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SUMMARY
This paper presents a novel configuration optimization method for multi degree-of-freedom modular
reconfigurable robots (MRR) using a memetic algorithm (MA) that combines genetic algorithms
(GAs) and a local search method. The proposed method generates multiple solutions to the
inverse kinematics (IK) problem for any given spatial task and the MA chooses the most suitable
configuration based on the search objectives. Since the dimension of each robotic link in this
optimization is considered telescopic, the proposed method is able to find better solutions to the IK
problem than GAs. The case study for a 3-DOF MRR shows that the MA finds solutions to the IK
problem much faster than a GA with noticeably less reachability error. Additional case studies show
that the proposed MA method can find multiple IK solutions in various scenarios and identify the
fittest solution as a suboptimal configuration for the MRR.
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1. Introduction
While non-modular industrial robots can successfully perform specific tasks, they have a limited
ability to adapt their configuration when tasks are changed. In some cases, when tasks change,
numerous issues can arise as a result of the robot singularities, saturation of the actuators torques,
or mechanical limitations of the joint modules. Consequently, reconfigurable manufacturing systems
(RMSs) become a more attractive alternative compared to conventional non-modular industrial robots
in these circumstances. According to the Visionary Manufacturing Challenges for 2020 by the USA
National Research Council, RMSs are the most vital of all priority technology in manufacturing.1

Therefore, in recent years, several suppliers of automation tools have begun to adopt MRR2–4

to develop flexible manufacturing solutions. The term modular refers to robots that are constructed
using a limited number of interchangeable standardized modules, which can be assembled in different
kinematic configurations (KCs). MRR can be disassembled and rearranged in different configurations
rather than being replaced when tasks or changes to the workspace require a new robotic configuration.
Although, the advantage of an MRR is apparent, non-modular robots are typically used in industry
because of the lack of personnel who can optimize configurations based on task requirements as well
as perform complex reconfiguration of existing MRR setups. Hence, the goal of this paper is to develop
a novel configuration optimization method for solving the IK solutions for multi degree-of-freedom
MRR.
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Typically, a set of modules of an MRR consists of joints, links, and end-effectors. Joints house the
actuators that provide the degrees of freedom (DOF) of each robot. Links of varying lengths connect
the joints to each other. The end-effector module consists of the tools required to interact with the
robot environment. A wide range of MRR designs with distinct architectures and applications are
presented in the literature.5–11 The authors in ref. [5] describe a self-reorganizing robot that consists
of small cells with different functions. Cells find each other and assemble autonomously. Manually
configurable robots that consist of revolute (both pivot and rotate) joints and links are described in
refs. [6] and [7]. The authors use quick coupling connectors to connect two modules which make
it possible to reconfigure robots easily and fast. In ref. [8], an MRR is assembled from a module
inventory consisting of links, revolute joints, and prismatic joints for a rapid deployment. An MRR
for experimental studies in grasping, manipulation, and force control is presented in ref. [9]. The
Toshiba Modular Manipulator System that can be assembled with a maximum 3-DOF is presented in
ref. [10]. The authors in ref. [11] showed how different configurations can be achieved using revolute
joints and various size links. In the existing literature, most MRRs use revolute joints with various
size links.6,7,9–11

Consider a set of modules consisting of one kind of joint capable of generating rotational and
pivotal movements, and three types of links, including straight, L shape, and U shape. Then, the
number of configurations is given as follows:12

x = 2
n−1∑
k=0

4k.
(n − 1)!

k! (n − 1 − k)!
, (1)

where x and n are the number of configurations and the number of joints, respectively. According to
Eq. (1), up to 6250 configurations can be created for six serial joint modules. For a specific spatial
task, only a subset of all the configurations will be capable of reaching all the given set of task points.
Moreover, from the set of the robot configurations that can actually reach all task points, some will
perform better than others in terms of satisfying a set of performance criteria such as power efficiency,
payload carrying capacity, etc. Hence, for evaluating the suitability of each KC, numerous constraints
and performance criteria for all the desired task points must be examined. The large number of
possible configurations and the complexities of the KC space necessitate employing highly efficient,
intelligent, and automated search methods for determining the most suitable KC to perform a given
spatial task. Such methods, referred to herein as task-based configuration optimization (TBCO) should
search, synthesize, and determine an optimum KC which can be assembled from the available MRR
modules. The optimum solution may be found by searching all possible KC. However, since all
link lengths are treated as continuous variable, it is unrealistic to determine the optimal solution by
enumerative search. Even if the link length is discretized to a finite set of possible values, exploring
all possible KC according to Eq. (1) can still be computationally expensive.

Distinct approaches to solve the TBCO problem are proposed in the literature. Chen in refs. [13]
and [14] introduced a representation for MRRs where links of a modular robot are considered as
squared prisms or cubic boxes with ports on each side. These ports could be used to connect two links
to each other through a joint. The joints are considered as connectors which can attach different ports
of two neighboring links. A kinematic graph is used to express the configuration of a robot. Based
on this graph, an assembly incident matrix (AIM) was extracted. In this works, AIM is translated
to a string and used in a GA, with reachability and manipulability as the optimization criteria. In
refs. [15] and [16], the same approach is expanded to make a modified AIM which includes the port
vectors. The mutation and crossover operators are also modified to be directly applied to the AIMs.
This study considers reachability, joint limits, manipulability, mechanical constructability, and the
minimum DOF in the optimization objective functions. In refs. [17] and [18], the links and joints of
the manipulator are considered to be modular with specific shapes and dimensions.

A reconfigurable robot which uses passive versatile connecting modules is introduced in refs.
[19]–[21]. The proposed robot can achieve different configurations by changing the angles of the
pseudo joint (passive connecting modules), which makes reconfiguration easy and quick to realize.
Ref. [20] shows that an adaptive neuro-fuzzy inference system can be used for fast evaluation of
reconfigurable robots. In ref. [21], GA is used to find the optimum angles for the pseudo joints of a
reconfigurable robot.
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In another category of approaches, the manipulators are modeled by the DH parameters. Analytic
and numerical mappings from the task space to the configuration space for a 2-DOF planar robot was
discussed in ref. [22]. In ref. [23], a method is expanded to include obstacle avoidance and was applied
to a more general 3-DOF robot. In ref. [24], TBCO is solved with the addition of new constraints
and optimization criteria. A multi-population GA is used as the optimization engine. IK problem is
solved numerically and provisions are made to prevent the robot from reaching two consecutive task
points by passing through singularities. In ref. [25], the same method is used to design a manipulator
for polishing ceramic tiles. In ref. [26], the authors upgrade the method by implementing agent-
based software. They apply their method to design a fault tolerant redundant manipulator for satellite
docking aboard the space shuttle. In ref. [27], a method is presented to identify a relatively optimal
configuration for a fault tolerant redundant manipulator. In ref. [5], an algorithm is proposed which
searches for KCs by extending a link from the base to the task point and then adding joint modules
when the connection between the two points is not possible. A similar approach is used with a GA
to find a sub-optimized KC in ref. [28]. In ref. [29], a GA is used to find a sub-optimal KC based
on various objectives. A two-level GA approach is used in refs. [30] and [31]. In ref. [30], the upper
level GA searches for the most suitable configuration and the lower GA solves the IK problem. In
ref. [31], a hybrid genetic-simulated annealing algorithm is proposed; GA is used to find the optimal
design and simulated annealing as a local search algorithm. However, the research in refs. [29]–[31]
represents the length of a module with limited binary numbers (one to four bits) rather than treating
it as a continuous variable. Therefore, these methods could be beneficial for standardizing the link
lengths, but the solutions of KCs will most likely not provide a global or local optimal solution.

This paper presents a methodology based on MA to solve the TBCO problem. In order to improve
the computational speed and reachability error of the TBCO solver of GA, we propose a MA (the
hybrid of GA with local search method), as the core optimization algorithm of the TBCO. The
proposed local search method iteratively searches for the dimensions of a manipulator that is capable
of performing a certain task. The local search method also uses a proposed Jacobian matrix notation
called the task embedded Jacobian to arrive at the optimal result(s). A kinematic-structure-aware
elitism and restarting scheme are developed to further increase the resilience of the algorithm when
searching for the local optimums. The developed operators significantly improve the chances of the
algorithm to find the global optimum of the problem. A priority-based selection operator and local
search with adaptive frequency are utilized to further increase the computational efficiency and speed
of the algorithm.

Performance of the algorithm is validated by solving the TBCO problem in several distinct test
cases. The rest of this paper is organized as follows: In Section 2, the preliminaries and necessary
definitions are presented. Section 3 provides a generic overview of MRR kinematics. In Section 4, the
mathematical representation of the TBCO is described. In Section 5, MAs are introduced. Section 6
provides a framework of the proposed MA for solving the TBCO problem. A local search method
for finding the link dimensions of manipulators enabling them to perform a set of predefined tasks is
proposed in Section 7. The proposed TBCO algorithm is explained in details in Section 8. Simulations
of the TBCO are presented in Section 9. Section 10 summarizes the conclusions of this work.

2. Definitions
In this section, we define the following standard notations and variables that are used throughout the
paper:

1. Task point Tdes: A Task point is a desired position and orientation in the Cartesian space that
the robot should reach. Task points are defined with respect to a reference frame which is usually
positioned at the base of the manipulator. A task point can be a location on the manipulated object,
a point in space that the manipulator should reach, or a point that the robot should pass through
in order to avoid an obstacle. In this work, the position and orientation of the ith task point with
respect to the reference is represented by the homogenous transformation, T i

des, as follows:

T i
des =

[
Ri

des P i
des

0 0 0 1

]
, (2)
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Fig. 1. Two members of the KC space M6: (a) 6 DOF PUMA type configuration and (b) sample 6 DOF
configuration.

where Ri
des is a 3 × 3 rotation matrix representing the desired orientation, and P i

des is a 3 × 1
translation matrix representing the desired position of the ith task point in the Cartesian space.

2. End-effector’s position and orientation Tee: The position and orientation of the end-effector
of an n-DOF manipulator is a function of its joint variables. The position and orientation of the
end-effector with respect to the reference frame is represented by a homogenous transformation
(Tee) as a function of the joint variables [q1, q2, . . . , qn]. For a mn manipulator, the joint variables
are all angles and represented by � = [θ1, θ2, . . . , θn], as shown in

T mn

ee =
[

Ree(�) Pee(�)
0 0 0 1

]
, (3)

where Ree and Pee are the rotation and translation matrices representing the orientation and
position of the end-effector in the Cartesian space, respectively.

3. Task Tt : A task is a set of the task points which should be reached by the manipulator to
accomplish an objective. For example, all the task points that a robot should reach in order to
assemble a car seat form a task. In this paper, a Task with t task points is represented by Tt , or
simply T , and is defined as

Tt = {
T1

des, T2
des, . . . , Tt

des

}
, (4)

where T1
des represents the first task point of the task T .

4. KC: It refers to the chained arrangement of the joints in a robot. KC is defined by the number
of DOFs, the joint types, dimension of the links, and the angle between the rotation axes of
two consecutive joints. KCs are categorized as: Serial, parallel, and hybrid. For an MRR, a
configuration can also be described as the sequence of the assembled modules and their relative
orientation. An n-DOF KC assembled only from the standard modular joints is represented by
mn. Figure 1 illustrates two distinct m6 KCs and the corresponding axes of the joints.

5. n-DOF KC Space: The space including all the distinct KCs, which can be assembled by using
n joint modules of the standard modular joints, is called an n-DOF KC space, i.e., each member
of such a space corresponds to an mn. The degree of freedom has a direct impact on the size,
dimension, and characteristics of this space. For MRRs with a set of fixed links of different sizes,
this space is a discrete space. If the length of the links is considered continuous, this space is a
hybrid continuous discrete space (continuous with respect to the link lengths and discrete with
respect to the joint types and relative orientation of the joints). In this paper, an n-DOF KC space
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Fig. 2. MRR mechanical design principles: (a) mechanical input and output ports on the joint modules, (b) joint
in the rotational configuration (c) joint in the pivotal configuration, and (d) joint in the perpendicular rotational
configuration.

is represented by Mn as:

Mn = ∪I=12,...m
i
n. (5)

6. Manipulator Workspace: The workspace of a manipulator is the region in the Cartesian space
that can be reached by the manipulator end-effector. The dexterous primary workspace is the
region that the manipulator can reach with any orientation of the end-effector. The secondary
workspace is the volume, reachable by the manipulator from a limited number of orientations.32

In this paper, the secondary workspace is simply called the manipulator workspace, WT and is
defined as

WT (mn) = {
Tmn

ee (θ) : θmin ≤ θ ≤ θmin

}
. (6)

Here, the workspace of a manipulator includes all the positions and orientations of the end-effector
that can be reached with joint angles within the feasible range.

3. Generic Serial Modular and Reconfigurable Robot with n-DOF
An MRR which consists of three distinct classes of joint modules, namely rotational, pivotal, and
perpendicular-rotational has been developed as shown in Fig. 2. Links are connected to the joint
modules by their different mechanical connections, providing distinct types of DOF. Figure 3
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Table I. The permissible values for the variables of the manipulator representation matrix.

Name Permissible value Description

1 φi 0 Radian
π
2

2 mi P Pivotal joint
R Rotational joint

PR Perpendicular-rotational joint
3 li liε[lmin, lmax] Length of the link (cm)

Fig. 3. MRR assembled in a 3 DOF PUMA configuration.

illustrates an example of the MRR when it is assembled in a 3 DOF PUMA arm. A wide range
of standard industrial manipulators configurations (PUMA, Scara, Scorbot, etc.) can be represented
by a KC consisting only of these standard modular joints. An n-DOF manipulator which only includes
standard modular joints is represented by mn. A manipulator mn can be fully described by the joint
types, the relative assembly orientation of two consecutive joints, and the length of the links. These
characteristics can be conveniently expressed in (n + 1) × 3 array as follows:

mn =

⎡
⎢⎢⎢⎢⎣

0 0 l0
φ1 m1 l1
φ2 m2 l2
...

...
...

φn mn ln

⎤
⎥⎥⎥⎥⎦ . (7)

The elements of the first column, φi , represent the orientation of joint i relative to joint i − 1. This
orientation is determined by the angle between the Xout axis of joint i − 1 and Xin axis of joint i.
In the second column, the joint types mi are stored. The third column represents the length of the
links li . The link lengths are treated as continuous variables such that liε[lmin, lmax]. The permissible
values for each variable are shown in Table I.

The first row of the matrix in Eq. (7) represents the first link of the robot. This link is perpendicular
to the ground and can connect the first joint to the base of the robot. For instance, the matrix
representation of the 3 DOF PUMA configuration in Fig. 3 is given as follows:

m
sample

3 =

⎡
⎢⎣

0 0 L0

0 R L1

0 P L2

0 P L3

⎤
⎥⎦ . (8)
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4. Analysis and Mathematical Representation of TBCO
The goal of the TBCO is to find the optimum KC to perform a certain task Tt , consisting of t task
points in the Cartesian space. Therefore, the ability to perform Tt is a necessary condition for a
manipulator to be the solution of the TBCO. More specifically, TBCO determines an mn, which is
capable of performing the desired task Tt , while simultaneously optimizing a performance measure
fobj . Therefore, TBCO can be expressed using the following alternative formulation:

{
arg min

mn

fobj (mn,Tt )

subject to :
{∃θs

i for mn|T mn
ee

(
θs
i

) = T 1
des

}
, for i = 1, . . . , t

}
. (9)

The TBCO problem can be considered as a mapping from the Cartesian task space, a space that
consists of positions and orientations of task points, toMn. Depending on T and n, a mapping can
exist which maps every task point in the Cartesian space to KCs capable of reaching the task point
(Fig. 4(a)). In general, this mapping can have more than one solution for any task point in the Cartesian
space, i.e., more than one KC exists that is capable of reaching a certain task. Three possible cases
can occur if the mapping is applied to the set of task points:

– No common point in the configuration space exists: In this case, no single KC exists that can
reach all of the task points. Figure 4(b) describes this case. To solve the TBCO, DOFs should
be increased by one. Since the configurations with higher DOFs are capable of performing more
complex tasks, the chance of finding a KC for such a task increases. With the increased DOF, the
search for KC using Eq. (9) is repeated.

– One common point in the configuration space exists: This case is shown in Fig. 4(c). In this
case, since only one KC capable of reaching all the task points exists, the single KC capable of
executing the task is the solution of the TBCO problem. It is assumed that the given configuration
is the most efficient solution in comparison to other solutions involving higher DOF.33

– More than one common point in the configuration space exist: In this case, among all the
configurations that can achieve the task the one with the highest efficiency, according to the set of
considered optimization criteria, is the solution of TBCO. Figure 4(d) depicts this case.

By obtaining a mapping from the Cartesian space to the KC space, the most suitable KC for a task
can be found. This mapping is highly nonlinear with a large number of mixed discrete and continuous
variables. Furthermore, the mapping varies as the number of DOF n changes. Therefore, the general
approach to solve TBCO is not to find the mapping itself, but rather conduct an extensive search of
Mn for KCs capable of performing the task. Among these configurations, the one that can minimize
the considered optimization criteria in Eq. (9) is selected as the solution.

5. Memetic Algorithms
GAs work on the principle of natural evolution. Specifically, the individuals which are the coded
variables of the problem evolve to new individuals with better fitness values due to application of
GA operations which are crossover, mutation, and selection. When GAs are augmented with local
search algorithms create a new class of metaheuristics algorithm called MAs.34 The word, Memetic
comes from the term, meme, which was coined by Dawkins35 to denote an analogous to gene in the
context of cultural evolution.36 The central philosophy of MAs is individual improvement as well
as population cooperation and competition as they are present in many social and cultural systems.
In the literature, MAs can be found under a large variety of names such as hybrid GAs, genetic
local searchers, Lamarckian GAs to name a few. In numerous studies, it has been suggested that the
efficiency of a search in pure GAs can be significantly improved when they are combined with other
techniques.37–39 The no-free-lunch (NFL) theorem,37 states that a search algorithm strictly performs
in accordance with the amount and quality of the problem knowledge it incorporates. Consequently,
an MA which incorporates the information of the landscape of the proximity of each individual
through a local search performs better than a pure GA without a local search. In essence, the success
of MAs can be seen as a tradeoff between the exploration abilities of the GA and the exploitation
abilities of the local search algorithms.40 Figures 5 and 6 show pseudo codes of pure GA and an
MA in the simplest form, respectively.41 One main difference between the two algorithms lies in the
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Fig. 4. Mapping from the Cartesian task space to the robot configuration space. (a) Mapping for one task point.
(b) No common solutions in the configuration space. (c) One common solution in the configuration space. (d)
Numerous common solutions in the configuration space.

fact that MAs have a local search stage. It accepts an individual as the input and produces a new
individual in the neighborhood of the original solution provided that the new solution has a better
fitness value. In the literature, a wide range of distinct local search algorithms have been reported. The
application requirements and the problem characteristics affect and sometimes dictate the algorithms
for the local search. Another difference between the GA and MA is the restart population element
in the later. Consider a case in which the population is not able to produce new individuals through
the genetic operators. This might occur if the individuals of the current population are very similar
to each other. In such case, the restart stage introduces new individuals into the population. The
method to detect such a situation and the process of introducing new individuals into the population
are application-dependent.36
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Fig. 5. Pseudo-code of a genetic algorithm.

Fig. 6. Pseudo-code of a memetic algorithm.

MAs have proven to be effective tools in solving some optimization problems. Yet, the process
of designing efficient MAs currently remains fairly ad hoc and application-dependent.40 Computing
the fitness of a solution given the fitness of another solution that is close to it is significantly less
computationally expensive in comparison to computing the fitness of a solution from scratch. This
class of problems is considered suitable for exploration via MAs. The measure of closeness between
two individuals can informally be defined as the number of common genetic materials they share.
Since the calculation of the fitness function is the most time consuming step in the generation of a GA;
MAs are more suitable when the fitness function is decomposable. This holds true if the improvement
of the individuals is performed gradually in small steps.42

6. Framework of the Proposed MA for Solving TBCO
As mentioned, the TBCO can be formulated as a minimization problem in which all the elements of the
matrix representation of a manipulator mn, should be determined. The solution mn should minimize
an objective function and simultaneously satisfy a nonlinear constraint. Therefore, each individual
of MA which represents an mn manipulator can be expressed with an MRR matrix representation as
shown in Eq. (7).

The MRR matrix representation shown in Eq. (7) can be decomposed into two characteristically
distinct, but interconnected, segments to further investigate the most suitable elements of the matrix
representation to undergo a local search. Consequently, the elements which should be identified
through the genetic operators can be determined. The matrix in Eq. (7) can be expressed as follows:

mn = (�|�) , (10)

where � is the first two columns of Eq. (7) which is the kinematic structure matrix (φi and mi) and �

is the third column of Eq. (7) which represents the length of the links (li). In the TBCO, the primary
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goal is to find both kinematic structure and link dimension matrices (� and �). Due to the distinctive
characteristics of � and �, the TBCO can be decomposed into a search in two interconnected spaces
with distinct characteristics as follows:

1. � search: If one element of kinematic structure matrix � changes, the resulting manipulator
becomes a fundamentally different kinematic characteristics. The reason can be explained by
using the concept of manipulator workspace. When the orientation of two consecutive joints or
the type of the joints is altered, the workspace of the manipulator might change its shape. Since
the kinematic parameters of the manipulator change when � changes, the IK of the manipulator
as well as the optimization criteria and constraints should be computed from scratch.

2. � search: The link dimension matrix � are bounded continuous variables within the range,
li ∈ [lmin, lmax]. When � of a manipulator is changed, the shape of the workspace is preserved and
only the volume is altered, i.e., if � is slightly altered, the change in the kinematic parameters
of the manipulator is small. As a result, the change in the solutions of the IK problem is small.
Therefore, the IK solution of the pre-change manipulator can be used as an initial guess for the IK
of the post-change manipulator enabling the solver to converge faster.

Computing the fitness values including optimization criteria and constraints requires solutions to
the IK problem. Small changes in � result in small changes in the IK solutions. Therefore, when
� changes in a robot, the IK problem of the new manipulator is solved relatively fast by utilizing
the IK solutions of the original manipulator as an initial guess. That is, solving the IK problem of a
manipulator given the IK solutions of another manipulator which has a similar � but different � is
less computationally expensive than computing the IK solutions of the manipulator from scratch. This
implies that the fitness function in the TBCO can be considered decomposable. The decomposable
fitness function entails that the efficiency of GAs can be improved in solving the TBCO when they
are combined with local search algorithms.

In summary, a local search can provide an effective means for conducting the search in the
continuous part of the TBCO, which is �. Therefore, in the proposed TBCO the principal burden of
the search in the continuous space of � is carried out by the local search operators. The intention
of the � search is to enhance the reachability error of the manipulator enabling it to satisfy the
constraints. Primarily, the � search is conducted by the genetic operators. In the next section, �

search is mathematically formulated and a method for solving it is proposed.

7. Local Search Operator
In MAs, the local search gradually improves the fitness value of an individual. In the TBCO, the local
search modifies the dimension of the links of an individual (manipulator) to decrease its reachability
error. Since the local search operates on the � part of the individuals, it is conducted in the continuous
search space. The � search is mathematically expressed as follows:

{
�s = arg min

�
frch,T (mn,T )

mn = (�|�)

}
, (11)

where �s represents the solution of the � search problem, � is the variable of the problem, and �

and T are the parameters. In this section, a method for solving the � search problem is proposed.

7.1. � local search
The reason for applying this search to a manipulator is to determine � when � is fixed such that
the resulting manipulator shows enhanced capability in satisfying the reachability constraints for the
desired task T . The reachability error for the ith task point is a function of the kinematic structure �,
the link dimensions �, and the joint angles of the manipulator �i when the manipulator reaches for
the task point. The search for link dimensions is always entangled with the search for the set of joint
angles required to reach the task points. Therefore, with the assumption that � is fixed, the variable
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Fig. 7. Sample m3 manipulator and the corresponding 7 DOF revolute-prismatic joint manipulator, where the
links are considered as prismatic joints: (a) original manipulator, and (b) resulting 7 DOF manipulator with 3
revolute joints and 4 prismatic joints.

vector of the � search, represented by qT , is defined as follows:

qT =

⎡
⎢⎢⎢⎢⎣

�1

�2
...

�t

�

⎤
⎥⎥⎥⎥⎦ . (12)

To solve for qT , each link of the manipulator is modeled as a prismatic joint. Next, the prismatic
and rotational joint variables for the new manipulator, which allows it to reach all the task points,
are derived. With this assumption, an mnmanipulator consisting of n revolute joints is converted to a
(2n + 1) DOF manipulator with n revolute and (n + 1) prismatic joints. In Fig. 7, an m3 manipulator
and the corresponding post conversion 7-DOF manipulator with 3 revolute and 4 prismatic joints are
shown. Applying this transformation effectively converts the problem of finding the link dimensions
and the corresponding t sets of joint angles in an n-DOF manipulator to the IK problem of a redundant
(2n + 1)

DOF manipulator for t tasks. Although a wide range of approaches for solving the IK of
redundant manipulators exists,43–49 none involves solving the IK problem for numerous task points
simultaneously. The majority of the existing methods rely on solving the first order differential
kinematic equations of the manipulator. In the next section, two of the most common approaches to
solve this problem when one task point is considered, are reviewed.

7.2. Solving the inverse kinematics of redundant manipulators
Obtaining the IK solutions for robot manipulator is necessary for motion planning. As the number
of the links increases (three or more), obtaining an analytical IK solution becomes difficult, and in
many cases a closed-form solution does not exist. Therefore, utilizing numerical method to address
the IK problem will be required in this case. If a task is represented by the desired position of the
end-effector in the Cartesian coordinates and a minimal representation of the orientation (such as the
Euler angles) as follows:

xdes =

⎡
⎢⎢⎢⎢⎢⎣

Px,des

Py,des

Pz,des

∅x,des

∅y,des

∅z,des

⎤
⎥⎥⎥⎥⎥⎦ . (13)
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Fig. 8. z2, z3, and P2,ee vectors illustrated on a 4 DOF manipulator with revolute and prismatic joints for the
second and third joint.

The mathematical formulation of the forward kinematics (FK) is written as follows:

x = K(q), (14)

where q represents the joint variables of a manipulator with both prismatic and revolute joints. By
differentiating Eq. (14) with respect to time, the first order differential kinematics equations are
obtained and expressed as

ẋ = J (q)q̇, (15)

where ẋ is the task space velocity vector, q̇ is the joint-space velocity vector, and J (q) = ∂K/∂q is
the 6 × n Jacobian matrix of the manipulator, where n is the number of the joints of the manipulator.
For serial manipulators, the ith and jth columns of J (q) corresponding to a revolute and a prismatic
joint, respectively, and are calculated as follows:

J (q) =
[ · · · zi × Pi,ee · · · zj · · ·

· · · zi · · · 0̄ · · ·
]

, (16)

where zi and zj represent the axes of the ith and jth joint. Pi,ee represents the vector which connects
the coordinate frame of joint i to the end-effector. In Fig. 8, z2 and z3 are the joint axes of the second
and third joint, rotational and prismatic, respectively, with P2,ee illustrated.

If J is non-singular, then Eq. (16) can be solved for q̇ using the following equation:

q̇ = J (q)−1ẋ. (17)

Under the assumption that the manipulator is kinematically redundant, Eq. (15) can be solved by
resorting to the pseudo-inverse J † of the Jacobian matrix defined as follows:44

q̇ = J †(q)
.

ẋ + (
I − J † (q) J (q)

)
q̇0 (18)

The pseudo-inverse, J †, is a unique matrix which satisfies the Moore-Penrose conditions.50 The
term (I − J † (q) J (q)) represents the orthogonal projection matrix into the null space of J, and q̇ (0)
is an arbitrary joint space velocity. Consequently, the second part of solution is a null space velocity.
The particular solution, in which q̇ (0) = 0 produces the pseudo-inverse solution of Eq. (15) which
is43

q̇ = J †(q)ẋ. (19)

To solve Eq. (19), a numerical method which updates the value of q at each iteration with the following
rule is applied

qk = qk−1 + J †(qk−1)�xk−1, (20)
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where J † (qk−1) is the pseudo-inverse of the Jacobian matrix at qk−1, and �x is the distance of the
position/orientation of the end-effector at qk−1 from the desired task.

Another method for solving the kinematic equations for redundant manipulators, which is more
resilient to singular poses, is the damped-least-square method.46,51 In this method, instead of solving
Eq. (19), the following first order differential equation is solved:

q̇ = J T
(
J T J + λ2I

)−1
ẋ. (21)

where J T is the transpose of J , and I is the identity matrix. λ is called the damping factor. If λ is
zero, then Eqs. (17) and (21) become identical. The update formula for solving Eq. (21) iteratively is
as follows:

qk = qk−1 + (
J T (qk−1)J (qk−1) + λ2I

)−1
�xk−1. (22)

When the links of a manipulator are converted to prismatic joints, their lengths are transformed
into prismatic joint variables. The lengths of the links of the manipulator remain constant regardless
of the task point the robot is attempting to reach. Consequently, the prismatic joint variables which
represent the length of the links should remain equal regardless of the task point. Therefore, in the IK
solver, an equality set of constraints for the prismatic joints should be considered. Furthermore, the
pseudo-inverse and damped-least-square methods are developed to solve the IK problem, when only
one task point is considered. In the next section, a method for solving the multitask IK problem with
an implicit implementation of the prismatic joint constraints is described.

7.3. Task embedded Jacobian matrix
When the link dimensions are considered as prismatic joints, the joint variables of the IK of the
resulting manipulator while reaching the ith task point is expressed as

qi =
[

�i

�i

]
, (23)

where �i and �i represent the revolute and prismatic joint angles of the converted manipulator,
respectively. When only the ith task point is considered, the pseudo-inverse solution of Eq. (23) is
written as

q̇i = J
†
i (qi)ẋi , (24)

where Ji is the Jacobian of the converted manipulator at qi , and is written as follows:

Ji(qi) = [
JR

i (�i, �i) JP
i (�i, �i)

]
, (25)

where JR
i represents the Jacobian matrix of the manipulator at qi where only the revolute joints are

considered. JR
i is equal to the Jacobian matrix of the original matrix of the manipulator at qi , when

only the (n + 1) prismatic joints representing the links of the manipulator are considered. To obtain a
solution to the � search problem, Eq. (24) should be concurrently solved for all qi , when i = 1,. . .,t.
In other words, the set of the following equations should be simultaneously solved

{
q̇i = J

†
i (qi) ẋi for all i = 1..t

�i = �j for all i, j = 1..t
, (26)

where q̇i and ẋi represent the velocity vectors in the joint space and the task space, respectively.
The second set of equations stipulates that the prismatic joint variables which represent the link
dimensions of the manipulator should be the same for all the tasks. To solve Eq. (26), a Jacobian
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Fig. 9. Mean position and orientation reachability errors of the test cases plotted with respect to the iteration
number: (a) positioning reachability error (cm) with respect to the iteration number and (b) orientation
reachability error (rad) with respect to the iteration number.

matrix, called a task embedded Jacobian matrix, JT , is formed as follows:

JT =

⎡
⎢⎢⎢⎣

JR
1 (�1, �) 0̄ · · · 0̄ | JP

1 (�1, �)
0̄ JR

2 (�2, �) · · · 0̄ | JP
2 (�2, �)

...
...

. . .
... | ...

0̄ 0̄ · · · JR
t (�t, �) | JP

t (�t, �)

⎤
⎥⎥⎥⎦ . (27)

By using JT , Eq. (26) is written as follows

q̇T = J
†
T (qi)ẋT , (28)

where qT is defined by Eq. (12). ẋT includes all the minimal representation task velocities of the t
task points and is defined as follows:

ẋT =

⎡
⎢⎢⎣

ẋ1

ẋ2
...
ẋt

⎤
⎥⎥⎦ . (29)

By solving Eq. (28) for q̇T , the link dimensions � and the joint angles of the manipulator �iwhen
the ith task is reached, are computed concurrently. Although, the task embedded Jacobian matrix is
explained by applying the pseudo-inverse method, to solve Eq. (28), any of the existing methods in
the literature can also be utilized. In this paper, the damped-least-square method is chosen to solve
Eq. (28) due to its robustness to matrix singularities. �, which is found through the iterative task
embedded Jacobian matrix method, is the closest solution to the initial guess with which the algorithm
is initialized. In more specific terms, depending on T , � search might not generate a unique solution.
In such a case, the proposed � search algorithm converges to a solution that is closest to the initial
guess.

7.4. Applying the task embedded Jacobian method for solving the � search
To validate the proposed approach in Section 7.3, the dimensions of a 6 DOF PUMA type manipulator
are determined by using the proposed � search. Three distinct tasks, each consists of 50 task points,
are randomly generated for a manipulator with � of a PUMA and a random �. The task embedded
Jacobian method is selected to determine the dimensions of a manipulator capable of performing the
defined tasks.

The positioning and orienting reachability errors are plotted with respect to the iteration number
in Fig. 9(a) and (b), respectively. All the test cases show that the positioning and orientation errors
converge close to zero in the first 40 iterations. To converge to the desired accuracy of 0.1 cm and
0.05 radians, further iteration may be needed.
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Fig. 10. Pseudo-code of the proposed TBCO memetic algorithm.

8. Task-Based Memetic Algorithm Configuration Optimization
This section presents the proposed MA algorithm for TBCO. The overview of the algorithm is first
provided. The specific details of the algorithm will follow. The pseudo-code of the proposed algorithm
is shown in Fig. 10.

The algorithm starts by randomly initializing the population, Rpop, in Line 1. In Line 2, the high
priority fitness values of the individuals which consists of the constraints Fcons , are computed. The
low priority fitness values which are the optimization criteria Fobj , are calculated in the selection
operator as needed. The while loop of Line 3 causes the algorithm to iterate between Lines 4 and 14
when the termination criteria is not satisfied. In Line 4, a kinematic structure-aware elitism method
selects a fraction of the fittest individuals to form the elite population Epop. The elite population is
added to the next generation of the population without any change. In Line 5, the Restart Population
subroutine computes a measure of the occurrence of each individual. Then, the individuals with
excessive occurrence measures are replaced with fresh randomly generated individuals in order to
preserve the diversity of the population. In Line 6, the parent pool, Rpop, is formed through the
selection operator. A new generation is created in Lines 7 and 8 from the parent pool by using the
crossover and mutation operators. The elite population is then added to the new population in Line
9. In Lines 10–13, a part of the population represented by Npop is selected to undergo the numerical
improvement stage. The individuals, after being improved by the local search (� search) are added
to the original population Rpop. In Line 14, the fitness value of the new population is computed. Each
stage of the pseudo-code is explained in more details in the following section. Table II lists the names
and descriptions of the variables used. Each individual in the MA population represents a manipulator
coded into the matrix representation.

8.1. Random population generation
In this stage, a population of mnmanipulators is created randomly. This population, represented by
Rpop, acts as the initial population of the MA. The number of individuals in Rpop, which is the
population size r, for search in the space of n-DOF manipulators is selected using the following
equation:

r = max{rmin, κr size(Mn)}, (30)
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Table II. Description of the variables of the proposed MA.

Variables Description

Rpop Population of manipulators
r Size of population Rpop

Epop Population of elites
e Number of elites
Ppop Population of parents
p Size of the parent pool
Npop Population of the selected individuals to undergo local search
Cpop Population of children (offspring)
gmax Maximum number of iterations after satisfying the constraints
ci Number of individuals with the same as the ith individual
�i Probability of the ith individual to undergo local search
Pm Mutation probability
Pe Crossover probability
f i

cons Optimization constraint of the ith individual
f i

obj Optimization criteria of the ith individual

where the population size is set at a fraction κr < 1 of the total number of KCs in Mn, stipulating
that the population size should be at least, rmin. The initial population is formed such that it has
the following characteristics: (1) Each individual represents a feasible mn manipulator. The relative
orientation of the joints and the link dimensions are within the permissible ranges, and the joints are
selected from the standard modular joint set. (2) The population consists of only one individual from
each kinematic structure, i.e., two individuals with the same kinematic structure, �, cannot be found
in the initial population. This feature provides the initial population with a more diverse sampling of
the KC space. (3) The initial individuals are created such that all are non-redundant. For instance, in
an initial population consisting of m4 manipulators, no manipulator with four parallel joints axes can
exist.

8.2. Fitness calculation
In this stage, the fitness values of all the individuals are computed. Since, in the proposed algorithm, a
priority-based selection scheme is adopted, the computation of the optimization criterion fobj,T , with
lower priorities can be postponed until they are required by the selection scheme. The optimization
constraints, fcons,T on the other hand, should be calculated in each iteration of the algorithm.

8.3. Elitism
Elitism is the process in which the fittest individual(s) of a population are directly transferred to the
next population. It has been shown that elitism can improve the efficiency of GAs significantly.52,53

Furthermore, for optimization problems in which prior information about the fitness value does not
exist, the use of an elitism scheme in MAs has been recommended.54 In our proposed TBCO algorithm,
a kinematic structure-aware elitism scheme is employed. In the elitism scheme, a population Epop

with size e, consisting of the fittest individuals is formed. The individuals of Epop are selected such
that the population has the following characteristics:

� The members of Epop are the fittest individuals of the population. That is, the individuals of
Epophave the lowest fcons,T among the population. If two individuals satisfy the TBCO constraints,
i.e., fcons,T ≤ εcons , the one with a lower fobj,T is adopted for Epop.εconsrepresents the permissible
tolerance for the constraint violation.

� Epop consists of individuals with different kinematic structure �. The fittest e individuals with
distinct kinematic structure are preserved for the next population. This feature prevents individuals
with the same � from being transferred to the next population. Consequently, the chance of the
population being dominated by a few kinematic structures decreases.
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Fig. 11. Pseudo-code of the proposed priority-based selection scheme.

8.4. Restart population
In the proposed TBCO, the inverse of the number of manipulators with a similar kinematic structure
� is adopted as a diversity measure, i.e., for a given population, when the number of the manipulators
with the same � increases, the diversity of the population decreases. Therefore, the following restart
scheme is devised, where ci (for i = 1, . . . , r) represents the number of manipulators with similar
kinematic structures to that of the ith individual:

1. A list of the individuals with ci ≥ κc.r (where κc ≤ 1 is a constant) is created. Therefore, the list
consists of the manipulators which have repeated occurrences in terms of the kinematic structure
� with a total number of occurrences of κc.r or more.

2. Half of the individuals on the list which are less fit are replaced by individuals created from
scratch (using random population generation) and the other half which are fitter are returned to
the population.

8.5. Selection
In the selection phase, a group of individuals are chosen to form a parent pool. The members of the
parent pool undergo crossover, mutation, and local search manipulation to create the new population.
In TBCO, the optimization criteria and the constraints are mapped into two sets of fitness values
with different priorities. Then, the selection can be formulated into a priority-based selection in
which two individuals are compared such that the constraints have more impact than the optimization
criterion. To implement a priority-based selection scheme a binary tournament selection is chosen.
In the tournament selection, to select a parent, ntour individuals are selected randomly. From these
individuals, the fittest individual is transferred to the parent pool. If the parent pool Ppop, consists
of p individuals, a total of p tournaments should be performed for forming Ppop. An advantage of
the binary tournament, in which ntour = 2, is that it produces a larger selection variance than that of
the ranking selection scheme which is a more commonly used selection method in the GA literature.
Choosing ntour ≥ 2 decreases the chance of weaker individuals being selected and subsequently,
decreases the diversity of the parent pool but increases the convergence speed.55 Another advantage
of using the binary tournament selection in the TBCO is that it reduces the process of selection
into a simple comparison between two individuals. The winner of the tournament can be decided by
comparing any characteristic or measure of the individuals involved in the tournament. This feature
can be exploited for developing priority-based selection operators. In such operation, the individuals
are compared according to a set of fitness values with different priorities.

Figure 11 provides the pseudo-code of the proposed priority-based selection scheme where δ1, δ1,
and ξ are constants such that δ1 < δ2. R1 and R2 are two individuals randomly selected from the
population for the binary tournament. Rout is the winner of the tournament which is added to the
parent pool. F 1

cons,T and F 2
cons,T represent the optimization constraint computed for the task, T , and

F 1
obj,T and F 2

obj,T represent the computed optimization criteria for R1 and R2, respectively. According
to the pseudo-code, when R1 and R2 are being compared, one of three distinct cases results:
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Fig. 12. Pseudo-code of the GeneAS-based crossover scheme.

1. If the optimization constraints of R1 and R2 are very close to each other within δ1, the one with
the better Fobj,T is selected.

2. If the optimization constraints of R1 and R2 are fairly close within δ2, the one with the better
Fobj,T with a certain probability ζ is selected.

3. If the difference between the optimization constraints of R1 and R2 is large, the one which can
better satisfy the optimization constraints with a smaller Fcons,T is selected.

It can be observed that the priority-based scheme considers fobj,T , only if R1 and R2 have
approximately the same fcons,T . Moreover, since knowledge of the value of fobj,T is not required in
the third case, its computation is postponed until necessary.

8.6. Crossover
To produce two new individuals, called off springs, two parents are randomly selected from the
parent pool to undergo crossover operation. The two parents are crossed with a probability of Pc, and
otherwise, are transferred unchanged to the new population. In the TBCO, each individual consists of
two segments, kinematic structure � and link dimension �, or three types of variables corresponding
to the three columns of the MRR matrix representation, namely the relative orientation of the joints
φi , joint types mi , and link lengths li . The method by which the crossover is applied to each of
the variables, differs due to the differences in the variable type and the permissible bounds. For φi

and mi , the crossover is applied in a discrete space with two distinct permissible bounds. For li , the
crossover is applied in a bounded continuous space. We adopt Gene AS framework56 for the crossover
operation. Figure 12 denotes the pseudo-code of the crossover scheme. P1 and P2 are the selected
parents from the parent pool, whereas C1 and C2 are the off springs produced from crossing P1 and
P2. The variable at the ith row and j th column of the MRR matrix representation is expressed by
X(i, j ), for all i = 1, . . . , n and j = 1, . . . , 3, where X can be P1, P2, C1, C2. Each X(i, j ) has a 50%
chance of undergoing crossover. The crossover is applied to each element according to the variable
type of the element. The crossover operator used for the link lengths is the bounded SBX operator,57

and φ-crossover and m-crossover use a discrete version of the bounded SBX which creates only the
permissible values of φ and m.

8.7. Mutation
With a probability of Pm, the crossover results may undergo mutation operation. In the proposed
TBCO, the mutation is performed as depicted in Fig. 13, where Rin and Rmutated represent a selected
individual that undergoes mutation and the mutated individual, respectively. The pseudo-code shows
that an element of individual Rin is randomly selected. Based on the type of the selected element, the
appropriate type of mutation is employed. If the selected element is a link length, li , a continuous
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Fig. 13. Pseudo-code of the mutation operator.

mutation operator56 is performed. In order to mutate the link lengths such that the mutated value
li,mutated remains in the bound, [lmin, li max], the mutation is carried out using the following steps:

1. A random number u in the range [0, 1] is created.
2. �max is computed by using the following equation:

�max =
{|li − lmin| , if u ≤ 0.5
|li − lmin| , if u ≥ 0.5 . (31)

3. δ̄ is calculated as follows:

δ̄ =
{

(2u)
3

1+η , if u ≤ 0.5

1 − [2(1 − u)]
1

1+η , if u ≥ 0.5
. (32)

4. The mutated link length is determined by computing:

li,mutated = li + δ̄�max. (33)

The aforementioned process produces a mutated link length using a polynomial probability
distribution with the mean as the original link length and the variance a function of η. The maximum
and minimum of the mutated value are bounded as �min and �max . An η between two and five
produces a mutation process which simulates the binary mutation.56 If the selected variable is a joint
relative orientation φi or a joint type mi , a discrete version of the mutation operator is used.

8.8. Selection for local search
In this stage, Npop, the list of the individuals that are selected to undergo the local search is formed.
The number of individuals in Npop depends on the desired frequency which the local search should
be applied to the population. The ith individual is added to Npop with a probability �i which is
computed as

�i = �

Ni

, (34)

where Ni is the number of individuals in the population which represent identical solutions to the
problem. In the proposed TBCO, Ni represents the number of individuals with the same � as the ith
individual and therefore, Ni = ci . � is a constant which represents the probability of the local search
when Ni = 1.
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Table III. MA parameters
used in the numerical ana-
lysis of the result section.

Parameter Value

rmin 30
ρ 0.5r

e 0.1p

κr
1
8

gmax 20
εmax 0.1t

κe
1
3

δ1 102

δ2 103

ξ 0.2
η 2
� 1
ρl 20
ρH 50
δLS 103εcons

8.9. Local search
In this stage, the � search is applied to the members of Npop. A method for limiting the number
of iterations of the � search is employed. A gradual local improvement of the individuals’ fitness
decreases the computational cost of the local search in each generation and simultaneously increases
the resilience of the algorithm against premature convergence. To achieve a tangible decrease in the
reachability error, if the reachability error is small, more iterations are required than if the error is
high. Therefore, the number of iterations ρ is determined, adaptively, for each individual according
to its reachability error as follows:

ρi =
{

ρL, if F i
rch,T ≤ δLS

ρH else
, (35)

where the number of iterations of the local search for individual Ri is equal to constant ρL, if the
reach- ability error is less than or equal to a threshold, δLS . Otherwise the number of iterations is
equal to ρH , where ρL ≤ ρH . By using this scheme, the local search is applied to individuals with
smaller reachability errors more aggressively.

9. Results
In this section, the results of the numerical analysis of the proposed TBCO algorithm are presented.
In all the test cases, the total reachability error is considered as the optimization constraint. When the
reachability errors are within the tolerance of the system, optimization criterion is used to select the
optimal solution. The optimization criterion depends on the application, what needs to be maximized
or minimized such as required power, required torque, task duration, maximizing the payload, or a
combination of them. Therefore, the algorithm in fact aims to find the optimum IK solution for the
given goal. For this paper, the optimization criterion is the required power to execute the task. To
calculate the required power, seven degree polynomial trajectories are used to connect the starting
pose to the end pose. Each trajectory is created such that the duration of the motion from the initial
point to the end point is constant for all the task point pairs. With the recursive Newton–Euler
formulation, the inverse dynamic problem is solved to reach the required torque by the manipulator
to follow the trajectory. Using the required torque and the angular velocity, the maximum power of
each joint is calculated. Then, the sum of required power is used as a measure of the optimization
criterion. Table III lists the value of the parameters of the MA used in numerical analysis of this
section, where [x] represents the nearest integer less than or equal to x.
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Table IV. Performance measures of the MA and GA.

Test Final Minimum Average Total
run generation reachability generation time

Method number number error time (minutes) (minutes)

GA 1 40 111.7028 4.93 197.41
2 40 46.9296 4.38 175.40
3 40 8.7758 2.99 119.62
4 40 54.0351 4.48 179.40
5 40 48.6138 3.98 159.22

MA 1 1 0.0643 14.66 14.66
2 1 0.0254 13.52 13.52
3 1 0.0204 13.57 13.57
4 8 0.0334 11.43 91.45
5 5 0.0369 12.73 63.67

Fig. 14. Comparison of the MA and GA: (a) MA minimum reachability error, (b) GA minimum reachability
error, (c) MA average reachability error, and (d) GA average reachability error.

9.1. TBCO in M3

9.1.1. Test case 1: MA versus GA for solving the TBCO. In this test case, the TBCO problem is solved
in the M3 space for five tasks each consisting of four task points. Both MA and a pure GA version of
the algorithm are tested. The GA version shares the genetic operators (Crossover and Mutation), and
the elitism (Elitism) subroutines with the MA, but does not include Restart Population, Selection for
Local Search, and Local Search subroutines. Since the idea is to compare how fast each algorithm
finds a manipulator capable of satisfying the constraints, no optimization criteria are considered, and
only the third case of the selection operator, in which the constraints are compared, is implemented. In
Fig. 14, the minimum and average reachability errors of the population with respect to the generation
number for MA and GA are plotted. In both algorithms, the maximum permissible generation number
is 40. The MA can find a manipulator capable of performing the task in all the test runs. In three
of the runs, such a manipulator is found in the first generation of the MA. For the GA, none of the
runs reaches a manipulator capable of satisfying the constraints. Table IV summarizes the operational
measures of the test runs for the MA and GA. For the GA, the lowest reachability error belongs
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Fig. 15. Effect of the number of task points in M3 TBCO: (a) minimum reachability error of the population and
(b) average reachability error of the population.

Fig. 16. Effect of the number of task points in M5 TBCO: (a) minimum reachability error of the population and
(b) average reachability error of the population.

to a manipulator in the last generation of the third test run. Since the reachability error for the
manipulator is 8.7758, the manipulator cannot perform the task with the desired precision. The MA
finds a manipulator with a reachability error within the permissible tolerance, εcons , in all the test
runs. However, the average generation run time of the MA is approximately three times the generation
run time of the GA. The reason is that in each generation of the MA, a fraction of the population
undergoes the local search algorithm. Although, the generation run time of the GA is smaller than
that of the MA at the final generations, the total run time of the MA is less than the GA. The fact
that, in the final generation, the MA has already found a good solution, whereas the GA is unable to
determine a manipulator capable of performing the task shows the superior performance of the MA
in finding manipulators capable of satisfying the constraints, i.e., performing the task.

9.1.2. Test case 2: The effect of the number of task points. To investigate the effect of increasing the
number of task points on the performance of the proposed MA, the TBCO in M3 and M5 space with
varying number of tasks are solved. Figure 15 shows the minimum and average reachability errors,
plotted with respect to the generation number for each search in M3, when the number of task points
varies from 5 to 20. Since, in the 10 task point case, a solution is reached in the first generation, the
minimum and average reachability errors of the test are not visible on the plot. It is obvious that the
algorithm finds a KC, capable of performing the task, in all the test cases.

Figure 16 shows the results of the same test for a search in M5. Here, the algorithm has reached a
solution in generation 9 for the 5 task point case, and a solution in generation 2 of the 15 task point
case.

Table V summarizes the generation numbers in which a KC, capable of performing the task is
reached. It seems that the generation, in which a manipulator capable of performing the task is found,
is directly affected by the following factors:

� The closeness of the individuals of the initial population to a KC capable of performing the
task. The measure of the closeness can be considered as the number of genetic operators needed
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Table V. MA generation number in which a KC, capable of performing the task, is reached.

Search space 5 Task points 10 Task points 15 Task points 20 Task points

M3 2 1 3 5
M5 9 6 4 16

Fig. 17. Minimum and average reachability errors of the population and the generation run time for a M5 search
using the proposed MA, test case 1: (a) minimum and average population reachability errors and (b) generation
run time.

to produce a KC with a kinematic structure which can be improved by the � search to perform the
task.

� The generation number in which the local search is applied to a potential solution. In each
generation and for all the individuals, the probability for undergoing the � search is computed.
Even though an individual close to a solution might exist in the population, it might not have the
chance to undergo the � search until further generations are completed.

9.2. TBCO in M5

9.2.1. Test case 1. In this test case, the proposed TBCO algorithm is applied searching in the M5
space for manipulators that are capable of performing a T2 task. To ensure that the all the task points
are reachable with an mn manipulator, the task points are selected randomly from the workspace of
the following mref

5 manipulator:

mref
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 60
0 R 30
0 P 30
0 R 10
0 P 10
0 R 10

⎤
⎥⎥⎥⎥⎥⎦ . (36)

The minimum and average reachability errors, and the generation run time of the TBCO, applied
to this problem are shown with respect to the generation number in Fig. 17. According to Fig. 17(a),
the first manipulator capable of performing the task is found in the first generation, but the run is not
terminated in order to search for KCs with lower requirements for executing the task. Figure 17(b)
illustrates the run time of the algorithm in each generation. The variation, which can be observed in
the run time from one generation to another, is due to the stochastic nature of the genetic selection
operator and the selection for numerical operators. The generations, in which the selection operator
needed to compute Fobj often require more time. Another factor affecting the run time is the number
of individuals in the generation which undergo the � search operator. In diverse populations, in
which ci is relatively small, �i is higher, and the numerical search is applied to a higher fraction of
the individuals, the run time of the generation increases.

In the last generation of MA, two KC, mKC1
5 and mKC2

5 , capable of performing the task, exist. The
KC of mref

5 with mKC1
5 and mKC2

5 , when they reached the first task point, are signified in Fig. 18.
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Table VI. Results of the MA-based TBCO in M5, test case 1.

Kinematic Position reachability Orientation reachability Required
configuration error (cm) error (rad) power (KW)

mKC1
5 0.0006 0.0000 0.143

mKC2
5 0.0007 0.0000 0.301

Fig. 18. KCs of mref
5 and the two outputs of the MA-based TBCO algorithm in test case 1: (a) mref

5 , (b) mKC1
5 ,

and (c) mKC2
5 .

The matrix representations of the solutions are as follows:

mKC1
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 17.8
0 R 101.6
0 P 14.5
0 R 41.0
0 P 20.6

π/2 R 10.0

⎤
⎥⎥⎥⎥⎥⎦ , (37)

and

mKC2
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 28.7
0 R 6.4
0 P 42.1
0 R 32.7
0 P 13.7
0 R 36.8

⎤
⎥⎥⎥⎥⎥⎦ . (38)

Table VI summarizes the operational measures of the two KCs. Although the position and
orientation reachability errors of both manipulators indicate that they can reach the task points
with a high precision, mKC1

5 is the final solution of the TBCO due to the lower power requirements in
performing the task.

9.2.2. Test case 2. In this test case, the proposed TBCO algorithm is used to determine a manipulator
capable of performing a T10 task. The task points are randomly selected from the workspace of mref .

In Fig. 19(a) the minimum and average reachability errors of the population are plotted with
respect to the generation number. According to the minimum reachability error, the first manipulator,
capable of performing the task, is found in generation 6. To perform the search for the manipulators
with a higher performance, in terms of the required power, the algorithm is not terminated in 20
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Fig. 19. Minimum and average reachability errors of the population and the generation run time for a M5 search
using the proposed MA, test case 2: (a) minimum and average population reachability errors and (b) generation
run time.

Fig. 20. KCs of mref
5 and the two outputs of the MA-based TBCO algorithm in test case 2: (a) mref

5 , (b) mKC3
5 ,

and (c) mKC4
5 .

more generations. As illustrated in the figure, in generation 22, the restart population subroutine has
substituted a part of the population with new individuals.

Figure 20(a) shows the KC of mref

5 for the first task point. In the final population of the MA, two
KCs, mKC3

5 for mKC
4 , that are capable of performing the task are found. The matrix representation of

mKC3
5 for mKC

4 are

mKC3
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 21.3
0 R 68.6

π/2 P 17.7
0 R 22.2
0 P 3.8
0 R 16.1

⎤
⎥⎥⎥⎥⎥⎦ , (39)

and

mKC4
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 61.2
0 R 28.7
0 R 1.7
0 R 38.2

π/2 P 16.6
0 R 3.3

⎤
⎥⎥⎥⎥⎥⎦ . (40)
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Table VII. Results of the MA-based TBCO in M5, test case 2.

Kinematic Position reachability Orientation reachability Required
configuration error (cm) error (rad) power (KW)

mKC3
5 0.0094 0.0004 2.2007

mKC4
5 0.0068 0.0006 3.0350

Fig. 21. Minimum and average reachability errors of the population and the generation run time for a M6 search
using the proposed MA, test case 2: (a) minimum and average population reachability errors and (b) generation
run time.

Table VII lists the reachability errors and the required power to perform the task for mKC3
5 for mKC

4 .
The position and orientation measure for both manipulators are within the permissible tolerance.
Therefore, both manipulators are capable of performing the tested T10. Figure 20(b) and (c) show
mKC3

5 and mKC
4 , respectively. Although the kinematic structure matrix of m5

ref , mKC3
5 , and mKC4

5 are
distinct by changing the joint reference angle of the rotation joints 1 and 3, it can be shown that they
all refer to a similar kinematic structure, i.e., the workspace of all the three manipulators has the same
shape.

Although the � of the three manipulators are not equal, the volume (size) of their workspace is
also equal and that is because the sum of the links connected to the input and output mechanical ports
of rotational joints 1, 3, and 5 are equal. This could be an indication that only a KC with a workspace
similar to mref

6 can perform the desired T10 task. The required power for performing the task are
2.2 KW and 3.0 KW for mKC3

5 and mKC4
5 , respectively. Therefore, the final solution of the TBCO is

mKC3
5 which can perform the task with the least required power.

9.3. TBCO in M6

In this test, the TBCO is applied for finding an m6 manipulator for performing a T5 task. The task
points are generated randomly by the following manipulator

mref
5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 60
0 R 30
0 P 30
0 R 10
0 P 10
0 R 10

⎤
⎥⎥⎥⎥⎥⎦ . (41)

Figure 21(a) depicts the minimum and average reachability errors of the population with respect
to the generation number. It is evident that in generation 1, a manipulator that is capable of
performing the task is found. The MA iterates for 20 generations in order to search M6 for
manipulators that perform better in executing the task. Figure 21(b) reflects the run time of each
generation.
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Table VIII. Results of the MA-based TBCO in M6.

Kinematic Position reachability Orientation reachability Required
configuration error (cm) error (rad) power (KW)

mKC1
5 0.0041 0.0007 1.247

mKC2
5 0.0032 0.0002 1.286

mKC3
5 0.0020 0.0001 10.558

mKC4
5 0.0055 0.0000 3.178

mKC5
5 0.0070 0.0004 4.985

mKC6
5 0.0061 0.0010 3.681

mKC7
5 0.0094 0.0001 7.862

mKC8
5 0.0013 0.0000 2.262

Fig. 22. KCs of the outputs of the MA-based TBCO algorithm in M6: (a) mKC1
6 , (b) mKC2

6 , (c) mKC3
6 , (d) mKC4

6 ,
(e) mKC5

6 , (f) mKC6
6 , (g) mKC7

6 , (h) mKC8
6 .
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In the final generation of MA, eight KCs, mKCi
6 , with i = 1, . . . , 8, capable of performing the

task are found. In Fig. 22, the KCs of the aforementioned manipulators are illustrated. Table VIII
summarizes the operational performance measures of the manipulators. The reachability errors of all
the manipulators are within the permissible tolerance range. However, since mKC1

6 can perform the
task with lower power requirements, mKC1

6 is selected as the solution to the TBCO problem.

10. Conclusions
In this paper, a TBCO solving problem for MRRs using an MA was presented. The proposed
algorithm combines GA and local search algorithms to exploit the advantages of both algorithms. The
proposed algorithm benefits from a kinematic structure-aware elitism scheme, kinematic structure-
aware restart scheme, priority-based selection operator, and adaptive local search frequency. It is
demonstrated that in an M3 TBCO, the proposed MA finds a manipulator capable of satisfying
the task faster than the GA. Moreover, the search in M5 shows that when the number of the
task points t in the desired task Tt increases, the set of manipulators, capable of performing
Tt , shrinks. For instance, in one of the test cases, it is shown that the algorithm only finds one
m5 kinematic structure, capable of performing the desired T10 task. In addition, the MA-based
TBCO algorithm was successfully applied to find optimized m6 manipulator for performing a T5

task. Furthermore, a methodology was proposed for conducting the � search, i.e., for the link
dimensions of a manipulator this method enables reaching a set of task points. The developed
method is based on converting the � search to an IK problem of a redundant manipulator and
solving it for all the task points concurrently. The proposed method was verified for three distinct
cases, each consisting of a task with 50 task points. The proposed algorithm can accommodate
any number of constraints and optimization criteria. In a case with more criteria, a weighted sum
of constraints and optimization criteria can be adopted as the high and low priority fitness values,
respectively. The proposed algorithm can be extended to reach task points with obstacle avoidance in
future.
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