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SIMULTANEOUSLY
MODELING CONDITIONAL
HETEROSKEDASTICITY AND
SCALE CHANGE

YUANHUA FENG
University of Konstanz

This paper proposes a semiparametric approach by introducing a smooth scale
function into the standard generalized autoregressive conditional heteroskedastic
(GARCH) model so that conditional heteroskedasti¢iBH) and scale change in
financial returns can be modeled simultaneously estimation procedure com-
bining kernel estimation of the scale function and maximum likelihood estima-
tion of the GARCH parameters is propos@dymptotic properties of the estimators

are investigated in detailt is shown that asymptotically normai/n-consistent
parameter estimation is availabke data-driven algorithm is developed for prac-
tical implementationFinite sample performance of the proposal is studied through
simulation The proposal is applied to model CH and scale change in the daily
S&P 500 and DAX 100 returndt is shown that both series have simultaneously
significant scale change and CH

1. INTRODUCTION

Modeling of heteroskedasticity in financial returns is one of the most impor-
tant and interesting themes of financial econometigsll-known conditional
heteroskedasti¢€CH) models are the autoregressive conditional heteroskedas-
tic ARCH (Engle 1982 and(generalized ARCHGARCH (Bollersley 1986
together with numerous extensiondost GARCH variants are however station-
ary models and are hence time homoskedastic with constant unconditional vari-
ance In practice it is realized that financial returns are often not only conditional
but also time heteroskedastic with time varying unconditional variahloes is
shown by e.g., Beran and Ockef200]) by fitting a trend function to some
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volatility series defined by DingGrangey and Engle(1993. Nonstationarity
in financial returns is investigated in detalil,l®g., Mikosch and Staca (2004).

They show that the phenomenén + B, =~ 1 by a fited GARCH1, 1) model
often implies nonstationarity

In recent years different approaches for simultaneously modeling conditional
and time heteroskedasticity have been introduced in the literature by defining
the volatility as a function not only of the past values but also of the,tang
GARCH model with change poinishe piecewise GARCH model of Mikosch
and Staica, 2004 and local time homogeneous model with change pdiksr-
curio and Spokoiny2002. A general continuous time model to perform this
may be found in FanJiang Zhang and Zhou(2002. One can also obtain a
similar model for discrete time series by introducing past information into the
mean and volatility functions in the indexed stochastic model proposed by Yao
and Morgan(1999. Another proposal in this context is the time heteroskedas-
tic stochastic volatility mode(Hardlg Spokoiny and Teyssierg2000.

In this paper another approactalled a semiparametric GARCKSEMI-
GARCH) model is proposed by introducing a scale functioft) into the para-
metric GARCH modelThis proposal is motivated by the observation that one
important reason for the time heteroskedasticity is a slowly changing scale func-
tion in volatility. The advantages of this approach are as follalv§ he vola-
tility is decomposed into two multiplicative components corresponding to the
location and the past informatiprespectively2. The GARCH parameters are
estimated globallyand hence asymptotically normaln-consistent estimators
are available3. The SEMIGARCH model can also be used for predicting the
future volatility. A semiparametric estimation procedure combining kernel esti-
mation of the scale function and maximum likelihood estimation of the GARCH
parameters is proposedsymptotic properties of the estimators are investi-
gated in detailA data-driven algorithm is developed for practical implementa-
tion. Finite sample performance of the proposal is examined through a simulation
study The proposal is applied to model CH and scale change in the daily S&P
500 and DAX 100 returnslt is shown that both series have simultaneously
significant scale change and CH

This approach provides an interesting alternative for modeling financial vol-
atility. Whether or not it is better than another approach depends on the case
consideredThe idea proposed in this paper can be used to obtain semiparamet-
ric generalizations of other GARCH variantSshange points can also be intro-
duced into the SEMIGARCH model

The paper is organized as followSection 2 introduces the modé&ection 3
describes the semiparametric estimation procedisgmptotic properties of
the proposals are investigated in SectiarSéction 5 proposes a data-driven
algorithm for practical implementatiorResults of the simulation study are
reported in Section.6The proposal is applied to the log-returns of the daily
S&P 500 and DAX 100 indices in Section 3ection 8 contains some final
discussionProofs of results are in the Appendix
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2. THE MODEL
Consider the equidistant time series model
Yi:/'L+0-(ti)Ei’ i:172""’n’ (1)

whereu is an unknown constant; = i/n, o (t) > 0 is a smoothbounded scale
(or volatility) function, and {¢;} is assumed to be a GARGHs) process
defined by

Mm

Bihi (2)

)
— o2 _ 2
& = n;h/?, hi—ao+2aj€i—j+

=1 K

1

(Bollersley 1986, wheren; are independent and identically distributed.d.)
N(0,1) random variablesy, > 0 anday, ..., a;, B1,...,Bs = 0. Letv(t) = o2(t)
denote the local variance &f. The rescaled time indetx = i/n is introduced
to guarantee that the information increasesascreases and the availability
of a consistent estimator af Now, model (1) defines indeed a sequence of
processes

Let 0 = (ag,a1,...,a;,B1,...,Bs) be the unknown parameter vectdr is
assumed thak_; o; + Ef:lﬁj < 1, which ensures the existence of a unique
strictly stationary solution of2). The practical implementation of a nonpara-
metric estimatot (t) requires the moment conditida(e®) < co. However as
pointed out by an anonymous referéige condition ofE(e*) < oo is sufficient
for the derivation of the asymptotic resultdéecessary and sufficient conditions
that guarantee the existence of high-order moments of a GARCH process may
be found in Ling and L(1997), Ling (1999, and Ling and McAleef2002. It
is further assumed vé;) = E(e?) = 1, implyingag=1- 3,0, — 27, B;,
to avoid identifiability problems

The process defined k) and(2) is locally stationary in the sense of Dahl-
haus(1997), which is a special case of Example 1 given the8ach a model
provides a semiparametric extension of the standard GARCH m&idler-
sley 1986 by introducing the scale functiom(t) into it, whereh!/? stand for
the conditional standard deviations of the standardized progeSshe total
standard deviation df is hence given byr (t,)hY/2. For o (t) = o, model(1)
and(2) reduces to the standard GARCH madelr purpose is to estimatgt)
andh; separatelylf the scale functiors(t) in (1) changes over timehen the
assumption of a GARCH model is a misspecificatiomthis case the estima-
tion of the GARCH model will be inconsisterit can be shown through simu-
lation that if a nonconstant scale function is not eliminatede will obtain
&, + By — 1 by a fitted GARCHZ1,1) model asn — oo, even wher; are ii.d.
Furthermorein the presence of scale change the estimatian(tfis also nec-
essary for the predictioOn the other handf Y; follows a GARCH model but
model (1) and (2) is used then the estimation is stilfn-consistent but with
some loss in efficiency due to the estimationoaft).
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The assumptions of modé¢l) and (2) can be weakened in different ways
For instanceif the constant meap in (1) is replaced by a smooth mean func-
tion g, then we obtain the following nonparametric regression with heteroske-
dastic and dependent errors

Y =g(t) +o(t)e, 3)

where{e;} is a zero mean stationary proceEstimation of the mean function

g in model(3) with i.i.d. €; is discussed ife.g., Ruppert and Wan{1994), Fan

and Gijbels(1995, and Efromovich(1999. Discussion on the estimation of

the scale function in heteroskedastic nonparametric regression may be found
in, e.g., Efromovich(1999. This paper focuses on investigating the estimation
of o(t) andd under model1) and(2).

3. A SEMIPARAMETRIC ESTIMATION PROCEDURE

Model (1) and(2) can be estimated by a semiparametric procedure combining
nonparametric estimation af(t) and parametric estimation @f. A linear
smoother of the squared residuals will estimate). Let Z; = (Y; — w). Then
model (1) can be rewritten as follows

Xi=v(t) +o(t)é, (4)

whereX; = Z? and¢; = €2 — 1 = —1 are zero mean stationary time series
errors Model (4) transfers the estimation of the scale function to a general non-
parametric regression probleffor a related ideasee Efromovich1999 Sect
4.3). On the one handmodel (4) is a special case df3) with g(t) and o (t)
both being replaced hy(t). On the other handnodel(4) also applies t@3) by
defining Z; = Y; — g(t;). Hence the extension of our results to mod@) is
expected

The kernel estimator of conditional variance proposed by Feng and Heiler
(1998 will be adapted to estimatg(t). Lety;,..., y,, denote the observations
Let i =9, 2 =y, — ¥, andg; = 22 Let K(u) denote a second-order kernel with
compact suppoift—1,1]. The Nadaraya—\Watson estimatorwoftt based org;

is defined by
iK<tl_|;t>)/z' n

00 = S T 2 W (5)
S5 F
i=1 b

wherew; = K((t; — t)/b)[Z,; K((t; — t)/b)] * andb is the bandwidthAnd
we defined (t) = \o. It is assumed thab — 0, nb — oo asn — oo, which
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together with other regular conditions ensures the consisten¢ytof The esti-
mator defined in(5) does not depend on the dependence structure of the errors
because is a linear smoothett is clear thato > 0 if all observations for
which |t; — t| = b are not identicalThe bias oft at a boundary point is of a
larger order than in the interior because of the asymmetry in the observations
This is the so-called boundary effect of the kernel estimatbich can be over-
come by using a local linear estimat@ee e.g., Hardlg Tsybakoy and Yang
1998. However as mentioned in Feng and Heil@r998, a local linear estima-
tor of v may sometimes be nonpositivelence the kernel estimator is more
preferable in the current context

Following Bollerslev(1986, the conditional Gaussian log-likelihood in a para-
metric GARCH model takes the forfignoring constants

2

L@6) = =31, wherel, = — > In(h(e;6)) — =—. ©)
= - i, Wwherel, = ——In(h;(e;0)) — ——.
ni=; v : 2 e 2h|(€,0)

The maximizer oL (9), denoted by, is not availablebecause; are unobserv-
able in the current contextience we define the approximate log-likelihood by

22

L) = 2h,(¢:6)’

(7)

Sk

n

1
>1i, wherel, = 5 In(h;(&6)) —
i=1

whereé; are the standardized residuals given by
& =2/5(t)=(y, —V/a(t). (8)

The symbolsh;(e;6) andh;(€;60) are used to indicate thdbr a given value of
6, hi(e;6) in L(8) depends om; andh;(¢;6) in L(6) oné;. Similar to the param-
eter estimation in the SEMIFARemiparametric fractional autoregressinedel
(Beran 1999, 6 will be estimated byd, the maximizer ofl(8). Any standard
GARCH packet can be used for estimatiigfrom &;. In this paper the $
GARCH will be usedd obtained in this way is an approximate maximum like-
lihood estimator( MLE), which may perform differently frond (providedd
were availablg

4. MAIN RESULTS

For the derivation of the asymptotic results the following assumptions are
required

Al. Model (1) and(2) holds with ii.d. N(0,1) n; and strictly stationary;
such thatE(¢*) < oo. Furthermoreit is assumed tha®_; «; > 0.

A2. The functionu(t) is strictly positive bounded and at least twice con-
tinuously differentiable of0,1].
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A3. The kernelK(u) is a symmetric density with compact suppprtl,1].
A4. The bandwidtrb satisfiesb — 0 andnb — o0 asn — .

Assumptions A2—-A4 are regular conditions in nonparametric regresiibn
summarizes conditions required on the GARCH modir a GARCHZ1,1)
model| these conditions are stronger than those used.gy Lee and Hansen
(1994 and Lumsdain€1996. Now, the conditionE(e?*) < co implies in par-
ticular a; + 81 < 1, and hence&E[In(a;n? + B1)] < 0, one of the conditions
used by Lee and Hans€h994) and Lumsdainé1996. In this paper the inno-
vationsm; are assumed to bd.d. N(0,1) random variables as jre.g., Boller-
slev(1986 and Ling and Li(1997) for simplicity, which implies Assumption 2
in Lumsdaine(1996. If non-Gaussian innovations are considersditable
moment conditions have to be usechich might depend on the orders of the
GARCH model For instancefor a GARCH(1,1) model Lumsdaine(1996
introduces the moment conditioB(n3?) < oo together with further regular
conditions on the distribution af; (Assumption 2 therein Furthermoreit can
be shown thatunder Al other assumptions in Lee and Hangé@®894 hold.
The additional assumptiol{_; «; > 0 in Al is introduced to avoid the naive
case witha; =0 foralli=1,...,r.

4.1. Asymptotic Properties of v

Equation(4) is a nonparametric regression model with dependent and hetero-
skedastic errorsPointwise results in nonparametric regression with dependent
errors as given ine.g., Altman (1990 and Hart(1991) can be adapted t6
defined in(5) without any difficulty Let y.(k) denote the autocovariance func-
tion of &. It is well known that vafo) depends ort; = f(0), wheref () =
(2m)t 2, exp(ikA)y;(k) is the spectral density &f. Letr’ = max(r,s).
Following equations(6) and (7) in Bollerslev (1986 and observing that
ag=1- 3,0 — 2.1 B;, we have the ARMATr, s) representation of;:

&= & — > Bl + U, 9
j=1 k=1

wherea] = a; + B; for j = min(r,s), of = a; forj > s, if r > s, andqj = g; for

j>r,ifs>r,and

u = ef —hy=(n?—1h, (10)

is a sequence of zero meammcorrelated random variables with independent
1, ~ N(0,1). Equations(9) and(10) allow us to calculate;.

Define R(K) = [K?(u)du and I (K) = [u?K(u) du. At an interior point
0 < t < 1 the following results hold
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THEOREM 1 Under Assumptions A1-A4 we have the following results.
(i) The bias ofi(t) is given by

[(K)v"(t)
2

E[6(t) — v ()] = b2 + o(b?). (11)

(i) The variance ofi(t) is given by

()] = 20, RIK) 2L (i> 12
var[5(t)] = 2m¢; R(K) ol ) (12)

(iii) Assume that nb — d? as n— oo, for some &> 0; then

(NB)Y2(5(t) — v(t)) 2> N(dD, V(1)) (13)
where D= | (K)v"(t)/2 and \(t) = 27¢ R(K)v?(t).

The proof of Theorem 1 is given in the Appendikhe asymptotic bias af is

the same as in nonparametric regression wittl.ierrors The asymptotic vari-
ance ofp it is similar to that in nonparametric regression with short-range depen-
dence which dependshowever on the unknown underlying functiamitself.

Let¢(z) =1 — X[ ,a/7 andy(z) =1— 3>, 8,2). Under Al we have

s 2
1-— .
_E(e) [y E(e)) ( ;213’>
T 3r e 3x sV (1)
i=1 j=1
If ¢ follows a GARCH1,1) model we have
G = 1 af(1+a; + B)(1—By)?
T (1—a;— 31)3(1 - 30112 — 20,6, — Bf)
_ 1 (1+ a1+Bl)(1_Bl)2 (15)

m ag(l- 361’12 — 20,6, — /312)'

The last equation if15) is due to the standardization ef. The proof of(14)
and(15) is given in the Appendix

The mean integrated squared er(®ISE) defined on[A,1 — A] will be
used as a goodness-of-fit criterjomhereA > 0 is used to avoid the boundary
effect of o. Definel ((v")?) = [ *(v"(t))2dtandl (v?) = [ *v2(t) dt. The
following theorem holds
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THEOREM 2 Under the assumptions of Theorem 1 we have the following
results.

(i) The MISE of 6(t) is

1-A
MISE f E[6(t) — v(t)]2dt

|2K| "y2 | 2
- OO ):(” bt 4 2me, RK) (:b)

+ o[b* + (nb)~1]. (16)

(i) Assume that ((v")?) # 0. The asymptotically optimal bandwidth for estimating
v, which minimizes the dominant part of tMESE, is given by

ba = Can Y5 (17)
with

- RK) 1(v?) \°
CA‘<2”°f|2<K> l((v”>2>> ' (8

The proof of Theorem 2 is straightforward and is omittéfda bandwidth
b= O(bs) = O(n" %) is usedwe havei(t) = v(t)[1+ Oy(n~?*)] and MISE=
o(n=%%),

4.2. Asymptotic Properties of 8

Asymptotic properties of defined in Section 3 are investigated by Ling
and Li (1997 under the general fractionally autoregressive integrated moving
average—GARCHFARIMA-GARCH) framework More detailed asymptotic
results in the special case of a GARCHL) model may be found in Lee and
Hansen(1994 and Lumsdaing1996. Asymptotic properties of) will be
studied by comparing its performance with thatéobased on the results in
Ling and Li (1997). At first we will introduce a general lemmad.et 6, =
(69,...,602)" be the true value of en-dimensional parameter vectérand be in
the interior of the compact s€ét. Assume that there exists a consistent M_.E
satisfying the equatiodlL(0)/06 = O, whereL(6) is a standard likelihood or
log likelihood function Furthermoreassume thalt(6) is three times differen-
tiablg L”(#) converges in probability to a positive definite matraxd all third-
order partial derivatives df(#) have bounded expectations@n Let L(6) be a
consistent estimate d@f(#). Then we have the following result

LEMMA 1. Assumd.(6) -2 L(9) for 6 in a neighborhood o#,. Under the

preching regular conditions on(B) there exists a consisteMLE @ satisfy-
ing dL(#)/06 = 0 and
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= Op[L"(0)]. (19)

The proof of Lemma 1 is straightforward and is omittéémma 1 ensures
the existence of an approximate MLE and provides a tool to quantify the
distance between it and an infeasible MLEote thaté is in general
\n-consistent and asymptotically normelence 4 will have the same proper-
ties if L'(6) = op(n"¥2).

Now, denote byf, = (ad,a?,...,a2,B2,...,89) the true value of the
unknown parameter vector Assumpuon Al ensures thag is in the interior
of a compact parameter sét Let § andd be as defined in Section Bet

Q,=E (20)

1 oh;(€;60) oh;(e;0)
2h?(e;0) 96 00’
and(, the value of(), at 0 = 6,, denote the information matriXhen follow-
ing Lemma 1 and Theorems13and 32 in Ling and Li (1997, we have the
following result

THEOREM 3 Assume that A1-A4 hold.

(i) There exists aMLE 4 satisfyingdL (6)/00 = 0 and§ - 65 as n— co.
(i) Let By = E(A — ). Thenvn(A — By — 6p) —=> N(0,Q57).
(iii) The bias vector B defined in (ii) is of the order of magnitude[6? + (nb)~1].

We see that) is v/n-consistent and asymptotically normal up to a bias
term B,. The proof of Theorem 3 is given in the Appendix and shows that the
0(b?) term in By is due toE[#(t;) — v(t;)] and theO[(nb)~1] term is due to
cove?, o (t;)]. If O(n"¥2) < b < O(n"Y4), B, is negligible and we have
VN6 — 6,) = N(0,Q5). Similar observations have been made in other
semiparametric contexta.g., within the context of partially linear modelShere
for a certain choice of bandwidth the nonparametric part has no effect on the
rate of convergence of the parametric estimatme HardleLiang, and Gao
2000. If 8 is estimated using = O(b,), thenB, = O(n~%%). If Y; follow a
GARCH model and > O(n~Y?), thend is vn-consistent and asymptotically
normal because nowis unbiased

5. THE PROPOSED DATA-DRIVEN ALGORITHM
A plug-in bandwidth selector may be developed by replacing the unknowns

I (v?), and1((v")?) in (18) with some suitable estimatorat first, it is pro-
posed to estimate by
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G = — (21)

where E(e) = 3, é*/n is a nonparametric estimator &f(e?). Although
explicit formulas of E(ef*) are known (for common resultssee He and
Terasvirta 19993 Karanasos1999 for results in some special casese
Bollersley 1986 He and Terasvirtal 999h, we prefer to us€; defined in(21)
because the formulas &) are in general too comple¥or a GARCH1,1)
mode] another simple estimatot;, say may be defined based qi5) by re-
placing ag, @1, and B; with their estimatesNow ¢& and ¢ perform quite
similarly. Assume that a bandwidth, is used for estimating (e*), which sat-
isfies A4 but is not necessarily the samebagurthermoremake the following
assumption

Al’. The same as Al but witE(e?) < co.

Then the following proposition holds

PROPOSITION 1 Under Assumptions Aland A2—A4 we have
E[E(ef) — E(&")] = O(b2) + O([nb.] ") (22)
and
var(E(e*)) = 2mc n 1 [1+ o(1)], (23)

where ¢ denotes the value of the spectral density of the proeésat the
origin.

The proof of Proposition 1 is given in the Appendix

Remark 1 Equations(22) and (23) show thatE(e?) is v/n-consistent if
O(n~Y2) = b, = O(n"¥4). The optimal bandwidth in a second-order sgnse
which balances the two terms on the right-hand sidg2#), is of order
O(n~%3). In this paperwe propose to use a bandwidth= O(n~Y4) for esti-
matingE(e?) so that the estimator is more stabMote thatE(e?) is no longer
vn-consistent if a bandwidti, = O(by) = O(n~Y®) is used The finally
selected bandwidth is not so sensitive to the bandwidth for estimg&tiag).

The integrall (v?) can be estimated by

2= 2 3 o2 24)

i=ny
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wheren; andn, denote the integer parts o andn(1 — A), respectivelyand
v is the same as defined %) but obtained with another bandwidt}), say
that satisfies A4The following results hold fot (v?).

PROPOSITION 2 Under the assumptions of Proposition 1 we have
E[[(v?) = I (v?})] = O(b?) + O([nb,] ") (25)
and

var( (v?)) = O(n~1) + O([n~2b; 1]). (26)

The proof of Proposition 2 is given in the Appendix

Remark 2 Note that the dominated orders of the biases and variances of
E(e?) andl(v?) are the sameHence similar statements as given in Remark 1
apply for results given in25) and (26). This is not surprising because both
v2(t;) ande? are related to the fourth moment of the errors

A well-known estimator of ((v")?) is given by

> 07(1)? (27)

i=np

. 1
H(v")?) = -

(see e.g., Rupperf Sheathecand Wand 1995, where?” is a kernel estimator
of v” using a fourth-order kerné{, for estimating the second derivatiysee
e.g., Muller, 1988 and again another bandwidby. Corresponding results as
given in Proposition 2 hold for((v”)2), for which the following adapted assump-
tions are required

A2’. The functionu(t) is strictly positive on0,1] and is at least four times
continuously differentiable

A3'. v" is estimated with a symmetric fourth-order kernel for estimating the
second derivative with compact supprtl,1].

A4’'. The bandwidthby satisfiesby — 0 andnbj — oo asn — co.
PROPOSITION 3 Under Assumptions AXA4 we have
E[I((v")?) = 1((v")?)] = O(b3) + O(n *by®) (28)
and
var(i ((v")?2)) = O(n~1) + O(n~2bg®). (29)

The proof of Proposition 3 is omitted because it is well known in nonpara-
metric regressiortfor results with ii.d. errors seg e.g., Ruppert et al] 1995
for results with dependent errgrsee e.g., Beran and Feng2002a 20000.
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Remark 3 The MSE(mean squared errpof [((v")?) is dominated by the
squared biasThe optimal bandwidth for estimatinig(v")?), which balances
the two terms on the right-hand side(@®8), is of orderO(n~Y7). With a band-
width by = O(n~¥7) we havel ((v")2) — 1 (v")?) = Op(n~27).

We see that for selecting the bandwiditwe have to choose at first three
pilot bandwidthsb,, b,, andby. This problem will be solved using the iterative
plug-in idea(GasserKneip, and Kohley 1991) with a so-called exponential
inflation method(see Beran and Feng002a 2002h. Let b;_; denote the band-
width for estimatingy in the(j — 1)th iteration Then in thejth iteration the
bandwidths, ; = buj = b1 andby ; = b/ will be used for estimating (e*),

I (v?), and((v")?), respectively These inflation methods are chosen so that
b. ; andb, ; are both of orde®,(n~**) andby ; is of the optimal orde®©,(n~*7),
whenb;_, is of the optimal ordeOp(n‘1/5). By an iterative plug-in algorithm
the unknown constants in the pilot bandwidths can be simply omikecther-
more we also need to choose a starting bandwidthin the current context

by should satisfy A4 because we have to estintaie the first iteration Theo-
retically, a bandwidthb, = O(n~%/%) is more preferableOur experience shows
thatb, = 0.5n"Y® is a good choiceDetailed discussions on this topic may be
found in the next two sectiongspecially in Section.8.

The proposed data-driven algorithm processes as follows

1. Start with the bandwidtty, = con~Y5 with, e.g., ¢, = 0.5.
2. In thejth iteration R
(a calculateﬁAande usir)g the bandwidlthy;_4;
(b) c?/li:ulateE(e“) andl (v?) with & obtained using the bandwidth ; = b, ; =
b’
11
(c) calculatecf from 6 andE(e*);
(d) calculatel ((v")2) with " obtained using the bandwidthy ; = b¥7;

(e) improveb;_; by
RK) T(v?) \¥°
bi:<2”é‘%f((%)2)> m (30

3. Increasq by one and repeatedly carry out step 2 until convergence is reached or
until a given maximal number of iterations has been complefetib = b;.

The conditionb; — b_;| < 1/nis used as a convergence criteriorbpbecause
such a difference is negliginl&he maximal number of iterations is put to be
20. In this algorithm 4 is estimated using,_, as ford because we do not have
a proper bandwidth selector for estimatifigrhe asymptotic performance bf

is quantified by the following theorem

THEOREM 4 Assume that A3 and AJA3 hold and that [(v")?) # 0. Then
we have

(b —Dba)/bs = Oy(N"%7) + O(n"2%). (31)

https://doi.org/10.1017/50266466604203061 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203061

CONDITIONAL HETEROSKEDASTICITY AND SCALE CHANGE 575

The proof of Theorem 4 is given in the Appendixote that A4 and Adare
automatically satisfiedThe secondd(n~%®) term on the right-hand side of
(31) is due to the error itf; caused by the bias iy, which is indeed negligible
compared with the first term

The proposed algorithm is coded in an S-Plus function c&lEMIGARCH
A practical restriction In = b = 0.5 — 1/nis used in the program for simplic-
ity. Four commonly used kerneleamely the uniform the Epanechnikgwthe
bisquare and the triweight kernelgsee e.g., Miller, 1988, are built into the
program As a standard version we propose the use of the Epanechnikov kernel
with A = 0.05 andc, = 0.5, which will be used in the next two sectians

Remark 4 Note thatb, is not well defined ifl (v)?) = 0 implyingv”(t) = 0.
However the SEMIGARCH model also applies to this cabeparticulay the
proposed algorithm does work ¥ follow a GARCH model Now it can be
shown that tbeoretically by = Op(1) asj — co. Following the context after
Theorem 3 6 has the same asymptotic properties as by a GARCH model
becausé > O,(n~¥2). And &(t) is Vn-consistent with some loss in the effi-
ciency compared with a parametric estimagmovided that no maximal num-
ber of iterations is giverbecausenb) * — Op(n~*) now

6. THE SIMULATION STUDY
6.1. Design of the Simulation

To show the practical performance of our proppsadimulation study was car-
ried out In the simulation studye; were generated using themulate.garch
function in SFGARCH following one of the two GARCIKL,1) models

Model 1 (M1). € = nh¥?, h; = 0.6 + 0.2¢2 ; + 0.2h;_, and
Model 2(M2). & = 5, h¥2, h; = 0.15+ 0.1¢2 , + 0.75h;_.

They; are generated following modé€l) with . = 0 and one of the three
scale functions

vi2(t) = oy (t) =375+t

+ (3c092.75(t — 0.5)7) + 225 + 2 tan(2.75(t — 0.5) 7)) /5,
v¥2(t) = o,(t) = oy (t) — 1.2, and
v3/?(t) = o4(t) = 3+ cog4(t — 0.25) 7).

The terms4(t) anduv,(t) are quite similarand they are designed following the
estimated scale function in the daily DAX 100 returiibe scale change with
v, is stronger than that with,. It is strongest withv;. To this end see the band-
widths required for estimating them given in Table The scale function

o,(t) may be found in Figure 2lwhich follows To confirm the statements in
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Remark 4 a constant scale functian(t) = o&(t) = 16 is also usedThe sim-
ulation was carried out for three sample sizess 1,000 2,000, 4,000. For

each case 400 replications were doRer each replicatiorthree GARCH(1,1)
models were fitted t@;, the data-driverg; andy;. The estimators ofr; and

B1 are denoted byis, B, a5, B, &7, and B7, respectively For v, we have

a5 = ai and s = BY. Here 45 and 3 are used as a benchmaiote in par-
ticular that the estimated parameters may sometimes be negative using the
S+GARCH.

6.2. Results of the Simulation Study

To give a summary of the performance &f and 3%, and to compare them
with @ and 87, the empirical efficiency EFF) of an estimator w.t. the cor-
responding one estimated frognis calculatedFor instance
.o MSE(B%)

EFF(BS) := ———= X 100%

(B1) MSE(B%) a
These results are listed in Table The difference between two related EEFs
eg., EFF(B{) — EFF(BY), in a given case may be thought of as the gain by
using the SEMIGARCH modelTable 1 shows that the EFFs éf and 35
seem to tend to 100%whereas those of) and 3y seem to tend to zer@s
n — co. Hence the gains seem to tend to 100% s> oo. The EFFs of35

TaBLE 1. Empirical efficiencieg%) of the estimated parameters

Model 1 Model 2
Parameter n vy v U3 ) vy Up U3 )
as 1,000 962 978 913 980 968 998 1011 951

2,000 9920 940 925 972 1007 965 1022 998
4,000 963 977 940 914 97.7 978 975 977

Bi 1,000 933 942 882 1033 585 643 627 599
2,000 992 927 912 998 752 898 854 717
4,000 975 998 992 947 865 907 861 776

&) 1,000 198 134 213 — 730 779 1249 —
2000 109 51 78 — 453 366 582 —
4000 54 23 30 — 302 188 265 —
BY 1,000 95 60 88 — 731 414 730 —
2000 46 24 31 @ — 234 138 244 —
4000 18 11 13 — 107 85 68 —
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under M2 are relatively lowin particular for n = 1,00Q the EFFs of3; in the
two cases of M2 withy; andv; are even smaller than those[ﬁhf; i.e., the gain
in these cases is slightly negativienis shows thah = 1,000 is sometimes not
large enough for estimating the scale function wisens large

Box plots of the 400 replications af$, B5, &5, B5, &, and B) for n =
1,000 are shown in Figures lasifhere the symbols EEE2 and E3 denote
estimators obtained from, é;, andy;, respectivelyThose forn = 2,000 and
n = 4,000 are omitted to save spadehe simulation results show that and
B¢ perform in general quite welDne clear problem arises wif¢ under M2
with n = 1,000. Now, both the variance and the bias@f are strongly affected
by some extremely small estimatege Figures 1m-3pThis is due to the non-
robustness of the bandwidth selectidthence it is worthwhile to develop a
robust procedure to improve the poor performancgiofor smalln. The qual-
ity of a5 andps is clearly improved as increasesin particular the estimation
becomes more and more stahetailed statisticgin the first version of this
papej show that the standard deviationsaf and 35 seem to converge at the
same rate as those a4f andjs, but their biases converge a little more slowly
This confirms the results of Theorem Bhe simulation results show clearly
that in the case with scale changé) and 3} are inconsistent as a result of
their biasesThe situation become worse asncreasesin particular we can
see thaf3) will tend to one a1 — oo, no matter how largg? is. However if
there is no scale change the estima@)sand 3y should of course be uset
is hence helpful to test whether or not the estimated scale function is signifi-
cant For the data examples given in the next section it is proposed to carry out
such a test based on simulation

Now let us consider the quality & The sample meanstandard deviations
and square roots of the MSEs bftogether with the true asymptotic optimal
bandwidthsb, are given in Table 2Note thatbA and the MSE in cases with
are not definedKernel densny estimates @b — b,) (omitted to save spa¢e
show that the performance @fis satisfactoryln all cases the variance &f
decreases as increasesilt is also true for the bias in most of the casBsth
the variance and the bias bfdepend on the scale function and the model of
the errors For two related caseshe variance ob under M1 is smaller than
that under M2 Generally the stronger the scale changlee larger the variance
of b. The bias ofb by v, is always negativeand it is always positive bys. The
bandwidth forv, is easiest to choos&he choice of the bandwidth ks is in
general easier than that by, except for the case of M2 with = 1,000. In this
case the detailed structure af may sometimes be smoothed away because of
the large variation caused by the GARCH modgtis shows again that =
1,000 is sometimes not large enough for distinguishing the CH and the scale
change

Remark 5 As suggested by a refergthe performance of the proposed pro-
cedure for the cases with highly persistent GARCH effect is investigated through

https://doi.org/10.1017/50266466604203061 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203061

ssaud Aussaaun abpuquied Ag auluo paysiiand L90E0Z¥0999799205/£101°01/610"10p//:sdny

0.1

0.2 . )

02

(a) a1 for M1 with v1

o

E1 = :

(e) b1 for M1 with v1

0z oa

0.1

0.8

0.4

0.0

04

(b) at for M1 with v2

g

ol o

ol o

E

w

(f) b1 for M1 with v2

T

T

:

I

o[-

m
w

02 03 04

o o

00 05 1.0

05

(c) a1 for M1 with v3

1
M

[,_ET

I[-

S|l -

E1

m
w

{g) b1 for M1 with v3

%

-

E1 _ EB

o

0.1

0.0 N

05

(d) a1 for M1 with vO

I '
. H

E1 - ES

(h) b1 for M1 with vO

il
ml
Il

foee
0
[

E1 = :


https://doi.org/10.1017/S0266466604203061

6LS

ssaud Alssanun sbprique) Ag auljuo paysiiand L90£0Z70999¥99205/£101°0L/BI0 10p//:sd1y

(i) a1 for M2 with v1 {j) at for M2 with v2 (k) a1 for M2 with v3 (d) at for M2 with v0

o P = = - = = = = = =

= 2 : : —_ 0 0 :

o 5 ] ' : ; A -

o . : (=} o
[Te] i = o) . : = = = = = =
: 1 : : ; pre] : 8 '

3 . | 3 TR o1 L g — S , ;

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3
(m} b1 for M2 with w1 (n) b1 for M2 with v2 {0} b1 for M2 with v3 (p) b1 for M2 with vO
< — —

I T & ] T T E -] T T B T T T

1 : o — (=] = '

S ] : : g : : ] : : © : ' :
i . i . = . o . ! H
= = T = = = ;

o f % g 1 f— = o — —_— % § =

© = 3 — j— 1 - — _— = —_

- - o
ol — o

o _ 3 T _ © — —

o

' E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

FiGURE 1. Box plots of&§ andps (E1), a$ andB$ (E2), and&y andBY (E3), respectivelywith n = 1,000, where the horizontal lines show the true
values


https://doi.org/10.1017/S0266466604203061

580 YUANHUA FENG

TABLE 2. Statistics on the selected bandwidth

Model 1 Model 2
n Statistic U1 %] U3 [%s) U1 %] U3 [%s)
1,000 ba 0.187 Q166 Q107 — 0204 0181 0116 —
Mean 0174 Q167 Q119 Q173 Q184 Q175 Q131 Q191
SD 0015 Q011 Q008 Q028 Q024 Q017 Q031 Q037
MSEY2 0.019 Q011 Q015 — Q031 Q018 Q034 —
2,000 ba 0.163 Q144 Q093 — Q177 Q151 Q101 —
Mean 0153 Q148 Q105 Q141 Q163 Q158 Q113 Q155
SD 0011 Q007 Q005 Q018 Q015 Q011 Q008 Q026
MSEY2 0.015 Q008 Q013 — Q020 0014 Q014 —
4,000 bp 0.142 Q126 Q081 — Q154 Q137 Q088 —
Mean 0131 Q130 Q091 Q111 Q144 Q140 Q099 Q126
SD 0009 Q006 Q003 Q010 Q012 Q008 Q005 Q016
MSEY2 0.014 Q007 Q010 — Q015 Q008 Q012 —

an additional simulation under a third modaiodel 3(M3), with «; = 0.07
andpB; = 0.87 and without trendAs expectedthe proposed procedure does not
work well for n = 1,000 because the variance&f and in particular that of;
are too large as a result of some extreme estimdteis shows again that a
robust estimation procedure should be develogexn n = 2,000, the proce-
dure works well The empirical efficiencies are a little lower than those for.M2
Detailed results of this additional simulation are omitted to save space

Remark 6 In this paperthe bandwidth is selected by minimizing the dom-
inant part of the MISE of. In a semiparametric contexthe performance of
the bandwidth selection and the resulting parameter estimation may be improved
if a plug-in algorithm that takes the MSE éfinto account is developedror
this purpose a more detailed formula of the MSE#d$ required and one has
to develop a suitable procedure to estimate the MBS is still an important
open question and will be discussed elsewhere

6.3. Detailed Analysis of Two Simulated Examples

In the following discussiontwo simulated data sets are selected to show some
details The first examplédcalled Sim 1} is a typical example of the replications
under M2 with the scale functioar,(t) andn = 2,000. The observationy;,

i =1,...,2,00Q are shown in Figure 2&or Sim 1 we haveb = 0.160 by
starting with any bandwidth/8 < b, = 0.5 — 1/n; i.e, b does not depend on

by if by is not too smallThe o,(t) (solid line) andé,(t) (dashed lingare shown
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in Figure 2b Figure 2c shows the standardized residégalsvhich look station-
ary. The estimated GARCH, 1) models are

hY = 0.0363+ 0.0540/2 , + 0.9432h , (32)
fory; and
hé = 0.2052+ 0.093722 , + 0.6965h¢ , (33)

for ¢. For model(32) we havedy + B) = 0.9972~ 1, so that the fourth
moment of this model does not exi€dn the opposite moddB3) has finite
moments until at least twelfth order as for the underlying GARCH motied
estimated SEMIGARCH conditional and total standard deviatioas (hf)/?
and 6, (t;)(h$)¥2, are shown in Figures 2d and.ZEhe true conditional and
total standard deviations of, i.e., (h;)Y? ando(t;)(h;)¥/2, are shown in Fig-
ures 2f and 2gFigure 2h shows the estimated GARCH conditiofial this
case also the totaktandard deviationgh’)¥2. The analysis of Sim 1 shows
the following results

(1) If a standard GARCH model is usgithe scale change will be wrongly estimated
as a part of the CHFurthermorethe total variance tends to be overestimated
when it is large and underestimated when it is sntetimpare Figures 2g and
2h). This phenomenon is mainly due to the overestimatiofcdnd will be called
the (volatility) inflation effect of the GARCH model in the presence of scale
change

(2) Following the SEMIGARCH modeboth the conditional heteroskedasticity and
the scale change are well estimatéte estimated SEMIGARCH total variances
are quite close to the true values and are more stable and accurate than those
following the standard GARCH modétompare Figures 2e and 2fThe errors
in 62(t;)hf are caused by the errors in these two estimabed both of them can
be clearly reduced if more dense observations are availelgle by analyzing
high-frequency financial datdhe MSE of the estimated total variances ai@8J
for the SEMIGARCH and 479 for the standard GARCH modelhe latter is
about seven times as large as the former

Furthermore (hY)¥? shown in Figure 2Hsee also Figure 3fexhibit a clear
signal of covariance nonstationarity property not shared by the true and the
estimated SEMIGARCH conditional standard deviations

The second simulated data $ealled Sim 2 is one of the replications under
M1 with v andn = 1,000 which is chosen to show that sometimes the selected
bandwidth will be wrong iy is too small or too largeThat is a moderatd,
should be used as proposed in SectiorFbr this data set we have either
b = 0.012 orb = 0.12 if by < 0.020. On the other handve haveb = 0.499
the largest allowed bandwidth in the prograimby, > 0.262 For any starting
bandwidthb, € [0.021 0.262] a bandwidthb = 0.120 will be selectedNow,
b does not depend oh,. Note that the proposed default starting bandwidth
bo = 0.5n"¥5 = 0.126 lies in the middle part of the intervgd.021, 0.262]. In
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FIGURE 2. Estimation results for the first simulated data. set
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case when it is doubtfuif the selected bandwidth with, = 0.5n"° is the
optimal one we recommend that the user try with some differley® and choose
the most reasonable from all possible selected bandwidths by means of fur-
ther analysigsee Feng20032.

7. APPLICATIONS

In this section the proposal will be applied to the log-returns of the daily S&P
500 and DAX 100 financial indexes from Januaryl394 to August 23200Q

For the S&P 500 returns shown in Figure 3a we have 0.183 (for any b, =
0.075). The fitted GARCH models are

hY = 5.684X 1077 + 0.0674y% , + 0.9302h_, (34)
fory; and
hé = 0.0649+ 0.068622 , + 0.8676n¢ , (35)

for &. As before for model (34) we havea; + B = 0.9976~ 1 so that the
fourth moment of this model does not exisdodel (35) has finite moments
until twelfth order To test whether the estimated trend is significantly noncon-
stant 400 replications were generated following mod8b) with the corre-
sponding sample variance and without trefithe scale function was then
estimated with the bandwidth= 0.183 from each replicatiorBymmetric Monte
Carlo confidence bounds that covered 95% or 99% of all estimated trends were
calculated and are shown in Figure 3b together with the sample standard devi-
ation (0.0099 and the estimated scale functi@n(t). We see that there is
significant scale change in this data .sBurthermore both &; and 3; in
model (35) are strongly significantThat is this series has simultaneously
significant scale change and CHigures 3c—3f show¢;, the SEMIGARCH
conditional standard deviatiorib?)?, the SEMIGARCH total standard devi-
ations 4 (t)(h§)Y2, and the GARCH conditional standard deviatioig)/2.
Comparing Figures 3e and 3f we see again that the estimated total variances
following the SEMIGARCH model are more stable and those following the
GARCH model are inflated

For the DAX 100 returns we have= 0.181 (for anyb, = 0.075). The fitted
GARCH models are

hY = 2.202x 107° + 0.0892/2 , + 0.8957/ , (36)
for y; and
hi = 0.0651+ 0.0873%2 ; + 0.8481n{_, @37

for €. The condition for the existence of the fourth moment of md@é) is
slightly satisfied but the eighth moment of this model does not exdgain,
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model(37) has finite moments until twelfth ordeFhe S&P 500 and DAX 100
returns series perform quite similargnd the conclusions on the former given
previously apply to the latter

Now, we will compare the performance of the GARCH and SEMIGARCH
by predicting future volatility The GARCH unconditional varianc@ 2, say
is calculated following(34) or (36). For the SEMIGARCH 62(t,) = 62(1)
is used as the unconditional variance in the near futlie predicted(ex-
pected conditional standard deviatior($,,)"? following the GARCH and
&(1)(hé,, )Y following the SEMIGARCH k = 1,2,...,10Q for the S&P 500
and DAX 100 returns are shown in Figure 4 together wittand 5 (1). Note
that the conditional standard deviations by both series at the right end are lower
thand (1). Consequently(h’, )2 andd (1) (h:. ) Y2 increase for both series
The ¢(1)(hé, )2 look quite reasonable and convergedt6l) quickly. How-
ever (hY,,)¥?2 in both cases seem to be underestimabetause of the infla-
tion effect mentioned previouslfFurthermore(h?Y, )2 converge very slowly
to some wrongly estimated limit§he sample standard deviation for the S&P
500 returns is 099 Following (34) we haved = 0.0154 which is clearly
overestimated as a result of the instability of this modedr the DAX 100
returns & is about equal to its sample valughich is howevery clearly lower
than the locally unconditional standard deviatiort &t 1. There are two prob-
lems if the fitted parametric GARCH models from these data sets are used for
predicting future volatility (1) the unconditional variance at the current end
was wrongly estimatedand (2) the predicted conditional variance converges
very slowly because these models only have finite moments of low orders
Both of these problems were overcome by applying the SEMIGARCH model

8. DISCUSSION

The SEMIGARCH introduced in this paper provides a useful tool for estimat-
ing financial volatility in cases when the stationary assumption of a GARCH
model is likely to break dowrwhich decomposes the volatility into a smooth
scale function of the location and a CH component depending on the past infor-
mation A data-driven algorithm is developed for practical implementat®&m-
ulation and data examples show that the proposal works well in prattieze

are some other recent proposals to deal with similar problergs the para-
metric GARCH model with change poin{Mikosch and Staca, 2004) for mod-

eling structural breaks in the unconditional varianeich cannot be used for
modeling slowly changing unconditional variang@n the other handstruc-

tural breaks in the unconditional variance cannot be modeled by the SEMI-
GARCH. It is worthwhile to combine these two approachasother related
work is Mercurio and Spokoiny2002, where the volatility is assumed to be
constant in some unknown time intervaBy this approach scale change and
CH are modeled together but not separately
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(a) GARCH, SEMIGARCH prediction (S&P500)
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FIGURE 4. Predicted standard deviatiofis, )2 (middle dashesandé (1) (hé, )¥2
(solid line) together with their limitsy 2 following the GARCH(short dashesandé (1)
following the SEMIGARCH(long dashesfor (a) the S&P 500 andb) the DAX 100
returns
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APPENDIX: PROOFS OF RESULTS

Under model1) and(2) v(t) is integrable This implies thaty is \/n-consistentHence
in the following discussionz; andx; can be replaced bg andx; respectively

Proof of Theorem 1.
(i) The bias Note that? is a linear smoother

o(t) = iwi Xi, (A.1)
i=1

where w; are the weights defined by5). The bias ofd is E(d(t)) — v(t) =
Siwo(t) — v(t), which is just the same as in nonparametric regression with i
errors That is the bias depends neither on the dependence structure nor on the hetero-
skedasticity of the errordhis leads to the result given ii1).

(ii) The variancelet ¢; = v(t))&; denote the errors if4). Note thatw; = 0. For
|t — t| > b we have

var(d) = > > ww, cov({;, {)). (A.2)

[t—t|=b |t —t|=b

For|t — t| = band|tj — t| = bwe havel; = [v(t) + O(b)]& and{j = [v(t) + O(b)]é;.
This leads to

cov({;, &) = cov([v(t) + O(b)&;, [v(t) + O(b)]¢))
v2(t)ye(i —)[1+ o). (A.3)
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Insert this into(A.2), then we have

var(p) = vz(t){ SO ww oyl —j)}[1+ o(D)]. (A.4)
[ti—t|=b [t —t|=b
Results in(12) follow from known results onXXw;w;y.(i — j) in nonparametric
regression with dependent errdeee e.g., Beran 1999 Beran and Feng20023.
(iii) Asymptotic normality Consider the estimation problem under the model with-
out scale change

Xi=v(t) +o)& =vt) —v(t) +o(t)el (A.5)
Define

whereg; are observations obtained following mod@l.5). Following the results iri)
and(ii) we see(nb)>2[5(t) — &(t)] = 0p(1). Henced (t) is asymptotically normal if and
only if #(t) is. Furthermorefollowing Theorem 4 in Beran and Fer{g00)) it can be
shown that the kernel estimato(t) is asymptotically normal if and only if the sample
mean of the squared GARCH proceassor equivalently the sample variance gfis
asymptotically normaBasrak Davis and Mikosch(2002 show that the squared GARCH
processe? is strongly mixing with geometric ratéfhe conditionE(e*) < oo implies
that there is @ > 0 such thatE|e?|?>"® < oo. The conditions of Theorem 183 in
Ibragimov and Linnik(1971) hold. This shows thah™* Y ¢? of a GARCH process with

finite fourth moment is asymptotically normalheorem 1 is proved n
Proof of (14) and (15). Note that; has the autoregressive moving averggBMA )

representation

d(B)& = ¢ (B)u, (A.7)

where¢(z) andy(z) are as defined befor&nder A5¢(z) and(z) have no common
roots Under Al all roots ofp(z) and(2) lie outside the unit circleThen the spectral
density of¢ is given by

var(u;) (e )[?
2 |p(e™)|?

f(A) =

with

var(u;) ((1)?
2 (p(1)*

Note thatE(e*) = 3E(h?) (Bollersley 1986 and valu;) = E(u?) = 2E(h?). The last
equation follows from(10). That is var(u;) = 3E(e*). The result in(14) is proved
by inserting this formulay (1), and ¢ (1) into (A.8). The result in(15) is obtained by
further inserting the explicit formula dE(e*) for a GARCH(1,1) model (Bollersley
1986 into (14). |

f(0) = (A.8)
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The following analysis involves infinite past history @fandé;. The presample val-
ues ofe, and ¢ will be assumed to be zer@he presample values ef andh;(e;8)
(resp é2 andh;(¢;0)) are chosen to b ; €2/n (resp X1, é?/n). For Slmp|ICIt)4 it is
also assumed thab (t) — v(t)) and(d(t;) — v(tj)) (and hencéé? — €?) and(é? — €?))
are of the same order of magnitydiei andj are not far from each otherhis is true if
t; andt; are both in the interior or both in the boundary arélae preceding simplifica-
tions do not affect the asymptotic propertiesodndé.

Consistency and asymptotic normality éfdefined in Section 3 are a part of the
results of Theorem .2 in Ling and Li (1997). Theorems 3 and 32 therein together
show that conditions of Lemma 1 are fulfilled for the log-likelihood functloi@). In
the following discussionwe will investigate the difference betwedrandé caused by
replacing the unobservabég with ¢;. Two lemmas are introduced at first

LEMMA A .1. Under the assumptions of Theorem 3 we have

h;(€;60) — h;(e;0) = O, (e, —€?) 0O6€E0. (A.9)

Proof of Lemma A.1. For any trial valued = (ag, ay,...,a,B1,...,Bs) € 0, one
can rewriteh;(e;6) as

s -1 r s -1
hi(e;0) = a0<1— Eﬁj) + (2 o Bj><1_ > BkBk> €
j=1 =1 k=1
andh;(€;0) as
s -1
a; Bi>< > BkBk> é?.
k=1
This leads to

s -1
hi(é;6)=a0<l__23j) +<
i=1 i
r s -1
h;(&;0) — hi(e;0) = <2 Q Bj><l— > BkBk> (é2 — €?)
j=1 k=1

I

= (i C Bj)(giz —€?)

j=1
= Oy (&7 — &), (A.10)

wherea; are obtained by matching the powersBnwhich decay exponentially M
LEMMA A .2. Under the assumptions of Theorem 3 we haue,c 0, the first ele-

ment of
00 d0

is zero and the other elements of it are all of the orde(&3 — €?)
Proof of Lemma A.2. Following (21) in Bollerslev (1986 we have

—j(€:0)

i (&0) _ 2 _, (A11)

a0
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wherel; = (Le? 4,...,€2,,hi_1(€;0),...,h_s(€;0))". Analogously we have

(&)

hEo G 3 E (A12)

a6

wherefi = (Lé2,,....é% . hi_1(&0),....h_(&0))". Denote byB¢; = {1, BS =

di1,
B oh; (e;0) _ oh;_41(e;0) and B ah; (€;0) _ ahi,l(é;9)7

a0 a6 a6 a6
we have
< EB,BJ>ah ned
and
( 2ﬁJBJ>ah (; ;0) ¢
This leads to
ahiéz;a) ah;; :0) (i ¢ BJ>(§, 0

= 0,(& — &) (A.13)

Again, ¢; decay exponentiallyObserve that the first element 6f — ¢ is zera Results
of Lemma A2 follow from (A.13) and Lemma Al. |

Proof of Theorem 3.

(i) Under the conditions of Theorem @/e haveé; LN €. Following Lemmas Al
and A2, L(0) LN L(#) 06 € 6. Following Lemma 1 there exists a consistent approx-
imate MLE 6 satisfying the equationlL(#)/00 = 0 such that

A

(6 —6) = 0,(L"(d)). (A.14)
(i) Note that\n(6 — 6p) 2, N(0,Q,1) (see Ling and Li1997). Results given in

this part hold if we can show/n(d — B, — §) - 0. BecauseE(d — B, — 6) = 0, we
have to show that v&é — ), or equivalently vafL’ ()], is a matrix of the ordeo(n1).

Note that
é?
. <h @0 1). (A.15)

https://doi.org/10.1017/50266466604203061 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203061

594 YUANHUA FENG

By means of Taylor expansion and using the results of LemmasAd A2 we have
1

2hi(é§ é) - 2hi (e;é) + Op(hi(g§0) — hi (6;0))

— + 2 — €?
2h. (e;6) op(el €f),
oh; (€;0)

8hi (6;0)
a0

0=0 a0

< + ()p(éi2 - Eiz)»
6=0

whereO, denote the order of magnitude of a random vector and
€i2 2

= S0, —e?)
hi(€;6)  hi(e;) P
Furthermorenote that

R B 1 oh(e0)
I‘(9)_nz 5) 90

< __1)-o
6=6 hi(E;é) .
Inserting these results in{é\.15), we obtain

Ll(é);l{é 1 oh(e;0)

6-2
- — — 1] +0,(é?—€?
n| 2 2n(ed) a0 ( i (e:d) 1) Oplér )}
= L) +T
=T, (A.16)
where the random vector
l n
T= OP(H > (e? - eF)). (A.17)
i=1
Observe thaé? = €?-v(t;)/0(t;). We have that each element Bfis of the order
13 13 v(t) — ()
= 22 _ .2 - = 2 22, TR
o(1510-4) o285
. 1 " 2 A
=0p| = E e [v(t) — ()]
nNi=1
l n
= op(ﬁ > op(eiz)). (A.18)
i=1

Hence the variance of each element ®fis of the order

0<var[% i eF]) =o(n?t),
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and so fai is consistentThis shows that all entries of VE(6)] are of the ordeo(n1).

(iii) Now, we will calculate the order of magnitude Bf = E(6 — §) = O[E(T)].
Observe thaE(e?) = 1, cov[e?,d(t;)] = O[(nb)~1] at any point andE(H (t;) — v(t;)) =
0O(b?) in the interior We have at an interior point;,

E{e’[v(t) — 0(t)]} = E[v(t) — d(t)] — cov[e?, ()]
= O[b? + (nb)~].

Furthermorenote thatE(4(t)) — v(t;)) = O(b) at the boundary and that the length of
the boundary area is equal t®.2T'his shows that the expected value of each element of
T is of the orderO[b? + (nb)~*] and hence

E(T) = O[b2 + (nb)~]. (A.19)

Theorem 3 is proved u
A sketched proof of Proposition 1. Taylor expansion o&? leads to

&= (z2/o(1))?

v

= ( 2_) + Op(8(t) — u(t)) + Op(0(t;) — v(ti>>2>

= €'+ O,(0(t) —v(t) + Op(0(t) — v(t;))? (A.20)

We have
. 1.2 120
E[E(e) — E(¢)] = O<H Z E@(t) —o(t ))) + O(; Z E(@(t) —v(t ))2>
=T +T,. (A.21)

Furthermorewe haveE(T;) = O(b2) andT, = MISE[o; = O(nb.)"* + o(T;), where
MISEjq 1; denotes the MISE of0,1]. The results given if22) are proved
Observe thag = €'[1 + 0,(1)]. We have

n

var(E(e) = Var<% > eﬁ‘) [1+ o(1)].

i=1

Note thate? follow a squared ARMA processvhich is again a second-order stationary
process with absolute summable autocovariances under the assumEpfin< co.
Hence the spectral density ef exists and

1 n
nvar(— > e{‘) — 2mCs, (A.22)

ni=1
wherecs is the value of the spectral density «f at the origin(seg e.g., Brockwell and
Davis 1991, pp. 218ff). Proposition 1 is proved n

A sketched proof of Proposition 2. Estimation of functionald {v*(t)}?dt, where
v™ is thewth derivative ofv, was investigated by Ruppert et £.995 and Beran and
Feng(2002b in nonparametric regression with independent and dependent, eespsc-
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tively. Note thatl (v?) = [{v?(t)}?dt is a special case of such functionals with= 0.
Furthermorethe results in Ruppert et.al1995 and Beran and Fen@002h together

show that the orders of magnitude in these results stay unchanged if short-range depen-
dence andor a boundedsmooth scale function are introduced into the error pracess
We obtain the results of Proposition 2 by settlkg O, | = 2, andé = 0 in the results in

Beran and Fen@2002h, wherek and| correspond ta> = 0 and the kernel order used

here and is the long-memory parameterhich is zero in the current context W

A sketched proof of Theorem 4. Note thatb = Con~5, whereC, is as defined in
(18). Hence we have

(b—Dba)/bs = CA*(Ca = Cp). (A.23)
Taylor expansion shows that

Ca = Ca = O(& — &) + Op(I(v?) = 1(¥?)) + O (I (")) = 1((v")?)). (A.24)
Observe that

[((")?) = H{(v")?) = Oy(n~2/7). (A.25)

The termO, (I (v2) — 1(v?)) = Oy(n~Y2) is of a much smaller order than that given in
(A.25) and hence is omitted\s a result of the bias if one has

& — ¢ =0(n"25), (A.26)

The results as given in Theorem 4 hold n
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