of SL2(R), then ‖xg‖2 = t2 + 1/t2 and ‖g−1A‖ = t + 1/t. Write
u = t+ 1/t so that

du =

(
t− 1

t

)
dt

t
.

Using the formula for the spherical vector given by Theorem 3.3 and the formula for the Haar
measure on SL2(R) with respect to the Cartan decomposition, we have∫

SL2(R)
f◦∞(g−1A) dg =

∫ ∞
2

1

2
· u−1/2K3/2(u) du > 0.

It will be interesting to compute the value of this integral.
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6. Regularizing Theta

Following some ideas of Kudla and Rallis [KR94], the first author introduced in [Gan11] a
regularized theta integral for a particular exceptional dual pair. We simplify the arguments so
that regularization is now available for a wider class of examples. The notations used in this
largely self-contained section will differ from those of the other sections of this paper. We first
recall some basic facts about the notions of uniform moderate growth and rapid decay.

6.1 Moderate growth and rapid decay
Let k be a number field and let A denote the corresponding ring of adèles. Let G be a reductive
group over k. In order to keep the notation simple, we shall assume that G is split with a finite
center. Fix a maximal split torus T and a minimal parabolic subgroup P containing T . Let N
be the unipotent radical of P . We have a root system Φ, obtained by T acting on the Lie algebra
g of G and a set of simple roots in Φ corresponding to the choice of P .

If we fix a place v of k, then Gv will denote the group of kv-points of G. Similarly, we shall
use the subscript v to denote various other subgroups of Gv. A smooth function f on G(A) is of
uniform moderate growth if there exists an integer m such that for every X in the enveloping
algebra of g there exists a constant cX such that

|RXf(g)| 6 cX‖g‖m,

where RX denotes the action of the enveloping algebra on smooth functions obtained by the
differentiation from the right and ‖g‖ is a height function on G defined in [MW95, p. 20]. Since
there exists a constant c such that ‖gh‖ 6 c‖g‖ · ‖h‖ for all g, h ∈ G(A), it is easy to see that the
constants cX for the right translates Rhf of f are of moderate growth in h, or more precisely of
growth ‖h‖m+d where d is the degree of X.

Now assume that v is a real or complex place of k. Let Pv = MvAvNv be the Langlands
decomposition of Pv. For ε > 0, let Av,ε be a cone in Av consisting of a ∈ Av such that α(a) > ε
for all simple roots α. Let A be the product of the Av and let Aε be the product of the Av,ε over
all real and complex places v. Let ωN be a compact set in N(A) containing the identity element.
Let K be a product of maximal compact subgroups Kv of Gv, where we have taken Kv to be
hyperspecial for all p-adic places. Then

S = ωNAεK

is a Siegel domain in G(A). If ωN is sufficiently large and ε is sufficiently small, then G(A) =
G(k)S.

Let Π be an automorphic representation of G. Then any smooth f ∈ Π is of uniform moderate
growth. In terms of the Siegel domain S, this means the following. Let ρP : A → R+ be the
modular character. There exists an integer m such that for every X in the enveloping algebra of
g, there exists a constant cX such that

|RXf(nak)| 6 cX · ρP (a)m

on S, where the constants m and cX are not necessarily the same, but related to those above.
Now let Q ⊇ P be a maximal parabolic with a unipotent radical U ⊆ N , corresponding to a

simple root α. We have a standard Levi factor L of Q defined as the centralizer of a fundamental
cocharacter χ : Gm → T (or a power of it). In any case, any element in Av is uniquely written as
a product

∏
χ χ(tχ), over all fundamental cocharacters χ, where tχ ∈ R+. The element

∏
χ χ(tχ)
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is contained in the cone Av,ε if tχ > ε for all χ. Let fU be the constant term of f along U . Then,
if f has uniform moderate growth, by [MW95, p. 30, Lemma] for every positive integer i, there
is a constant ci such that

|(f − fU )(nak)| 6 ci · ρP (a)m · α−i(a)

on S. In particular, if fU = 0, then f is rapidly decreasing in the variable tχ. If fU = 0 for
all maximal parabolic subgroups, then f is rapidly decreasing on S, and that is how the rapid
decrease of cusp forms is established. The proof of [MW95, p. 30, Lemma] involves integration by
parts, so it is easy to see that the constants ci for the right translates Rhf of f are of moderate
growth in h, or more precisely of the growth ‖h‖m′

where m′ depends on i: a larger i will demand
a larger m′.

We highlight another important issue here. Assume that f belongs to an automorphic
representation π. Then a Frechét space topology on π is given by the family of seminorms

‖f‖X = sup
nak∈S

|RXf(nak)| · ρP (a)−m,

where m depends on π and works for all X in the enveloping algebra. Then [MW95, p. 30,
Lemma] says that convergence in these seminorms implies convergence in the seminorm

sup
nak∈S

|(f − fU )(nak)| · ρP (a)−m · αi(a).

This observation will later imply that the regularized theta integral gives a continuous pairing.

6.2 Restricting to a subgroup
Let (G1, G2) be a dual pair in G. Let T1 be a maximal split torus in G1 and fix a minimal
parabolic subgroup P1 containing T1. Without loss of generality, we can assume that T1 ⊆ T
and P1 ⊆ P . Let Q1 ⊇ P1 be a maximal parabolic subgroup of G1. Let χ1 : Gm → T1 be the
corresponding fundamental cocharacter (or a multiple thereof) so that the centralizer of χ1 in
G1 is a Levi factor L1 of Q1. We make the following assumption.

Hypothesis. For every fundamental cocharacter χ1 of G1, there is a fundamental cocharacter
χ of G such that χ1 is a multiple of χ.

This hypothesis holds in the following examples:
• the dual pair G1 × G2 = D1 × GD = SL2 × GD studied in this paper. Here G1 = SL2

corresponds to the highest root and the highest weight is also a fundamental weight for E7

(the ambient group G).
• the split exceptional dual pairs in G of type En where one member of the dual pair is the

type G2; see [LS19]. In particular, this includes the case PGL3 ×G2 treated in [Gan11].
The hypothesis has the following consequences.
• It implies that the cone A1,ε sits as a subcone of Aε; in fact, it is a direct factor in the above

cases. In particular, we have an inclusion of Siegel domains S1 ⊂ S.
• Given a fundamental cocharacter χ1 of G1, the associated fundamental cocharacter χ of G

given by the hypothesis corresponds to a simple root and so determines a maximal parabolic
subgroup Qχ1 = Lχ1Uχ1 of G. In the following, we will sometimes write U = Uχ1 to simplify
notation.
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Now let v be a p-adic place and z an element of the Bernstein center of G1(kv). Then z · Π
is naturally a G1(A)×G2(A)-submodule of Π. For a fixed cocharacter χ1 of G1, with associated
maximal parabolic Q = LU of G, assume that

z ·Πv ⊂ Ker(Πv −→ (Πv)U(kv)).

We claim that this implies that (z · f)U = 0 on G1(A) × G2(A). Indeed, if g ∈ G1(A) × G2(A),
then

(z · f)U (g) = (Rg(z · f))U (1) = (z ·Rg(f))U (1) = 0,

where Rg denotes the right translation by g. Here, the second equality holds since z and Rg
commute, and the third equality holds since the projection of z · Π on ΠU vanishes. Write
g = g1 × g2 ∈ G1(A) × G2(A) and assume that g1 ∈ S1. Using the hypothesis that S1 ⊆ S and
the estimates for |Rg2(z · f)− (Rg2(z · f))U | on S from the last subsection, it follows that

(z · f)(g1 × g2) = Rg2(z · f)(g1)

is of moderate growth in both variables, and in the variable g1 ∈ S1 it is rapidly decreasing in the
direction of the fundamental cocharacter χ1. More precisely, we summarize the discussion in this
subsection in the following proposition.

Proposition 6.1. Assume that:

(i) for every fundamental cocharacter χ1 of G1, there is a fundamental cocharacter χ of G
such that χ1 is a multiple of χ, which in turn determines a maximal parabolic subgroup
Qχ1 = Lχ1Uχ1 ;

(ii) one can find an element z in the Bernstein center of G1(kv) such that for every fundamental
cocharacter χ1 of G1, the natural projection of Πv to (Πv)Uχ1 (kv) vanishes on z ·Πv.

Then for every integer n, there exist an integer m and a constant c such that

|(z · f)(g1 × g2)| 6 c‖g1‖−n‖g2‖m

for all g1 ∈ S1 and g2 ∈ G2(A).

In the context of the above proposition, a small tradeoff here is that increasing n can be
obtained only by increasing m at the same time. But this is still good enough to define a
regularized theta lift which produces functions of moderate growth as output. To exploit the
proposition, it remains then to construct an appropriate z. We also need to ensure that z ·Πv 6= 0,
and this may not be always possible, as will be discussed in the next subsection.

6.3 Bernstein’s center
We work here locally over a p-adic field. Thus all our groups are local and we drop the subscript v.
For simplicity, we shall discuss only the Bernstein center for the Bernstein component containing
the trivial representation of G1.

To that end, let T̂1 be the complex torus dual to T1, and let W (G1) be the Weyl group of
G1. The Bernstein center Z(G1) of the said component is isomorphic to the algebra of W (G1)-
invariant regular functions on T̂1. Similarly, the Bernstein center Z(L1) of the Levi factor L1 is
isomorphic to the algebra of W (L1)-invariant regular functions on T̂1. In particular, we have a
natural map j : Z(G1) → Z(L1). Let π be a smooth representation of G1, and let p : π → πU1
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be the natural projection onto the normalized Jacquet module πU1 . Then, for every z ∈ Z(G1)
and v ∈ π, we have

p(z · v) = j(z) · (p(v)).

Now let Π be a smooth representation of G. Recall that we want to find a non-zero z ∈ Z(G1)
such that z · Π is in the kernel of the projection of Π onto ΠU . Since ΠU is an L1-equivariant
quotient of ΠU1 , j(z) ∈ Z(L1) acts on ΠU and hence we need to find z ∈ Z(G1) such that j(z) = 0
on ΠU . This is always possible if Π is a finite-length G-module, in which case ΠU is a finite-length
L-module. In particular, the center of L acts finitely on ΠU . Hence, the center of L1 (= the center
of L) acts finitely on ΠU and the Z(L1)-spectrum of ΠU is contained in a proper subvariety of
T̂1. In particular, any non-zero W (G1)-invariant function z vanishing on the subvariety will have
the desired property that j(z) vanishes on ΠU . Hence, a non-trivial z with the desired property
always exists.

A potential problem is that such a z may kill the whole Π. However, if G is split, G1 is
the smaller member of the dual pair (also split) and Π the minimal representation, then the
spherical matrix coefficient Φ of Π, when restricted to G1, is typically contained in L2−ε(G1) for
some ε > 0. (This is easy to check in any given situation; see [LS19]). Thus, in such situations,
it makes sense to integrate Φ against spherical tempered functions of G1, that is, to consider
the spherical transform of Φ on G1(kv). This integral will be non-zero for almost all tempered
spherical functions, hence almost all spherical tempered representations of G1(kv) will appear as
a quotient of Π. (This argument for the non-vanishing of the theta lift of almost all irreducible
spherical tempered representations holds over archimedean fields as well, as we shall exploit in
Lemma 7.6 below.) Hence, if z kills Π, then z kills all spherical tempered representations of
G1(kv) and hence z must be equal to 0. Therefore the desired regularization can be carried out
in this case.

Let us look at our dual pair G1 ×G2 = SL2 ×GD in G with Π the minimal representation.
The Bernstein center is

Z(G1) = C[x±1]S2 ,

where S2 acts by permuting x and x−1. Let

z = (x− q2)(x−1 − q2)(x− q3)(x−1 − q3),

where q is the order of the residual field. This element satisfies our requirement, since j(z)
vanishes on ΠU by Theorem 4.3, and the spherical matrix coefficient of Π is integrable when
restricted to SL2.

6.4 Global Θ(1)
Let z be the element in the Bernstein center of G1 = SL2, as in the previous subsection. We
define Θ(1) as the space of automorphic functions

Θ(f)(gD) =

∫
D1(F )\D1(A)

θ(z · f)(gDg) dg with gD ∈ GD(A),

where we assume that f∞ is K∞-finite. (We assume this finiteness since in the next section
we will determine the local lift at real places in the language of (g,K)-modules.) We want to
show that Θ(1) 6= 0, using Theorem 5.3. The input in the theta kernel is h = 1, so the first
thing is to show that z∨ · 1 6= 0. In the case at hand, z∨ is obtained from z by replacing x
by x−1 in the above expression for z. In particular, z = z∨. Moreover, z acts on the trivial
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representation by the scalar obtained by substituting x = q, and this is non-zero. It remains to
argue that we can arrange f∞ to be K∞-finite. This follows by the continuity of the regularized
theta integral, which ensures that the non-vanishing for smooth f implies the non-vanishing for
K∞-finite vectors. Alternatively, by the remark following Theorem 5.3, non-vanishing can be
achieved with f∞ = f◦∞ the spherical vector.

7. Correspondence for real groups

In this section we work over the field R of real numbers. The goal of this section is to determine
Θ(1) explicitly. As in the p-adic case, the inclusion of the minimal representation Π ↪→ I(−5)
composed with the restriction of functions from G to GD gives a natural non-zero GD-equivariant
map Θ(1) −→ ID(−1). We shall show that this natural map is injective and identify its image
as an irreducible submodule of ID(−1).

To determine Θ(1) in the archimedean setting, we need to consider various cases separately.
Indeed, recall that the adjoint group G arises from an Albert algebra via the Koecher–Tits
construction. There are two real forms of octonion algebra, the classical Graves algebra and its
split form, and these two algebras can be used to define two Albert algebras of 3× 3 hermitian
symmetric matrices with coefficients in the octonion algebra. The group G is split or of the
relative rank 3, depending on whether the octonion algebra is split or not (in the p-adic case, G
is always split since an octonion algebra is necessarily split).

We shall study the theta correspondence for real groups in the category of (g,K)-modules,
so that examination of K-types plays a key role. Because of this, it will be convenient to work
with the simply connected form G′ of G rather than the adjoint form, for the maximal compact
subgroup K ′ of G′ is then connected (whereas that of G is not) and its irreducible representations
are classified by highest weights. The inclusion D1 ↪→ G lifts naturally to D1 ↪→ G′ (since D1

is simply connected as an algebraic group) and its centralizer in G′ is the simply connected
cover G′D of GD. In particular, G′D is isomorphic to Spin12 over C and we have a dual pair
D1 ×G′D −→ G′.

Observe that the Lie group GD (i.e. the Lie group GD(R)) has two topological connected
components and G′D is a 2-fold cover of the identity component of GD. The maximal compact
subgroup KD has two connected components meeting the connected components of GD. Hence
there is a natural bijection between irreducible spherical representation of GD and G′D, via the
pullback by the natural mapG′D −→GD. We shall use this observation to prove, for example, that
when G is split, Θ(1) is an irreducible, spherical (gD,KD)-module by computing its K ′D-types.

7.1 Non-split O
Assume firstly that O and hence G is not split. Then the minimal representation of the adjoint
group G, when restricted to the simply connected G′, breaks up as Π = Π1,0 ⊕ Π0,1, a sum of
a holomorphic and an anti-holomorphic irreducible representation. This sum is the socle of the
degenerate principal series I(−5) (pulled back to G′). The maximal compact subgroup K ′ is of
semisimple type E6, and has one-dimensional center U(1) that acts on the Lie algebra g with
weights −2, 0 and 2. The weight-2 space is a 27-dimensional representation of K ′. Let ω be its
highest weight. Then

Π1,0 =
⊕
n>0

Vnω(12),

where 12 denotes a twist of the irreducible K ′-module Vnω such that U(1) acts with the weight
2n+ 12 on it.
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In this case, D is necessarily non-split. Recalling that G′D is the simply connected cover of
GD, its maximal compact subgroup is K ′D

∼= U6. The socle of ID(−1), considered a representation
of G′D, is a direct sum of three representations Σ2,0 ⊕ Σ1,1 ⊕ Σ0,2, a holomorphic, spherical and
anti-holomorphic representation. respectively [Sah93, Theorem C]. The lowest and the highest
K ′D-types of Σ2,0 and Σ0,2 are one-dimensional with U(1)-weights 12 and −12, respectively. We
have the following theorem.

Theorem 7.1. If O is non-split (so G is not split), we have

ΠD1

1,0
∼= Σ2,0 and ΠD1

0,1
∼= Σ0,2

as (gD,K
′
D)-modules. In particular, Θ(1) ∼= Σ2,0 ⊕ Σ0,2 as (gD,KD)-modules.

Proof. Since Π1,0 is unitarizable and U(1)-admissible, its restriction to gD is a direct sum of
irreducible lowest weight representations. The minimal type of Π1,0 generates an irreducible
lowest weight (gD,K

′
D)-module, with the minimal U6-type det2 (i.e. U(1)-weight 12). Thus

Σ2,0 ⊆ ΠD1

1,0 . The infinitesimal character of Σ2,0 is (3, 2, 1, 0,−1,−2), in terms of the standard

realization of the D6 root system. If the inclusion Σ2,0 ⊆ ΠD1

1,0 is strict, then ΠD1

1,0 contains
another lowest weight representation with the same infinitesimal character. There is precisely
one other irreducible lowest weight (gD,K

′
D)-module with this infinitesimal character, with the

minimal U6-type det3 (i.e. U(1)-weight 18). Thus the number of irreducible summands in ΠD1

1.0

is bounded by the dimension of SU6 ×D1-invariants in Π1,0. By the Cartan–Helgason theorem,
a finite-dimensional irreducible representation of E6 has a line fixed by A5 ×A1 if and only if it
is self-dual. It follows that the space of SU6×D1-invariants in Π1,0 is one-dimensional, with the
only contribution coming from the trivial type. This proves the theorem. 2

7.2 Split O but non-split D
We move on to the case where O and hence G is split. Let K ′ be a maximal compact subgroup of
G′ (the simply connected form of G), and g = k⊕ p the corresponding Cartan decomposition of
the complexification of the Lie algebra of G. Then k is isomorphic to sl8. Fixing this isomorphism,
we see that as a K ′ ∼= SU8/µ2-module, p is isomorphic to Vω4 , where ω4 is the fourth fundamental
weight. The minimal representation Π remains irreducible when pulled back to G′ and is a direct
sum of K ′-types Vnω4 , where n = 0, 1, 2, . . . .

We have two cases depending on D. Assume in this subsection that D is a division algebra.
In this case D1 ∼= SU2 is compact, and embeds into SU8 as a 2×2 block. The centralizer of SU2 in
K ′ = SU8/µ2 is K ′D

∼= U6. The minimal representation Π decomposes discretely when restricted
to this dual pair. A simple application of the Gelfand–Zetlin rule shows that the K ′D-types of
Θ(1) are multiplicity-free and the highest weights of the K ′D-types which occur are

(x, x, 0, 0, y, y),

where x > 0 > y are any two integers. Here we are using the standard description of highest
weights for U6 by sextuples of non-increasing integers. But these are precisely the K ′D-types of
the spherical submodule of ID(−1), that is, the G′D-constituent Σ1,1 in [Sah93, Theorem C].
In view of the natural non-zero GD-equivariant map Θ(1) → ID(−1), this proves the following
theorem.

Theorem 7.2. When O is split but D is non-split, one has

Θ(1) = ΠD1 ∼= Σ1,1

as (gD,KD)-modules.
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7.3 Split O and split D
This is the most involved case. Let (e, h, f) be an sl2-triple spanning the complexified Lie algebra
of D1 = SL2. After conjugating by G′, if necessary, we can assume that the triple is stable under
the Cartan involution. Then e ∈ p is a highest weight vector for the action of K ′, and h ∈ k. Let
Θ(1) be the maximal quotient of the (g,K ′)-module of the minimal representation such that the
sl2 triple acts trivially.

Theorem 7.3. As a (gD,KD)-module, Θ(1) is irreducible and isomorphic to the unique
irreducible submodule Σ of ID(−1), which is a spherical representation.

The proof of this result will take up the rest of this section. After conjugating by K ′, if
necessary, we can assume that

h =
1

2



1

1

1

1

−1

−1

−1

−1


∈ sl8.

Then G′D is the centralizer of the sl2-triple in G′ and is isomorphic to Spin(6, 6) as an algebraic
group. Let gD = kD⊕pD be the corresponding Cartan decomposition. Then kD ∼= sl4⊕sl4 sitting
block diagonally in sl8. The centralizer of h in SU8/µ2 is

K ′D = SU4 × SU4/∆µ2.

Let Π be the (g,K ′)-module corresponding to the minimal representation of G. Then, as a
K ′-module,

Π =
⊕
n>0

Vnω4 .

We shall also need the following facts about the action of e on Π. From the formula for the tensor
product Vω4 ⊗ Vnω4 it follows that

e · Vnω4 ⊆ V(n−1)ω4
⊕ V(n+1)ω4

.

Since Π is not a highest weight module, by [Vog81, Lemma 3.4], e is injective on Π. The same
results hold for f .

Let π be an irreducible sl2-module such that h acts semisimply and integrally. Let Θ(π) be
the big theta lift of π; it is a (gD,K

′
D)-module. We shall now partially determine the structure

of K ′D-types of Θ(π). In order to state the result, we need some additional notation. A highest
weight µ for SU4 is represented by a quadruple (x, y, z, u) of integers, such that x > y > z > u,
and it is determined by the triple

α = x− y, β = y − z, γ = z − u

of non-negative integers.
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Proposition 7.4. Let V ⊗ U be a K ′D
∼= SU4 × SU4/∆µ2-type of Θ(π). Then U ∼= V ∗, the

dual representation of V , and the multiplicity of V ⊗V ∗ in Θ(π) is at most 1. If π = 1, the trivial
representation, and µ is the highest weight of V , then α = γ.

Proof. We need the following lemma which can be easily deduced from the Gelfand–Zetlin
branching rule.

Lemma 7.5. The restriction of Vnω4 to sl4 ⊕ sl4 ⊕ Ch is multiplicity-free and given by

Vnω4 =
⊕

n>x>y>z>u>0

Vµ ⊗ V ∗µ ⊗ C(m),

where µ is represented by the quadruple (x, y, z, u) and h acts on C(m) by the integer m =
x+ y + z + u− 2n.

It follows from the lemma that the only K ′D-types appearing in the restriction of Π are
isomorphic to V ⊗ V ∗, as claimed. In order to prove multiplicity 1 of K ′D-types in Θ(π), we
proceed as follows.

Let m be an integer appearing as an h-type in π. Let Ω be the Casimir element for sl2 and
let χ : C[Ω] → C be the central character of π. Let Π(µ,m) be the maximal subspace of Π such
that h acts as the integer m and sl4⊕sl4 as a multiple of Vµ⊗V ∗µ . Note that Π(µ,m) is naturally
a C[Ω]-module, and it suffices to show that the maximal quotient of Π(µ,m) such that C[Ω] acts
on it by χ is isomorphic to Vµ ⊗ V ∗µ as an sl4 ⊕ sl4-module. We have a canonical isomorphism

Π(µ,m) ∼= (Vµ ⊗ V ∗µ )⊗Homsl4⊕sl4(Vµ ⊗ V ∗µ ,Π(m)),

and C[Ω] acts on

Homsl4⊕sl4(Vµ ⊗ V ∗µ ,Π(m)) =
⊕
n>0

Homsl4⊕sl4(Vµ ⊗ V ∗µ , Vnω4(m)).

Now notice that, given µ and m, Homsl4⊕sl4(Vµ ⊗ V ∗µ , Vnω4(m)) 6= 0 for only one parity of n.
Furthermore, if this space is non-zero for some n, then it is non-zero for n + 2, as µ is also
represented by (x+ 1, y + 1, z + 1, u+ 1) and

m = x+ y + z + u− 2n = x+ 1 + y + 1 + z + 1 + u+ 1− 2(n+ 2).

Let n0 be the first integer such that Homsl4⊕sl4(Vµ⊗V ∗µ , Vn0ω4(m)) 6= 0 and let T0 be a generator
of this one-dimensional space. We then have a natural map

A : C[Ω] · T0 → Homsl4⊕sl4(Vµ ⊗ V ∗µ ,Π(m)).

Lemma 7.6. The map A is an isomorphism.

Proof. Let i be a non-negative integer. Let C[Ω]i be the space of polynomials of degree less than
or equal to i, and let

Homsl4⊕sl4(Vµ ⊗ V ∗µ ,Π(m))i =
i⊕

j=0

Homsl4⊕sl4(Vµ ⊗ V ∗µ , V(n0+2j)ω4
(m)).
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These two spaces have dimension i+1 and define filtrations of C[Ω] and Homsl4⊕sl4(Vµ⊗V ∗µ ,Π(m))
as i increases. Since Ω has degree 2, as an element of the enveloping algebra of g, the map A
preserves the two filtrations. Thus, in order to prove the claim, it suffices to show that A is
injective.

But if it is not, then there would be a polynomial p(Ω) acting trivially on Vµ⊗V ∗µ ⊆ Vn0ω4(m).
Under the action of sl2, this subspace would generate a finite-length representation F0 ⊂ Π of
sl2. Let U(g) be the enveloping algebra of g, and let Un(g) ⊂ U(g) be the Poincaré–Birkhoff–
Witt filtration. We have Π = U(g) · F0, since Π is irreducible g-module. Hence Π is a union of
Fn = Un(g) · F0. Now observe that each Fn is a finite-length sl2-module. Hence there could be
only countably many irreducible sl2-modules appearing as quotients of Π. But this contradicts
the fact that almost all spherical tempered representations of sl2 are quotients, as discussed
in § 6.3. The lemma is proved. 2

Lemma 7.6 implies that
Π(µ,m) ∼= (Vµ ⊗ V ∗µ )⊗ C[Ω]

as C[Ω]-modules. Hence, if we fix a character χ of C[Ω], the maximal quotient of Π(µ,m) such that
C[Ω] acts by χ is isomorphic to Vµ ⊗ V ∗µ . This proves that Θ(π) has multiplicity-free K ′D-types.

Finally, we proceed to narrow down the K ′D-types appearing in Θ(1). For every µ, the action
of e on Π gives an injective map

e : Π(µ,−2) → Π(µ, 0).

Lemma 7.7. If e : Π(µ,−2) → Π(µ, 0) is bijective, then Vµ ⊗ V ∗µ is not a K ′D-type of Θ(1).

Proof. The image of e is necessarily contained in the kernel of the natural surjective map
Π(µ, 0) → Θ(1)(µ). Hence the lemma follows. 2

Consider the filtration Π(µ,m)i =
⊕

n6i Vnω4(µ,m) of Π(µ,m). Then we have an injective
map

e : Π(µ,−2)i → Π(µ, 0)i+1

for all i. Hence, if the dimensions of the two spaces are equal for all i, then e is bijective. This
will happen precisely when Vµ ⊗ V ∗µ occurs in Vnω4(−2) but not in V(n−1)ω4

(0), for some n. The
occurrence in Vnω4(−2) implies that there exists a unique quadruple (x, y, z, u) representing µ
such that

n > x > y > z > u > 0 and x+ y + z + u− 2n = −2.

Then Vµ ⊗ V ∗µ occurs in V(n−1)ω4
(0) if and only if

n− 1 > x > y > z > u > 0,

that is, n > x. Thus, if n = x, then Vµ ⊗ V ∗µ does not appear in Θ(1).
Let us see what this means in terms of α, β and γ. We have to find n such that µ is represented

by
(x, y, z, u) = (n, n− α, n− α− β, n− α− β − γ).

Since the last entry must be non-negative, we have n > α + β + γ. On the other hand, h has
to act as −2, hence x + y + z + u − 2n = −2, and this is equivalent to 2n = 3α + 2β + γ − 2.
Combining with the previous inequality, we obtain α > γ + 2. Hence the types with µ such that
α > γ + 2 do not appear in Θ(1). Replacing the role of e with f , a similar argument shows that
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the types such that γ > α+ 2 do not appear either. Hence |α− γ| 6 1 for all types that appear
in Θ(1). Since α ≡ γ (mod 2) for any type in Π(0), α = γ for all types that appear in Θ(1). This
completes the proof of Proposition 7.4. 2

The K ′D-types of Θ(1), as described in Proposition 7.4, are the same as the K ′D-types of
the irreducible spherical rank-2 submodule in ID(−1) by [Sah95, Theorem 4B]. In view of the
natural non-zero GD-equivariant map Θ(1) −→ ID(−1), this proves Theorem 7.3.

8. Siegel–Weil formula

We are now ready to prove the desired Siegel–Weil formula (Theorem 1.2 in the introduction).
Assume that F is a totally real global field and D a quaternion algebra over F .

8.1 The representation Θ(1)
We have shown that the global (regularized) theta lift Θ(1) is a non-zero automorphic represen-
tation of GD(A). We have also studied the abstract local theta lift of the trivial representation
of D1 to GD. The following proposition summarizes what we have shown.

Proposition 8.1.

(i) The automorphic representation Θ(1) is irreducible and occurs with multiplicity 1 in the
space of automorphic forms of GD.

(ii) For every p-adic place v of F , the local component Θ(1)v is isomorphic to the unique
irreducible quotient of the local degenerate principal series ID(1).

(iii) For every real place v of F , the local component Θ(1)v is an irreducible quotient of ID(1)
as described in Theorems 7.1, 7.2 and 7.3.

Proof. Indeed, we have shown that the abstract local theta lift Θ(1v) is irreducible. Hence the
global Θ(1) is an irreducible automorphic representation. The fact that Θ(1) has multiplicity
1 in the space of automorphic forms follows by [KS15, Theorem 1.1]. Note that the required
conditions, as spelled out in the introduction of [KS15], are satisfied by the recent work of
Möllers and Schwarz [MS17]. 2

8.2 A Siegel–Weil formula
For a flat section Φ ∈ ID(s), let ED(s,Φ) be the associated Eisenstein series. Then ED(s,Φ)
has at most simple poles at s = 1, 3 or 5 and the corresponding residual representations are
completely described in [HS20, Theorem 6.4]. Set

E = {Ress=1ED(s,Φ) : Φ ∈ ID(s)}.

We can now prove Theorem 1.2 in the introduction (which we restate here).

Theorem 8.2. Let F be a totally real global field and D a quaternion algebra over F . Then we
have the identity

E =
⊕
i:D→O

Θ(1)

in the space of automorphic representations GD(A), where the sum is taken over all isomorphism
classes of embeddings i : D → O into octonion algebras over F .
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Proof. Comparing Proposition 8.1 with [HS20, Theorem 6.4], one sees that Θ(1) is isomorphic,
as an abstract representation, to a summand of E . In view of the multiplicity-1 result in
Proposition 8.1(i), it follows that Θ(1) is equal to that irreducible summand, as a subspace
of the space of automorphic forms.

Now recall that the dual pair D1 × GD arises from an embedding of D into an octonion
algebra O. Every such embedding is unique up to conjugacy by Aut(O). However, given D, there
are multiple octonion algebras over F containing D. An isomorphism class of octonion algebras
O over F is specified by the isomorphism class of its local completions Ov for real places v.
At each real place, we have two choices: the classical octonion algebra and its split form. But
Dv embeds into both if and only if it is a quaternion division algebra. Hence the number of
octonion algebras over F containing D is 2m, where m is the number of real places v such that
Dv is the quaternion algebra. Now, by an easy check left to the reader, non-isomorphic O give
non-isomorphic Θ(1). Moreover, using our description of Θ(1) in Proposition 8.1 and [HS20,
Theorem 6.4], one sees that all those possible Θ(1) sum to E . This proves the theorem. 2

9. Spin L-function

To complete the proof of the main result of this paper (Theorem 1.1 in the introduction), the
remaining ingredient we need is a Rankin–Selberg integral for the degree-8 Spin L-function for
cuspidal representations of PGSp6 which was discovered by Pollack [Pol17]. However, since the
paper [Pol17] works over Q whereas we are working over a general number field F , we recall
some details here for the sake of completeness.

9.1 Global zeta integrals
Suppose that π is a cuspidal automorphic representation of PGSp6(A). Let U be the unipotent
radical of the Siegel maximal parabolic subgroup of PGSp6(F ). Let JF be the Jordan algebra of
3× 3 symmetric matrices with coefficients in F . Then U ∼= JF and any T ∈ JF ∼= ŪF defines an
additive character φT : U(A)/U(F ) → C×. Since π is cuspidal, there exists a non-degenerate T
(i.e. det(T ) 6= 0) such that the global Fourier coefficient φT is a non-zero function on PGSp6(A)
for any φ ∈ π. We fix such a T (which depends on π) in what follows.

The non-degenerate orbits on U(F ) ∼= JF , under the action of the Siegel Levi factor
in PGSp6(F ), are parameterized by quaternion algebras over F . So let D be the algebra
corresponding to T . Let G̃D be the reductive group of type D6 acting on WD, as in § 2.3. We
shall assume that G̃D acts from the right on WD. Let ω ⊂WD be the G̃D-orbit of (1, 0, 0, 0), that
is, the orbit consisting of highest weight vectors. Following Pollack [Pol17], for every Schwartz
function Φ =

⊗
v Φv on WD(A) define an Eisenstein series on G̃D(A) by

EΦ(g) =
∑

x∈ω(F )

Φ(xg).

Recall that GSp6 ⊆ G̃D and let ν be the similitude homomorphism of GSp6. Define a global
zeta integral

Z(φ,Φ, s) =

∫
GSp6(F )\GSp6(A)

φ(g) · EΦ(g) · |ν(g)|s dg

for φ ∈ π and Φ as above. This integral is absolutely convergent for s ∈ C with sufficiently large
real part. After integrating over the center of GSp6(A), we see that

Z(φ, ϕ, s) =

∫
PGSp6(F )\PGSp6(A)

φ(g) · E(Φs, g) dg,
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where Φs ∈ ID(2s − 5), and s 7→ Φs is a holomorphic section for s > 0. Observe that the

meromorphic continuation of E(Φs, g) gives a meromorphic continuation of Z(φ,Φ, s).

9.2 Unfolding

Let V ⊂ U be the codimension-1 subgroup such that the character ψT is trivial on V (A). There

is a wT ∈ ω(F ), contained in the third summand of WD, such that the stabilizer of wT in Sp6 is

V ⊂ U ; see [Pol17, Proposition 5.5]. The integral unfolds into

Z(φ,Φ, s) =

∫
V (A)\GSp6(A)

φT (g)Φ(wT g)|ν(g)|s dg.

Furthermore, by Theorem 9.4 in the first arXiv version of the paper [Pol17] (i.e. in arXiv:1506.

03406v1), for a sufficiently large set of places S, including the set S∞ of all real places,

Z(φ, ϕ, s) = LS(s− 2, π,Spin) · c(s) ·
∫
V (AS)\GSp6(AS)

φT (g)ΦS(wT g)|ν(g)|s dg.

Here c(s) denotes a product of partial Dedekind zeta functions that we have omitted writing

down since they do not affect analytic properties of Z(φ, ϕ, s) at our point of interest s = 3. We

note that Pollack works over F = Q. However, he has kindly informed us that@

• the unfolding of the integral representation works over any number field;

• the unramified computation is valid for any non-archimedean place v away from 2 such that

Dv is split.

The proof of the latter goes through line by line if one makes the following changes of notation:

every time p is used as a uniformizer, replace p with $; every time p is used as a magnitude,

replace p with q. In other words, the above identity holds for S containing all real places, places

of even residual characteristic and places where D is ramified.

9.3 Non-vanishing

The following technical result was contained in an earlier version of Pollack’s paper. However,

as this particular version is no longer publicly available (even on the arXiv), we reproduce the

proof for the sake of completeness (see [GG06, Lemma 15.7] for a similar proof).

Lemma 9.1. Let s0 ∈ C. For some data φ and ΦS ,

Z(φ,ΦS , s) =

∫
V (AS)\GSp6(AS)

φT (g)ΦS(wT g)|ν(g)|s dg

extends to a meromorphic function on C which is non-vanishing at s0.

Proof. Observe that the meromorphic continuation is clear, since the global zeta integral has a

meromorphic continuation, and so does the partial L-function, since it appears in the constant

term of an Eisenstein series on the exceptional group F4 (à la Langlands–Shahidi theory). All

that remains is to deal with non-vanishing.

Let v ∈ S. Consider the local version of the zeta integral:

Z(φ,Φv, s) =

∫
Vv\GSp6(Fv)

φT (g) · Φv(wT g) · |ν(g)|s dg.
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The stabilizer of wT in GSp6 is V oA, where A is a one-dimensional torus that we can identify
with GL1 using the similitude character ν. Thus GSp6 is a semidirect product of A and Sp6, and
we can write

Z(φ,Φv, s) =

∫
Vv\Sp6(Fv)

Φv(wT g)

∫
Av

φT (ag) · |ν(a)|s−5 da dg

for an invariant measure da on Av. Let us set

H(φ, s) =

∫
Av

φT (a) · |ν(a)|s−5 da.

If h is a Schwartz function on Uv, let

ĥ(a) =

∫
Uv

h(u)ψT (aua−1) du,

where a ∈ Av. Since φT (aug) = ψT (aua−1) · φT (ag) for u ∈ Uv, it follows that

H(h ∗ φ, s) =

∫
Av

ĥ(a) · φT (a) · |ν(a)|s−5 da.

Since ĥ can be any compactly supported function on Av, the integral can be arranged to be
non-zero for any s0. In fact, if v is a finite place, then ĥ can be picked so that the integral is
1 for all s. Thus, if v is a finite place, we can assume that φ has been chosen so that H(φ, s) = 1,
for all s.

Next, there exists a compactly supported function ϕ on Sp6(Fv) such that ϕ ∗φ = φ. Observe
that

H(ϕ ∗ φ, s) =

∫
Vv\Sp6(Fv)

ϕ′(g)

∫
Av

φT (ag) · |ν(a)|s−5 da dg,

where ϕ′ is a smooth compactly supported function on V (Fv)\Sp6(Fv) defined by

ϕ′(g) =

∫
V (Fv)

ϕ(ug) du.

Using the Iwasawa decomposition of Sp6(Fv), it is not difficult to see that the map g 7→ wT g
gives a locally closed embedding (i.e. an immersion) of Vv\Sp6(Fv) into WD(Fv), with the closure
of the image containing the extra point 0. Hence, any smooth compactly supported function on
Vv\Sp6(Fv) is the restriction of a smooth compactly supported function onWD(Fv). In particular,
we can pick Φv such that Φv(wT g) = ϕ′(g), for all g ∈ Sp6(Fv). Then, with this choice of Φv,
one has

Z(φ,Φv, s) = H(φ, s) = 1.

It follows that
Z(φ,ΦS , ϕ, s) = Z(φ,Φ∞, s)

for some choice of data.
Let F∞ = F ⊗Q R. Assume as above that φ has been chosen so that H(φ, s0) 6= 0. While

we perhaps cannot write φ = ϕ ∗ φ, for a compactly supported function on Sp6(F∞), by the
well-known Dixmier–Malliavin theorem, there exist finitely many compactly supported functions
ϕi on Sp6(F∞) such that φ =

∑
i ϕi ∗φi for some φi. Then, as in the finite-place case, there exist

compactly supported Φi
∞ such that∑

i

Z(φ,Φi
∞, s) = H(φ, s).
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Since H(φ, s0) 6= 0, we see that Z(φ,Φi
∞, s0) 6= 0 for some i. This completes the proof of the

lemma. 2

10. Applications to Functoriality

Finally, we are ready to assemble the various ingredients and complete the proof of Theorem 1.1
(which we reproduce here).

Theorem 10.1. Suppose that π is a cuspidal automorphic representation of PGSp6 such that
LS(s, π,Spin) has a pole at s = 1. Then there exist an octonion algebra O over F and a cuspidal
automorphic representation π′ of Aut(O) such that the Satake parameters of π′ are mapped by
ι to those of π (i.e. π is a weak functorial lift of π′).

If the cuspidal representation π of PGSp6 is tempered, then the following statements are
equivalent.

(a) For almost all places v, the Satake parameter sv of πv is contained in ι(G2(C)).

(b) There exist an octonion algebra O over F and a cuspidal automorphic representation π′ of
Aut(O) such that π is a weak functorial lift of π′.

Proof. As explained in the introduction, we shall make use of the following seesaw dual pair
in G:

Aut(O) GD

D1 PGSp6

Let π be an irreducible cuspidal automorphic representation of PGSp6 and consider its global
theta lift π′ on Aut(O). It can be shown (by a standard computation of the constant term of the
global theta lift) that π′ is contained in the space of cusp forms on Aut(O). This was explained
in [GJ01, Theorem 3.1], noting that the genericity assumption on π was not needed there. See
also [GG09, Proposition 5.2] (note, though, that there is a typo in the first paragraph of the
proof of [GG09, Proposition 5.2]: the word ‘nonzero’ should be ‘zero’).

Now suppose that the partial (degree-8) spin L-function LS(s, π,Spin) of π has a pole at
s = 1. Then, by Lemma 9.1, it follows that Ress=3Z(φ,Φ, s) is non-zero, for some φ ∈ π and
some Φ. At this point we note that Pollack has a slightly different choice of the parameter of
the Eisenstein series: his parameter s′ and our s are related by s = 2s′ − 5. Hence the integral
of φ against some residue Ress=1ED(s,Φ) is non-zero. Since the space of residues at s = 1 is
invariant under the complex conjugation, it follows that the integral of φ̄ against some residue
Ress=1ED(s,Φ) is non-zero. Note that the Eisenstein series ED(s,Φ) used in the global zeta
integral are associated to smooth sections of the degenerate principals series (holomorphic and
non-zero at s = 1), but the analytic behaviour of these smooth Eisenstein series at s = 1 is
the same as that of K-finite Eisenstein series by [Lap08]. Hence, by the Siegel–Weil formula
(Theorem 8.2), it follows that∫

PGSp6(F )\PGSp6(A)
φ̄(g) ·

(∫
D1(F )\D1(A)

θ(f)(gh) dh

)
dg 6= 0

for some O ⊃ D, f ∈ ΠO and φ ∈ π, where θ(f) is rapidly decreasing on D1(F )\D1(A) and of
moderate growth on PGSp6(A). Exchanging the order of integration, we deduce that the global
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theta lift of π to Aut(O) is non-zero, that is,

φ′(h) =

∫
PGSp6(F )\PGSp6(A)

θ(f)(gh)φ̄(g) dg

is a non-zero function of uniform moderate growth on Aut(O)\Aut(O⊗F A).
It is given that φ is an eigenfunction for the center of the enveloping algebra of PGSp6(Fv)

for every real place v of F . By [HPS96] and [Li99], for every element z in the center of the
enveloping algebra of PGSp6(Fv), there exists an element z′ in the center of the enveloping
algebra of Aut(Ov) such that z = z′ when acting on the minimal representation. In particular,
z′ · f = z · f . Thus φ′ is an eigenfunction for the center of the enveloping algebra of Aut(Ov)
for every real place v of F . (At this point we use that φ is rapidly decreasing to justify that
differentiation of f can be carried over to differentiation of φ.)

Similarly, it is given that φ is an eigenfunction for the Hecke algebra for almost all finite
places. But so is φ′ by matching of Hecke operators under the exceptional theta correspondences
[SW15]. Moreover, by [SW15, Theorem 1.1], if s′v are the Satake conjugacy classes in G2(C)
corresponding to φ′ and sv are the Satake conjugacy classes in Spin7(C) corresponding to φ,
then sv = ι(s′v), where ι : G2(C) → Spin7(C) is the natural inclusion. Hence, the submodule
generated by all such global theta lifts φ′ gives an automorphic representation π′ which weakly
lifts to π. This proves the first assertion of the theorem.

For the second part of the theorem, it is clear that (b) implies (a). Conversely, as observed
by Chenevier [Che19, Theorem 6.18, equation (6.6)], hypothesis (a) in the theorem implies that

LS(s, π,Spin) = ζS(s) · LS(s, π,Std),

where the last L-function on the right is the degree-7 (partial) standard L-function of π.
Since we are assuming that π is tempered, it follows that LS(1, π,Std) is finite and non-zero
(by the characterization of the image of the standard functorial lifting of tempered cuspidal
representations from Sp6 to GL7). Hence LS(s, π,Spin) has a pole at s = 1 and the results we
have shown above imply that (b) holds, with π′ the global theta lift of π to Aut(O).

This completes the proof of the theorem. 2

Remark. Let us comment on the relation of Theorem 10.1 with [Che19, Theorem 6.18].
• In [Che19, Theorem 6.18], Chenevier showed the second part of Theorem 10.1 for globally

generic cuspidal representations, by reducing it to the first part of Theorem 10.1, which is
a result of Ginzburg and Jiang for globally generic cuspidal representations. As Chenevier
remarked in [Che19, Remark 6.19], if one has an analog of the endoscopic classification of
Arthur for PGSp6, one would know that any tempered cuspidal representation of PGSp6

is nearly equivalent to a globally generic cuspidal representation, in which case the second
part of the theorem will follow for tempered cuspidal representations by reduction to the
globally generic case.

• In our proof of Theorem 10.1, our argument reducing the second part of the theorem to
the first follows Chenevier’s. Thus, the main innovation of Theorem 10.1 is a direct proof
of the first part of the theorem for all cuspidal representations, regardless of whether they
are globally generic or tempered. In particular, this gives the second part of the theorem
without resort to an Arthur-type classification for PGSp6.

We can strengthen our results in the case where F = Q and π is a cuspidal representation of
PGSp6(A) that corresponds to a classical Siegel holomorphic form of positive weight. Recall that
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there are two isomorphism classes of octonion algebras over Q: the classical octonion algebra Oc

and its split form Os. Then Aut(Oc
∞) is an anisotropic group, while Aut(Os

∞) is split.

Theorem 10.2. Let F = Q, and π a cuspidal representation of PGSp6(A) that corresponds to
a classical Siegel holomorphic form φ2r of weight 2r > 0. If LS(s, π,Spin) has a pole at s = 1,
then π is a lift from Aut(Oc). Moreover, if the level of φ2r is 1, then π is a strong functorial lift
from Aut(Oc).

Proof. Let U3(R) be the maximal compact subgroup of Sp6(R). By our assumption, π∞ is a
lowest weight module, with the minimal U3(R)-type det2r, r > 0. We need the following lemma.

Lemma 10.3. Let σ is a lowest weight module of Sp6(R), with the minimal U3(R)-type det2r,
r > 0. Then σ does not occur in the exceptional theta correspondence with split G2(R).

Proof. Adopting the notation from [LS19], let G′ = G2(R), g′ the Lie algebra of G′, K ′ a maximal
compact subgroup of G′, and g′ = k′ ⊕ p′ the corresponding Cartan decomposition. Let

Π =

∞⊕
n=0

Vn

be the decomposition of the minimal representation of the split real E7 into its K-types. Let
V det2r
n be the maximal subspace of Vn on which U3(R) acts by the character det2r. If r = 0, by

[LS19, Proposition 5.2], the dimension of this space is equal to the dimension of Sn(p′), the space

of the nth symmetric tensor power of p′. But this result can be easily generalized to any r: V det2r
n

is non-trivial only for n > 3r, and the dimension of V det2r
n+3r is equal to the dimension of Sn(p′). In

particular, V det2r
3r is one-dimensional. Let vr be a vector spanning this line. The group K ′ acts

on this line and the vector vr is fixed by K ′, since K ′ is semisimple. By [LS19, Lemma 3.1], the
matrix coefficient of vr, when restricted to G′, is contained in L3/2+ε(G′). This fact, combined
with the dimension of det2r-invariants in the types of Π, implies that

Πdet2r = U(g′) · vr ∼= U(g′)⊗U(k′) C

as explained in the introduction of [LS19], where the case r = 0 is discussed. After taking
det2r-invariants in Π → Θ(σ)� σ, it follows that Θ(σ) is a quotient of U(g′)⊗U(k′) C. Thus any
irreducible quotient σ′ of Θ(σ) is spherical. It was also shown in [LS19] that Θ(σ′) has unique
irreducible quotient, and it is spherical. This is a contradiction, since σ is not spherical, and
hence it cannot appear in this correspondence. 2

The correspondence for the dual pair Aut(Oc
∞)×Sp6(R) was completely determined in [GS98]

and is functorial. Thus, if φ2r is of level 1 (i.e. spherical at all primes), then π is indeed a (strong)
functorial lift from Aut(Oc). 2
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HPS96 J.-S. Huang, P. Pandžić and G. Savin, New dual pair correspondences, Duke Math. J. 82 (1996),
447–471.

KS15 T. Kobayashi and G. Savin, Global uniqueness of small representations, Math. Z. 281 (2015),
215–239.

KR94 S. Kudla and S. Rallis, A regularized Siegel–Weil formula: the first term identity, Ann. of
Math. (2) 140 (1994), 1–80.

Lap08 E. M. Lapid, A remark on Eisenstein series, in Eisenstein series and applications, Progress in
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