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In a life-cycle model with dynastic households, parents value the transfer of tangible
assets to their offspring in the event of premature death. This raises the subjective reward
from investing in them relative to intangible human capital and tilts investment choice
away from the latter. These effects of mortality on human capital risk and relative
investment can translate into divergent growth paths, delayed transition from physical to
human capital accumulation, and a dampened response to mortality shock in developing
countries.
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1. INTRODUCTION

We study the effect of adult mortality in a life-cycle economy with dynastic house-
holds. Specifically, we emphasize a novel channel through which it affects the
pattern of investment and economic development.

There are multiple ways in which mortality is linked to household consump-
tion and savings decisions. A commonly studied one is its negative effect on
the enjoyment of future utilities because of which households prioritize present
consumption and invest less. This can discourage economic development as in
Ram and Schultz (1979), Gersovitz (1983), Chakraborty (2004), Lorentzen et al.
(2008), and Jayachandran and Lleras-Muney (2009), among others.

That assets can be passed down generations mitigates the problem for altruistic
households. Yet, not all assets can be readily bequeathed. Physical assets such as
capital, land, and livestock are tangible and transferable in a way that human
capital is not. This introduces a difference in how parents subjectively value
investment in physical assets relative to human capital. The difference is par-
ticularly salient under lifetime uncertainty if parents value unintended bequests.
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As a result, the risk of premature death tilts portfolio choice toward tangible
investment.1 It follows that the predominant form of asset accumulation in devel-
oping countries with high mortality will be physical capital; patterns of investment
and production shift toward human capital when life-cycle uncertainty falls with
economic development.

Two stylized facts are relevant for this result. First, mortality declined sharply
in the late 19th and early 20th centuries in the West due, in large measure, to
exogenous improvements in public health and medicine [Wrigley and Schofield
(1981), Szreter (1988), Dobson (1997), and Cutler and Miller (2005)]. Second,
as documented by Abramovitz and David (2000), Goldin and Katz (2001), and
Galor and Moav (2004), there was a concomitant transition from physical capital
to human capital as the primary engine of growth. These two transitions become
related in our model: during the initial stages of development, high mortality is
accompanied by investment in transferable assets (physical capital, land) while in
later stages, lower mortality from (possibly exogenous) health improvements is
accompanied by investment in human capital.2

There are two distinct mechanisms through which mortality influences the
accumulation of human capital in the model. First, high mortality lowers the
expected return on human capital vis-a-vis physical capital. Second, high mor-
tality makes human capital investment riskier. The latter may induce risk-averse
agents to underinvest in human capital even when the expected return to human
capital rises. To the extent that technological progress is complementary to
human capital, high mortality may therefore result in delayed adoption of modern
technologies when they are available.3

Evidence of the differential effect of mortality is discernible even in contempo-
rary experiences. For example, Fortson (2011) argues that while the growth effect
of the HIV epidemic in sub-Saharan Africa has been ambiguous, it had a definite
negative effect on schooling and human capital formation. This would suggest
that the loss of output from lower human capital formation was attenuated by
other effects; a shift toward physical assets is one possibility. Put differently, the
tendency of altruistic families to overaccumulate physical assets under life-cycle
uncertainty suggests that the cost of epidemic shocks can be relatively lower in
developing countries that face already-high mortality risks.

Indeed adjusting the portfolio of asset stocks for consumption smoothing pur-
poses in the face of idiosyncratic income (not necessarily mortality) shocks is
not uncommon in developing countries where insurance mechanisms are weak.
Examining data from rural India, Jacoby and Skoufias (1997) find that seasonal
fluctuations in income were accompanied by seasonal fluctuations is children’s
school attendance where child labor was used as a mechanism to smooth con-
sumption instead of borrowing. Based on a study of consumption and investment
behavior of Indian farmers, Rosenzweig and Wolpin (1993) conclude that when
hit by adverse weather conditions, farmers are more likely to sell their live-
stock than jewelry or land. Similar self-insurance mechanism for consumption
smoothing are reported by Janzen and Carter (2013) in the context of Kenya.
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It is well known in the literature that adult mortality affects the return to invest-
ment and growth.4 Many of these studies look at either the relationship between
mortality and the effective rate of time preference or a single productive asset.
Even when both physical and human capital are considered, the difference in
their inheritability does not play a role. Razin (1976) is an early contribution that
links mortality to the choice between human capital and other investments. His
analysis is restricted to exogenous factor prices and impure altruism. In a dynamic
general equilibrium framework, asset returns respond to factor accumulation and
incentives change over time. By identifying clearly general equilibrium effects
that amplify the portfolio choice margin and how resource sharing within house-
holds responds to mortality, our work emphasizes the role of the mortality in the
transition from physical capital- to human capital-based development.

Also related is Minamimura and Yasui’s (2019) recent work in which high
mortality delays the transition from physical to human capital by lowering the
latter’s expected return. Human capital risk has no role in their story. Yet risk is
a central element of human capital acquisition. First, the inalienability of human
capital limits the scope for diversification [Levhari and Weiss (1974)]. Second,
that same inalienability also restricts the investment choice of firms that offer
various insurance instruments (e.g., annuities and life insurance) for household
risk diversification. Therefore, as long as mortality risk is high, physical capital
will continue to be a major channel for investment, either directly by households
or indirectly by insurance providers who earn their return on the capital market.

The structure of the paper is as follows. The following section presents the
overall framework. Section 3 analyzes household decisions and the portfolio allo-
cation problem. In section 4, we study corner equilibria in which households
invest in only one asset. The general equilibrium analysis of Section 5 looks at
the growth effects of the mortality transition and other empirical implications.
Section 6 concludes.

2. STRUCTURE OF THE ECONOMY

In a discrete-time overlapping-generations economy, a unit measure of agents
are born every period. Each agent potentially lives for two periods, “youth” and
“middle-age.” She lives in youth for sure but survives into middle-age with a con-
stant (exogenous) probability p ∈ [0, 1]. She gives birth to a single offspring in
youth (before the mortality shock is realized) and does not do wage work, implic-
itly spending her time raising the child, managing assets, and acquiring human
capital, if at all.

A young agent receives an endowment in the first period from her parent that
is used for own consumption and asset accumulation. There are two income-
generating assets she can invest in: tangible physical capital and intangible human
capital. Physical capital is transferable across agents while human capital is
not. If the agent survives into middle age, she earns capital income and labor
income from the investments made in youth. She consumes a part θ of this
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income and transfers the remainder to her offspring as intended bequest. If she
dies prematurely, instead, the offspring inherits the tangible asset of the parent,
income from which constitutes her first period endowment. We call this unin-
tended or accidental bequest. The altruistic agent derives utility from both forms
of bequests.

2.1. Preferences

Agents have identical preferences. The expected lifetime utility Vt of a young
adult at t with income endowment yt received either as intended or unintended
bequest, both of which bring utility, is

Vt = u(c1t) + βpu(c2t+1) + γ EtVt+1. (1)

Here β ∈ (0, 1) is the subjective discount rate, γ > 0 represents the intensity of
parental altruism, and consumption utility from death has been normalized to
zero. Standard Inada conditions apply to u. Even though altruism is pure in that
parents care about their offspring’s lifetime welfare, they do not necessarily dis-
count their offspring’s lifetime utility at the same rate as they discount their own
future consumption. It may be plausibly assumed that γ ≤ β.

2.2. Income and Endowment

All individuals are born with the same level of innate skills normalized to zero.
We also assume that the physical capital stock depreciates completely within one
generation.

Let wt denote the wage rate per unit of human capital (skill) and ρt denote the
return on physical capital in period t. Suppose a young agent has invested xt units
in physical capital and et units in human capital in the first period of her life.
Assuming full depreciation, future asset levels are kt+1 = xt for physical capital
and, if she survives, ht+1 = et for human capital.

Hence, should the agent survive to middle age, with probability p, she will
earn the income wt+1et + ρt+1xt and share 1 − θt ∈ [0, 1] proportion of it with
her offspring. On the other hand if she dies prematurely, with probability 1 − p,
the offspring inherits the entire physical capital stock xt and receives the income
ρt+1xt. Thus, the first period endowment of the offspring is stochastic, given by

yt+1 =
{

(1 − θt) (ρt+1xt + wt+1et) w.p. p,
ρt+1xt w.p. 1 − p.

Note the asymmetry in the endowment process: the offspring does not get to
access any portion of the parent’s labor earnings in case of premature death while
she receives the entire capital income.

We anticipate that in equilibrium, θt < 1. Since consumption in youth comes
out of parental income, the agent will always choose to share with her offspring
because of the Inada condition on u(c1t+1). One way to allow for a no-sharing
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equilibrium is to introduce an independent source of income, like labor earnings,
in youth. As in standard dynastic models, no-sharing would occur for low values
of γ . For θt = 1, the offspring does not materially benefit from parental survival
but still receives the entire capital income from parental death. Expectation of this
unintended bequest brings utility to the parent (as long as γ > 0) even when she
does not leave intended bequest. It is this margin that differentially affects the
perceived return on physical capital5 and makes the decision problem different
from the standard dynastic household framework where an inoperative (intended)
bequest motive breaks the intergenerational link.

2.3. Aggregate Production

The unique final good is produced from aggregate capital K and labor H using
a technology F(K, H) that is CRS and subject to diminishing marginal products.
Perfectly competitive goods and factor markets imply the standard factor pricing
relations

ρt = FK(Kt, Ht) and wt = FH(Kt, Ht) (2)

for all t, for the rental rate of capital and wage per unit of human capital, respec-
tively. The implicit interest rate rt = ρt − 1 applies to saving and investment in
period t − 1 that yields capital at the beginning of t.

3. HOUSEHOLD OPTIMIZATION

We start by studying how mortality affects the portfolio allocation problem
in partial equilibrium where rates of return to physical and human capital
are exogenous to household decisions. In fact these returns are taken to be
time-invariant, ρt = ρ, wt = w for all t, a conjecture verified later as general
equilibrium outcomes for two aggregate technologies.

As noted above, a generation-t agent has the stochastic endowment yt. It
depends on parental survival whose realization we denote by zt−1 ∈ {a, d} cor-
responding to “alive” and “deceased” respectively:

yt ≡ y(zt−1) =
{

(1 − θt−1) (ρxt−1 + wet−1) , if zt−1 = a,
ρxt−1, if zt−1 = d.

(3)

Given yt, her decision problem then is

Vt(yt) = max {u(c1t) + βpu(c2t+1) + γ EtVt+1 (yt+1)}
subject to

c1t + xt + et = yt,

c2t+1 = θt(ρxt + wet),

and (3) led one period forward. Expectations are taken with respect to yt+1 which
depends on zt ∈ {a, d} that is i.i.d. across agents belonging to generation t.
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There are two sources of uncertainty in the model. The first period endowment
received by an agent depends on the realization of parental mortality. But it is
known to the agent by the time she takes consumption and investment decisions.
Given the endowment, utilities from second period consumption and bequest left
to the progeny are also uncertain: they depend on the realization of own mortality
shock. The agent’s decisions will, therefore, depend on her attitude toward risk.
In what follows, we assume that agents are risk-averse with preferences taking
the CRRA/CES form

u(c) = c1−σ − 1

1 − σ
, σ > 0. (4)

The coefficient of risk aversion is σ while the intertemporal elasticity of sub-
stitution is 1/σ . As σ → 1, u(c) → ln c. A strictly positive σ indicates risk
aversion and ensures strict concavity of the objective function and positive
saving/investment at all values of p.6

Physical capital, because of its ready transferability, is a relatively safe asset:
it generates utility in both states of nature. Human capital, on the other hand, is
riskier in that it generates utility only when the agent survives to middle age. A
forward-looking young agent decides on her optimal asset portfolio after taking
into consideration the future risk and return of the two assets. Two alternative
institutional setups are considered. In the first, θ is exogenously given, for exam-
ple, by social customs and convention. In the second case, parents optimally
determine how much to share with their offspring taking into account associated
trade-offs. While there is additional insight to be gained in how lifetime uncer-
tainty affects θ , the fundamental portfolio allocation problem is not sensitive to
whether or not θ is exogenous.

3.1. Portfolio Choice Under Exogenous θ

For exogenous θ and (4), optimization with respect to xt and et yields the
following first-order conditions (FOCs) in an interior optima:

c−σ
1t = pβθρ c−σ

2t+1 + γ Et

[
∂Vt+1

∂xt

]
,

c−σ
1t = pβθw c−σ

2t+1 + γ Et

[
∂Vt+1

∂et

]
with the corresponding Envelope conditions

Et

[
∂Vt+1

∂xt

]
= p(1 − θ )ρ (c1t+1|zt=a)−σ + (1 − p)ρ (c1t+1|zt=d)−σ ,

Et

[
∂Vt+1

∂et

]
= p(1 − θ )w (c1t+1|zt=a)−σ .

As is common to this class of dynamic programming problems with homoth-
etic preferences and full depreciation of capital, we exploit the guess and verify
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method to solve for investment decisions. Let us conjecture that the investments
are proportional to the endowment received, such that

xt = μyt(zt−1)
et = νyt(zt−1)

}
for all t; zt−1 ∈ {a, d} ,

where μ and ν are the (yet unknown) investment propensities in physical
and human capital respectively. Denoting by ya

t and yd
t the endowments for

zt−1 = a and zt−1 = d, we then have the consumption functions c1t|zt−1=a =
(1 − μ − ν)ya

t , c1t|zt−1=d = (1 − μ − ν)yd
t , c2t+1|zt−1=a = θ (ρμ + wν) ya

t , and
c2t+1|zt−1=d = θ (ρμ + wν) yd

t . Using these in the FOCs above gives a pair of
equations that solve for the investment rate μ and ν:

(1 − μ − ν)−σ = pβρθ1−σ (ρμ + wν)−σ

+pγρ(1 − θ )1−σ (ρμ + wν)−σ (1 − μ − ν)−σ

+(1 − p)γρ(ρμ)−σ (1 − μ − ν)−σ , (5)

(1 − μ − ν)−σ = pβwθ1−σ (ρμ + wν)−σ

+pγ w (1 − θ)1−σ (ρμ + wν)−σ (1 − μ − ν)−σ . (6)

The solutions are constant, as conjectured:

μ = [
γ (1 − p)

]
1/σ 1

ρ

(
wρ

w − ρ

)1/σ

, (7)

ν = (pγ w)1/σ + (pβw)1/σ

w + (pβw)1/σ
−
(

ρ + (pβw)1/σ

w + (pβw)1/σ

)
μ. (8)

Note that the solution to μ makes sense only if w > ρ. It is easy to see why it
is necessary. If w < ρ, physical capital dominates human capital—it is less risky
and yields a return which is at least as high—and no investment in human capital
would occur; neither (7) nor (8) would apply. The actual restriction required for
ν > 0 is, however, tighter, and analyzed in Section 4.

From (7) and (8), in an interior equilibrium and given factor prices, μ is a
decreasing function of p while ν is an increasing function of p. In other words,
since investment in both comes out of the same endowment, a higher survival
probability shifts investment toward human capital. Interestingly, the investment
propensities are independent of θ . Societies where close-knit family ties and
social customs dictate income sharing within the household differ from oth-
ers only in terms of investment level, not propensities. The homotheticity of
u(c) ensures that the intertemporal decisions—saving and investment—depend
on relative consumption across periods, not their levels. This separates it from
within-period sharing of income, that is, the consumption level achieved by the
parent in middle age. Moreover, since a fraction of total income is being shared
when the realized state is zt = a, the parent’s subjective costs and benefits are
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symmetric for physical and human capital investment within the period. Hence θ

does not affect the trade-off between physical and human capital.

3.2. Portfolio Choice Under Endogenous θ

Suppose now that parents also optimize over how much of middle-age income to
share with their offspring. Similar to before, in an interior optimum, we have the
FOCs

c−σ
1t = pβθtρ c−σ

2t+1 + γ Et

[
∂Vt+1

∂xt

]
,

c−σ
1t = pβθtw c−σ

2t+1 + γ Et

[
∂Vt+1

∂et

]
,

pβρc−σ
2t+1xt + γ Et

[
∂Vt+1

∂et

]
= 0,

for xt, et, and θt, and the corresponding Envelope conditions

Et

[
∂Vt+1

∂xt

]
= p(1 − θt)ρ (c1t+1|zt=a)−σ + (1 − p)ρ (c1t+1|zt=d)−σ ,

Et

[
∂Vt+1

∂et

]
= p(1 − θt)w (c1t+1|zt=a)−σ ,

Et

[
∂Vt+1

∂θt

]
= −p (c1t+1|zt=a)−σ (ρxt) .

Apply again the guess and verify method to solve for optimal xt, et, and θt by
conjecturing that decision rules are proportional to endowment, xt = μyt(zt−1) and
et = νyt(zt−1), where μ and ν are to be determined. Substituting these into the
FOCs, (μ,ν, θt) solve

(1 − μ − ν)−σ = pβρθ1−σ
t (ρμ + wν)−σ

+pγρ (1 − θt)
1−σ (ρμ + wν)−σ (1 − μ − ν)−σ

+(1 − p)γρ (ρμ)−σ (1 − μ − ν)−σ , (9)

(1 − μ − ν)−σ = pβwθ1−σ
t (ρμ + wν)−σ

+pγ w (1 − θt)
1−σ (ρμ + wν)−σ (1 − μ − ν)−σ , (10)

βθ−σ
t (ρμ + wν)−σ = γ (1 − θt)

−σ (ρμ + wν)−σ (1 − μ − ν)−σ . (11)

The first two are identical to the exogenous θ case. Hence the solutions for μ and
ν will be the same, (7) and (8) that are independent of θt. Then from (11), the
optimal value of θt is

θt = (1 − μ − ν)(β/γ )1/σ

1 + (1 − μ − ν)(β/γ )1/σ
= θ , (12)
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pp

θ θ θ

p

FIGURE 1. Optimal θ for σ ∈ {0.1, 0.5, 1.3}.

which is time-invariant. The constancy of θ follows from the constancy of
μ and ν, which of course is possible because of homothetic preferences, full
depreciation of capital, and time-invariant factor returns.

3.2.1. Log specification. To understand how these choices depend on p, let’s first
consider log preferences (σ = 1) for which analytically simple expressions can be
obtained:

μ = γ (1 − p)

(
w

w − ρ

)
, (13)

ν = γ + pβ

1+pβ
− μ, (14)

θ = (1 − μ − ν)(β/γ )

1 + (1 − μ − ν)(β/γ )
. (15)

Here μ + ν is clearly increasing and θ falling in p.

3.2.2. General specification. For the more general CES function with σ �= 1, we
rely on numerical results. Figure 1 presents three cases based on σ that show θ to
be monotonically decreasing in p.7 Where σ matters is in determining the respon-
siveness of θ to p: for higher values, θ falls more slowly with p. To understand
why, rewrite the FOCs in terms of consumption

(c1t)
−σ = pβθρ (c2t+1)−σ + γ p(1 − θ )ρ (c1t+1|zt=a)−σ

+γ (1 − p)ρ (c1t+1|zt=d)−σ , (16)

(c1t)
−σ = pβθw (c2t+1)−σ + γ p(1 − θ )w (c1t+1|zt=a)−σ , (17)

β(c2t+1)−σ = γ (c1t+1|zt=a)−σ . (18)

Using the offspring’s budget constraint and investment rules in (18), we get the
optimality condition

θ

(1 − θ )(1 − μ − ν)
= c2t+1

c1t+1|zt=a
=
(

β

γ

)1/σ

that shows how the parent allocates consumption between herself and her off-
spring. The higher is β relative to γ , the more does the parent want to consume
relative to her offspring and higher will θ be. Second, as long as β > γ , lower σ
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increases θ , ignoring for now its effect on investment propensities. Here σ plays
the role of the inverse of the elasticity of substitution between parent’s and off-
spring’s consumption: a lower σ means higher substitutability and the parent
responds by shifting consumption toward herself since β > γ .

That leaves the 1 − μ − ν term which comes from the offspring’s invest-
ment behavior. Since investment propensities are invariant across generations, we
can use the parent’s optimality conditions to understand how μ and ν change
in response to p and σ . Use (18) in (16) and (17) to obtain the no-arbitrage
condition

pβρ (c2t+1)−σ + γ (1 − p)ρ (c1t+1|zt=d)−σ = (c1t)
−σ = pβw (c2t+1)−σ . (19)

The first equality captures consumption smoothing via physical capital, and the
second via human capital. Given σ , as p rises, if investments do not change, the
average future utility at the margin from human capital [right-hand side of (19)]
goes up proportionately more than the average future utility from physical capi-
tal [left-hand side of (19)]. Therefore, agents will switch from physical to human
capital, causing ν to rise and μ to fall. What happens to μ + ν is unclear from
the algebra alone. Intuitively, however, the higher relative price of consumption
in youth due to higher p must prompt the offspring to shift toward consumption
in middle age. This can only happen if she saves a higher fraction of her endow-
ment; that is, μ + ν rises. Anticipating this, the parent will partially compensate
by increasing the offspring’s share, 1 − θ ; that is, θ must fall. The magnitude of
the response of consumption will depend on σ which, here, is tied to risk aver-
sion. Under higher risk aversion (higher σ ), even when the expected return from
human capital dominates that from physical capital, the offspring will shift less
toward human capital for a given increase in p and the parent needs to compensate
less; θ falls by less.

To summarize, p lowers θ , shifting more resources toward future generations as
a way to compensate for lower consumption in youth. The investment propensities
μ and ν, however, do not depend on θ whether or not the latter is determined opti-
mally. Hence the basic trade-off whereby higher longevity favors human capital
investment over physical capital is robust to the institutional arrangement guiding
inter-generational resource sharing.

4. PORTFOLIO CHOICE WITH CORNER SOLUTIONS

A necessary condition for the interior optima in Section 3 is w > ρ. Otherwise
physical capital dominates human capital for sure and all saving is channelized to
physical capital alone. It is conceivable, however, that physical capital dominates
even when this condition is satisfied. This is likely if the survival probability (p)
is low enough for risk-averse agents to shy away from the riskier asset, human
capital.

We derive the Kuhn–Tucker conditions associated with the household’s opti-
mization problem. Inequality constraints for θ are not necessary. Similar to why
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θ = 1 can be ruled out (Section 2), the Inada condition on the parent’s own middle-
age utility precludes θ = 0 as long as σ > 0. This also means, since endogenously
chosen θ is always in the interior, its expression is identical to (12) above except
for the different values of μ and ν depending on the cases below.

The choices of xt and et are associated with the Kuhn–Tucker conditions8:

−(c1t)
−σ + pβθρ (c2t+1)−σ + γ p(1 − θ )ρ (c1t+1|zt=a)−σ

+γ (1 − p)ρ (c1t+1|zt=d)−σ ≤ 0,

−(c1t)
−σ + pβθw (c2t+1)−σ + γ p(1 − θ )w (c1t+1|zt=a)−σ ≤ 0.

Whenever either of the above holds with strict inequality, the optimal value of
the corresponding choice is zero. Conversely, whenever xt or et is positive, the
corresponding Kuhn–Tucker condition holds with strict equality.

As before, conjecture that the investment functions are proportional to the
endowment, xt = μyt(zt−1) and et = νyt(zt−1), zt−1 ∈ {a, d}, which leads to

(1−μ−ν)−σ ≥ pβρθ1−σ (ρμ+wν)−σ+ pγρ (1−θ)1−σ (ρμ+wν)−σ (1−μ−ν)−σ

+ (1 − p)γρ (ρμ)−σ (1 − μ − ν)−σ , (20)

(1−μ−ν)−σ ≥ pβwθ1−σ (ρμ+wν)−σ+ pγ w (1−θ)1−σ (ρμ+wν)−σ (1−μ−ν)−σ .
(21)

Obviously μ and ν cannot simultaneously be zero: since σ > 0, the right-hand
side of both (20) and (21) would violate the inequalities. For the same reason, μ

cannot be zero as the third term on the right-hand side of (20) would then go to
infinity.9 Therefore only two possibilities arise: (i) μ, ν > 0 and (ii) μ > 0, ν = 0.

4.1. Case (i): μ, ν > 0

Both (20) and (21) hold with equality and we get back the interior values of μ

and ν, derived earlier in (7) and (8). These choices are consistent with case (i) if
and only if ν > 0, that is,

[
γ (1 − p)

]
1/σ 1

ρ

(
wρ

w − ρ

)1/σ

<
(pγ w)1/σ + (pβw)1/σ

ρ + (pβw)1/σ
, (22)

which can be interpreted as a restriction of the form p > p̂ given σ , β, γ , ρ,
and w.

4.2. Case (ii): μ > 0, ν = 0

Only (20) holds with equality. Setting ν = 0, we get

(ρμ)σ − pβρθ1−σ (1 − μ)σ = pγρ (1 − θ)1−σ + (1 − p)γρ, (23)

which implicitly defines the corner solution for μ. An analytical solution is
possible only under log utility (see in the following).
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FIGURE 2. Effects of p under linear production. σ = 0.1 (top row) and σ = 1 (bottom row).

4.3. An Example: Log Utility

When σ = 1, cases (i) and (ii) are characterized as follows:
Case (i): μ, ν > 0
Here we get the interior solutions for μ and ν in (13) and (14) above while (22)
becomes

ρ <
pγ + {1 − γ (1 − p)}pβ

γ + pβ
w < w. (24)

We noted earlier that investment in human capital requires w > ρ. Condition (24)
shows that the requirement for human capital investment is tighter. In fact, it
can be rewritten as

[
pγ + {1 − γ (1 − p)}pβ

]
/(γ + pβ) > ρ/w, where the left-

hand side is an increasing function of p for plausible values of the parameters.
Therefore, given all other parameter values and factor prices, this condition
requires p to be higher than some threshold value p̂.
Case (ii): μ > 0, ν = 0
In this case, we have

μ = γ + pβ

1 + pβ
. (25)

Unlike in the interior solution where μ was a decreasing function of p as the
agent shifted in favor of human capital investment, here μ is increasing in p.
The reason is obvious: higher p incentivizes future consumption to which agents
respond by investing more. When they invest in physical capital alone, it goes up.
When they invest in human capital too, they scale back physical capital investment
and scale up human capital investment more than one for one because the non-
transferability of human capital becomes less of a concern at the margin. This
length-of-life effect [Chakraborty (2004)] is not specific to logarithmic utility,
and applies to the general case of (23) too as shown in Figure 2.

These solutions are obtained under exogenously given w and ρ. In general
equilibrium, investment will determine factor returns, which in turn may rule out
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some cases. Before turning our attention to that, it is important to note that we
have so far assumed away the availability of life insurance. The appeal of life
insurance policies is to allow altruistic parent to circumvent the problem of non-
transferability of human capital [Fischer (1973)]. So the relevant question is to
what extent investment in the risky asset (human capital) along with life insur-
ance (which allows agents to diversify bequest risks) can substitute for investment
in the safe asset (physical capital). The Appendix shows that it does not make a
qualitative difference to the basic result that mortality has a differential effect on
tangible versus intangible investment.

5. GENERAL EQUILIBRIUM AND DYNAMICS

In general equilibrium, the core intuition from above generalizes but there are
additional factors to consider. For example, an increase in p will have a demo-
graphic effect as more people survive, and this will shift out the aggregate supply
of human capital. Moreover, complementarity between physical and human capi-
tal matters: higher human capital investment from higher p will raise the return to
physical capital, encouraging its accumulation too.

5.1. Aggregation

By the law of large numbers, a p fraction of each cohort survives into middle
age. Dynasties in our model will have heterogeneous parental survival histories.
Since parental survival makes the initial endowment stochastic, this will generate
within-cohort wealth inequality. What allows us to ignore this heterogeneity is
the linearity of decision rules due to homothetic preferences and full depreciation
of capital. Specifically, we can track the macroeconomic behavior by focusing
on an “average agent” each period, that is an agent with the average endowment
ȳt ≡ Eyt, where yt follows the process (3).

With a slight abuse of notation, we continue to denote this average agent’s
holding of the two assets by k and h. Since Lt = L0 = 1 ∀t, aggregate capital stocks
are simply

Kt = kt, Ht = pht. (26)

We saw earlier that decision rules take the stationary forms xt = μyt, et = νyt, and
θt = θ under constant factor prices. But agents may not always invest in human
capital. When they do not, for p ≤ p̂, μ is implicitly given by (23), ν = 0, and θ is
given by (12). This means kt+1 = μ(1 − pθ )ρkt and ht+1 = 0 because basic labor
productivity has been normalized to zero. On the other hand, for p > p̂, decisions
are given by (7), (8), and (12) and the agent’s future capital stocks are

kt+1 = xt = μȳt = μ
[
(1 − pθ )ρkt + p(1 − θ )wht

]
, (27)

ht+1 = et = νȳt = ν
[
(1 − pθ )ρkt + p(1 − θ )wht

]
. (28)
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Using these in (26), we can see that the aggregate physical-to-human capital ratio
when there is investment in the latter is time-invariant

Kt+1

Ht+1
= μ

pν
≡ κ ∀t. (29)

We use two specifications of the aggregate technology F(K, H), both capable
of generating endogenous growth, and study the effect of p on relative investment
and the growth rate of output.10 Both technologies lead to constant equilibrium
rental and efficiency wage rates along the dynamic path, as was assumed above.

5.2. Linear Production

Consider first a linear technology that is additive in capital and labor:

Yt = aKt + bHt,

with a, b > 0, b > a, and factor returns to capital and labor independent of each
other. Following (2), these returns are ρt = a, wt = b ∀t. Despite b = w > ρ = a,
the agent may not invest in human capital if condition (22) is not met (p ≤ p̂).
In that case, Ht = 0 and aggregate production is entirely physical capital based,
Yt = aKt. From (27) and equilibrium factor prices,

Kt+1 = μȳt = aμ(1 − pθ )Kt

is sufficient to describe the behavior of the aggregate economy. Hence, the
economy’s growth factor is

g = Yt+1

Yt
= Kt+1

Kt
= aμ(1 − pθ ), (30)

that is assumed to exceed unity. For p > p̂, on the other hand, Yt = Ht[aκ + b].
Then from (28), we have

Ht+1 = pν
[
(1 − pθ )ρκ + (1 − θ )w

]
Ht

and

g ≡ Yt+1

Yt
= Ht+1

Ht
= pν

[
(1 − pθ )aκ + (1 − θ )b

]
. (31)

Though a higher p lowers θ , across a range of numerical simulations including
those reported below, pθ is increasing in p. Therefore, below p̂, while the length-
of-life effect working through μ encourages physical capital accumulation, pθ

discourages it. Effectively below p̂, the loss of accidental bequest from higher
parental survival lowers the accumulation of physical capital.

Above p̂, additional effects are at work. First is the positive human capital
effect working through νp: the greater willingness to invest in human capital as
people live longer and the supply effect from having more skilled workers sur-
vive. Counteracting it is the slower accumulation of physical capital, operating
through κ , as households shift toward human capital. We know, however, that
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since μ + ν is increasing in p, overall investment rises. Then there is the nega-
tive effect, the 1 − pθ term, of lower accidental bequests that is counteracted by
higher intended bequests, the 1 − θ term, from the parent’s labor income. How
these competing effects play off each other depends on the parameter space.

We turn to numerical simulations using empirically reasonable parameter val-
ues that ensure positive growth. The human capital effects of p turn out to
dominate. Figure 2 shows two representative examples based on σ = 0.1 (near
linearity) and σ = 1 (log).11 The kink in both occurs at p̂. Below p̂, higher sur-
vival encourages physical capital accumulation and growth. Above p̂, there is
rising substitution in favor of human capital, and growth accelerates. Two aspects
of these figures are worth pointing out. The transition of survival from below p̂ to
above is accompanied by a growth slowdown as households prioritize human cap-
ital over physical in their portfolio allocation: μ falls sharply as ν rises gradually.
Growth picks up when the latter is a strong enough force, at higher values of p.
This result is in line with Minamimura and Yasui’s (2019) empirical finding that
a higher initial level of human capital increases the likelihood of higher income
per capita from a decrease in mortality. Here the effect is on the growth rate.

Second, note the convexity of the g(p) function. It shows how substantial the
contribution of a mortality transition can be to economic growth in the long run.
Shorter bursts of mortality reduction, on the other hand, may or may not have
appreciable economic payoffs. Until p reaches the threshold p̂, there is little boost
to growth. A corollary to this is that a reduction in p at higher levels of sur-
vival leads to proportionately higher growth loss than an equivalent reduction at
lower levels of p. In effect, above p̂, a relatively low-p society self-insures against
mortality shocks by allocating more toward transferable assets.12 As a result, a
mortality shock that lowers p, such as an HIV or ebola outbreak affecting the adult
population, will cost less in terms of growth in high-mortality (low p) environ-
ments than in low-mortality ones (high p). This prediction is based on aggregate
output; the growth rate of output per capita (or its level) will fall less because of a
smaller population base.

5.3. Cobb–Douglas Production

Now consider the Cobb–Douglas technology

Yt = F(Kt, Ht) = AKα
t H1−α

t ,

where A > 0 and α ∈ (0, 1). Human capital investment now is necessarily positive;
that is, the restriction pw < ρ <

[
γ + 1 − γ (1 − p)

]
pw/(γ + pβ) from Table A1

(Appendix) always binds. For if it did not, the scarcity of human capital would
drive wages up sufficiently until investing in it became worthwhile.13 In perfectly
competitive markets, factor prices are again constant, wt = (1 − α)Aκα and ρt =
αAκα−1 ∀t because of (29).

Because factor prices now respond to mortality and investment behavior, they
can amplify the effect of mortality on investment and growth. Figure 3 illustrates
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FIGURE 3. Effects of p under Cobb–Douglas production. σ = 0.1 (top row), σ = 0.5
(middle row), and σ = 1 (bottom row).

the general equilibrium effects of higher p. Investment propensities, except in
the case of log, depend on how factor prices respond to higher survival. As κ

is decreasing in p, ρ rises and w falls with p. Hence, from (7), the effect of
equilibrium prices is to drive up μ when p rises even as the direct effect is to
lower it.

For σ = 0.1 and σ = 0.5 in Figure 3, the general equilibrium price effect dom-
inates such that μ is increasing in p over much of the domain. Observe how, for
σ = 0.1, μ and ν remain low (but positive) at low values of p. This is due to the
high degree of intertemporal substitution at σ = 0.1: households strongly priori-
tize present consumption at low p values. In contrast, for log preference, on the
other hand, μ steadily falls with p as factor prices do not affect it. Across all
these figure g is increasing in p. The convexity of g(p) is again apparent for the
first two cases, weaker for the log case due to the absence of amplifying general
equilibrium price effects.14

5.4. Discussion

Taken together, the results in this paper emphasize a new mechanism through
which health and mortality affect the macroeconomy.

Much has been written about the changes unleashed by widespread mortality
reductions—spanning child and infant survival to adult survival—in late 19th-
and early 20th-century Western Europe [Cutler et al. (2006)]. To that literature,
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we add the possibility that those mortality reductions catalyzed the skill-biased
technological innovations that followed. Abramovitz (1993) observes, for exam-
ple,

In the nineteenth century, technological progress was heavily biased in a physical
capital-using direction. ... In the twentieth century, however, the physical capital-
using bias weakened; it may have disappeared altogether. The bias shifted in an
intangible (human and knowledge) capital-using direction and produced the sub-
stantial contribution of education and other intangible capital accumulation to this
century’s productivity growth...

A common explanation for why the technological bias changed is the supply
side effect working through directed technological change. In Galor and Moav’s
(2004) theory, the supply of skilled labor increased during the second phase of
industrialization due to a technological difference in the accumulation of phys-
ical and human capital. Specifically, the return to human capital production is
bounded above at zero investment because of which, in a physical capital scarce
economy, its returns are dominated. In other words, households do not invest in
human capital until industrialization has proceeded far enough to make returns
on the two capitals comparable. For us, a high enough mortality rate is suffi-
cient to discourage human capital investment without appealing to production
function asymmetries. That means a mortality transition can lower the threshold
level of capital accumulation at which human capital investment becomes reward-
ing. Indeed, the physical-to-human capital transition can begin even if returns to
human capital initially remain low or unaffected by technological change.

Human capital risk, stemming from mortality risk, drives this transformation.
In traditional societies, the family often plays a central role in diversifying the
risk associated with physical assets. In effect, intergenerationally linked fami-
lies act like annuity markets that make physical capital a safe asset as shown in
Chakraborty and Das (2019). The family does not have to be large for this to work;
all that is needed is they derive some utility from knowing survivors will inherit
their (tangible) assets. But the family’s role is limited regarding human capital risk
because of its non-transferability. This is in sharp contrast to Minamimura and
Yasui’s (2019) assumption that all human capital risk is fully diversified within
large families and the main effect of mortality is lost labor.15

Several implications for developing countries follow from our work. If newer
technologies in the 20th century have been skill-intensive in keeping with the skill
base of the advanced economies, their adoption in the developing world would
depend on mortality. For instance, an increase in the return to human capital,
from the flow of skill-intensive technologies, in a low-p country would have a
more muted response on skill acquisition compared to a high-p country. High
mortality, in other words, works as a barrier to technology adoption. One testable
implication is that countries with similar exposure to foreign technologies, say,
through shared colonial history or global trade, would differ in their adoption
of skill-biased technologies depending on their adult mortalities. Globally, there
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is substantial variation in adult mortality, as documented by Rajaratnam et al.
(2010), for such a test to be feasible.

The theory also demonstrates how a high mortality society partially insures
itself by disproportionately investing in tangible assets. A mortality shock would
curtail labor supply but leave tangible assets relatively unaffected as they can be
productively used by survivors. It stands to reason then that if output per worker
depends on factor intensity, the economic impact of a mortality shock will not
be large as is commonly feared. The same shock hitting a low mortality soci-
ety, on the other hand, can deplete skilled labor and cause significant economic
damage. Preliminary quantitative evidence in Chakraborty and Pérez-Sebastián
(2018) point to the relevance of this mechanism in regions that were affected by
the HIV/AIDS crisis.

Beyond economic growth, our work bears upon the demographic transition.
Lifetime uncertainty affects fertility choice and the willingness to invest in child
human capital. Parents who expect their offspring to have short life spans and
face the same non-transferability problem of intangible assets as themselves have
little incentive to invest in child quality. Under the usual quantity–quality trade-
off, fertility rates will be high which, conditional on child survival, will further
incentivize tangible investment. The demographic transition, in this interpreta-
tion, becomes tightly linked to the adult health transition through a mechanism
different from those emphasized in the literature such as Kalemli-Ozcan et al.
(2000), Soares (2005), and Aksan and Chakraborty (2014).

6. CONCLUSION

Our study of the effect of mortality on economic development makes two con-
tributions. First, we show that intergenerational wealth transfer can mitigate the
investment loss that can occur from future consumption uncertainty. Second,
lifetime uncertainty introduces human capital risk because of which mortal-
ity intensifies investment in tangible assets that can be passed on to survivors.
These results have implications for long-run growth, convergence, and technology
adoption.

An interesting avenue to extend this work is the long-run effects of mortality
when parental altruism develops to respond to the environment. For example, if
altruism requires parental time investment, developing a sufficiently high altru-
ism comes at the opportunity cost of time devoted to building human capital.
Thus altruism is likely to be high when parents are engaged in occupations that
are less skill intensive, like primary production. At the same time, high mortal-
ity itself makes investment in physical capital more profitable than human capital
following the logic of this paper. In the initial stages of development, these two
mechanisms work in tandem so that high mortality leads to a concentration of
production in the primary sector and a high degree of altruism that sustains that
production pattern for a long time until some disruption, for instance, an exoge-
nous improvement to mortality or the arrival of technologies, breaks the cycle.
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NOTES

1. The premise that human capital investment has an inherently non-diversifiable idiosyncratic
risk component is not new in the literature; see, for example, Levhari and Weiss (1974), Eaton and
Rosen (1980), Krebs (2003), and Gottardi et al. (2015). Much of this literature identifies the non-
diversifiable risk with unemployment risk, whereas here it comes from life-cycle uncertainty and
the non-transferability of human capital. The latter has deeper consequences for household decisions
beyond the production side arbitrage based on expected returns.

2. For example, 2010 life expectancy (at birth) in Swaziland was 53.6 years while that in Iceland
was 81.8 years (http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/).
More relevant to our work is working-age mortality. In 2010, the mortality rate of 15-year-old men
dying before reaching the age 60 was 76.5% in Swaziland, highest in the world, compared to 6.5% in
Iceland, lowest in the world [Rajaratnam et al. (2010)].

3. The inverse relationship between risk aversion and technology adoption is established in the lit-
erature. This literature differentiates between production risks and consumption risks. Indeed attempts
at consumption smoothing by risk averse households can hinder technology adoption as documented
by Dercon and Christiaensen (2011).

4. See Blackburn and Cipriani (1998), Kalemli-Ozcan et al. (2000), Bhattacharya and Qiao (2007),
Zhang and Zhang (2009), Boucekkine and Laffargue (2010), Chakraborty et al. (2016), Yasui (2016),
and Gehringer and Prettner (2019) for various theoretical mechanisms.

5. The difference is amplified if physical capital does not fully depreciate and the offspring puts it
to further use. Note that we assumed full depreciation of h because of its inalienability: it is lost when
the parent dies.

Household models in the Beckerian tradition often assume that parental human capital pos-
itively affects the productivity of children’s human capital investment often through an externality.
Incorporating that kind of intergenerational effect introduces a different wedge: lower p implies a
greater loss of learning opportunities for children that does not apply to inherited tangible assets.
Depending on model specification, that may adversely affect parental investment in own or child’s
human capital.

6. Under linear utility, risk-neutral agents may choose to consume their entire endowment in youth
if p is low enough which will, within one period, drive all generations to zero consumption.

7. The next section shows that investments may be at a corner. But θ is always given by (12) for
appropriate values of μ and ν that are taken into account in Figure 1.

8. Since the objective function is concave and the constraint functions are either linear or concave,
these Kuhn–Tucker conditions are necessary and sufficient.

9. To elaborate, second period consumption is c2t+1 = θ (ρμ + wν)yt. If μ and ν are simultaneously
zero, c2t+1 goes to zero which can never be optimal for CRRA preferences that satisfy the Inada
conditions. Likewise if μ is zero, accidental bequest ρμyt is zero which, again, cannot be optimal.

10. As capital depreciates fully and the capital–labor ratio is time-invariant, there is no adjustment
period to the balanced growth path. If p is steadily increasing over time, however, the growth of
aggregate output has to be balanced against the growing population to arrive at the growth of per
capita output.

11. Results are qualitatively similar for exogenous θ .
12. Below p̂, on the other hand, no productive asset is lost from mortality shocks as offspring inherit

parental physical capital.
13. If raw labor were normalized to a positive number, it is possible, under suitable parametric

restrictions for ν = 0 to be sustained in general equilibrium. This produces results similar to the
additive technology case above.

14. Results for σ > 1 are qualitatively similar to log for both production functions.
15. Even in a family-based framework, the family has to be large enough for the law of large

numbers to apply. Besides, the institution of the family itself undergoes a transformation as fertility
falls and extended family connections get tenuous. These forces are sure to disrupt traditional risk-
diversification avenues.

https://doi.org/10.1017/S1365100519000749 Published online by Cambridge University Press

http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/
https://doi.org/10.1017/S1365100519000749


DEATH AND CAPITAL 1491

REFERENCES

Abramovitz, M. (1993) The search of the sources of growth: Areas of ignorance, old and new. Journal
of Economic History 53, 217–243.

Abramovitz, M. and P. A. David (2000) American macroeconomic growth in the era of knowledge-
based progress: The long-run perspective. In: S. L. Engerman and R. E. Gallman (eds.), The
Cambridge Economic History of the United States. Cambridge, New York: Cambridge University
Press.

Aksan, A.-M. and S. Chakraborty (2014) Mortality versus morbidity in the demographic transition.
European Economic Review 70, 470–492.

Bhattacharya, J. and X. Qiao (2007) Public and private expenditures on health in a growth model.
Journal of Economic Dynamics and Control 31(8), 2519–2535.

Blackburn, K. and G. P. Cipriani (1998) Endogenous fertility, mortality and growth. Journal of
Population Economics 11, 517–534.

Boucekkine, R. and J.-P. Laffargue (2010) On the distributional consequences of epidemics. Journal
of Economic Dynamics and Control 34(2), 231–245.

Chakraborty, S. (2004) Endogenous lifetime and economic growth. Journal of Economic Theory 116,
119–137.

Chakraborty, S. and M. Das (2019) Death and Capital: Investment with and Without Annuities.
University of Oregon, Working Paper.

Chakraborty, S., C. Papageorgiou and F. Pérez-Sebastián (2016) Health cycles and health transitions.
Macroeconomic Dynamics 20(1), 189–213.

Chakraborty, S. and F. Pérez-Sebastián (2018) Age-specific effects of mortality shocks and economic
development, working paper, University of Oregon.

Cutler, D. and G. Miller (2005) The role of public health improvements in health advances: The
twentieth-century United States. Demography 42(1), 1–22.

Cutler, D., A. Deaton and A. Lleras-Muney (2006) The determinants of mortality. Journal of Economic
Perspectives 20, 97–120.

Dercon, S. and L. Christiaensen (2011) Consumption risk, technology adoption and poverty traps:
Evidence from Ethiopia. Journal of Development Economics 96, 159–173.

Dobson, M. (1997) Contours of Death and Disease in Early-Modern England. Cambridge: Cambridge
University Press.

Eaton, J. and H. S. Rosen (1980) Taxation, human capital, and uncertainty. American Economic
Review 70(4), 705–715.

Fischer, S. (1973) A life cycle model of life insurance purchases. International Economic Review
14(1), 132–152.

Fortson, J. G. (2011) Mortality risk and human capital investment: The impact of HIV/AIDS in Sub-
Saharan Africa. Review of Economics and Statistics 93(1), 1–15.

Galor, O. and O. Moav (2004) From physical to human capital accumulation: Inequality and the
process of development. Review of Economic Studies 71, 1001–1026.

Gehringer, A. and K. Prettner (2019) Longevity and technological change. Macroeconomic Dynamics
23(4), 1471–1503.

Gersovitz, M. (1983) Savings and nutrition at low incomes. Journal of Political Economy 91(5),
841–855.

Goldin, C. and L. F. Katz (2001) The legacy of U.S. educational leadership: Notes on distribution and
economic growth in the 20th century. American Economic Review 91(2), 18–23.

Gottardi, P., A. Kajii and T. Nakajima (2015) Optimal taxation and debt with uninsurable risks to
human capital accumulation. American Economic Review 105(11), 3443–3470.

Jacoby, H. G. and E. Skoufias (1997) Risk, financial markets, and human capital in a developing
country. Review of Economic Studies 64(3), 311–335.

Janzen, S. A. and M. R. Carter (2013) The Impact of Microinsurance on Consumption Smoothing and
Asset Protection: Evidence from a Drought in Kenya. Research Paper No. 31, ILO MicroInsurance
Innovation Facility.

https://doi.org/10.1017/S1365100519000749 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100519000749


1492 SHANKHA CHAKRABORTY AND MAUSUMI DAS

Jayachandran, S. and A. Lleras-Muney (2009) Life expectancy and human capital investments:
Evidence from maternal mortality declines. Quarterly Journal of Economics 124(1), 349–397.

Kalemli-Ozcan, S., H. E. Ryder, and D. N. Weil (2000) Mortality decline, human capital investment,
and economic growth. Journal of Development Economics 62(1), 1–23.

Krebs, T. (2003) Human capital risk and economic growth. Quarterly Journal of Economics 118(2),
709–744.

Levhari, D. and Y. Weiss (1974) The effect of risk on the investment in human capital. American
Economic Review 64(6), 950–963.

Lorentzen, P., J. McMillan, and R. Wacziarg (2008) Death and development. Journal of Economic
Growth 13(2), 81–124.

Minamimura, K. and D. Yasui (2019) From physical to human capital accumulation: Effects of
mortality changes. Review of Economic Dynamics 34, 103–120.

McKeown, T., R. G. Record and R. D. Turner (1975) An interpretation of the decline of mortality in
England and Wales during the twentieth century. Population Studies 29(3), 391–422.

Ram, R. and T. Schultz (1979) Life span, health, savings, and productivity. Economic Development
and Cultural Change 27(3), 399–421.

Rajaratnam, J. K., J. R. Marcus, A. Levin-Rector, A. N. Chalupka, H. Wang, L. Dwyer, M. Costa, A.
D. Lopez and C. J. L. Murray (2010) Worldwide mortality in men and women aged 15-59 years
from 1970 to 2010: A systematic analysis. The Lancet 375(9727), 1704–1720.

Razin, A. (1976) Lifetime uncertainty, human capital and physical capital. Economic Inquiry 14(3),
439–448.

Rosenzweig, M. R. and K. I. Wolpin (1993) Credit market constraints, consumption smoothing, and
the accumulation of durable production assets in low-income countries: Investments in bullocks in
India. Journal of Political Economy 101(2), 223–244.

Soares, R. R. (2005) Mortality reductions, educational attainment, and fertility choice. American
Economic Review 95(3), 580–601.

Szreter, S. (1988) The importance of social intervention in Britain’s mortality decline c. 1850-1914:
A reinterpretation of the role of public health. Social History of Medicine 1, 1–37.

Zhang, J. and J. Zhang (2009) Longevity, retirement, and capital accumulation in a recursive model
with an application to mandatory retirement. Macroeconomic Dynamics, 13, 327–348.

Wrigley, E. A. and R. S. Schofield (1981) The Population History of England,1541-1871: A
Reconstruction. Cambridge: Cambridge University Press.

Yasui, D. (2016) Adult longevity and growth takeoff. Macroeconomic Dynamics 20(1), 165–188.

APPENDIX A: LIFE INSURANCE

Continue to assume factor returns (ρ and w) are exogenously given constants and consider
only the case of exogenous θ . This is not restrictive as we have seen endogenizing θ does
not alter investment plans.

The Kuhn–Tucker analysis tells us that when physical and human capitals are the only
assets available, the agent invests in physical capital for sure and may or may not invest
in human capital. This is because physical capital alone allows the transfer of resources in
case of premature parental death. Yet in modern societies with reasonably developed finan-
cial markets, there exist instruments like life insurance whose role is exactly that, to allow
agents to transfer resources to their survivors. This begs the question: to what extent does
our conclusion depend on the absence of life insurance? We proceed to show it does not.

Suppose an agent has the option of investing in life insurance with the objective of trans-
ferring a part of her total earnings (from physical as well as human capital) to her offspring
even in the event of premature death. Life insurance firms operate on a no-profit no-loss
basis and invest the funds in the capital market. The returns from this are transferred to
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those whose parents have died prematurely. Young agents whose parents are alive to make
an end-of-the-period intended bequest get nothing. Since human capital is inalienable, the
only investment vehicle available to life insurance companies is physical capital which
means for every unit invested in life insurance, the policy payout is ρ/(1 − p).

Let st denote a young agent’s purchase of life insurance. The decision problem at time t
is to maximize expected lifetime utility (1) now subject to

c1t + xt + et + st = yt,

c2t+1 = θ (ρxt + wet),

and

yt+1 =
⎧⎨
⎩

(1 − θ ) (ρxt + wet), if zt = a,

ρ

(
xt + st

1 − p

)
, if zt = d,

where accidental bequests now include life insurance payouts. Conjecturing that the deci-
sion rules take the form xt = μyt(zt−1), et = νyt(zt−1), and st = λyt(zt−1), where zt−1 ∈ {a, d},
we get the Kuhn–Tucker conditions

(1−μ−ν−λ)−σ ≥ pβρθ1−σ (ρμ + wν)−σ +pγρ (1 − θ)1−σ (ρμ + wν)−σ (1−μ−ν−λ)−σ

+ (1 − p)γρ

(
ρμ + ρλ

1 − p

)−σ

(1 − μ − ν − λ)−σ , (A32)

(1−μ−ν−λ)−σ ≥ pβwθ1−σ (ρμ + wν)−σ + pγ w (1 − θ)1−σ (ρμ + wν)−σ (1−μ−ν−λ)−σ ,
(A33)

γρ

(
ρμ + ρλ

1 − p

)−σ

≤ 1, (A34)

for xt, et, and st respectively.
Because our aim is to demonstrate robustness of results with respect to life insurance, we

work with log utility that yields explicit expressions for μ, ν, and λ; optimality conditions
for the general CRRA case are analytically intractable. As before, μ and ν cannot simulta-
neously be zero as that will violate Kuhn–Tucker conditions (A32) and (A33). Likewise, μ
and λ cannot simultaneously be zero as that will violate (A32) and (A34). That leaves four
possibilities: (i) μ, λ > 0, ν = 0, (ii) ν, λ > 0, μ = 0, (iii) μ, ν > 0, λ = 0, and (iv) μ > 0,
ν, λ = 0.

CASE (I): μ, λ > 0, ν = 0

Conditions (A32) and (A34) hold with equality. Substituting (A34) in (A32) and σ = 1,
we get

1

(1 − μ − λ)
= pβ

μ
+ pγ

μ

1

(1 − μ − λ)
+ (1 − p)

(1 − μ − λ)

and simplifying, λ = − [
β(1 − γ )(1 − p)

]
/(1 + pβ) < 0, which is not possible. Therefore,

Case (i) cannot be an equilibrium outcome.

CASE (II): ν, λ > 0, μ = 0

In this case, (A33) and (A34) hold with equality. Setting ν = 0, we get λ = γ (1 − p)
and ν = [

pγ + pβ {1 − γ (1 − p)}] /(1 + pβ). The Kuhn–Tucker inequality (A32) will be
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TABLE A1. Equilibrium outcomes under life
insurance

Parameters Decisions

ρ ≥
[

γ+{1−γ (1−p)}β
γ+pβ

]
pw μ > 0; ν, λ = 0

pw < ρ <
[

γ+[1−γ (1−p)]β
γ+pβ

]
pw μ > 0, ν > 0; λ = 0

ρ ≤ pw μ = 0; ν > 0, λ > 0

satisfied if and only if

pw ≥ ρ.

An increase in p lowers λ and raises ν.

CASE (III): μ, ν > 0, λ = 0

In this case (A32) and (A33) hold with equality. Setting λ = 0 and solving, we get back
the interior solution derived earlier in equations (13) and (14) for which inequalities (A33)
and (A34) are satisfied if

pw < ρ <
pγ + [1 − γ (1 − p)]pβ

γ + pβ
w.

CASE (IV): μ > 0, ν, λ = 0

Only (A32) holds with equality. Setting ν, λ = 0 and solving, μ = (γ + pβ)/(1 + pβ) for
which inequality (A33) is satisfied if

ρ ≥ pγ + {1 − γ (1 − p)}pβ

γ + pβ
w.

Inequality (A34) is always satisfied.
These results are collected in Table A1. It is clear that even when life insurance policies

are available, agents do not opt for such policies unless p ≥ ρ/w. Given w and ρ, soci-
eties with high mortality (i.e., low p) are less likely to satisfy this condition. It is only
when mortality improves substantially that we find agents switching from physical capital
investment to a combination of human capital and life insurance. Even so, note that those
life insurance purchases ultimately finance physical capital accumulation: in effect, insur-
ance providers invest in capital on behalf of households. And as without insurance, higher
p shifts investment from physical capital (life insurance) to human.
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