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Acoustic boundary conditions at an impedance
lining in inviscid shear flow
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The accuracy of existing impedance boundary conditions is investigated, and new
impedance boundary conditions are derived, for lined ducts with inviscid shear flow.
The accuracy of the Ingard–Myers boundary condition is found to be poor. Matched
asymptotic expansions are used to derive a boundary condition accurate to second
order in the boundary layer thickness, which shows substantially increased accuracy
for thin boundary layers when compared with both the Ingard–Myers boundary
condition and its recent first-order correction. Closed-form approximate boundary
conditions are also derived using a single Runge–Kutta step to solve an impedance
Ricatti equation, leading to a boundary condition that performs reasonably even for
thicker boundary layers. Surface modes and temporal stability are also investigated.
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1. Introduction

The work of Ingard (1959) and Myers (1980) on the acoustic boundary condition
at an impedance surface in a non-quiescent fluid has formed the basis for most
subsequent work, industrial and academic (e.g. Tester 1973b; Koch & Moehring
1983), where sound attenuation in a moving fluid was important. Over thirty years
after the publication of Myers’ paper, and over five years since indisputable evidence
was presented, both theoretical (Brambley 2009) and experimental (Renou & Aurégan
2011), of its weaknesses, the Ingard–Myers boundary condition continues to be
routinely used in aeroacoustics computations to inform engine design.

Inviscid perturbations to a sheared flow over an acoustic liner are governed by the
Pridmore-Brown (1958) equation. Modal solutions to this equation show that acoustic
liners not only attenuate acoustic modes but also support surface waves – vibrations of
the liner and boundary layer – that are not present in the hard-wall case. These waves
were classified as surface modes by Rienstra (2003), who used uniform flow and
the Myers (or Ingard–Myers) model of the impedance lining to find a possible four
surface modes per frequency and circumferential order. This work was extended by
Brambley (2013), who accounted for the thin, but non-zero thickness, boundary layer
by using the first-order correction terms to the Myers condition (Brambley 2011b) and
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Impedance boundary conditions in inviscid shear flow 387

found the number of possible surface waves increased to six. At present, no further
surface wave solutions to the Pridmore-Brown equation have been identified.

The importance of including a finite-thickness shear layer rather than assuming a
uniform slipping flow also manifests in the different convective and absolute stability
of the two models. Experimental evidence of an instability in flow over an impedance
lining has been reported many times (e.g. Aurégan & Leroux 2008; Marx et al. 2010).
Theoretical predictions of the instability that utilise the Myers model found that in
the time domain a numerical instability would grow at the grid scale and swamp any
meaningful signal, while in the frequency domain an unstable mode was found with a
growth rate unbounded with increasing wavenumber. This was due to the illposedness
of the problem of uniform slipping flow over an impedance lining (Brambley 2009).
This illposedness is regularised by taking into account a thin but finite-thickness
sheared boundary layer, and modified versions of the Myers condition (Myers &
Chuang 1984; Joubert 2010; Brambley 2011b; Rienstra & Darau 2011), correct to
first order in the boundary layer thickness, predict convectively or absolutely unstable
modes with bounded growth rates.

The accuracy of the current inviscid models was investigated by Gabard (2013) by
considering reflection of acoustic plane waves from an impedance lining in shear flow.
It was found that use of the Myers condition can lead to significant errors (of up to
14 dB) in predictions of sound attenuation due to the great impact of the boundary
layer thickness. Modelling the physics inside the boundary layer more precisely,
for instance by expanding to second order in the boundary layer thickness, should
therefore lead to more accurate predictions of the absorption and reflection coefficients
for an acoustic liner in flow. The accuracy of current boundary conditions and the
newly derived conditions are tested in a different way here: by comparing with
the exact effective impedance found by numerical solution of the Pridmore-Brown
equation; and by comparing the prediction of cut-on and cut-off acoustic modes.

There are a number of common simplifications used in the literature that we follow
here, since reasonable agreement is possible between theory using these assumptions
and practice (e.g. Boyer, Piot & Brazier 2011). Commonly, acoustic liners are
manufactured using a perforated facing sheet having hole diameters and spacings of
the order of or larger than a typical boundary layer thickness. The majority of the
acoustic lining literature models such linings as homogeneous, however, and here we
follow this simplification. When applied in shear flow, the Pridmore-Brown equation
possesses a singularity, called the critical layer, wherever the phase speed of a wave
is equal to the base flow velocity (that is, when a wave is perfectly convected).
It has been shown that the contribution to the resultant sound field of the critical
layer is modest at most (Brambley, Darau & Rienstra 2012). Here we avoid the
critical layer in favour of simplicity. Also omitted from the analysis are viscous
and nonlinear effects. It has been shown that viscosity alone does not regularise the
illposedness of the Myers condition (Brambley 2011a), but when coupled with a
finite-thickness shear layer the problem becomes well posed and the visco-thermal
effects allow the unstable mode to restabilise below a critical wavelength (Khamis &
Brambley 2015) – a phenomenon missing from the inviscid theory. It has also been
shown that including viscosity in the boundary layer can be necessary to accurately
match theoretical results with experimental data (Renou & Aurégan 2010, 2011).
Nonlinearity with respect to the interaction between sound field, shear flow and liner
is beyond the scope of this work.

In this work, new boundary conditions are derived that extend the inviscid theory. In
§ 2 the governing Pridmore-Brown equations for the acoustic pressure p̃ and velocity ṽ
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388 D. Khamis and E. J. Brambley

are stated, and an impedance Ricatti equation is derived for Z(r)= p̃(r)/ṽ(r). Section 3
describes the asymptotic analysis leading to a boundary condition that is correct to
second order in the boundary layer thickness. Section 4 solves the impedance equation
by a single fourth-order explicit Runge–Kutta step across the boundary layer; and by
a second-order, single-step implicit scheme. Expressions are given for the effective
impedance at the lining seen by the acoustics in a plug flow (uniform mean flow).
In § 5, the accuracy of each of these models is compared against the Ingard–Myers
boundary condition, its first-order correction and numerical simulations. While the
second-order boundary condition performs better for thin boundary layers, the single-
step implicit Runge–Kutta scheme retains accuracy for high frequencies and short
wavelengths, and for thicker boundary layers, making it a viable substitute for the
asymptotic boundary conditions outside their regions of validity. In § 6, simplified
forms of the conditions are found both for a specific linear shear profile and for the
limiting case k/ω� 1 satisfied by surface modes. In § 7 it is found that the second-
order asymptotic condition is extremely accurate when investigating surface modes
and their stability, as well as cut-on and cut-off acoustic modes. The second-order
condition does, however, support spurious modes far from its region of asymptotic
validity.

2. Governing equations
We are concerned with the dynamics of an inviscid compressible perfect gas, for

which (with a star denoting a dimensional variable) the governing equations take the
form

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗)= 0, ρ

Du∗

Dt∗
=−∇∗p∗, Dp∗

Dt∗
= c∗2

Dρ∗

Dt∗
, (2.1a−c)

where D/Dt∗ = ∂/∂t∗ + u∗ · ∇∗ is the material derivative, γ = c∗p/c
∗
v is the ratio

of specific heats, and p∗, ρ∗ and u∗ are the fluid pressure, density and velocity,
respectively. Equation (2.1c), relating p∗ and ρ∗, is a consequence of the assumption
that the specific entropy remains constant for a given fluid particle (Pierce 1994);
for a perfect gas, the speed of sound satisfies c∗2 = γ p∗/ρ∗. To non-dimensionalise,
we imagine a cylindrical duct (x, r, θ) with an uniform base flow at its centreline,
and scale length by the duct radius l∗, density by the centreline value ρ∗0 , velocity
by the centreline sound speed c∗0 =

√
γ p∗0/ρ

∗
0 , and pressure by ρ∗0 c∗20 . Time is made

dimensionless by combining the length and velocity scales, t∗ = l∗t/c∗0. In such a
scheme, the duct radius is unity, and the centreline main-flow density and pressure
take the respective values ρ0= 1 and p0= 1/γ . The dimensionless centreline velocity
is U0 = M, the centreline Mach number of the flow. In a thin region of width δ
near the acoustically lined duct wall, the steady base flow velocity and density vary,
giving r-dependent profiles, U(r) and ρ(r). We take the flow to be non-slipping,
non-swirling and everywhere parallel, and as such the base pressure is constant
across the boundary layer, p≡ p0. The non-dimensional governing equations are, for
completeness,

∂ρ

∂t
+∇ · (ρu)= 0, ρ

Du
Dt
=−∇p,

Dp
Dt
= γ p
ρ

Dρ
Dt
. (2.2a−c)

Small, unsteady perturbations to the base flow are considered, of the form

q= q̃(r) exp{iωt− ikx− imθ}. (2.3)
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Impedance boundary conditions in inviscid shear flow 389

The common exponential factor is omitted henceforth. The velocity and density
gradients in the base flow boundary layer alter the effect of the acoustic lining on the
acoustics. At the lining, the acoustic pressure drives a wall-normal velocity, p̃= Zbṽ,
for the given impedance of the lining, Zb. Governing equations for the acoustic
pressure p̃ and radial velocity ṽ may be derived from (2.2):(

p̃′

Q

)′
+ ᾱ

2

Q
p̃= 0,

[(
rṽ

ω−Uk

)′ Q
ᾱ2

]′
+Q

(
rṽ

ω−Uk

)
= 0, (2.4a,b)

where a prime denotes differentiation with respect to r, and

Q(r)= ρ(ω−Uk)2

r
and ᾱ(r)2 = ρ(ω−Uk)2 − k2 − m2

r2
. (2.5a,b)

It is worth noting that the Pridmore-Brown equation (2.4a) (Pridmore-Brown 1958)
and the corresponding equation for the radial velocity (2.4b) are both second order, in
p̃ and ṽ respectively, with the radial momentum equation stating ṽ∼ p̃′. The similarity
between the two equations (2.4a,b) may be highlighted by defining φ = rṽ/(ω−Uk)
and rearranging to give

Q
ᾱ2

(
p̃′

Q

)′
+ p̃= 0,

1
Q

(
Q
ᾱ2
φ′
)′
+ φ = 0. (2.6a,b)

Inherent in the linearisation of the Euler equation, and thus in (2.4a,b), is the so-called
critical layer singularity, ω−U(rc)k= 0, where rc is the radial location of the critical
layer. This occurs when a wave is perfectly convected, and leads to a continuous
hydrodynamic spectrum. We neglect the critical layer in this work by assuming that
rc does not fall within our physical domain.

2.1. The uniform solution
It is well known (see e.g. Vilenksi & Rienstra 2007; Brambley & Peake 2008) that
the acoustic pressure and radial velocity in a duct with inviscid uniform flow can be
expressed in terms of Bessel functions as p̃u(r)=EJm(αr) and ṽu(r)= iαEJ′m(αr)/(ω−
Mk), where α2= (ω−Mk)2− k2 and E is a constant amplitude. Modes for such a flow
are found by applying a boundary condition at the lined wall, p̃u(1)= Zeff ṽu(1). The
effective impedance Zeff differs from the true lining impedance Zb due to refraction
through the sheared boundary layer, which is neglected in the uniform flow model.
For example, for the Myers boundary condition,

Zeff = ω

ω−Mk
Zb, (2.7)

where the Doppler factor accounts for refraction across a vortex sheet by enforcing
continuity of normal displacement. We would like to choose a Zeff such that the
easily calculable uniform flow acoustic modes match the modes in the real flow
with a sheared boundary layer. Thus, Zeff includes information about both the lining
impedance Zb, and how acoustic modes evolve in shear. This means that solving the
uniform flow problem with a lining impedance of Zeff is equivalent to solving the
true sheared flow problem with the actual lining impedance Zb. We are interested in
the relationship between Zb and Zeff .
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390 D. Khamis and E. J. Brambley

If we knew both ω and k, then we could find Zeff explicitly:

Zeff = (ω−Mk)
Jm(α)

iαJ′m(α)
. (2.8)

We do not know both k and ω, a priori, however, and therefore we would like to
solve (2.8) for the modes k(ω); a relationship between Zeff and the known Zb is then
needed. For example, the Ingard–Myers boundary condition modelling an infinitely
thin shear layer (Eversman & Beckemeyer 1972) is given in (2.7), while the first-order
asymptotic correction to the Ingard–Myers boundary condition in the limit of a thin
shear layer (Brambley 2011b) is given by

Zeff = ω

ω−Mk

Zb − i(ω−Mk)2

ω
δI0

1+ iωZb
k2 +m2

(ω−Mk)2
δI1

, (2.9)

where I0 and I1 are integrals across the thin boundary layer,

δI0 =
∫ 1

0

(
1− (ω−U(r)k)2ρ(r)

(ω−Mk)2

)
dr, δI1 =

∫ 1

0

(
1− (ω−Mk)2

(ω−U(r)k)2ρ(r)

)
dr.

(2.10a,b)

2.2. An impedance governing equation
Most work concerning acoustic propagation in inviscid fluids begins with equations
(2.2) and reduces them to a form of the Pridmore-Brown equation (Pridmore-Brown
1958), e.g. equation (2.4a). Less common is the corresponding governing equation for
the radial acoustic velocity ṽ, equation (2.4b). Here, we also work directly with the
impedance and derive a new governing equation. We extend the relationship p̃= Zbṽ
at the boundary r= 1 to one valid for all r, i.e. Z(r)= p̃(r)/ṽ(r). The same is done for
the uniform flow equivalent, i.e. Zu(r)= p̃u(r)/ṽu(r). Hence, Zb≡Z(1) and Zeff ≡Zu(1).

From (2.2) and (2.4a,b) the following relations may be derived:

ᾱ2

Q
p̃= i

(
rṽ

ω−Uk

)′
and p̃′ =−iQ

(
rṽ

ω−Uk

)
. (2.11a,b)

Guided by the form of (2.11), we write

1
r
(ω−Uk)Z = p̃

rṽ
(ω−Uk)

. (2.12)

Taking the derivative with respect to r and using (2.11) to eliminate p̃ and ṽ, we find
a nonlinear Ricatti equation for Z,[

1
r
(ω−Uk)Z

]′
=−iQ+ iᾱ2

Q

[
1
r
(ω−Uk)Z

]2

. (2.13)

Note that (2.13) is a rephrasing of the acoustic equations (2.4a,b), and thus Z(r)
represents the lumped impedance of both the boundary and the fluid in [r, 1]. Since
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(2.13) is a first-order equation and at the lining the boundary condition gives Z(1)=Zb,
in the uniform flow region the requirement that Z(r)= Zu(r) allows us to find Zeff .

The equation (2.13) is exact, and so its numerical solution should correspond with
the direct solution of the Pridmore-Brown equation. However, its nonlinearity makes
it a less attractive candidate for such computations. Instead we solve (2.13) using
two different approximate methods. In § 4, two single-step Runge–Kutta solutions
are found, one explicit and one implicit, which exploit the inherently small step size
δ. In appendix B, an alternative asymptotic analysis (to that in § 3) is performed
by expanding (2.13) in terms of the small width of the boundary layer, δ. The
two methods vary in essence by where we make our approximations: the first
approximately solves an exact equation; the second exactly solves an approximate
equation.

3. Deriving the asymptotic solution

In this section the asymptotic boundary condition for the effective impedance is
found to second order in δ by solving (2.4a,b) inside the boundary layer and matching
to the uniform solutions outside the boundary layer.

Outside the boundary layer, the uniform base flow pressure solution may be written
p̃u(r)=EJm(αr) as described above. Expanding this about the lined wall at r= 1 using
the boundary layer scaling r= 1− δy as in Brambley (2011b), the outer solution for
the pressure becomes

p̃u(1− δy)= EJm(α)− δyEαJ′m(α)− 1
2δ

2y2E[αJ′m(α)+ (α2 −m2)Jm(α)] +O(δ3). (3.1)

Using the notation p∞ ≡ p̃u(1), the pressure at the wall r = 1 and v∞ ≡ ṽu(1),
equation (3.1) and the equivalent radial velocity expansion may be written as

p̃u(1− δy) = p∞ + δyi(ω−Mk)v∞

+ 1
2δ

2y2[(k2 +m2 − (ω−Mk)2)p∞ + i(ω−Mk)v∞] +O(δ3), (3.2a)

ṽu(1− δy) = v∞ − δy
(
(ω−Mk)2 − k2 −m2

i(ω−Mk)
p∞ − v∞

)

+ 1
2
δ2y2

[
3m2 + k2 − (ω−Mk)2

i(ω−Mk)
p∞ + (2+ k2 +m2 − (ω−Mk)2)v∞

]
+ O(δ3). (3.2b)

Our inner solutions will be matched to (3.2) in the limit y→∞.
In terms of the boundary layer variable y, equations (2.4a,b) become(

p̃y

ρ(ω−Uk)2

)
y

= δ
(

yp̃y

ρ(ω−Uk)2

)
y

− δ2

(
1− k2 +m2

ρ(ω−Uk)2

)
p̃+O(δ3) (3.3)
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for the pressure, and[(
ṽ

ω−Uk

)
y

ρ(ω−Uk)2

ρ(ω−Uk)2 − k2 −m2

]
y

= δ
(

ṽ

ω−Uk
ρ(ω−Uk)2

ρ(ω−Uk)2 − k2 −m2

)
y

− δ
[(

ṽ

ω−Uk

)
y

2m2yρ(ω−Uk)2

[ρ(ω−Uk)2 − k2 −m2]2
]

y

− δ2

(
ṽ

ω−Uk
ρ(ω−Uk)2

)

+ δ2

(
ṽ

ω−Uk
yρ(ω−Uk)2

[ρ(ω−Uk)2 − k2 −m2]2 (ρ(ω−Uk)2 +m2 − k2)

)
y

− δ2

[(
ṽ

ω−Uk

)
y

4m2y2ρ(ω−Uk)2

[ρ(ω−Uk)2 − k2 −m2]3 (ρ(ω−Uk)2 − k2)

]
y

+O(δ3) (3.4)

for the radial velocity. Here ρ and U are now the corresponding base density and
axial velocity as functions of y. A subscript denotes differentiation.

Solving (3.3) and (3.4) to second order produces the inner solutions (see appendix A
for details). When evaluated at the wall, the second-order correction to the ṽ expansion
is singular if (ω−Mk)2= k2+m2. Solutions of the Pridmore-Brown equation exist at
this point. Thus, the singularity is a consequence of the asymptotic expansion and
is spurious. Close to the new singular point, one could simply revert to using the
first-order expansion as derived by Brambley (2011b), which is unaffected by the
unphysical singularity.

Matching with the outer solutions (3.2) and evaluating at the boundary y= 0 gives,
after some algebra,

p̃(0) = p̃u(0)+ i(ω−Mk)ṽu(0)δI0 + i(ω−Mk)ṽu(0)δ2I2

+ (k2 +m2)p̃u(0)(δI0δI1 − δ2I3)− (ω−Mk)2p̃u(0)δ2I7 +O(δ3), (3.5a)

ṽ(0) = ω

ω−Mk

{
ṽu(0)− ip̃u(0)

k2 +m2

ω−Mk
δI1 + (ω−Mk)2ṽu(0)δ2I2

+ (k2 +m2)ṽu(0)δ2I3 + ip̃u(0)
k2 +m2

ω−Mk
k2 −m2 − (ω−Mk)2

k2 +m2 − (ω−Mk)2
δ2I3

+ (k2 +m2)ṽu(0)(δI0δI1 − δ2I2 − δ2I5)

+ 2im2p̃u(0)
ω−Mk

(
k2 +m2

k2 +m2 − (ω−Mk)2
δ2I6 − δ2I4

)}
+O(δ3), (3.5b)

where the integrals Ij are

I0 =
∫ ∞

0
χ0(y) dy, I1 =

∫ ∞
0
χ1(y) dy, I2 =

∫ ∞
0

yχ0(y) dy,

I3 =
∫ ∞

0
yχ1(y) dy, I4 =

∫ ∞
0

yχ2(y) dy, I5 =
∫ ∞

0
χ1(y)

∫ y

0
χ0(y′) dy′ dy,

I6 =
∫ ∞

0
yχ1(y)χ2(y) dy, I7 =

∫ ∞
0
χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω−U(y′)k)2

)
dy′ dy,


(3.6)
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Impedance boundary conditions in inviscid shear flow 393

with

χ0(y)=
[

1− ρ(ω−Uk)2

(ω−Mk)2

]
, χ1(y)=

[
1− (ω−Mk)2

ρ(ω−Uk)2

]
,

χ2(y)=
[

1− (ω−Mk)2 − k2 −m2

ρ(ω−Uk)2 − k2 −m2

]
.

 (3.7)

The impedance of the boundary is the ratio of the acoustic pressure to the normal
velocity that it drives, so we write Zb= p̃(0)/ṽ(0) using (3.5). We identify the effective
impedance with the same ratio for the uniform flow variables: Zeff = p∞/v∞. Using
these two relationships, we may rearrange the ratio of (3.5a) and (3.5b) to find an
expression for the effective impedance of an acoustic liner with an inviscid sheared
boundary layer:

Zeff = ω

Ωu

Zb − iΩ2
u

ω
(δI0 + δ2I2)− Zbµ

2δ2I2 + σ+Zb(δI0δI1 + δ2I3 − δ2I5)

1+ iσ+
ωZb

Ω2
u

δI1 +Υ1δ
2I3 +Υ2

(
δ2I4 − σ+

µ2
δ2I6

)
+ σ+δI0δI1 −Ω2

uδ
2I7

+O(δ3),

(3.8)
where σ+ = k2 +m2, Ωu =ω−Mk and µ2 = σ+ −Ω2

u , and where

Υ1 = iσ+ωZb

Ω2
u

(
2m2

µ2
− 1
)
− σ+, Υ2 = 2im2ωZb

Ω2
u

. (3.9a,b)

Equation (3.8) readily reduces to the modified boundary condition as derived by
Brambley (2011b) at O(δ), equation (2.9), and to the classical Myers condition
(2.7) in the limit δ→ 0. Figure 1 shows that the condition is correct to the stated
asymptotic order.

Equation (3.8) may be applied in the physical r domain by transforming the
integrals Ij as follows:

δI0 =
∫ 1

0
χ0(r) dr, δI1 =

∫ 1

0
χ1(r) dr, δ2I2 =

∫ 1

0
(1− r)χ0(r) dr,

δ2I3 =
∫ 1

0
(1− r)χ1(r) dr, δ2I4 =

∫ 1

0
(1− r)χ2(r) dr,

δ2I5 =
∫ 1

0
χ1(r)

∫ 1

r
χ0(r′) dr′ dr, δ2I6 =

∫ 1

0
(1− r)χ1(r)χ2(r) dr,

δ2I7 =
∫ 1

0
χ0(r)

∫ 1

r

(
1− σ+

ρ(r′)Ω(r′)2

)
dr′ dr.


(3.10)

An example of the accuracy of this boundary condition is given in § 5, and an explicit
form for a linear boundary layer profile is given in § 6.1.

4. The Runge–Kutta solutions

Here we derive an expression for Zeff by approximately solving (2.13) using a single
step of a fourth-order explicit Runge–Kutta method (see Hairer, Nørsett & Wanner
1993), and a second-order, single-step implicit scheme.
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FIGURE 1. (Colour online) The relative errors of the leading (black dotted), first (blue
dashed) and second (red solid) orders of the new boundary condition (3.8) when compared
with numerical solutions of the Pridmore-Brown equation. The green dash-dotted lines
have gradients of 1, 2 and 3 beginning from the top and moving down. Parameters used
are k = ±1 ± i, ±i and ω = 1, m = 0, M = 0.5 with the tanh boundary layer profile of
(5.1). Relative error is defined by |Z∗/Zeff − 1|, where Z∗ is the approximation from the
specified model, and Zeff is the exact result from (2.8).

Equation (2.13) may be transformed as follows. Dividing (2.13) through by (ω −
Mk)2 produces

1
ω−Mk

L′ =−iQ̃+ iᾱ2

Q̃(ω−Mk)2
L2, (4.1)

where Q̃=Q/(ω−Mk)2, an O(1) quantity for all ω, k, and

L= (ω−Uk)
r(ω−Mk)

Z. (4.2)

The quantity L may be split into a uniform flow value, Lu = Zu/r, and a perturbation
due to the presence of the boundary layer, L̃, such that

L= Lu + L̃. (4.3)

Equation (4.1) has the associated data Lu(1)= Zeff , and L= Lu outside the boundary
layer. For a uniform flow of Mach number M and constant density ρ≡1, (4.1) reduces
to

1
(ω−Mk)

L′u =−
i
r
+ ir

1−
k2 + m2

r2

(ω−Mk)2

 L2
u. (4.4)
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Equation (4.4) may then be used in (4.1) along with the decomposition (4.3) to form
a governing equation for L̃(r):

1
(ω−Mk)

L̃′ = i
r

[
1− ρ(ω−Uk)2

(ω−Mk)2

]
+ ir

k2 + m2

r2

(ω−Mk)2

[
1− (ω−Mk)2

ρ(ω−Uk)2

]
L2

u

+ ir

1−
k2 + m2

r2

ρ(ω−Uk)2

 (2LuL̃+ L̃2). (4.5)

The asymptotics of (4.5) may be found in appendix B, where it is shown that the
modified Myers (Brambley 2011b) condition may be cleanly reproduced from (4.5)
but the second-order extension runs into difficulties concerning non-uniqueness. Here,
we proceed with approximate solutions to (4.5).

4.1. The explicit scheme
In order to ensure the correct δ→ 0 behaviour, we use the decomposition (4.3) and
solve (4.5) for L̃(r), with the necessary condition that L̃= 0 in uniform flow (for r<
1− δ). While this is technically only valid for profiles with U≡M for r< 1− δ, for a
99 % U0 boundary layer thickness the approximation L̃=0 for r<1− δ is a reasonable
one. We choose to step from the top of the boundary layer at r = 1 − δ, with the
initial condition L̃(1 − δ) = 0, to the lining at r = 1, where the boundary condition
L̃(1)=ωZb/(ω−Mk)− Zeff gives Zeff as a function of Zb. Using the analytic uniform
solution defined in § 2.1, we can treat as known the intermediate values of Lu(r) that
arise.

To perform the step, we define the fourth-order explicit Runge–Kutta difference
equation L̃1 = L̃0 + δ/6(k1 + 2k2 + 2k3 + k4), where L̃0 = L̃(1− δ)= 0. Defining

A= i(ω−Mk)
r

χ0, B= ir
k2 +m2/r2

ω−Mk
χ1, C= ir(ω−Mk)

[
1− k2 +m2/r2

ρ(ω−Uk)2

]
,

(4.6a−c)
with χj defined as in (3.7), the kj terms become

k1 = A(1− δ)+ B(1− δ)Lu(1− δ)2, (4.7a)

k2 = A(1− δ/2)+ B(1− δ/2)Lu(1− δ/2)2 +C(1− δ/2)
(

2Lu(1− δ/2) δ2k1 + δ
2

4
k2

1

)
,

(4.7b)

k3 = A(1− δ/2)+ B(1− δ/2)Lu(1− δ/2)2 +C(1− δ/2)
(

2Lu(1− δ/2) δ2k2 + δ
2

4
k2

2

)
,

(4.7c)
k4 = A(1)+ B(1)Z2

eff +C(1)(2Zeff δk3 + δ2k2
3). (4.7d)

The decomposition (4.3) may then be used to apply the boundary condition at r= 1,
giving

Zeff = ω

ω−Mk
Zb − δ6(k1 + 2k2 + 2k3 + k4). (4.8)
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If we extract the Zeff from k4, defining k4 = k̃4 + [B(1)Zeff + 2C(1)δk3]Zeff , where
k̃4 = A(1)+ δ2C(1)k2

3, we can rearrange (4.8) to find

Zeff = ω

ω−Mk

Zb − δ6(1−Mk/ω)(k1 + 2k2 + 2k3 + k̃4)

1+ δ
6
(B(1)Zeff + 2δC(1)k3)

, (4.9)

which then gives Zeff as a function of Zb. The classical Myers condition is recovered
in the limit δ → 0, as we would hope (Eversman & Beckemeyer 1972; Tester
1973a). The form of (4.9) bears a striking resemblance to that of the modified Myers
condition.

4.2. A single-step implicit scheme
Here we define a trapezoidal second-order, single-step implicit Runge–Kutta scheme
and use it for a single step to approximate Zeff . For this scheme, the fundamental
difference equation for the differential equation y′ = f (x, y) is

yn+1 = yn + h
2
( f (xn, yn)+ f (xn+1, yn+1)). (4.10)

The method is implicit due to the appearance of yn+1 on both sides of (4.10).
We use the scheme to first step back from the boundary, which has a known

impedance Zb, through the sheared boundary layer profile to the edge of the boundary
layer at r=1− δ; and then to step forward from r=1− δ to r=1 assuming a uniform
flow. The details of these steps are found in appendix D.

The method results in the effective impedance

Zeff = X1 + 1
2δ(k̃1 + k̃2), (4.11)

where
X1 = X0 − 1

2
δ(k1 + k2) and X0 = ω

ω−Mk
Zb, (4.12a,b)

with

k1 = A1(1)+ B1(1)X2
0, (4.13)

k2 =
(

2
δ2B1(1− δ) + 2

X0

δ
− k1

)

×

1−

1− 4A1(1− δ)/B1(1− δ)+ (2X0 − δk1)
2(

2
δB1(1− δ) + 2X0 − δk1

)2


1/2 , (4.14)

for

A1(r)=− i
r
ρ(ω−Uk)2

ω−Mk
, B1(r)= ir(ω−Mk)

(
1− k2 +m2/r2

ρ(ω−Uk)2

)
, (4.15a,b)
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and with

k̃1 = A2(1− δ)+ B2(1− δ)X2
1, (4.16)

k̃2 =
(

2
δ2B2(1)

− 2
X1

δ
− k̃1

)1−

1− 4A2(1)/B2(1)+ (2X1 + δk̃1)
2(

2
δB2(1)

− 2X1 − δk̃1

)2


1/2 , (4.17)

for

A2(r)=− i
r
(ω−Mk), B2(r)= ir(ω−Mk)

(
1− k2 +m2/r2

(ω−Mk)2

)
. (4.18a,b)

The two steps used here (back then forward) allow the resulting condition to
be a direct map from Zb to Zeff (like the asymptotic boundary condition (3.8)),
without intermediate values of Zu having to be used (as in the explicit Runge–Kutta
scheme (4.9)).

5. Accuracy of models of Zeff

To measure the accuracy of the boundary conditions derived above, numerical
solutions of the full Pridmore-Brown equation were found. This was achieved using
a sixth-order finite difference discretisation on a computational grid spaced uniformly
in ξ , where r= tanh(Aξ)/tanh(A), and A is a stretching parameter, in order to cluster
points near r = 1 to resolve the boundary layer. Regularity conditions were imposed
at r = 0, and the wall boundary condition was p̃(1) = 1, with ṽ free. Roots of the
dispersion relation Zb = p̃/ṽ were found via Newton–Raphson iteration over k. The
tanh velocity profile (Rienstra & Vilenski 2008)

U(r)=M tanh
(

1− r
δ

)
+M(1− tanh(1/δ))

(
1+ tanh(1/δ)

δ
r+ (1+ r)

)
(1− r),

(5.1)

was used to generate the following results, with a constant density ρ(r)≡ 1. This base
flow has a displacement thickness

δ∗ = 1
6δ
(tanh2(1/δ)− 1)+ 1

3
(1+ 2 tanh(1/δ))− δ ln(cosh(1/δ)), (5.2)

which for δ ∈ (10−7, 10−1) gives δ∗/δ = 0.69 to two decimal places.
A good initial test of the boundary conditions, and one which seems to be

missing from the literature concerning such impedance boundary conditions, is to
directly check how well the effective impedance is approximated. By solving the
Pridmore-Brown equation throughout the complex k-plane for a given ω and m, a
boundary impedance Zb is generated at each k. This solution has a unique uniform
flow equivalent and the value of Zu(1) of this uniform flow mode, from (2.8), is the
Zeff against which we test the models.

Figure 2 shows the absolute errors in the complex k-plane of the predicted Zeff
for each boundary condition. For the thin boundary layer thickness δ = 2 × 10−3,
the asymptotic conditions perform well. As one would expect, the O(δ2) asymptotic
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FIGURE 2. (Colour online) Absolute errors in the complex k-plane of the predicted Zeff for
each boundary condition. The colour scheme is normalised such that the darkest blue is an
error greater than or equal to 1.5 times the mean Myers error. The red contour surrounds
errors lower than the lowest quartile of the five plotted data sets combined. Shown are
(a) the Myers condition (2.7), (b) the modified Myers condition (2.9), (c) the second-order
O(δ2) asymptotic condition (3.8), (d) the single-step implicit Runge–Kutta condition (4.11)
and (e) the explicit Runge–Kutta condition (4.9). The error was calculated as min{|Z1 −
Z2|, |1/Z1 − 1/Z2|}. Parameters are ω = 31, m = 24, M = 0.5, δ = 2 × 10−3, for a tanh
velocity profile (5.1) and constant base density ρ(r)≡ 1. The boundary impedance at each
point is found from the numerical solution of the Pridmore-Brown equation, (2.4a).

solution, figure 2(c), is more accurate throughout the plotted domain than the modified
Myers condition, figure 2(b), which in turn is more accurate than the Myers condition,
figure 2(a). For the parameters ω = 31 and m = 24 (typical values for rotor-alone
noise in an aeroengine bypass duct at take-off (McAlpine et al. 2006)), and the
restriction to Im(k),Re(k)∈ [−100, 100], we are well within the region of asymptotic
validity, ω, m, k � 1/δ. The single-step explicit Runge–Kutta scheme, figure 2(e),
performs well in regions where the scheme is stable, but blows up erratically due
to the stiffness of the impedance Ricatti equation (2.13). The single-step implicit
scheme, figure 2(d), is reasonably accurate for most of the domain, but has regions
where the error is large. Sudden changes inside the boundary layer are not modelled
well by the implicit scheme, which utilises data points only at either side of the
layer; this suggests that the implicit scheme is not suitable for predicting surface
modes, and may explain the loss of accuracy of the implicit scheme in the darker
regions of figure 2(d). The Myers condition, figure 2(a), also loses accuracy in these
regions due to its vanishingly thin shear layer. The well-posed asymptotic schemes
in figure 2(b,c) do not have this problem: the bulk treatment of the shear as integrals
across the boundary layer, equation (3.6), allow better modelling of variations inside
the boundary layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.273


Impedance boundary conditions in inviscid shear flow 399

50

 0

100

 –50

50

 0

100

 –50

50

 0

100

 –50

50

 0

100

 –50

50

 0

100

 –50

–100 0 50 100–50–100 0

0.39

0.14

0.1
4

50 100–50 –100 0 50 100–50

–100 0 50 100–50 –100 0 50 100–50

(c)(a) (b)

(d ) (e)

0.1

0

0.2

0.3

0.4

0.6

0.5

0.7

0.39

0.24

0.
14

1.08

1.08

2.
12

1.08

1.08

2.12

2.121.08

1.08

0.39

0.
39

0.39

0.24

0.14
0.65

0.65

0.
24

0.65
0.39

0.
39

0.39

0.39
0.39

0.24

0.24

0.
14

0.14

0.65
0.65

0.65

0.65

1.0
8

1.0
8

0.3
9 0.39

1.
08

2.12

1.08

1.08

2.
121.08

1.08

2.12

0.24

0.
24

0.24

0.14

0.14

0.65

0.65
0.

24 0.
24

0.
14

Absolute error

FIGURE 3. (Colour online) As in figure 2, but for a boundary layer thickness δ= 3× 10−2.
Note also the different error scale compared with figure 2.

In the bypass duct of an aeroengine, the boundary layer may be much thicker than
10−3. Figure 3 shows results for δ= 3× 10−2, with all other parameters as in figure 2.
For this relatively thick boundary layer, the region of asymptotic validity is k� 33,
so it is no surprise that the breakdown of the asymptotic models (figure 3b,c) occurs
within the plotted domain. The Myers condition, figure 3(a), is also only usefully
accurate in a small region near the origin. The instability of the explicit method
makes it unusable in most circumstances (figure 3e). The A-stable single-step implicit
scheme, however, comes into its own for thicker boundary layers. Figure 3(d) shows
the implicit scheme to be extremely accurate throughout the k domain. Importantly,
the accuracy is not lessened as k increases past 1/δ, meaning that the single-step
implicit scheme may also be useful when short-wavelength, high-frequency waves
interact with a thick boundary layer. There are, however, larger errors near the
Doppler-shifted origin, which is a region important for modes close to cut-on. These
errors can manifest as erroneous instabilities of the least cut-off upstream modes,
discussed in § 7.

6. Simplified forms and limiting cases

Although expressible analytically, the boundary condition in (3.8) contains integrals
across the boundary layer that for a general boundary layer profile must be performed
numerically. The single-step implicit scheme boundary condition (4.11) is also
complicated in its most general form. We now investigate specific situations when
fully closed, simplified forms of the conditions may be found.
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6.1. Linear boundary profile
In the case of a linear boundary layer velocity profile,

U(r)=
{

M(1− r)/δ, (1− r) < δ,
M, (1− r) > δ,

(6.1)

with a constant density ρ ≡ 1, the integrals Ij in (3.8) may be performed analytically
and a closed-form expression for the O(δ2) asymptotic solution can be written:

Zeff = ω

ω−Mk

Zb + δ iMk
3ω

(3ω− 2Mk)+ δ2 Mk
12ω

(8Zb(k2 +m2)− (ωZb − i)(4ω− 3kM))

1+ iδMkZb
(k2 +m2)

(ω−Mk)2
+ δ2Υ3

,

(6.2)
where

Υ3 = Mk
12(ω−Mk)2

(Mk3(4− 3M2)+ 2k2(5M2 − 4)ω

+Mk(4m2 − 11ω2)− 8m2ω+ 4ω3)

− 6iMkωZ(m2 − k2)(2ω− 3Mk)+ iωZb

k2M2
(m2 − k2) ln

(
ω

ω−Mk

)
. (6.3)

Equation (6.2), with (6.3), may be applied directly as a boundary condition assuming
a uniform base flow.

The single-step implicit scheme (4.11) simplifies greatly for the specific linear shear
profile (6.1). Using the sign convention for the roots as discussed in appendix D, the
boundary condition reduces to

Zeff = iΩu

δµ2
− iΩu

δµ2

{
1+ δZbµ

2

Ω2
u

(2iω+ δ(ω2 − k2 −m2)Zb)− δ2Mkµ2 (2ω−Mk)
Ω2

u

}1/2

,

(6.4)

where, as before, Ωu=ω−Mk and µ2= k2+m2−Ω2
u . Expanding the square root in

the small-δ limit recovers the Myers condition at leading order.
Recent work has shown that the shape of the boundary layer profile is not as

important for attenuation predictions as parameters such as the displacement and
momentum thicknesses (Gabard 2013). Thus, the explicit forms (6.2) and (6.4) could
be used more generally if the thickness is altered to match the required boundary
layer parameters.

As an example, the displacement thickness for a compressible flow may be defined,

δ∗ =
∫ 1

0

(
1− ρ(r)U(r)

ρ0U0

)
dr, (6.5)

where a subscript 0 denotes a duct centreline value. Given a displacement thickness
of a boundary layer profile that we wish to emulate, we could define a linear profile
of the form (6.1) with δ → 2δ∗. Momentum thickness and energy thickness might
similarly be used.
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6.2. Surface modes
Surface modes are waves localised near the boundary that decay exponentially into
the core of the duct. A surface with a finite impedance (not hard wall) and an
infinitesimally thin boundary layer can support up to four surface modes (Rienstra
2003). Working to first order in a finite boundary layer thickness above such a surface
allows up to six surface modes to be supported (Brambley 2013). To investigate the
effect of the second-order corrections to the surface mode predictions, we utilise the
scaling k/ω� 1 and the surface mode dispersion relation (Brambley 2013)

µ− ω−Mk
iZeff

= 0, (6.6)

where Zmod in Brambley (2013) translates to the notation used here as iωZmod = i(ω−
Mk)Zeff , and µ2 = k2 + m2 − (ω − Mk)2, with Re(µ) > 0. By rearranging (3.8) such
that we have i(ω−Mk)Zeff = f (Zb, Zeff ), and using from (2.8)

Zeff = (ω−Mk)
Jm(α)

iαJ′m(α)
and

Jm(α)

αJ′m(α)
∼ 1
µ

(6.7a,b)

in the function f (Zb, Zeff ), the surface mode dispersion relation (6.6) for the O(δ2)

asymptotic solution may be written as

0 = iωZb
[
µ−µ3δ2I2 +µ(k2 +m2)(δI0δI1 + δ2I3 − δ2I5)

− (k2 +m2)

(
δI1 +

(
2m2

µ2 − 1

)
δ2I3

)
− 2m2

(
δ2I4 − 1

µ2
(k2 +m2)δ2I6

)]
+µ(ω−Mk)2(δI0 + δ2I2)

+ (k2 +m2)(ω−Mk)2(δ2I3 − δI0δI1)+ (ω−Mk)4δ2I7 − (ω−Mk)2. (6.8)

To use the dispersion relation (6.8), the Ij integral terms must be evaluated in
the regime k/ω� 1 (or, in some cases, the wavenumber and frequency dependence
extracted from the integrals). For the integrals I0, I1, I2, I4 and I7, this may be readily
done. For the integrals I3, I5 and I6, however, global contributions are important, and,
as such, the k dependence cannot be extracted for a general boundary layer profile.
To overcome this problem, the high-k/ω limit of the analytical results for a linear
profile are used. This is, of course, detrimental to the resulting surface mode model,
but it should give an idea of the number of possible new surface modes predicted
by the second-order model. The asymptotic forms of the Ij integrals are shown in
appendix C. Using these in (6.8) produces a polynomial in k of order 14 if we take
Zb to be locally reacting (independent of k), meaning that, for a given frequency ω,
the O(δ2) asymptotic solution predicts the existence of a possible 14 surface modes.
Not all of these solutions will correspond to real modes, however, since they must
satisfy Re(µ) > 0 in order to decay away from the boundary. The surface mode
asymptotics of the Modified Myers condition by Brambley (2013) predict only six
possible surface modes. This suggests that either the modified Myers condition fails
to predict all possible surface modes (through the neglect of important physics, say);
or the new second-order model predicts spurious modes that are not shared by the
Pridmore-Brown equation.
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FIGURE 4. (Colour online) Modes in the k-plane of the Myers condition (black circle),
modified Myers condition (blue triangle), single-step implicit scheme (4.11) (green cross),
O(δ2) asymptotic solution (3.8) (red right-pointing triangle) and Pridmore-Brown numerics
(purple plus sign). The tanh boundary layer profile (6.1) is used, with a constant base
density. Parameters are ω= 5, m= 0, M= 0.5 and δ= 2× 10−3. The boundary impedance
for the markers is Zb = 3 + 0.52i. The lines track the surface mode for each boundary
condition as Im(ω) is reduced from zero to −10, or sufficiently negative, as Re(ω) is
held constant, and the boundary impedance changes in line with (7.1).

Repeating the above surface mode analysis for the single-step implicit Runge–Kutta
scheme (6.4) produces a sixth-order polynomial in k, meaning a possible six surface
modes for a given frequency. This matches the number predicted by the modified
Myers condition (Brambley 2013), and suggests that the extra surface modes predicted
by the second-order asymptotic condition derived here are in fact spurious. This is
investigated further in the next section.

7. Wavenumber spectrum and stability
Modes in the k-plane are found for the Myers, the modified Myers, the single-step

implicit scheme (4.11) and the O(δ2) asymptotic solution (3.8), and compared with
those found via numerical solution of the full Pridmore-Brown equation. The liner
model used for all results here (unless specifically stated) is a mass–spring–damper
impedance,

Zb(ω)= R+ iωd− ib/ω, (7.1)

for R= 3, d= 0.15 and b= 1.15. Figure 4 shows the results for a tanh boundary layer
profile with a boundary impedance of Zb = 3 − 0.52i and parameters ω = 5, m = 0
and δ= 2× 10−3. In figure 4, the O(δ2) asymptotic solution is seen to reproduce the
full numerical modes with great accuracy. The single-step implicit condition predicts
poorly the surface mode position in the right half-plane, but this is expected: the
method cannot fully resolve a wave existing predominantly in the boundary layer;
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FIGURE 5. (Colour online) Least cut-off modes of the Myers condition (black circle),
modified Myers condition (blue triangle), single-step implicit scheme (4.11) (green cross),
O(δ2) asymptotic solution (3.8) (red right-pointing triangle) and Pridmore-Brown numerics
(purple plus sign), for ω = 31, m = 4, M = 0.5, δ = 2 × 10−3 and a tanh profile. The
boundary impedance is Zb = 3+ 4.61i.

only information at the top and bottom edges of the boundary layer are used in the
numerical scheme. The Myers condition cannot predict the position or behaviour of
surface modes (see figure 4), as it neglects boundary layer physics in favour of a
vortex sheet.

The lines from the surface modes in the right half-plane of figure 4 are Briggs–Bers
(Briggs 1964; Bers 1983) contours, and give us information about the stability of the
modes (see the appendix of Brambley (2009) for a full discussion). The modes are
tracked as Im(ω) is reduced from zero to sufficiently negative. The impedance changes
with ω via (7.1). All of the boundary conditions except the Myers condition predict
a downstream-propagating convective instability, due to their crossing the real k-axis
from the upper to the lower half-planes. This convective instability is also present in
the Pridmore-Brown numerics, visible in figure 4.

Figure 5 shows the least cut-off modes in the k-plane for parameters typical of
rotor–stator interaction in a turbofan engine. The downstream-propagating modes in
the right half of figure 5 are well approximated by all the tested models. Discrepancies
can be seen in the upstream-propagating modes of the Myers condition and single-step
implicit scheme, however. The Myers condition modes are too cut-off, which could
be an explanation for the errors in sound absorption found in Gabard (2013) when
using the Myers condition. In contrast, the single-step implicit scheme modes have
destabilised and have the wrong sign for Im(k); this could be due to either a failing
of the method or a wrong choice of sign for the square roots in the derivation (see
appendix D for a detailed discussion). Both asymptotic methods correctly predict the
Pridmore-Brown result.

Figure 6(a) shows results for ω= 10, m= 5 and δ= 1× 10−3, with the addition of
modes predicted by the O(δ2) asymptotic solution surface mode dispersion relation
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FIGURE 6. (Colour online) (a) Surface modes near the origin for Zb=1−2.5i, where here
the mass–spring–damper model is not used. (b) A larger view of the k-plane, with tracks
of surface modes as Im(Zb) is increased from −2.5 with Re(Zb) = 1 held constant. A
spurious mode can be seen far from the origin. In both panels the parameters are ω= 10,
m= 5 and δ = 1× 10−3, for a tanh profile with M = 0.5.

(6.8). The good agreement between the O(δ2) asymptotic solution and its surface
mode dispersion relation for the four surface modes near the main spectrum on
the right of figure 6(a) shows that the reduced model (6.8) is working as intended.
Importantly, the two modes in the lower left corner are unique to the O(δ2) asymptotic
solution and its surface mode approximation, with no counterparts found using either
the modified Myers condition or the full numerics. These modes also fall outside the
range of validity of the asymptotics, since they do not satisfy |k| � 1/δ. Figure 6(b)
shows the movement of the modes as Im(Zb) is increased from −2.5 to sufficiently
positive, where the mass–spring–damper liner model is not used. The four surface
modes near the main spectrum join, or interact with, the cut-off modes as the
impedance is varied. However, the modes in the lower left do not interact with the
other modes in any way. These two pieces of information about the modes in the
lower left – their irreproducibility by the numerics, and their unphysical isolation
from the main spectrum – suggest that they are spurious. Thus, as the surface mode
dispersion relation (6.8) has been shown to be a valid approximation of (3.8), we
may use it to suggest that the O(δ2) asymptotic solution predicts eight spurious
surface modes. This may not be as harmful to the predictive power of the model as
it seems at first: new modes could only exist (for reasonable ω and m) for k values
large enough to bring the O(δ2) terms of (3.8) into balance with the O(δ) or O(1)
terms. This would inherently mean moving outside the region of asymptotic validity
of the model, and hence a careful use of the new condition should prevent spurious
modes being mistakenly deemed important. Indeed, the spurious modes in figure 6
are outside the region of asymptotic validity, given by |k| � 1000.

7.1. The unstable hydrodynamic mode
Surface modes are important for stability analyses. In a laminar boundary layer,
linearly unstable surface modes can seed turbulence, which subsequently causes the
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FIGURE 7. (Colour online) The unstable mode growth rate is plotted against real k for
parameters δ= 2× 10−3, m= 12, M= 0.5, with a tanh boundary layer profile and a mass–
spring–damper impedance, Zb(ω) = R + iωd − ib/ω, for R = 3, d = 0.15, b = 1.15, as
in (7.1).

boundary layer to thicken. Instability waves are also known to be a source of sound
radiation (e.g. Tam & Morris 1980), so being better able to predict the linear stability
of the boundary layer over a liner is extremely important for aeroacoustic applications
where noise suppression is the goal.

The unstable hydrodynamic modes (Rienstra 2003; Brambley & Peake 2006) of
the asymptotic boundary conditions (2.7), (2.9) and (3.8) are traced for increasing
real k in figure 7, and compared with Pridmore-Brown numerics, where now we are
solving for ω given k. The growth rate of the mode is −Im(ω). The O(δ2) asymptotic
solution (dashed) replicates the full numerical solution (solid) accurately for moderate
k. In this case, it is a quantitatively better approximation than the modified Myers
for k . 160, which would be considered a very large wavenumber for most practical
purposes. The O(δ2) asymptotic solution retains the regularisation that results from
considering a finite-thickness shear layer; that is, applying the condition (3.8) (within
its region of asymptotic validity) forms a well-posed system. It is therefore a usefully
predictive tool for investigating maximum growth rates and representative wavelengths
of the linear instability of an inviscid boundary layer over an impedance lining. For
completeness, the Myers boundary condition prediction is plotted in figure 7 (black
dotted); its illposedness manifests as an unbounded growth rate. The Pridmore-Brown
solution asymptotes to Im(ω) = 0 as k→∞ but never becomes stable (Im(ω) > 0)
for any real k. Viscosity controls the restabilisation at small wavelengths (Khamis &
Brambley 2015): we would therefore not expect the inviscid numerics nor the inviscid
boundary conditions (2.9) and (3.8) to be stable at large real k without the addition
of a small amount of viscosity to stabilise the system for large wavenumbers.
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8. Conclusion
Analytical modelling of flow over a lining, where the acoustics in a uniform flow

may be expressed in terms of Bessel functions and modes found by applying an
effective impedance boundary condition, may be improved by using the second-order
asymptotic boundary condition derived here, equation (3.8). The model has been
shown to predict with greater accuracy both cut-off and cut-on modes, as well as
surface modes. When the boundary layer thickness δ is small and the wavenumber and
frequency satisfy k, ω� 1/δ, the second-order condition consistently and accurately
predicts numerical solutions of the Pridmore-Brown equation, improving on the
modified Myers condition (Brambley 2011b) and retaining its wellposedness.

For numerics in the frequency domain, the boundary conditions derived here may
be easily applied in their general forms, (3.8) and (4.11), or simplified by assuming a
specific shear profile; for example, a linear profile leads to expressions (6.2) and (6.4).
For sufficiently thin boundary layers, the second-order asymptotic condition allows
the accurate prediction of growth rates and characteristic wavelengths of instability.
The effect of the shear is modelled more precisely than in previous modifications
of the Myers condition, improving predictions of the position of cut-on modes in
the k-plane. This should increases the accuracy of attenuation calculations. For thick
boundary layers or high wavenumbers/frequencies outside the region of asymptotic
validity, the single-step implicit Runge–Kutta boundary condition (4.11) could be
carefully used, with the associated caveats kept in mind. It has been evidenced here
that the implicit Runge–Kutta condition can produce very accurate predictions of
the effective impedance. The scheme performs poorly, however, when predicting
the wavenumber and behaviour of surface modes and modes with sharp changes in
the boundary layer forced by the shear, owing to its poor resolution of waves in the
boundary layer. A higher-order implicit method could solve this problem, but for such
a method a closed form of the boundary condition would be overly complicated.

The new second-order asymptotic condition predicts surface modes with a higher
degree of accuracy than the modified Myers condition, but also predicts additional
spurious surface modes. Asymptotic analysis of the k/ω� 1 regime has shown that
the new condition predicts a possible 14 surface modes, compared to the six of the
modified Myers condition (Brambley 2013) and four of the Myers condition (Rienstra
2003). By comparison with computations, it is suggested that the extra modes
predicted by the second-order condition are spurious, and are easily recognised by
being far out of the range of asymptotic validity. Analysis of the single-step implicit
scheme boundary condition leads to a prediction of six surface modes, matching
the prediction of the modified Myers. Also introduced at the second order of the
asymptotic expansion is the spurious singularity when (ω − Mk)2 = k2 + m2, near
which the first-order condition or implicit Runge–Kutta condition could be used
instead.

Impedance eduction techniques, which, broadly speaking, allow the inference of
the impedance of a material from its response to different frequencies of sound,
are dependent on the quality of the liner model that they employ. The second-order
asymptotic condition derived here has more parameters (the δIj integrals) than previous
models, meaning more degrees of freedom with which to achieve a better fit to the
data (or, indeed, with which to ‘back out’ some information about the base flow).

The application of impedance conditions in grazing flow in the time domain is an
open question. The Myers condition has been applied in the time domain in many
different ways, and is still a topic of current research (e.g. Gabard & Brambley 2014).
The use of the modified Myers condition in the time domain has been only tentatively
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studied, and application of the new conditions derived here in the time domain would
be interesting future work.

The general problem of a liner with grazing flow has many facets which themselves
are open problems; including visco-thermal effects which are in the most part
neglected in the literature. It is known that viscosity by itself does not regularise
the illposedness of the Myers condition (Brambley 2011a), but that viscous effects
can be necessary to accurately predict experimental results (Renou & Aurégan 2011).
The combination of viscous effects and an expansion in the boundary layer thickness
is current work (Khamis & Brambley 2015).
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Appendix A. Details of the asymptotics of the p̃ and ṽ governing equations

We solve (3.4) to second order for the inner solution by expanding the radial
velocity as ṽ = ṽ0 + δṽ1 + δ2ṽ2 +O(δ3). We match to the outer solution

ṽu(1− δy) = v∞ + δy
(
µ2

iΩu
p∞ + v∞

)
+ 1

2
δ2y2

[
(2+µ2)v∞ + µ

2 + 2m2

iΩu
p∞

]
+O(δ3) (A 1)

in the limit y→∞, where for brevity Ωu = ω −Mk and µ2 = k2 + m2 − Ω2
u . With

Ω =ω−Uk and σ+ = k2 +m2, the leading-order solution is

ṽ0 = A0Ω + B0Ω

∫ y

0

(
1− σ+

ρΩ2

)
dy′, (A 2)

which may be written in terms of bounded integrals as

ṽ0 = A0Ω − B0Ωy
µ2

Ω2
u

+ B0Ω
σ+
Ω2

u

∫ y

0

(
1− Ω2

u

ρΩ2

)
dy′. (A 3)

Upon matching with the leading order of (A 1) as y→∞, we find B0 ≡ 0 and A0 =
v∞/Ωu. Similarly, at first order,

ṽ1 = A1Ω + A0Ωy− B1Ωy
µ2

Ω2
u

+ B1Ω
σ+
Ω2

u

∫ y

0

(
1− Ω2

u

ρΩ2

)
dy′. (A 4)

Matching with (A 1) gives B1 = ip∞ and A1 =−iσ+I1p∞/Ω2
u , where

I1 =
∫ ∞

0
χ1(y) dy, χ1(y)= 1− (ω−Mk)2

ρ(ω−Uk)2
. (A 5a,b)
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At second order, we find

ṽ2 = A2Ω − B2Ωy
µ2

Ω2
u

+ B2Ω
σ+
Ω2

u

∫ y

0
χ1 dy′ + A1Ωy− B1Ω

∫ y

0
y
µ2

Ω2
u

dy′

+B1Ω
σ+
Ω2

u

∫ y

0

(∫ y′

0
χ1 dy′′ − I1

)
dy′ + B1Ω

σ+
Ω2

u

I1y+ 1
2

A0Ωy2

− 2m2Ω

(
A0 − B1

µ2

Ω2
u

) ∫ y

0

y′

ρΩ2 − σ+ dy′ − 2m2B1Ω
σ+
Ω2

u

∫ y

0

y′

ρΩ2 − σ+χ1 dy′

+A0Ω

∫ 1

0
y′
(

1+ 2m2

ρΩ2 − σ+

)
dy′ − A0Ω

∫ y

0

(
1− σ+

ρΩ2

) ∫ y′

0
ρΩ2 dy′′ dy′.

(A 6)

In terms of bounded integrals suitable for matching, (A 6) may be rewritten as

ṽ2 = A2Ω − B2Ωy
µ2

Ω2
u

+ B2Ω
σ+
Ω2

u

∫ y

0
χ1 dy′ + A1Ωy− µ

2Ω

2Ω2
u

B1y2 − m2Ω

Ω2
u

B1y2

+B1Ω
σ+
Ω2

u

∫ y

0

(∫ y′

0
χ1 dy′′ − I1

)
dy′ + B1Ω

σ+
Ω2

u

I1y+ 1
2

A0Ωy2 + m2Ω

µ2
A0y2

+m2Ω

(
2B1

Ω2
u

− A0

µ2

) ∫ y

0
y′
(

1− Ω2
u − σ+

ρΩ2 − σ+

)
dy′ + 2m2σ+

Ω2
u

Ω

µ2
B1

∫ y

0
χ1y′ dy′

− 2m2σ+
Ω2

u

Ω

µ2
B1

∫ y

0
χ1y′

(
1− Ω2

u − σ+
ρΩ2 − σ+

)
dy′ + A0σ+Ω

∫ y

0
χ1

∫ y′

0
χ0 dy′′ dy′

−A0Ωµ
2
∫ y

0

(∫ y′

0
χ0 dy′′ − I0

)
dy′ − A0Ωµ

2I0y− A0σ+Ω
∫ y

0
y′χ1 dy′

+ 1
2

A0Ωµ
2y2, (A 7)

where

I0 =
∫ ∞

0
χ0(y) dy, χ0(y)= 1− ρ(ω−Uk)2

(ω−Mk)2
. (A 8a,b)

At this order in the ṽ expansion, we introduce spurious singularities at µ2 = 0 and
ρΩ2 = σ+. Taking y→∞ and matching with the outer solution gives

B2 = Ω
2
u

µ2
A1 + σ+

µ2
I1B1 −Ω2

u I0A0 (A 9)

and

A2 = −B2Ω
σ+
Ω2

u

I1 − B1
σ+
Ω2

u

∫ ∞
0

(∫ y

0
χ1 dy′ − I1

)
dy−m2

(
2B1

Ω2
u

− A0

µ2

) ∫ y

0
y′χ2 dy′

− 2m2σ+
Ω2

uµ
2

I3B1 + 2m2σ+
Ω2

uµ
2

B1

∫ ∞
0

yχ1χ2 dy− A0σ+

∫ ∞
0
χ1

∫ y

0
χ0 dy′ dy

+A0µ
2
∫ ∞

0

(∫ y

0
χ0 dy′ − I0

)
dy+ A0σ+I3, (A 10)
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where

I3 =
∫ ∞

0
yχ1(y) dy and χ2(y)= 1− (ω−Mk)2 − k2 −m2

ρ(ω−Uk)2 − k2 −m2
. (A 11a,b)

Evaluating ṽ at the wall, y= 0, leads to

ṽ(0) = ω

Ωu

{
v∞ − iσ+

Ωu
p∞δI1 − σ+

(
2im2p∞
Ωuµ2

− v∞
)
δ2I3 + σ+v∞δI0δI1

+ iσ+
Ωu

p∞δ2I3 −µ2v∞δ2I2 − 2im2p∞
Ωu

δ2I4 − σ+v∞δ2I5

+ 2im2σ+p∞
Ωuµ2

δ2I6

}
+O(δ3), (A 12)

where

I4 =
∫ ∞

0
yχ2(y) dy, I5 =

∫ ∞
0
χ1(y)

∫ y

0
χ0(y′) dy′ dy, I6 =

∫ ∞
0

yχ1(y)χ2(y) dy.

(A 13a−c)

Equation (A 12) is equivalent to (3.5b) in the main part of the paper.
The corresponding problem for p̃ is solved in the same way, using the governing

equation (3.3) and the outer solution (3.2a). The result is given in appendix A of
Brambley (2011b) as

p̃(0) = p∞ + i(ω−Mk)v∞δI0 + p∞(k2 +m2)δI1δI0 + i(ω−Mk)v∞δ2I2

− (ω−Mk)2p∞δ2I7 − p∞(k2 +m2)δ2I3, (A 14)

where

I2 =
∫ ∞

0
yχ0(y) dy and I7 =

∫ ∞
0
χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω−U(y′)k)2

)
dy′ dy.

(A 15a,b)
The effective impedance is formed by taking the ratio Zb = p̃(0)/ṽ(0) and dividing

top and bottom by v∞. This gives Zb= f (Zeff ) by virtue of the definition Zeff = p∞/v∞;
rearranging for Zeff produces

Zeff = ω

Ωu

Zb + δA + δ2B

1+ δC + δ2D
+O(δ3), (A 16)

where

A =− iΩ2
u

ω
I0, B =− iΩ2

u

ω
I2 − Zbµ

2I2 + σ+Zb(I0I1 + I3 − I5), C = iσ+
ωZb

Ω2
u

I1,

D = iσ+ωZb

Ω2
u

(
2m2

µ2
− 1
)

I3 + 2im2ωZb

Ω2
u

(
I4 − σ+

µ2
I6

)
+ σ+(I0I1 − I3)−Ω2

u I7,


(A 17)

which is equivalent to (3.8).
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Appendix B. Asymptotics of the impedance governing equation

Here we derive, asymptotically, two expressions for Zeff from the nonlinear
impedance equation (4.1), correct to first and second order in δ, respectively.

In the case of a non-uniform flow, where U = U(r) and ρ = ρ(r), we use (4.3)
in (4.1) and substitute for L′u from (4.4) to arrive at (4.5), which we repeat here for
convenience:

1
(ω−Mk)

L̃′ = i
r

[
1− ρ(ω−Uk)2

(ω−Mk)2

]
+ ir

k2 + m2

r2

(ω−Mk)2

[
1− (ω−Mk)2

ρ(ω−Uk)2

]
L2

u

+ ir

1−
k2 + m2

r2

ρ(ω−Uk)2

 (2LuL̃+ L̃2). (B 1)

The first two square brackets on the right-hand side of (B 1) are non-zero only in
the thin boundary layer near r = 1. This suggests that a power series expansion of
L̃ in the boundary layer thickness δ is appropriate, so we write L̃ = δL̃1 + δ2L̃2 +
O(δ3). The last square bracket is multiplied by terms proportional to L̃ and L̃2, so the
order-of-magnitude assumptions are self-consistent. We again rescale to lie within the
boundary layer by writing r = 1− δy. Expanding (B 1) in terms of y and in powers
of δ produces

1
Ωu
(L̃1 + δL̃2)

′ = −iχ0 − i
σ+
Ω2

u

Lu(0)2χ1 − δ
{

iyχ0 + iy
σ−
Ω2

u

Lu(0)2χ1

− 2iy
σ+
Ω2

u

Lu(0)L′u(0)χ1 + 2i
(

1− σ+
ρΩ2

)
Lu(0)L̃1

}
, (B 2)

where σ± = m2 ± k2, Ω(y)= ω − U(y)k, Ωu = ω −Mk, and the χj are defined as in
(3.7). Our boundary conditions are L̃j→ 0 as y→∞ for j= 1, 2. In (B 2) the Taylor
expansion of Lu about the lined wall, Lu(y) = Lu(0) − δyL′u(0) + O(δ2), is used. We
note that in this section all arguments are now in terms of y unless explicitly stated;
a prime represents a derivative with respect to y, and an argument of y= 0 relates to
a value at the wall, where r= 1.

We may integrate the leading-order terms in (B 2) to find an expression for L̃1,

L̃1 = iΩu

[
I0 −

∫ y

0
χ0(z) dz+ σ+

Ω2
u

L2
u(0)

(
I1 −

∫ y

0
χ1(z) dz

)]
, (B 3)

where the integration constants Ij are defined as in (3.6). This ensures that L̃1→ 0
as y→∞, such that, as we move into the main body of the duct, where the flow
is uniform, our L value tends to its uniform flow value Lu. Evaluating (B 3) at y= 0
causes the integrals to vanish, and thus we find an expression for L at the wall, correct
to first order in δ:

L(0)= Lu(0)+ iΩuδ

[
I0 + I1

σ+
Ω2

u

L2
u(0)

]
+O(δ2). (B 4)
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Impedance boundary conditions in inviscid shear flow 411

From (4.2), no slip at the boundary implies L(0) = ωZb/Ωu. Similarly, a uniform
slipping flow implies Lu(0)= Zeff . At leading order, then, (B 4) becomes

Zeff = ω

Ωu
Zb +O(δ), (B 5)

which is the Myers effective impedance (2.7), as expected (Myers 1980). If we make
the approximation L2

u(0)= ZbZeff /(1−Mk/ω)+ O(δ), we can rearrange (B 4) at first
order to find

Zeff = ω

Ωu

Zb − i
ω
Ω2

uδI0

1+ iσ+
ωZb

Ω2
u

δI1

+O(δ2), (B 6)

which is the modified Myers effective impedance (2.9), as derived using matched
asymptotic expansions of p̃ in Brambley (2011b).

Continuing, the first-order terms in (B 2) may be examined to find the second-order
correction terms. Upon integration,

L̃2 = iΩu

{
I2 −

∫ y

0
zχ0(z) dz+ Γ Lu(0)

(
I3 −

∫ y

0
zχ1(z) dz

)
+ 2Lu(0)

(
I8 −

∫ y

0
L̃1(z)

[
1− σ+

ρ(z)Ω(z)2

]
dz
)}

, (B 7)

where

Γ = σ−
Ω2

u

Lu(0)− 2i
σ+
Ωu

[
1−

(
1− σ+

Ω2
u

)
Lu(0)2

]
(B 8)

and the new integration constant, I8, is defined by

I8 =
∫ ∞

0
L̃1

[
1− σ+

ρΩ2

]
dy. (B 9)

As before, this ensures that L̃2→ 0 as y→∞ such that we find the correct behaviour
in the uniform core of the duct. Using (B 3) and (B 7) in (4.3) we have, at the
boundary,

L(0)= Lu(0)+ iΩu

(
δ

[
I0 + I1

σ+
Ω2

u

L2
u(0)

]
+ δ2 [I2 + Γ Lu(0)I3 + 2Lu(0)I8]

)
+O(δ3).

(B 10)

By rearranging (B 10) we find the effective impedance,

Zeff = ω

Ωu

Zb − i
ω
Ω2

u (δI0 + δ2I2)

1+ iδ
σ+
Ωu

Lu(0)I1 + iΩuδ
2(Γ I3 + 2I8)

+O(δ3), (B 11)

where the values of Lu(0) in the denominator, in the Γ term and in the I8 integral
must be approximated. Herein lies a key issue with this method: the nonlinear Lu
terms force approximations to be made for which there is no guiding modus operandi.
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412 D. Khamis and E. J. Brambley

In the matched asymptotic expansions derivation which leads to the condition (3.8),
no such Z2

eff splittings have to be made; the linear form falls naturally out of the
mathematics. Different asymptotic forms of (B 11) may be found by using different
approximations, and it transpires that the behaviour of the boundary condition (B 11)
is heavily dependent on the chosen form. While (3.8) and (B 11) are asymptotically
equivalent, it is difficult to see from (B 11) any reason to choose the approximation
leading to (3.8), although other approximations seem to give worse results than (3.8).

We conclude by remarking that, although a unique, useful second-order condition
does not fall easily out of the impedance governing equation, the derivation of the
first-order modified Myers condition is cleaner than that of Brambley (2011b).

Appendix C. Surface mode asymptotics of Ij integrals

The integrals Ij are approximated in the k/ω� 1 limit as

δI0 = 1
(ω−Mk)2

(ω2δmass − 2Mkωδmom +M2k2δke), δI1 ∼ δs
Mk
ω
,

δ2I2 = 1
(ω−Mk)2

(ω2δ̃2
mass − 2Mkωδ̃2

mom +M2k2δ̃2
ke),

δ2I3 ∼ δ2

[
3
2
+ ln

(
ω/k

ω/k−M

)]
,

δ2I4 ∼
∫ 1

0
(1− r)

(
1− M2 − 1

ρU2 − 1

)
dr+ ω

k

∫ 1

0

2(1− r)
ρU2 − 1

(
M − ρU(M2 − 1)

ρU2 − 1

)
dr,

δ2I5 ∼ δ2

[
19
12 M2k2 − 13

3 Mkω
(ω−Mk)2

+ ln
(

ω/k
ω/k−M

)]
,

δ2I6 ∼ δ2

[
1
2
+M2 +M2 ln

(
ω/k

ω/k−M

)
+1−M4

2M2
ln
(

1− Mk(Mk− 2ω)
(ω−Mk)2 − k2 −m2

)]
,

δ2I7 ∼ δs(k2 +m2)

Mkω(ω−Mk)2
(ω2δmass − 2Mkωδmom +M2k2δke),


(C 1)

where I0 and I2 are exact, and

δs = −M
ρ(1)U′(1)

, δmass =
∫ 1

0
(1− ρ) dr, δmom =

∫ 1

0
1− ρU

M
dr,

δke =
∫ 1

0
1− ρU2

M2
dr, δ̃2

mass =
∫ 1

0
(1− r)(1− ρ) dr,

δ̃2
mom =

∫ 1

0
(1− r)

(
1− ρU

M

)
dr, δ̃2

ke =
∫ 1

0
(1− r)

(
1− ρU2

M2

)
dr


(C 2)

are measures of boundary layer thickness.
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Appendix D. The implicit scheme
The second-order trapezoidal single-step implicit scheme is the highest-order such

scheme for which a closed-form solution can be written. The fundamental difference
equation for the differential equation y′ = f (x, y) is

yn+1 = yn + h
2
( f (xn, yn)+ f (xn+1, yn+1)), (D 1)

which may be written as

yn+1 = yn + h
2
(k1 + k2), (D 2)

where

k1 = f (xn, yn), k2 = f
(

xn + h, yn + h
2

k1 + h
2

k2

)
. (D 3a,b)

We use this scheme to solve (4.1) and (4.4), which we rewrite together here in the
form

L′ = Aj(r)+ Bj(r)L2, (D 4)

for j= 1, 2, with

A1(r)=− i
r
ρ(ω−Uk)2

ω−Mk
, B1(r)= ir(ω−Mk)

(
1− k2 +m2/r2

ρΩ2

)
,

A2(r)=− i
r
(ω−Mk), B2(r)= ir(ω−Mk)

(
1− k2 +m2/r2

(ω−Mk)2

)
.

 (D 5)

Equation (D 4) with j= 1 is the impedance governing equation for a sheared flow (our
boundary layer), while for j= 2 it is the corresponding equation for a uniform flow
(our imagined slipping flow with no sheared boundary layer).

This scheme actually performs two steps, one for each boundary layer, sheared and
uniform. Starting from the boundary r = 1 with the known impedance Zb, we step
backwards a distance δ through the sheared boundary layer (equation (D 4) with j= 1):

k1 = A1(1)+ B1(1)X2
0, (D 6a)

k2± = 2
δ2B1(1− δ) + 2

X0

δ
− k1

±
√√√√( 2

δ2B1(1− δ) + 2
X0

δ
− k1

)2

− 4
δ2

(
A1(1− δ)
B1(1− δ) +

(
X0 − 1

2
δk1

)2
)
,

(D 6b)

leading to
X1± = X0 − 1

2δ(k1 + k2±). (D 7)

The quantity X0 = ωZb/(ω −Mk) is L(1) as defined in (4.2), and gives the recovery
of the Myers condition in the limit δ→ 0. There are two possible solutions from the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.273
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square root; however, it is possible to disregard one by considering the small-δ limit.
From (D 6b), k2± may be rewritten

k2± = Y ± Y
√

1+W, (D 8)

where

Y = 2
δ2B1(1− δ) + 2

X0

δ
− k1, W =− 4

δ2Y2

(
A1(1− δ)
B1(1− δ) + (X0 − δk1/2)2

)
. (D 9a,b)

Since Y is O(1/δ2), the term inside the square root in (D 8) may be Taylor-expanded
as
√

1+ δ2W ∼ 1+ δ2W/2+ O(δ4). Taking the positive root leads to k2+ = O(1/δ2),
while taking the negative root gives k2−=O(1). Considering (D 7), the single implicit
Runge–Kutta step would produce an O(1/δ) change between the quantities X1 and X0
if k2+ was chosen, and an O(δ) change if k2− was chosen. Over a small distance we
expect a stable solution to change by a small amount; thus, we disregard the positive
root and write X1±≡X1. Note, this assumption may break down if δ2W is not a small
quantity, or if a mode oscillates rapidly within the boundary layer.

When computing the value of k2, we rewrite (D 8) to eliminate the possibility of
rounding errors for small W. The square root may be expanded as a binomial series
when |W|< 1,

(1+W)1/2 =
∞∑

n=0

(
1
2

n

)
Wn. (D 10)

The leading coefficient of (D 10) is unity, which, when multiplied by the Y outside the
root, cancels with the first Y term in (D 8) when the correct negative root is taken (by
the scaling argument above). The remaining terms in the series, n ∈ [1,∞), may be
approximated by the Padé approximant r(z) = p(z)/q(z) (for polynomials p, q) with
the zeroth-order coefficient of p(z) set to zero. Then, k2 =−Yp(W)/q(W). If |W|> 1,
the explicit square root form (D 8) may be used.

Next, we step forward from the edge of the boundary layer at r = 1 − δ through
the imagined uniform boundary layer ((D 4) with j = 2) to the boundary, where
the impedance is the effective impedance Zeff . The quantity X1 serves as our initial
condition, and generates a further two solutions:

k̃1 = A2(1− δ)+ B2(1− δ)X2
1, (D 11a)

k̃2± = Ỹ ± Ỹ
√

1+ W̃, (D 11b)

where

Ỹ = 2
δ2B2(1)

− 2
X1

δ
− k̃1, W̃ =− 4

δ2Ỹ2

(
A2(1)
B2(1)

+
(

X1 + 1
2
δk̃1

)2
)
, (D 12a,b)

and where we again take the negative root of k̃2± in (D 11b), writing k̃2± ≡ k̃2. The
computation of k̃2 may again be done via Padé approximation if |W̃|< 1. Since we
have a binomial series with index 1/2, the same polynomials p(z) and q(z) from above
may be used, and evaluated at the new argument W̃. We arrive at a single value for
Zeff ,

Zeff = X1 + 1
2δ(k̃1 + k̃2), (D 13)

which is the result in the main part of the paper.
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