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This paper proposes a semiparametric approach by introducing a smooth scale
function into the standard generalized autoregressive conditional heteroskedastic
~GARCH! model so that conditional heteroskedasticity~CH! and scale change in
financial returns can be modeled simultaneously+ An estimation procedure com-
bining kernel estimation of the scale function and maximum likelihood estima-
tion of the GARCH parameters is proposed+Asymptotic properties of the estimators
are investigated in detail+ It is shown that asymptotically normal, Mn-consistent
parameter estimation is available+ A data-driven algorithm is developed for prac-
tical implementation+ Finite sample performance of the proposal is studied through
simulation+ The proposal is applied to model CH and scale change in the daily
S&P 500 and DAX 100 returns+ It is shown that both series have simultaneously
significant scale change and CH+

1. INTRODUCTION

Modeling of heteroskedasticity in financial returns is one of the most impor-
tant and interesting themes of financial econometrics+ Well-known conditional
heteroskedastic~CH! models are the autoregressive conditional heteroskedas-
tic ARCH ~Engle, 1982! and ~generalized ARCH! GARCH ~Bollerslev, 1986!
together with numerous extensions+ Most GARCH variants are however station-
ary models and are hence time homoskedastic with constant unconditional vari-
ance+ In practice it is realized that financial returns are often not only conditional
but also time heteroskedastic with time varying unconditional variance+ This is
shown by, e+g+, Beran and Ocker~2001! by fitting a trend function to some
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volatility series defined by Ding, Granger, and Engle~1993!+ Nonstationarity
in financial returns is investigated in detail by, e+g+, Mikosch and Sta˘rică ~2004!+
They show that the phenomenon[a1 1 Zb1 ' 1 by a fitted GARCH~1, 1! model
often implies nonstationarity+

In recent years different approaches for simultaneously modeling conditional
and time heteroskedasticity have been introduced in the literature by defining
the volatility as a function not only of the past values but also of the time, e+g+,
GARCH model with change points~the piecewise GARCH model of Mikosch
and Sta˘rică, 2004! and local time homogeneous model with change points~Mer-
curio and Spokoiny, 2002!+ A general continuous time model to perform this
may be found in Fan, Jiang, Zhang, and Zhou~2002!+ One can also obtain a
similar model for discrete time series by introducing past information into the
mean and volatility functions in the indexed stochastic model proposed by Yao
and Morgan~1999!+ Another proposal in this context is the time heteroskedas-
tic stochastic volatility model~Härdle, Spokoiny, and Teyssière, 2000!+

In this paper another approach, called a semiparametric GARCH~SEMI-
GARCH! model is proposed by introducing a scale functions~t ! into the para-
metric GARCH model+ This proposal is motivated by the observation that one
important reason for the time heteroskedasticity is a slowly changing scale func-
tion in volatility+ The advantages of this approach are as follows+ 1+ The vola-
tility is decomposed into two multiplicative components corresponding to the
location and the past information, respectively+ 2+ The GARCH parameters are
estimated globally, and hence asymptotically normal, Mn-consistent estimators
are available+ 3+ The SEMIGARCH model can also be used for predicting the
future volatility+ A semiparametric estimation procedure combining kernel esti-
mation of the scale function and maximum likelihood estimation of the GARCH
parameters is proposed+ Asymptotic properties of the estimators are investi-
gated in detail+ A data-driven algorithm is developed for practical implementa-
tion+ Finite sample performance of the proposal is examined through a simulation
study+ The proposal is applied to model CH and scale change in the daily S&P
500 and DAX 100 returns+ It is shown that both series have simultaneously
significant scale change and CH+

This approach provides an interesting alternative for modeling financial vol-
atility+ Whether or not it is better than another approach depends on the case
considered+ The idea proposed in this paper can be used to obtain semiparamet-
ric generalizations of other GARCH variants+ Change points can also be intro-
duced into the SEMIGARCH model+

The paper is organized as follows+ Section 2 introduces the model+ Section 3
describes the semiparametric estimation procedure+ Asymptotic properties of
the proposals are investigated in Section 4+ Section 5 proposes a data-driven
algorithm for practical implementation+ Results of the simulation study are
reported in Section 6+ The proposal is applied to the log-returns of the daily
S&P 500 and DAX 100 indices in Section 7+ Section 8 contains some final
discussion+ Proofs of results are in the Appendix+
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2. THE MODEL

Consider the equidistant time series model

Yi 5 m 1 s~ti !ei , i 5 1,2, + + + , n, (1)

wherem is an unknown constant, ti 5 i0n, s~t ! . 0 is a smooth, bounded scale
~or volatility! function, and $ei % is assumed to be a GARCH~r, s! process
defined by

ei 5 hi hi
102, hi 5 a0 1 (

j51

r

aj ei2j
2 1 (

k51

s

bkhi2k (2)

~Bollerslev, 1986!, wherehi are independent and identically distributed~i+i+d+!
N~0,1! random variables, a0 . 0 anda1, + + + ,ar ,b1, + + + ,bs $ 0+ Let v~t ! 5 s2~t !
denote the local variance ofYi + The rescaled time indexti 5 i0n is introduced
to guarantee that the information increases asn increases and the availability
of a consistent estimator ofv+ Now, model ~1! defines indeed a sequence of
processes+

Let u 5 ~a0,a1, + + + ,ar ,b1, + + + ,bs!
' be the unknown parameter vector+ It is

assumed that(i51
r ai 1 (j51

s bj , 1, which ensures the existence of a unique
strictly stationary solution of~2!+ The practical implementation of a nonpara-
metric estimator [v~t ! requires the moment conditionE~ei

8! , `+ However, as
pointed out by an anonymous referee, the condition ofE~ei

4! , ` is sufficient
for the derivation of the asymptotic results+ Necessary and sufficient conditions
that guarantee the existence of high-order moments of a GARCH process may
be found in Ling and Li~1997!, Ling ~1999!, and Ling and McAleer~2002!+ It
is further assumed var~ei ! 5 E~ei

2! 5 1, implying a0 5 1 2 (i51
r ai 2 (j51

s bj ,
to avoid identifiability problems+

The process defined by~1! and~2! is locally stationary in the sense of Dahl-
haus~1997!, which is a special case of Example 1 given there+ Such a model
provides a semiparametric extension of the standard GARCH model~Boller-
slev, 1986! by introducing the scale functions~t ! into it, wherehi

102 stand for
the conditional standard deviations of the standardized processei + The total
standard deviation atti is hence given bys~ti !hi

102+ For s~t ! [ s0, model ~1!
and~2! reduces to the standard GARCH model+ Our purpose is to estimatev~t !
andhi separately+ If the scale functions~t ! in ~1! changes over time, then the
assumption of a GARCH model is a misspecification+ In this case the estima-
tion of the GARCH model will be inconsistent+ It can be shown through simu-
lation that, if a nonconstant scale function is not eliminated, one will obtain
[a1 1 Zb1 r 1 by a fitted GARCH~1,1! model asn r `, even whenei are i+i+d+

Furthermore, in the presence of scale change the estimation ofv~t ! is also nec-
essary for the prediction+ On the other hand, if Yi follows a GARCH model but
model ~1! and ~2! is used, then the estimation is stillMn-consistent but with
some loss in efficiency due to the estimation ofs~t !+
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The assumptions of model~1! and ~2! can be weakened in different ways+
For instance, if the constant meanm in ~1! is replaced by a smooth mean func-
tion g, then we obtain the following nonparametric regression with heteroske-
dastic and dependent errors:

Yi 5 g~ti ! 1 s~ti !ei , (3)

where$ei % is a zero mean stationary process+ Estimation of the mean function
g in model~3! with i+i+d+ ei is discussed in, e+g+, Ruppert and Wand~1994!, Fan
and Gijbels~1995!, and Efromovich~1999!+ Discussion on the estimation of
the scale function in heteroskedastic nonparametric regression may be found
in, e+g+, Efromovich~1999!+ This paper focuses on investigating the estimation
of s~t ! andu under model~1! and~2!+

3. A SEMIPARAMETRIC ESTIMATION PROCEDURE

Model ~1! and~2! can be estimated by a semiparametric procedure combining
nonparametric estimation ofv ~t ! and parametric estimation ofu+ A linear
smoother of the squared residuals will estimatev~t !+ Let Zi 5 ~Yi 2 m!+ Then
model~1! can be rewritten as follows:

Xi 5 v~ti ! 1 v~ti !ji , (4)

whereXi 5 Zi
2 and ji 5 ei

2 2 1 $ 21 are zero mean stationary time series
errors+ Model ~4! transfers the estimation of the scale function to a general non-
parametric regression problem~for a related idea, see Efromovich, 1999, Sect+
4+3!+ On the one hand, model ~4! is a special case of~3! with g~t ! and s~t !
both being replaced byv~t !+ On the other hand, model~4! also applies to~3! by
defining Zi 5 Yi 2 g~ti !+ Hence, the extension of our results to model~3! is
expected+

The kernel estimator of conditional variance proposed by Feng and Heiler
~1998! will be adapted to estimatev~t !+ Let y1, + + + , yn, denote the observations+
Let [m 5 Ty, [zi 5 yi 2 Ty, and [xi 5 [zi

2+ Let K~u! denote a second-order kernel with
compact support@21,1# + The Nadaraya–Watson estimator ofv at t based on [xi

is defined by

[v~t ! 5

(
i51

n

KS ti 2 t

b
D [xi

(
i51

n

KS ti 2 t

b
D 5 (

i51

n

wi [xi , (5)

wherewi 5 K~~ti 2 t !0b!@(i51
n K~~ti 2 t !0b!#21 andb is the bandwidth+ And

we define [s~t ! 5 M [v+ It is assumed thatb r 0, nb r ` as n r `, which
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together with other regular conditions ensures the consistency of[s~t !+ The esti-
mator defined in~5! does not depend on the dependence structure of the errors
because [v is a linear smoother+ It is clear that [v . 0 if all observations for
which 6 ti 2 t 6 # b are not identical+ The bias of [v at a boundary point is of a
larger order than in the interior because of the asymmetry in the observations+
This is the so-called boundary effect of the kernel estimator, which can be over-
come by using a local linear estimator~see, e+g+, Härdle, Tsybakov, and Yang,
1998!+ However, as mentioned in Feng and Heiler~1998!, a local linear estima-
tor of v may sometimes be nonpositive+ Hence, the kernel estimator is more
preferable in the current context+

Following Bollerslev~1986!, the conditional Gaussian log-likelihood in a para-
metric GARCH model takes the form~ignoring constants!

L~u! 5
1

n (
i51

n

l i , wherel i 5 2
1

2
ln~hi ~e;u!! 2

ei
2

2hi ~e;u!
+ (6)

The maximizer ofL~u!, denoted by Du, is not available, becauseei are unobserv-
able in the current context+ Hence we define the approximate log-likelihood by

ZL~u! 5
1

n (
i51

n

l i , wherel i 5 2
1

2
ln~hi ~ [e;u!! 2

[ei
2

2hi ~ [e;u!
, (7)

where [ei are the standardized residuals given by

[ei 5 [zi 0 [s~ti ! 5 ~ yi 2 Ty!0 [s~ti !+ (8)

The symbolshi ~e;u! andhi ~ [e;u! are used to indicate that, for a given value of
u, hi ~e;u! in L~u! depends onei andhi ~ [e;u! in ZL~u! on [ei + Similar to the param-
eter estimation in the SEMIFAR~semiparametric fractional autoregressive! model
~Beran, 1999!, u will be estimated by Zu, the maximizer of ZL~u!+ Any standard
GARCH packet can be used for estimatingZu from [ei + In this paper the S1
GARCH will be used+ Zu obtained in this way is an approximate maximum like-
lihood estimator~MLE !, which may perform differently from Du ~provided Du
were available!+

4. MAIN RESULTS

For the derivation of the asymptotic results the following assumptions are
required+

A1+ Model ~1! and ~2! holds with i+i+d+ N~0,1! hi and strictly stationaryei

such thatE~ei
4! , `+ Furthermore, it is assumed that(i51

r ai . 0+

A2+ The functionv~t ! is strictly positive, bounded, and at least twice con-
tinuously differentiable on@0,1# +
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A3+ The kernelK~u! is a symmetric density with compact support@21,1# +

A4+ The bandwidthb satisfiesb r 0 andnb r ` asn r `+

Assumptions A2–A4 are regular conditions in nonparametric regression+ A1
summarizes conditions required on the GARCH model+ For a GARCH~1,1!
model, these conditions are stronger than those used by, e+g+, Lee and Hansen
~1994! and Lumsdaine~1996!+ Now, the conditionE~ei

4! , ` implies in par-
ticular a1 1 b1 , 1, and henceE @ ln~a1hi

2 1 b1!# , 0, one of the conditions
used by Lee and Hansen~1994! and Lumsdaine~1996!+ In this paper the inno-
vationshi are assumed to be i+i+d+ N~0,1! random variables as in, e+g+, Boller-
slev ~1986! and Ling and Li~1997! for simplicity, which implies Assumption 2
in Lumsdaine~1996!+ If non-Gaussian innovations are considered, suitable
moment conditions have to be used, which might depend on the orders of the
GARCH model+ For instance, for a GARCH~1,1! model, Lumsdaine~1996!
introduces the moment conditionE~hi

32! , ` together with further regular
conditions on the distribution ofhi ~Assumption 2 therein!+ Furthermore, it can
be shown that, under A1, other assumptions in Lee and Hansen~1994! hold+
The additional assumption(i51

r ai . 0 in A1 is introduced to avoid the naive
case withai [ 0 for all i 5 1, + + + , r+

4.1. Asymptotic Properties of [vvvv

Equation~4! is a nonparametric regression model with dependent and hetero-
skedastic errors+ Pointwise results in nonparametric regression with dependent
errors as given in, e+g+, Altman ~1990! and Hart~1991! can be adapted to[v
defined in~5! without any difficulty+ Let gj~k! denote the autocovariance func-
tion of ji + It is well known that var~ [v! depends oncf 5 f ~0!, where f ~l! 5
~2p!21 (k52`

` exp~ikl!gj~k! is the spectral density ofji + Let r ' 5 max~r,s!+
Following equations~6! and ~7! in Bollerslev ~1986! and observing that
a0 5 1 2 (i51

r ai 2 (j51
s bj , we have the ARMA~r ',s! representation ofji :

ji 5 (
j51

r '

aj
'ji2j 2 (

k51

s

bkui2k 1 ui , (9)

whereaj
'5 aj 1 bj for j # min~r,s!, aj

'5 aj for j . s, if r . s, andaj
'5 bj for

j . r, if s . r, and

ui 5 ei
2 2 hi 5 ~hi

2 2 1!hi (10)

is a sequence of zero mean, uncorrelated random variables with independent
hi ; N~0,1!+ Equations~9! and~10! allow us to calculatecf +

Define R~K ! 5 * K 2~u! du and I ~K ! 5 * u2K~u! du+ At an interior point
0 , t , 1 the following results hold+
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THEOREM 1+ Under Assumptions A1–A4 we have the following results.

(i) The bias of [v~t ! is given by

E @ [v~t ! 2 v~t !# 5
I ~K !v ''~t !

2
b2 1 o~b2!+ (11)

(ii) The variance of [v~t ! is given by

var@ [v~t !# 5 2pcf R~K !
v2~t !

nb
1 oS 1

nb
D+ (12)

(iii) Assume that nb5 r d2 as nr `, for some d. 0; then

~nb!102~ [v~t ! 2 v~t !! D
&& N~dD,V~t !!, (13)

where D5 I ~K !v ''~t !02 and V~t ! 5 2pcf R~K !v2~t !.

The proof of Theorem 1 is given in the Appendix+ The asymptotic bias of[v is
the same as in nonparametric regression with i+i+d+ errors+ The asymptotic vari-
ance of [v it is similar to that in nonparametric regression with short-range depen-
dence, which depends, however, on the unknown underlying functionv itself+

Let f~z! 5 1 2 (i51
r ' ai

'zi andc~z! 5 1 2 (j51
s bj z j + Under A1 we have

cf 5
E~ei

4!

3p

6c~1!62

6f~1!62
5

E~ei
4!

3p

S12 (
j51

s

bjD2

S12 (
i51

r

ai 2 (
j51

s

bjD2 + (14)

If ei follows a GARCH~1,1! model, we have

cf 5
1

p

a0
2~11 a1 1 b1!~12 b1!2

~12 a1 2 b1!3~12 3a1
2 2 2a1b1 2 b1

2!

5
1

p

~11 a1 1 b1!~12 b1!2

a0~12 3a1
2 2 2a1b1 2 b1

2!
+ (15)

The last equation in~15! is due to the standardization ofei + The proof of~14!
and~15! is given in the Appendix+

The mean integrated squared error~MISE! defined on@D,1 2 D# will be
used as a goodness-of-fit criterion, whereD . 0 is used to avoid the boundary
effect of [v+ Define I ~~v ''!2! 5 *D

12D~v ''~t !!2 dt and I ~v2! 5 *D
12D v2~t ! dt+ The

following theorem holds+
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THEOREM 2+ Under the assumptions of Theorem 1 we have the following
results.

(i) The MISE of [v~t ! is

MISE 5E
D

12D

E @ [v~t ! 2 v~t !# 2 dt

5
I 2~K ! I ~~v '' !2!

4
b4 1 2pcf R~K !

I ~v2!

nb
1 o@b4 1 ~nb!21# + (16)

(ii) Assume that I~~v ''!2! Þ 0. The asymptotically optimal bandwidth for estimating
v, which minimizes the dominant part of theMISE, is given by

bA 5 CA n2105 (17)

with

CA 5 S2pcf

R~K !

I 2~K !

I ~v2!

I ~~v '' !2!
D105

+ (18)

The proof of Theorem 2 is straightforward and is omitted+ If a bandwidth
b5 O~bA! 5 O~n2105! is used, we have [v~t ! 5 v~t !@11 Op~n

2205!# and MISE5
O~n2405!+

4.2. Asymptotic Properties of Zu

Asymptotic properties of Du defined in Section 3 are investigated by Ling
and Li ~1997! under the general fractionally autoregressive integrated moving
average–GARCH~FARIMA-GARCH! framework+ More detailed asymptotic
results in the special case of a GARCH~1,1! model may be found in Lee and
Hansen~1994! and Lumsdaine~1996!+ Asymptotic properties of Zu will be
studied by comparing its performance with that ofDu based on the results in
Ling and Li ~1997!+ At first we will introduce a general lemma+ Let u0 5
~u1

0, + + + ,um
0!' be the true value of am-dimensional parameter vectoru and be in

the interior of the compact setQ+ Assume that there exists a consistent MLEDu
satisfying the equation]L~u!0]u 5 0, whereL~u! is a standard likelihood or
log likelihood function+ Furthermore, assume thatL~u! is three times differen-
tiable, L''~u! converges in probability to a positive definite matrix, and all third-
order partial derivatives ofL~u! have bounded expectations inQ+ Let ZL~u! be a
consistent estimate ofL~u!+ Then we have the following result+

LEMMA 1 + Assume ZL~u!
p
&& L~u! for u in a neighborhood ofu0. Under the

preceding regular conditions on L~u! there exists a consistentMLE Zu satisfy-
ing ] ZL~u!0]u 5 0 and
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~ Zu 2 Du! 5{ 2 @ ZL''~ Du!#21 ZL'~ Du!

5 Op @ ZL'~ Du!# + (19)

The proof of Lemma 1 is straightforward and is omitted+ Lemma 1 ensures
the existence of an approximate MLE and provides a tool to quantify the
distance between it and an infeasible MLE+ Note that Du is in general
Mn-consistent and asymptotically normal+ Hence, Zu will have the same proper-
ties if ZL'~ Du! 5 op~n2102!+

Now, denote byu0 5 ~a0
0,a1

0, + + + ,ar
0,b1

0, + + + ,bs
0!' the true value of the

unknown parameter vectoru+ Assumption A1 ensures thatu0 is in the interior
of a compact parameter setQ+ Let Zu and Du be as defined in Section 3+ Let

Vu 5 EF 1

2hi
2~e;u!

]hi ~e;u!

]u

]hi ~e;u!

]u ' G (20)

andV0, the value ofVu at u 5 u0, denote the information matrix+ Then, follow-
ing Lemma 1 and Theorems 3+1 and 3+2 in Ling and Li ~1997!, we have the
following result+

THEOREM 3+ Assume that A1–A4 hold.

(i) There exists aMLE Zu satisfying] ZL~u!0]u 5 0 and Zu p
&& u0 as nr `+

(ii) Let Bu 5 E~ Zu 2 Du!. ThenMn~ Zu 2 Bu 2 u0! D
&& N~0,V0

21!.
(iii) The bias vector Bu defined in (ii) is of the order of magnitude O@b2 1 ~nb!21# .

We see that Zu is Mn-consistent and asymptotically normal up to a bias
term Bu+ The proof of Theorem 3 is given in the Appendix and shows that the
O~b2! term in Bu is due toE @ [v~ti ! 2 v~ti !# and theO@~nb!21# term is due to
cov@ei

2, [v~ti !# + If O~n2102! , b , O~n2104!, Bu is negligible, and we have
Mn~ Zu 2 u0! D

&& N~0,V0
21!+ Similar observations have been made in other

semiparametric contexts, e+g+, within the context of partially linear models+ There,
for a certain choice of bandwidth the nonparametric part has no effect on the
rate of convergence of the parametric estimator~see Härdle, Liang, and Gao,
2000!+ If Zu is estimated usingb 5 O~bA !, thenBu 5 O~n2205!+ If Yi follow a
GARCH model andb . O~n2102!, then Zu is Mn-consistent and asymptotically
normal because now[v is unbiased+

5. THE PROPOSED DATA-DRIVEN ALGORITHM

A plug-in bandwidth selector may be developed by replacing the unknownscf ,
I ~v2!, and I ~~v ''!2! in ~18! with some suitable estimators+ At first, it is pro-
posed to estimatecf by
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[cf 5
ZE~ei

4!

3p

S12 (
j51

s

ZbjD2

S12 (
i51

r

[ai 2 (
j51

s

ZbjD2 , (21)

where ZE~ei
4! 5 (i51

n [ei
40n is a nonparametric estimator ofE~ei

4!+ Although
explicit formulas of E~ei

4! are known ~for common results, see He and
Teräsvirta, 1999a; Karanasos, 1999; for results in some special cases, see
Bollerslev, 1986; He and Teräsvirta, 1999b!, we prefer to use[cf defined in~21!
because the formulas ofE~ei

4! are in general too complex+ For a GARCH~1,1!
model, another simple estimator, Icf , say, may be defined based on~15! by re-
placing a0, a1, and b1 with their estimates+ Now [cf and Icf perform quite
similarly+ Assume that a bandwidthbe is used for estimatingE~ei

4!, which sat-
isfies A4 but is not necessarily the same asb+ Furthermore, make the following
assumption+

A1' + The same as A1 but withE~ei
8! , `+

Then the following proposition holds+

PROPOSITION 1+ Under Assumptions A1' and A2–A4 we have

E @ ZE~ei
4! 2 E~ei

4!# 5 O~be
2! 1 O~ @nbe #21! (22)

and

var~ ZE~ei
4!! 5 2pcf

e n21 @11 o~1!# , (23)

where cf
e denotes the value of the spectral density of the processei

4 at the
origin.

The proof of Proposition 1 is given in the Appendix+

Remark 1+ Equations~22! and ~23! show that ZE~ei
4! is Mn-consistent, if

O~n2102! # be # O~n2104!+ The optimal bandwidth in a second-order sense,
which balances the two terms on the right-hand side of~22!, is of order
O~n2103!+ In this paper, we propose to use a bandwidthbe 5 O~n2104! for esti-
matingE~ei

4! so that the estimator is more stable+ Note that ZE~ei
4! is no longer

Mn-consistent if a bandwidthbe 5 O~bA ! 5 O~n2105! is used+ The finally
selected bandwidth is not so sensitive to the bandwidth for estimatingE~ei

4!+

The integralI ~v2! can be estimated by

ZI ~v2! 5
1

n (
i5n1

n2

[v~ti !2, (24)
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wheren1 andn2 denote the integer parts ofnD andn~1 2 D!, respectively, and
[v is the same as defined in~5! but obtained with another bandwidthbv, say,
that satisfies A4+ The following results hold forZI ~v2!+

PROPOSITION 2+ Under the assumptions of Proposition 1 we have

E @ ZI ~v2! 2 I ~v2!# 5 O~bv
2! 1 O~ @nbv#

21! (25)

and

var~ ZI ~v2!! 5 O~n21! 1 O~ @n22bv
21# !+ (26)

The proof of Proposition 2 is given in the Appendix+

Remark 2+ Note that the dominated orders of the biases and variances of
ZE~ei

4! and ZI ~v2! are the same+ Hence similar statements as given in Remark 1
apply for results given in~25! and ~26!+ This is not surprising because both
v2~ti ! andei

4 are related to the fourth moment of the errors+

A well-known estimator ofI ~~v ''!2! is given by

ZI ~~v '' !2! 5
1

n (
i5n1

n2

[v ''~ti !2 (27)

~see, e+g+, Ruppert, Sheathec, and Wand, 1995!, where [v '' is a kernel estimator
of v '' using a fourth-order kernelK2 for estimating the second derivative~see,
e+g+, Müller, 1988! and again another bandwidthbd+ Corresponding results as
given in Proposition 2 hold forZI ~~v''!2!, for which the following adapted assump-
tions are required+

A2' + The functionv~t ! is strictly positive on@0,1# and is at least four times
continuously differentiable+

A3' + v '' is estimated with a symmetric fourth-order kernel for estimating the
second derivative with compact support@21,1# +

A4' + The bandwidthbd satisfiesbd r 0 andnbd
5 r ` asn r `+

PROPOSITION 3+ Under Assumptions A1'–A4' we have

E @ ZI ~~v '' !2! 2 I ~~v '' !2!# 5{ O~bd
2! 1 O~n21bd

25! (28)

and

var~ ZI ~~v '' !2!! 5{ O~n21! 1 O~n22bd
25!+ (29)

The proof of Proposition 3 is omitted because it is well known in nonpara-
metric regression~for results with i+i+d+ errors, see, e+g+, Ruppert et al+, 1995;
for results with dependent errors, see, e+g+, Beran and Feng, 2002a, 2000b!+
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Remark 3+ The MSE~mean squared error! of ZI ~~v ''!2! is dominated by the
squared bias+ The optimal bandwidth for estimatingI ~~v ''!2!, which balances
the two terms on the right-hand side of~28!, is of orderO~n2107!+With a band-
width bd 5 O~n2107! we have ZI ~~v ''!2! 2 I ~~v ''!2! 5{ Op~n2207!+

We see that for selecting the bandwidthb we have to choose at first three
pilot bandwidthsbe, bv, andbd+ This problem will be solved using the iterative
plug-in idea~Gasser, Kneip, and Köhler, 1991! with a so-called exponential
inflation method~see Beran and Feng, 2002a, 2002b!+ Let bj21 denote the band-
width for estimatingv in the ~ j 2 1!th iteration+ Then in thej th iteration, the
bandwidthsbe, j 5 bv, j 5 bj21

504 andbd, j 5 bj21
507 will be used for estimatingE~e4!,

I ~v2!, and I ~~v ''!2!, respectively+ These inflation methods are chosen so that
be, j andbv, j are both of orderOp~n

2104! andbd, j is of the optimal orderOp~n
2107!,

whenbj21 is of the optimal orderOp~n2105!+ By an iterative plug-in algorithm
the unknown constants in the pilot bandwidths can be simply omitted+ Further-
more, we also need to choose a starting bandwidthb0+ In the current context,
b0 should satisfy A4 because we have to estimateu in the first iteration+ Theo-
retically, a bandwidthb0 5 O~n2105! is more preferable+ Our experience shows
that b0 5 0+5n2105 is a good choice+ Detailed discussions on this topic may be
found in the next two sections, especially in Section 6+3+

The proposed data-driven algorithm processes as follows:

1+ Start with the bandwidthb0 5 c0n2105 with, e+g+, c0 5 0+5+
2+ In the j th iteration

~a! calculate [v and Zu using the bandwidthbj21;
~b! calculate ZE~e4! and ZI ~v2! with [v obtained using the bandwidthbe, j 5 bv, j 5

bj21
504;

~c! calculate [cf from Zu and ZE~e4!;
~d! calculate ZI ~~v ''!2! with [v '' obtained using the bandwidthbd, j 5 bj21

507;
~e! improvebj21 by

bj 5 S2p [cf

R~K !

I 2~K !

ZI ~v2!

ZI ~~v '' !2!
D105

n2105; (30)

3+ Increasej by one and repeatedly carry out step 2 until convergence is reached or
until a given maximal number of iterations has been completed+ Put Zb 5 bj +

The condition6bj 2 bj216 , 10n is used as a convergence criterion ofZb, because
such a difference is negligible+ The maximal number of iterations is put to be
20+ In this algorithm, Zu is estimated usingbj21 as for [v because we do not have
a proper bandwidth selector for estimatingu+ The asymptotic performance ofZb
is quantified by the following theorem

THEOREM 4+ Assume that A3 and A1'–A3' hold and that I~~v ''!2! Þ 0. Then
we have

~ Zb 2 bA !0bA 5{ Op~n2207! 1 O~n2205!+ (31)

574 YUANHUA FENG

https://doi.org/10.1017/S0266466604203061 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604203061


The proof of Theorem 4 is given in the Appendix+ Note that A4 and A4' are
automatically satisfied+ The secondO~n2205! term on the right-hand side of
~31! is due to the error in[cf caused by the bias inZu, which is indeed negligible
compared with the first term+

The proposed algorithm is coded in an S-Plus function calledSEMIGARCH+
A practical restriction 10n # b # 0+5 2 10n is used in the program for simplic-
ity+ Four commonly used kernels, namely, the uniform, the Epanechnikov, the
bisquare, and the triweight kernels~see, e+g+, Müller, 1988!, are built into the
program+ As a standard version we propose the use of the Epanechnikov kernel
with D 5 0+05 andc0 5 0+5, which will be used in the next two sections+

Remark 4+ Note thatbA is not well defined ifI ~~v''!2! 5 0 implyingv''~t ! [ 0+
However, the SEMIGARCH model also applies to this case+ In particular, the
proposed algorithm does work ifYi follow a GARCH model+ Now it can be
shown that, theoretically, bj r Op~1! as j r `+ Following the context after
Theorem 3, Zu has the same asymptotic properties as by a GARCH model
because Zb .. Op~n2102!+ And [v~t ! is Mn-consistent with some loss in the effi-
ciency compared with a parametric estimator, provided that no maximal num-
ber of iterations is given, because~nbj !

21 r Op~n21! now+

6. THE SIMULATION STUDY

6.1. Design of the Simulation

To show the practical performance of our proposal, a simulation study was car-
ried out+ In the simulation study, ei were generated using thesimulate.garch
function in S1GARCH following one of the two GARCH~1,1! models+

Model 1 ~M1!+ ei 5 hi hi
102, hi 5 0+6 1 0+2ei21

2 1 0+2hi21 and

Model 2 ~M2!+ ei 5 hi hi
102, hi 5 0+15 1 0+1ei21

2 1 0+75hi21+

The yi are generated following model~1! with m [ 0 and one of the three
scale functions:

v1102~t ! 5 s1~t ! 5 3+751 t

1 ~3 cos~2+75~t 2 0+5!p! 1 22+5 1 2 tanh~2+75~t 2 0+5!p!!05,

v2102~t ! 5 s2~t ! 5 s1~t ! 2 1+2, and

v3102~t ! 5 s3~t ! 5 3 1 cos~4~t 2 0+25!p!+

The termsv1~t ! andv2~t ! are quite similar, and they are designed following the
estimated scale function in the daily DAX 100 returns+ The scale change with
v2 is stronger than that withv1+ It is strongest withv3+ To this end see the band-
widths required for estimating them given in Table 2+ The scale function
s2~t ! may be found in Figure 2b, which follows+ To confirm the statements in
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Remark 4, a constant scale functionv0~t ! 5 s0
2~t ! [ 16 is also used+ The sim-

ulation was carried out for three sample sizesn 5 1,000, 2,000, 4,000+ For
each case 400 replications were done+ For each replication, three GARCH~1,1!
models were fitted toei , the data-driven [ei and yi + The estimators ofa1 and
b1 are denoted by [a1

e , Zb1
e , [a1

[e , Zb1
[e , [a1

y, and Zb1
y, respectively+ For v0 we have

[a1
e [ [a1

y and Zb1
e [ Zb1

y+ Here, [a1
e and Zb1

e are used as a benchmark+ Note in par-
ticular that the estimated parameters may sometimes be negative using the
S1GARCH+

6.2. Results of the Simulation Study

To give a summary of the performance of[a1
[e and Zb1

[e , and to compare them
with [a1

y and Zb1
y, the empirical efficiency~EFF! of an estimator w+r+t+ the cor-

responding one estimated fromei is calculated+ For instance,

EFF~ Zb1
[e! :5

MSE~ Zb1
e!

MSE~ Zb1
[e!

3 100%+

These results are listed in Table 1+ The difference between two related EFFs,
e+g+, EFF~ Zb1

[e! 2 EFF~ Zb1
y!, in a given case may be thought of as the gain by

using the SEMIGARCH model+ Table 1 shows that the EFFs of[a1
[e and Zb1

[e

seem to tend to 100%, whereas those of[a1
y and Zb1

y seem to tend to zero, as
n r `+ Hence, the gains seem to tend to 100% asn r `+ The EFFs of Zb1

[e

Table 1. Empirical efficiencies~%! of the estimated parameters

Model 1 Model 2

Parameter n v1 v2 v3 v0 v1 v2 v3 v0

[a1
[e 1,000 96+2 97+8 91+3 98+0 96+8 99+8 101+1 95+1

2,000 99+0 94+0 92+5 97+2 100+7 96+5 102+2 99+8
4,000 96+3 97+7 94+0 91+4 97+7 97+8 97+5 97+7

Zb1
[e 1,000 93+3 94+2 88+2 103+3 58+5 64+3 62+7 59+9

2,000 99+2 92+7 91+2 99+8 75+2 89+8 85+4 71+7
4,000 97+5 99+8 99+2 94+7 86+5 90+7 86+1 77+6

[a1
y 1,000 19+8 13+4 21+3 — 73+0 77+9 124+9 —

2,000 10+9 5+1 7+8 — 45+3 36+6 58+2 —
4,000 5+4 2+3 3+0 — 30+2 18+8 26+5 —

Zb1
y 1,000 9+5 6+0 8+8 — 73+1 41+4 73+0 —

2,000 4+6 2+4 3+1 — 23+4 13+8 24+4 —
4,000 1+8 1+1 1+3 — 10+7 8+5 6+8 —
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under M2 are relatively low+ In particular, for n 5 1,000, the EFFs of Zb1
[e in the

two cases of M2 withv1 andv3 are even smaller than those ofZb1
y; i+e+, the gain

in these cases is slightly negative+ This shows thatn 5 1,000 is sometimes not
large enough for estimating the scale function whenb1 is large+

Box plots of the 400 replications of[a1
e , Zb1

e , [a1
[e , Zb1

[e , [a1
y, and Zb1

y for n 5
1,000 are shown in Figures 1a–1f, where the symbols E1, E2, and E3 denote
estimators obtained fromei , [ei , andyi , respectively+ Those forn 5 2,000 and
n 5 4,000 are omitted to save space+ The simulation results show that[a1

[e and
Zb1
[e perform in general quite well+ One clear problem arises withZb1

[e under M2
with n 5 1,000+ Now, both the variance and the bias ofZb1

[e are strongly affected
by some extremely small estimates~see Figures 1m–1p!+ This is due to the non-
robustness of the bandwidth selection+ Hence, it is worthwhile to develop a
robust procedure to improve the poor performance ofZb1

[e for smalln+ The qual-
ity of [a1

e and Zb1
e is clearly improved asn increases+ In particular, the estimation

becomes more and more stable+ Detailed statistics~in the first version of this
paper! show that the standard deviations of[a1

[e and Zb1
[e seem to converge at the

same rate as those of[a1
e and Zb1

e , but their biases converge a little more slowly+
This confirms the results of Theorem 3+ The simulation results show clearly
that, in the case with scale change, [a1

y and Zb1
y are inconsistent as a result of

their biases+ The situation become worse asn increases+ In particular, we can
see that Zb1

y will tend to one asn r `, no matter how largeb1
0 is+ However, if

there is no scale change the estimators[a1
y and Zb1

y should of course be used+ It
is hence helpful to test whether or not the estimated scale function is signifi-
cant+ For the data examples given in the next section it is proposed to carry out
such a test based on simulation+

Now let us consider the quality ofZb+ The sample means, standard deviations,
and square roots of the MSEs ofZb together with the true asymptotic optimal
bandwidthsbA are given in Table 2+ Note thatbA and the MSE in cases withv0
are not defined+ Kernel density estimates of~ Zb 2 bA ! ~omitted to save space!
show that the performance ofZb is satisfactory+ In all cases the variance ofZb
decreases asn increases+ It is also true for the bias in most of the cases+ Both
the variance and the bias ofZb depend on the scale function and the model of
the errors+ For two related cases, the variance of Zb under M1 is smaller than
that under M2+ Generally, the stronger the scale change, the larger the variance
of Zb+ The bias of Zb by v1 is always negative, and it is always positive byv3+ The
bandwidth forv2 is easiest to choose+ The choice of the bandwidth byv3 is in
general easier than that byv1, except for the case of M2 withn 5 1,000+ In this
case, the detailed structure ofv3 may sometimes be smoothed away because of
the large variation caused by the GARCH model+ This shows again thatn 5
1,000 is sometimes not large enough for distinguishing the CH and the scale
change+

Remark 5+ As suggested by a referee, the performance of the proposed pro-
cedure for the cases with highly persistent GARCH effect is investigated through
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Figure 1. Box plots of [a1
e and Zb1

e ~E1!, [a1
[e and Zb1

[e ~E2!, and [a1
y and Zb1

y ~E3!, respectively, with n 5 1,000, where the horizontal lines show the true
values+
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an additional simulation under a third model, model 3~M3!, with a1 5 0+07
andb1 5 0+87 and without trend+ As expected, the proposed procedure does not
work well for n 5 1,000 because the variance of[a1

[e and in particular that of Zb1
[e

are too large as a result of some extreme estimates+ This shows again that a
robust estimation procedure should be developed+ For n $ 2,000, the proce-
dure works well+ The empirical efficiencies are a little lower than those for M2+
Detailed results of this additional simulation are omitted to save space+

Remark 6+ In this paper, the bandwidth is selected by minimizing the dom-
inant part of the MISE of [v+ In a semiparametric context, the performance of
the bandwidth selection and the resulting parameter estimation may be improved
if a plug-in algorithm that takes the MSE ofZu into account is developed+ For
this purpose a more detailed formula of the MSE ofZu is required, and one has
to develop a suitable procedure to estimate the MSE+ This is still an important
open question and will be discussed elsewhere+

6.3. Detailed Analysis of Two Simulated Examples

In the following discussion, two simulated data sets are selected to show some
details+ The first example~called Sim 1! is a typical example of the replications
under M2 with the scale functions2~t ! and n 5 2,000+ The observationsyi ,
i 5 1, + + + ,2,000, are shown in Figure 2a+ For Sim 1 we have Zb 5 0+160 by
starting with any bandwidth 30n # b0 # 0+5 2 10n; i+e+, Zb does not depend on
b0 if b0 is not too small+ Thes2~t ! ~solid line! and [s2~t ! ~dashed line! are shown

Table 2. Statistics on the selected bandwidth

Model 1 Model 2

n Statistic v1 v2 v3 v0 v1 v2 v3 v0

1,000 bA 0+187 0+166 0+107 — 0+204 0+181 0+116 —
Mean 0+174 0+167 0+119 0+173 0+184 0+175 0+131 0+191
SD 0+015 0+011 0+008 0+028 0+024 0+017 0+031 0+037
MSE102 0+019 0+011 0+015 — 0+031 0+018 0+034 —

2,000 bA 0+163 0+144 0+093 — 0+177 0+151 0+101 —
Mean 0+153 0+148 0+105 0+141 0+163 0+158 0+113 0+155
SD 0+011 0+007 0+005 0+018 0+015 0+011 0+008 0+026
MSE102 0+015 0+008 0+013 — 0+020 0+014 0+014 —

4,000 bA 0+142 0+126 0+081 — 0+154 0+137 0+088 —
Mean 0+131 0+130 0+091 0+111 0+144 0+140 0+099 0+126
SD 0+009 0+006 0+003 0+010 0+012 0+008 0+005 0+016
MSE102 0+014 0+007 0+010 — 0+015 0+008 0+012 —
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in Figure 2b+ Figure 2c shows the standardized residuals[ei , which look station-
ary+ The estimated GARCH~1,1! models are

hi
y 5 0+03631 0+0540yi21

2 1 0+9432hi21
y (32)

for yi and

hi
[e 5 0+20521 0+0937 [ei21

2 1 0+6965hi21
[e (33)

for [ei + For model ~32! we have [a1
y 1 Zb1

y 5 0+9972 ' 1, so that the fourth
moment of this model does not exist+ On the opposite model~33! has finite
moments until at least twelfth order as for the underlying GARCH model+ The
estimated SEMIGARCH conditional and total standard deviations, i+e+, ~hi

[e!102

and [s2~ti !~hi
[e!102, are shown in Figures 2d and 2e+ The true conditional and

total standard deviations ofyi , i+e+, ~hi !
102 ands2~ti !~hi !

102, are shown in Fig-
ures 2f and 2g+ Figure 2h shows the estimated GARCH conditional~in this
case also the total! standard deviations~hi

y!102+ The analysis of Sim 1 shows
the following results+

~1! If a standard GARCH model is used, the scale change will be wrongly estimated
as a part of the CH+ Furthermore, the total variance tends to be overestimated
when it is large and underestimated when it is small~compare Figures 2g and
2h!+ This phenomenon is mainly due to the overestimation ofZb1 and will be called
the ~volatility! inflation effect of the GARCH model in the presence of scale
change+

~2! Following the SEMIGARCH model, both the conditional heteroskedasticity and
the scale change are well estimated+ The estimated SEMIGARCH total variances
are quite close to the true values and are more stable and accurate than those
following the standard GARCH model~compare Figures 2e and 2h!+ The errors
in [s2~ti !hi

[e are caused by the errors in these two estimates, and both of them can
be clearly reduced if more dense observations are available, e+g+, by analyzing
high-frequency financial data+ The MSE of the estimated total variances are 0+687
for the SEMIGARCH and 4+979 for the standard GARCH models; the latter is
about seven times as large as the former+

Furthermore, ~hi
y!102 shown in Figure 2h~see also Figure 3f! exhibit a clear

signal of covariance nonstationarity, a property not shared by the true and the
estimated SEMIGARCH conditional standard deviations+

The second simulated data set~called Sim 2! is one of the replications under
M1 with v3 andn 5 1,000, which is chosen to show that sometimes the selected
bandwidth will be wrong ifb0 is too small or too large+ That is, a moderateb0

should be used as proposed in Section 5+ For this data set we have either
Zb 5 0+012 or Zb 5 0+12 if b0 , 0+020+ On the other hand, we have Zb 5 0+499,

the largest allowed bandwidth in the program, if b0 . 0+262+ For any starting
bandwidthb0 [ @0+021, 0+262# a bandwidth Zb 5{ 0+120 will be selected+ Now,
Zb does not depend onb0+ Note that the proposed default starting bandwidth

b0 5 0+5n2105 5 0+126 lies in the middle part of the interval@0+021, 0+262# + In
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Figure 2. Estimation results for the first simulated data set+
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case when it is doubtful, if the selected bandwidth withb0 5 0+5n2105 is the
optimal one, we recommend that the user try with some differentb0’s and choose
the most reasonableZb from all possible selected bandwidths by means of fur-
ther analysis~see Feng, 2002!+

7. APPLICATIONS

In this section the proposal will be applied to the log-returns of the daily S&P
500 and DAX 100 financial indexes from January 3, 1994, to August 23, 2000+
For the S&P 500 returns shown in Figure 3a we haveZb 5 0+183 ~for any b0 $
0+075!+ The fitted GARCH models are

hi
y 5 5+6843 1027 1 0+0674yi21

2 1 0+9302hi21
y (34)

for yi and

hi
[e 5 0+06491 0+0686 [ei21

2 1 0+8676hi21
[e (35)

for [ei + As before, for model ~34! we have [a1
y 1 Zb1

y 5 0+9976' 1 so that the
fourth moment of this model does not exist+ Model ~35! has finite moments
until twelfth order+ To test whether the estimated trend is significantly noncon-
stant, 400 replications were generated following model~35! with the corre-
sponding sample variance and without trend+ The scale function was then
estimated with the bandwidthb5 0+183 from each replication+ Symmetric Monte
Carlo confidence bounds that covered 95% or 99% of all estimated trends were
calculated and are shown in Figure 3b together with the sample standard devi-
ation ~0+0099! and the estimated scale function[s~t !+ We see that there is
significant scale change in this data set+ Furthermore, both [a1 and Zb1 in
model ~35! are strongly significant+ That is, this series has simultaneously
significant scale change and CH+ Figures 3c–3f show [ei , the SEMIGARCH
conditional standard deviations~hi

[e!102, the SEMIGARCH total standard devi-
ations [s~t !~hi

[e!102, and the GARCH conditional standard deviations~hi
y!102+

Comparing Figures 3e and 3f we see again that the estimated total variances
following the SEMIGARCH model are more stable and those following the
GARCH model are inflated+

For the DAX 100 returns we haveZb 5 0+181 ~for anyb0 $ 0+075!+ The fitted
GARCH models are

hi
y 5 2+2023 1026 1 0+0892yi21

2 1 0+8957hi21
y (36)

for yi and

hi
[e 5 0+06511 0+0873 [ei21

2 1 0+8481hi21
[e (37)

for [ei + The condition for the existence of the fourth moment of model~36! is
slightly satisfied, but the eighth moment of this model does not exist+ Again,
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model~37! has finite moments until twelfth order+ The S&P 500 and DAX 100
returns series perform quite similarly, and the conclusions on the former given
previously apply to the latter+

Now, we will compare the performance of the GARCH and SEMIGARCH
by predicting future volatility+ The GARCH unconditional variance, [s2, say,
is calculated following~34! or ~36!+ For the SEMIGARCH, [s2~tn! 5 [s2~1!
is used as the unconditional variance in the near future+ The predicted~ex-
pected! conditional standard deviations~ Zhn1k

y !102 following the GARCH and
[s~1!~ Zhn1k

[e !102 following the SEMIGARCH, k 5 1,2, + + + ,100, for the S&P 500
and DAX 100 returns are shown in Figure 4 together with[s and [s~1!+ Note
that, the conditional standard deviations by both series at the right end are lower
than [s~1!+ Consequently, ~ Zhn1k

y !102 and [s~1!~ Zhn1k
[e !102 increase for both series+

The [s~1!~ Zhn1k
[e !102 look quite reasonable and converge to[s~1! quickly+ How-

ever, ~ Zhn1k
y !102 in both cases seem to be underestimated, because of the infla-

tion effect mentioned previously+ Furthermore, ~ Zhn1k
y !102 converge very slowly

to some wrongly estimated limits+ The sample standard deviation for the S&P
500 returns is 0+0099+ Following ~34! we have [s 5 0+0154, which is clearly
overestimated as a result of the instability of this model+ For the DAX 100
returns, [s is about equal to its sample value, which is, however, clearly lower
than the locally unconditional standard deviation att 5 1+ There are two prob-
lems if the fitted parametric GARCH models from these data sets are used for
predicting future volatility: ~1! the unconditional variance at the current end
was wrongly estimated; and ~2! the predicted conditional variance converges
very slowly, because these models only have finite moments of low orders+
Both of these problems were overcome by applying the SEMIGARCH model+

8. DISCUSSION

The SEMIGARCH introduced in this paper provides a useful tool for estimat-
ing financial volatility in cases when the stationary assumption of a GARCH
model is likely to break down, which decomposes the volatility into a smooth
scale function of the location and a CH component depending on the past infor-
mation+ A data-driven algorithm is developed for practical implementation+ Sim-
ulation and data examples show that the proposal works well in practice+ There
are some other recent proposals to deal with similar problems, e+g+, the para-
metric GARCH model with change points~Mikosch and Sta˘rică, 2004! for mod-
eling structural breaks in the unconditional variance, which cannot be used for
modeling slowly changing unconditional variance+ On the other hand, struc-
tural breaks in the unconditional variance cannot be modeled by the SEMI-
GARCH+ It is worthwhile to combine these two approaches+ Another related
work is Mercurio and Spokoiny~2002!, where the volatility is assumed to be
constant in some unknown time intervals+ By this approach scale change and
CH are modeled together but not separately+
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Figure 3. The estimation results for the S&P 500 returns+
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Mikosch, T+ & C+ Stărică ~2004! Change of structure in financial time series, long range depen-
dence and the GARCH models+ Review of Economics and Statistics, to appear+

Müller, H+G+ ~1988! Nonparametric Analysis of Longitudinal Data+ Springer+
Ruppert, D+, S+J+ Sheather, & M +P+ Wand ~1995! An effective bandwidth selector for local least

squares regression+ Journal of the American Statistical Association90, 1257–1270+
Ruppert, D+ & M +P+Wand~1994! Multivariate locally weighted least squares regression+ Annals of

Statistics22, 1346–1370+
Yao, Q+ & B + Morgan~1999! Empirical transform estimation for indexed stochastic models+ Jour-

nal of the Royal Statistical Society, Series B61, 127–141+

APPENDIX: PROOFS OF RESULTS

Under model~1! and~2! v~t ! is integrable+ This implies that Ty is Mn-consistent+ Hence,
in the following discussion, [zi and [xi can be replaced byzi andxi respectively+

Proof of Theorem 1.
~i! The bias+ Note that [v is a linear smoother

[v~t ! 5 (
i51

n

wi xi , (A.1)

where wi are the weights defined by~5!+ The bias of [v is E~ [v ~t !! 2 v ~t ! 5

(i51
n wi v~ti ! 2 v~t !, which is just the same as in nonparametric regression with i+i+d+

errors+ That is, the bias depends neither on the dependence structure nor on the hetero-
skedasticity of the errors+ This leads to the result given in~11!+

~ii ! The variance+ Let zi 5 v~ti !ji denote the errors in~4!+ Note thatwi 5 0+ For
6 ti 2 t 6 . b we have

var~ [v! 5 (
6 ti2t 6#b

(
6 tj2t 6#b

wi wj cov~zi ,zj !+ (A.2)

For 6 ti 2 t 6# b and6 tj 2 t 6# b we havezi 5 @v~t ! 1 O~b!#ji andzj 5 @v~t ! 1 O~b!#jj +
This leads to

cov~zi ,zj ! 5 cov~ @v~t ! 1 O~b!#ji , @v~t ! 1 O~b!#jj !

5 v2~t !gj~i 2 j !@11 o~1!# + (A.3)
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Insert this into~A+2!, then we have

var~ [v! 5 v2~t ! H (
6 ti2t 6#b

(
6 tj2t 6#b

wi wj gj~i 2 j !J@11 o~1!# + (A.4)

Results in ~12! follow from known results on((wi wj gj~i 2 j ! in nonparametric
regression with dependent errors~see, e+g+, Beran, 1999; Beran and Feng, 2002a!+

~iii ! Asymptotic normality+ Consider the estimation problem under the model with-
out scale change:

FXi 5 v~ti ! 1 v~t !ji 5 v~ti ! 2 v~t ! 1 v~t !ei
2+ (A.5)

Define

Iv~t ! 5 (
i51

n

wi Ixi , (A.6)

where Ixi are observations obtained following model~A+5!+ Following the results in~i!
and~ii ! we see~nb!102@ [v~t ! 2 Iv~t !# 5 op~1!+ Hence [v~t ! is asymptotically normal if and
only if Iv~t ! is+ Furthermore, following Theorem 4 in Beran and Feng~2001! it can be
shown that the kernel estimatorIv~t ! is asymptotically normal if and only if the sample
mean of the squared GARCH processei

2 or equivalently the sample variance ofei is
asymptotically normal+ Basrak, Davis, and Mikosch~2002! show that the squared GARCH
processei

2 is strongly mixing with geometric rate+ The conditionE~ei
4! , ` implies

that there is ad . 0 such thatE6ei
2621d , `+ The conditions of Theorem 18+5+3 in

Ibragimov and Linnik~1971! hold+ This shows thatn21 ( ei
2 of a GARCH process with

finite fourth moment is asymptotically normal+ Theorem 1 is proved+ n

Proof of (14) and (15). Note thatji has the autoregressive moving average~ARMA !
representation

f~B!ji 5 c~B!ui , (A.7)

wheref~z! andc~z! are as defined before+ Under A5f~z! andc~z! have no common
roots+ Under A1 all roots off~z! andc~z! lie outside the unit circle+ Then the spectral
density ofj is given by

f ~l! 5
var~ui !

2p

6c~e2il !62

6f~e2il !62

with

f ~0! 5
var~ui !

2p

~c~1!!2

~f~1!!2 + (A.8)

Note thatE~ei
4! 5 3E~hi

2! ~Bollerslev, 1986! and var~ui ! 5 E~ui
2! 5 2E~hi

2!+ The last

equation follows from~10!+ That is, var~ui ! 5 2
3
_E~ei

4!+ The result in~14! is proved
by inserting this formula, c~1!, andf~1! into ~A+8!+ The result in~15! is obtained by
further inserting the explicit formula ofE~ei

4! for a GARCH~1,1! model ~Bollerslev,
1986! into ~14!+ n
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The following analysis involves infinite past history ofei and [ei + The presample val-
ues ofei and [ei will be assumed to be zero+ The presample values ofei

2 and hi ~e;u!
~resp+ [ei

2 andhi ~ [e;u!! are chosen to be(i51
n ei

20n ~resp+ (i51
n [ei

20n!+ For simplicity, it is
also assumed that~ [v~ti ! 2 v~ti !! and~ [v~tj ! 2 v~tj !! ~and hence~ [ei

2 2 ei
2! and~ [ej

2 2 ej
2!!

are of the same order of magnitude, if i and j are not far from each other+ This is true if
ti and tj are both in the interior or both in the boundary area+ The preceding simplifica-
tions do not affect the asymptotic properties ofDu and Zu+

Consistency and asymptotic normality ofDu defined in Section 3 are a part of the
results of Theorem 3+2 in Ling and Li ~1997!+ Theorems 3+1 and 3+2 therein together
show that conditions of Lemma 1 are fulfilled for the log-likelihood functionL~u!+ In
the following discussion, we will investigate the difference betweenDu and Zu caused by
replacing the unobservableei with [ei + Two lemmas are introduced at first+

LEMMA A +1+ Under the assumptions of Theorem 3 we have

hi ~ [e;u! 2 hi ~e;u! 5{ Op~ [ei
2 2 ei

2! ∀u [ Q+ (A.9)

Proof of Lemma A.1. For any trial valueu 5 ~a0,a1, + + + ,ar ,b1, + + + ,bs!
' [ Q, one

can rewritehi ~e;u! as

hi ~e;u! 5 a0S12 (
j51

s

bjD21

1S(
j51

r

aj B jDS12 (
k51

s

bk BkD21

ei
2

andhi ~ [e;u! as

hi ~ [e;u! 5 a0S12 (
j51

s

bjD21

1S(
j51

r

aj B jDS12 (
k51

s

bk BkD21

[ei
2+

This leads to

hi ~ [e;u! 2 hi ~e;u! 5 S(
j51

r

aj B jDS12 (
k51

s

bk BkD21

~ [ei
2 2 ei

2!

5 S(
j51

`

aj B jD~ [ei
2 2 ei

2!

5{ Op~ [ei
2 2 ei

2!, (A.10)

whereaj are obtained by matching the powers inB, which decay exponentially+ n
LEMMA A +2+ Under the assumptions of Theorem 3 we have,∀u [ Q, the first ele-

ment of

]hi ~ [e;u!

]u
2

]hi ~e;u!

]u

is zero and the other elements of it are all of the order Op~ [ei
2 2 ei

2!.

Proof of Lemma A.2. Following ~21! in Bollerslev~1986! we have

]hi ~e;u!

]u
5 zi 1 (

j51

s

bj

]hi2j ~e;u!

]u
, (A.11)
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wherezi 5 ~1, ei21
2 , + + + , ei2r

2 , hi21~e;u!, + + + , hi2s~e;u!!' + Analogously, we have

]hi ~ [e;u!

]u
5 Zzi 1 (

j51

s

bj

]hi2j ~ [e;u!

]u
, (A.12)

where Zzi 5 ~1, [ei21
2 , + + + , [ei2r

2 , hi21~ [e;u!, + + + , hi2s~ [e;u!!' + Denote byBzi 5 zi21, B Zzi 5
Zzi21,

B
]hi ~e;u!

]u
5

]hi21~e;u!

]u
and B

]hi ~ [e;u!

]u
5

]hi21~ [e;u!

]u
,

we have

S12 (
j51

s

bj B jD ]hi ~e;u!

]u
5 zi

and

S12 (
j51

s

bj B jD ]hi ~ [e;u!

]u
5 Zzi +

This leads to

]hi ~ [e;u!

]u
2

]hi ~e;u!

]u
5 S(

j50

`

cj B jD~ Zzi 2 zi !

5{ Op~ Zzi 2 zi !+ (A.13)

Again, cj decay exponentially+ Observe that the first element ofZzi 2 zi is zero+ Results
of Lemma A+2 follow from ~A+13! and Lemma A+1+ n

Proof of Theorem 3.

~i! Under the conditions of Theorem 3, we have [ei
p
&& ei + Following Lemmas A+1

and A+2, ZL~u!
p
&& L~u! ∀u [ Q+ Following Lemma 1 there exists a consistent approx-

imate MLE Zu satisfying the equation] ZL~u!0]u 5 0 such that

~ Zu 2 Du! 5 Op~ ZL'~ Du!!+ (A.14)

~ii ! Note thatMn~ Du 2 u0! D
&& N~0,V0

21! ~see Ling and Li, 1997!+ Results given in
this part hold if we can showMn~ Zu 2 Bu 2 Du!

p
&& 0+ BecauseE~ Zu 2 Bu 2 Du! 5 0, we

have to show that var~ Zu 2 Du!, or equivalently var@ ZL'~ Du!# , is a matrix of the ordero~n21!+
Note that

ZL'~ Du! 5
1

n (
i51

n 1

2hi ~ [e; Du!

]hi ~ [e;u!

]u *
u5 Du
S [ei

2

hi ~ [e; Du!
2 1D+ (A.15)
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By means of Taylor expansion and using the results of Lemmas A+1 and A+2 we have

1

2hi ~ [e; Du!
5{

1

2hi ~e; Du!
1 Op~hi ~ [e; Du! 2 hi ~e; Du!!

5{
1

2hi ~e; Du!
1 Op~ [ei

2 2 ei
2!,

]hi ~ [e;u!

]u *
u5 Du

5{
]hi ~e;u!

]u *
u5 Du

1 Op~ [ei
2 2 ei

2!,

whereOp denote the order of magnitude of a random vector and

[ei
2

hi ~ [e; Du!
5{

ei
2

hi ~e; Du!
1 Op~ [ei

2 2 ei
2!+

Furthermore, note that

L'~ Du! 5
1

n (
i51

n 1

2hi ~e; Du!

]hi ~e;u!

]u *
u5 Du
S ei

2

hi ~e; Du!
2 1D5 0+

Inserting these results into~A+15!, we obtain

ZL'~ Du! 5{
1

nF(
i51

n 1

2hi ~e; Du!

]hi ~e;u!

]u *
u5 Du
S ei

2

hi ~e; Du!
2 1D1 Op~ [ei

2 2 ei
2!G

5: L'~ Du! 1 T

5 T, (A.16)

where the random vector

T 5 OpS1

n (
i51

n

~ [ei
2 2 ei

2!D+ (A.17)

Observe that [ei
2 5{ ei

2{v~ti !0 [v~ti !+ We have that each element ofT is of the order

OpS1

n (
i51

n

~ [ei
2 2 ei

2!D 5{ OpS1

n (
i51

n

ei
2F v~ti ! 2 [v~ti !

[v~ti ! GD
5{ OpS1

n (
i51

n

ei
2@v~ti ! 2 [v~ti !#D

5 OpS1

n (
i51

n

op~ei
2!D+ (A.18)

Hence, the variance of each element ofT is of the order

oSvarF 1

n (
i51

n

ei
2GD 5 o~n21!,
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and so far [v is consistent+ This shows that all entries of var@ ZL~ Du!# are of the ordero~n21!+
~iii ! Now, we will calculate the order of magnitude ofBu 5 E~ Du 2 Zu! 5 O@E~T !# +

Observe thatE~ei
2! 5 1, cov@ei

2, [v~ti !# 5 O@~nb!21# at any point andE~ [v~ti ! 2 v~ti !! 5
O~b2! in the interior+ We have, at an interior pointti ,

E$ei
2@v~ti ! 2 [v~ti !#% 5 E @v~ti ! 2 [v~ti !# 2 cov@ei

2, [v~ti !#

5 O@b2 1 ~nb!21# +

Furthermore, note thatE~ [v~ti ! 2 v~ti !! 5 O~b! at the boundary and that the length of
the boundary area is equal to 2b+ This shows that the expected value of each element of
T is of the orderO@b2 1 ~nb!21# and hence

E~T ! 5 O@b2 1 ~nb!21# + (A.19)

Theorem 3 is proved+ n
A sketched proof of Proposition 1. Taylor expansion on[ei

2 leads to

[ei
4 5 ~zi

20 [v~ti !!2

5{ S zi
2

v~ti !
1 Op~ [v~ti ! 2 v~ti !! 1 Op~ [v~ti ! 2 v~ti !!2D2

5{ ei
4 1 Op~ [v~ti ! 2 v~ti !! 1 Op~ [v~ti ! 2 v~ti !!2+ (A.20)

We have

E @ ZE~ei
4! 2 E~ei

4!# 5 OS1

n (
i51

n

E~ [v~ti ! 2 v~ti !!D1 OS1

n (
i51

n

E~ [v~ti ! 2 v~ti !!2D
5: T1 1 T2+ (A.21)

Furthermore, we haveE~T1! 5 O~be
2! andT2 5{ MISE@0,1# 5 O~nbe!

21 1 o~T1!, where
MISE@0,1# denotes the MISE on@0,1# + The results given in~22! are proved+

Observe that [ei
4 5 ei

4@1 1 op~1!# + We have

var~ ZE~ei
4!! 5 varS1

n (
i51

n

ei
4D @11 o~1!# +

Note thatei
4 follow a squared ARMA process, which is again a second-order stationary

process with absolute summable autocovariances under the assumptionE~ei
8! , `+

Hence the spectral density ofei
4 exists and

n varS1

n (
i51

n

ei
4Dr 2pcf

e , (A.22)

wherecf
e is the value of the spectral density ofei

4 at the origin~see, e+g+, Brockwell and
Davis, 1991, pp+ 218ff!+ Proposition 1 is proved+ n

A sketched proof of Proposition 2. Estimation of functionals*$v ~n!~t !%2 dt, where
v ~n! is thenth derivative ofv, was investigated by Ruppert et al+ ~1995! and Beran and
Feng~2002b! in nonparametric regression with independent and dependent errors, respec-
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tively+ Note thatI ~v2! 5 *$v2~t !%2 dt is a special case of such functionals withn 5 0+
Furthermore, the results in Ruppert et al+ ~1995! and Beran and Feng~2002b! together
show that the orders of magnitude in these results stay unchanged if short-range depen-
dence and0or a bounded, smooth scale function are introduced into the error process+
We obtain the results of Proposition 2 by settingk 5 0, l 5 2, andd 5 0 in the results in
Beran and Feng~2002b!, wherek and l correspond ton 5 0 and the kernel order used
here andd is the long-memory parameter, which is zero in the current context+ n

A sketched proof of Theorem 4. Note that Zb 5 ZCA n2105, whereCA is as defined in
~18!+ Hence we have

~ Zb 2 bA !0bA 5 CA
21~ ZCA 2 CA !+ (A.23)

Taylor expansion shows that

ZCA 2 CA 5{ O~ [cf 2 cf ! 1 Op~ ZI ~v2! 2 I ~v2!! 1 Op~ ZI ~~v '' !2! 2 I ~~v '' !2!!+ (A.24)

Observe that

ZI ~~v '' !2! 2 I ~~v '' !2! 5{ Op~n2207!+ (A.25)

The termOp~ ZI ~v2! 2 I ~v2!! 5 Op~n2102! is of a much smaller order than that given in
~A+25! and hence is omitted+ As a result of the bias inZu one has

[cf 2 cf 5 O~n2205!+ (A.26)

The results as given in Theorem 4 hold+ n
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