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Abstract

We study super weakly compact operators through a quantitative method. We introduce a semi-norm
σ(T) of an operator T : X → Y , where X, Y are Banach spaces, the so-called measure of super weak
noncompactness, which measures how far T is from the family of super weakly compact operators. We
study the equivalence of the measure σ(T) and the super weak essential norm of T. We prove that Y has
the super weakly compact approximation property if and and only if these two semi-norms are equivalent.
As an application, we construct an example to show that the measures of T and its dual T∗ are not always
equivalent. In addition we give some sequence spaces as examples of Banach spaces having the super
weakly compact approximation property.

2020 Mathematics subject classification: primary 47A30; secondary 46B20.
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1. Introduction

In view of [7] and [10], a Banach space may be given an equivalent uniformly
convex norm if and only if it is super-reflexive. Super weakly compact operators
were introduced by Beauzamy [4] in 1976 in terms of ultrapowers of operators
(see Definition 3.1). A bounded linear operator T : X → Y , where X, Y are Banach
spaces, is super weakly compact if TU is weakly compact for any free ultrafilter U
(see Section 2 for the definition of ultrafilter). Super weakly compact operators are
uniformly convexifiable [4]. Ultrapowers are indispensable in this theory. In this paper
we present a different approach.

A bounded linear operator T : X → Y is weakly compact if T(BX) is relatively
weakly compact, where BX is the closed unit ball of X. Thus, Beauzamy’s definition
is different from the classical notion of compactness of operators. It makes many
techniques, effective in the theory of weakly compact operators, useless for studying
super weakly compact operators. A recent concept of super weakly compact sets seems
to be useful to narrow the gap. A subset A of a Banach space X is relatively super
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weakly compact if and only if AU is relatively weakly compact for any free ultrafilter
U. Equivalently, A is relatively super weakly compact if and only if, for every ε > 0,
there is a super weakly compact set S ⊂ X such that A ⊂ S + εBX . For more details on
super weakly compact sets, see [5, 6, 16, 17, 20].

The notion of a super weakly compact set inspires us to consider a new way to
define super weak compactness for operators (see Definition 2.4). We say that T is
super weakly compact if T(BX) is relatively super weakly compact and prove that our
definition is equivalent to Beauzamy’s. This allows us to study super weakly compact
operators via quantitative methods.

Measures of (weak) noncompactness are widely used in the theory of bounded
linear operators (see, for instance, [2, 12, 21]). Recently, the author [19] introduced
the measure of super weak noncompactness of a bounded subset A of a Banach space
X by

σ(A) := inf{t > 0 | A ⊂ S + tBX , S is super weakly compact}. (1.1)

Here, we introduce and study the induced measure of super weak noncompactness of
bounded linear operators.

Denote by L(X, Y) the Banach space of bounded linear operators between Banach
spaces X and Y . For any T ∈ L(X, Y), the measure of super weak noncompactness is

σ(T) := σ(TBX).

In fact, σ is a semi-norm on L(X, Y) and σ(T) = 0 if and only if T is super weakly
compact. On S(X, Y), the Banach space of super weakly compact operators between X
and Y , the super weak essential norm ‖ · ‖S of T ∈ L(X, Y) is given by

‖T‖S := inf{‖T − S‖ : S ∈ S(X, Y)}.

Obviously, ‖ · ‖S is the quotient norm on L(X, Y)/S(X, Y) and ‖T‖S = 0 if and only if
T ∈ S(X, Y). It is natural to ask whether the semi-norms σ and ‖ · ‖S are equivalent,
that is, whether there are constants a, b > 0 such that for any T ∈ L(X, Y),

aσ(T) ≤ ‖T‖S ≤ bσ(T).

In view of the results in [2, Theorem 2.5] and [3, Theorem 1] concerning compact and
weakly compact cases, we infer that the problem involves some type of approximation
property of the Banach spaces X and Y and we introduce the super weakly compact
approximation property. In Section 3, we prove (Theorem 3.6) that the two semi-norms
‖ · ‖S and σ are equivalent if and only if Y has the super weakly compact approximation
property. This also means that L(X, Y)/S(X, Y) is σ-complete if and only if Y has the
super weakly compact approximation property.

From the viewpoint of [11, page 489], quantitative theorems replace the respective
implications by inequalities. A bounded linear operator T ∈ L(X, Y) is compact if and
only if its dual T∗ is compact. Goldenstein and Markus [8, Theorem 3] quantified
the result by proving that 1

2γ(T) ≤ γ(T∗) ≤ 2γ(T) for any T ∈ L(X, Y), where γ is the
Hausdorff measure of noncompactness. For the weakly compact case, Gantmacher’s
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theorem says that T and T∗ are weakly compact simultaneously. Unlike the compact
case, Astala and Tylli [3, Corollary 5] proved that ω(T) and ω(T∗) are not equivalent,
where ω is the De Blasi measure of weak noncompactness, sometimes called the
Hausdorff measure of weak noncompactness, because ω behaves similarly to the
Hausdorff measure of noncompactness γ, which can be defined as in (1.1) by replacing
a super weakly compact set S by a compact one.

As for the super weakly compact case, it is proved in [9, page 177] that T is super
weakly compact if and only if T∗ is. To study the quantitative relationship of the super
weak compactness of T and T∗, we present in Section 4 some basic properties of
Banach spaces having the super weakly compact approximation property and show
that some sequence spaces have this property. Then we complete the paper by applying
Theorem 3.6 to show that σ(T) and σ(T∗) are not always equivalent.

2. Preliminaries

Let X, Y be real infinite-dimensional Banach spaces and let BX , BY be the closed
unit balls in X and Y , respectively. Assume that Ω is an infinite set.

DEFINITION 2.1. A filter F is a collection of subsets of a set Ω satisfying:

(1) ∅ � F ;
(2) A ∩ B ∈ F if A, B ∈ F ;
(3) B ∈ F if A ⊂ B ⊂ Ω and A ∈ F .

A filter F is said to be free if ∩{F ∈ F } = ∅. A filterU is called an ultrafilter if for any
A ⊂ Ω, either A ∈ U or Ω\A ∈ U.

Suppose that U is a filter on Ω and xω, x ∈ X (ω ∈ Ω). We say that x is a limit of
xω (written x = limU xω) if for any neighbourhood U of x, there is F ∈ U such that
{xω : ω ∈ F} ⊂ U. If {xω : ω ∈ Ω} ⊂ X is relatively compact, then for any ultrafilterU,
there exists x ∈ X such that limU xω = x.

For a nonempty set Ω, let {Xω : ω ∈ Ω} be a collection of Banach spaces. Assume
thatU is an ultrafilter on Ω and consider the Banach space �∞(Ω, Xω) consisting of all
bounded (xω), where xω ∈ Xω (ω ∈ Ω), normed by

‖(xω)‖ = sup
ω
‖xω‖.

Let NU be the set of all (xω) ∈ �∞(Ω, Xω) such that

lim
U
‖xω‖ = 0.

Then NU is a closed subspace of �∞(Ω, Xω). The ultraproduct of (Xω)ω∈Ω with respect
to the ultrafilterU is

(Xω)U := �∞(Ω, Xω)/NU
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with the canonical quotient norm. As any (xω) ∈ (Xω)U is actually an equivalence
class, we will use (xω)U to denote an element in (Xω)U . Then

‖(xω)U‖ = lim
U
‖xω‖.

Notice that (xω)U = (yω)U if and only if limU ‖xω − yω‖ = 0. If Xω = X, we write XU
and call it the ultrapower of X. For a subset A of X, AU denotes the set of all elements
(xω)U ∈ XU such that xω ∈ A.

DEFINITION 2.2. A subset A of X is said to be relatively super weakly compact if AU
is relatively weakly compact in XU for any free ultrafilter U. Further, A is said to be
super weakly compact if it is weakly closed and relatively super weakly compact.

We refer to [5] for the properties of super weakly compact sets. It is easy to see
that a subset of a relatively super weakly compact set is also relatively super weakly
compact. We recall here that if A, B ⊂ X are relatively super weakly compact, then the
sets A ∪ B, A + B, A × B and A\B are relatively super weakly compact. In the recent
paper [19], the author studied the super weak compactness of a bounded set A and its
convex hull co(A).

LEMMA 2.3. Assume that A is a super weakly compact subset of a Banach space X.
Then its closed convex hull co(A) is also super weakly compact.

Recall that super weak compactness is stable under a bounded linear operator. We
use the notion of super weakly compact sets to define super weakly compact operators.

DEFINITION 2.4. A bounded linear operator T : X → Y is said to be super weakly
compact if T(BX) is relatively super weakly compact.

3. Semi-norms related to super weakly compact operators

In this section, we introduce the measure σ of super weak noncompactness of
operators and study the equivalence of σ and the super weak essential norm ‖ · ‖S.
The main result in this section is Theorem 3.6.

We denote by L(X, Y) the collection of all bounded linear operators mapping
X to Y . Further, W(X, Y) ⊂ L(X, Y) and S(X, Y) ⊂ L(X, Y) represent the collections of
all weakly compact operators and super weakly compact operators, respectively. When
X = Y , we abbreviate them to L(X), W(X) and S(X). By an operator, we always mean
a bounded linear operator.

Beauzamy [4] introduced the notion of a super weakly compact operator by means
of ultrapowers of operators, which is different from our Definition 2.4. Assume that
T : X → Y is a bounded linear operator andU is a free ultrafilter on an infinite set Ω.
Define TU : XU → YU as

TU((xω)U) := (Txω)U .
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DEFINITION 3.1 (Beauzamy). An operator T : X → Y is said to be super weakly
compact if TU is weakly compact for any free ultrafilterU.

In fact, T is super weakly compact if and only if TU is weakly compact for any free
ultrafilter on N. We will see that this notion is equivalent to Definition 2.4.

THEOREM 3.2. If T : X → Y is an operator and U is a free ultrafilter on Ω, then
TUBXU = (TBX)U . Thus, T(BX) is super weakly compact if and only if TU is weakly
compact, that is, the two definitions of super weakly compact operators coincide.

PROOF. For any xω ∈ BX with ω ∈ Ω, it is easy to see that (xω)U ∈ BXU . Hence,
(TBX)U ⊂ TUBXU . For any (xω)U ∈ BXU , without loss of generality, assume
that limU ‖(xω)U‖ = α > 0. Then (xω)U = (yω)U , where yω = (α/‖xω‖)xω ∈ BX
with ω ∈ Ω. Thus, (xω)U ∈ (BX)U , which yields (BX)U = BXU and, therefore,
TUBXU = (TBX)U . �

In [19], the author introduced the notion of the measure of super weak noncompact-
ness σ. For any bounded subset A ⊂ X,

σ(A) := inf{t > 0 | A ⊂ S + tBX with a relatively super weakly compact set S}.

Making use of the measure σ, we may study some quantitative properties of super
weakly compact sets. From [19], σ has the following properties.

LEMMA 3.3. If A is a bounded subset of a Banach space X and A
w

denotes the weakly
closed hull of A, then:

(i) σ(A) = 0 if and only if A is relatively super weakly compact;
(ii) σ(A) ≤ σ(B) if A ⊂ B;
(iii) σ(A) = σ(A

w
);

(iv) σ(A) = σ(coA);
(v) σ(A ∪ B) = max{σ(A),σ(B)};
(vi) σ(A + B) ≤ σ(A) + σ(B);
(vii) σ(tA) = |t|σ(A) for t ∈ R;
(viii) ω(A) ≤ σ(A) ≤ γ(A),

where ω is the De Blasi measure of weak noncompactness and γ is the Hausdorff
measure of noncompactness.

LEMMA 3.4. Let BX denote the unit ball of X. If A is a bounded subset of a Banach
space X, then σ(A + tBX) = σ(A) + tσ(BX) for t ≥ 0.

We introduce the measure of super weak noncompactness for operators induced
by σ. For any T ∈ L(X, Y), let

σ(T) := σ(TBX).
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It is clear that σ(T) = 0 if and only if T ∈ S(X, Y). For any T , G ∈ L(X, Y) and t ∈ R,

σ(tT) = σ(tT(BX)) = |t|σ(T), (3.1)
σ(T + G) ≤ σ(T(BX)) + G(BX)) ≤ σ(T(BX)) + σ(G(BX)) = σ(T) + σ(G). (3.2)

Moreover, for any T ∈ L(X, Y) and A ⊂ X,

σ(T(A)) ≤ σ(T)σ(A).

Indeed, assume that σ(T) < α and σ(A) < β. There exist super weakly compact sets S1
and S2 such that

T(B(X)) ⊂ S1 + αB(Y), A ⊂ S2 + βB(X).

We get the result by noticing that T(A) ⊂ T(S2) + βS1 + αβB(Y) and T(S2) + βS1 is
super weakly compact. So, it is easy to see that for any G ∈ L(X, Y), T ∈ L(Y , Z),

σ(TG) ≤ σ(T)σ(G). (3.3)

Formulas (3.1) and (3.2) imply that the function σ(·) is a semi-norm on L(X, Y).
In order to proceed, let us observe that S(X, Y) is a closed ideal in L(X, Y).

Indeed, given a sequence Tn ∈ S(X, Y) converging to T ∈ L(X, Y) in the operator
norm topology, for any ε > 0, there is n ∈ N such that ‖T − Tn‖ < ε. Therefore,
T(BX) ⊂ Tn(BX) + εBY . Since Tn(BX) is relatively super weakly compact, so is T(BX)
by (1.1), that is, T ∈ S(X, Y). For any G ∈ L(X, Y), it is easy to observe from (3.3) that
TG, GT ∈ S(X, Y).

The super weak essential norm ‖ · ‖S of T ∈ L(X, Y) is the semi-norm induced from
the quotient space L(X, Y)/S(X, Y), that is,

‖T‖S := inf{‖T − S‖ : S ∈ S(X, Y)}. (3.4)

Observe that if ‖T‖S < α, there is S ∈ S(X, Y) such that ‖T − S‖ < α. Therefore,
T(BX) ⊂ S(BX) + αBY , which actually means that σ(T) ≤ ‖T‖S.

It is natural to ask whether these two semi-norms are equivalent. To solve this
problem, we introduce the super weakly compact approximation property.

DEFINITION 3.5. A Banach space X is said to have the super weakly compact
approximation property (SWAP for short) if there is a real number λ > 0 such that for
any super weakly compact set A ⊂ X and any ε > 0, there is a super weakly compact
operator R : X → X with

sup
x∈A
‖x − Rx‖ ≤ ε and ‖R‖ ≤ λ.

THEOREM 3.6. A Banach space Y has the super weakly compact approximation
property if and only if the semi-norms σ and ‖ · ‖S are equivalent in L(X, Y) for any
Banach space X.

PROOF. Assume that Y has the super weakly compact approximation property and
take an arbitrary α > 0 and T ∈ L(X, Y) with σ(T) < α. Then there is a super weakly
compact set S ⊂ Y such that T(BX) ⊂ S + αBY . Using the assumption, there is a
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positive λ such that for any ε > 0, there is a super weakly compact operator R : Y → Y
satisfying supx∈S‖Rx − x‖ < ε and ‖R‖ ≤ λ. Let J := RT . Clearly, the operator J is super
weakly compact. For any x ∈ BX , there is s ∈ S such that ‖Tx − s‖ < α; hence,

‖Tx − Jx‖ = ‖Tx − s + s − Rs + Rs − Jx‖ ≤ ‖(R + I)(s − Tx)‖ + ‖s − Rs‖ ≤ (λ + 1)α + ε.

Consequently, ‖T‖S ≤ (λ + 1)α, that is, ‖T‖S ≤ (λ + 1)σ(T).
Conversely, assume that Y does not have the super weakly compact approximation

property. Then, for any n ∈ N, there are a super weakly compact set Sn ⊂ Y and εn > 0
such that R is not super weakly compact whenever R ∈ L(Y) satisfies

sup
x∈Sn

‖x − Rx‖ ≤ εn and ‖R‖ ≤ n + 1.

Without loss of generality, assume that εn → 0 as n→ ∞ and Sn is closed absolutely
convex (recall that, in view of Lemma 2.3, the closed absolutely convex hull of a super
weakly compact set is super weakly compact). Set An := (εn/n)BY + Sn. Then An is
absorbing and the Minkowski functional

|x|n = inf{t > 0 | x ∈ tAn}

determined by An defines an equivalent norm on Y , that is, there is an > 0 such that
εn

n
|x|n ≤ ‖x‖ ≤ an|x|n.

Let Yn = (Y , | · |n) and let Tn be the identity from Yn onto Y . It is immediate to see that
σ(Tn) = εn/n by Lemma 3.4 and Tn(BYn ) = An.

Next we show that ‖Tn‖S ≥ εn. Suppose that there is R ∈ S(Yn, Y) such that
‖Tn − R‖ < εn and still denote by R the induced operator from Y to Y . Since Sn ⊂ BYn

and (εn/n)BY ⊂ BYn ,

‖x − Rx‖ < εn,∀x ∈ Sn and ‖x − Rx‖ ≤ n,∀x ∈ BY .

Thus, R is not super weakly compact by the assumption.
Let X = c0(Yn) and Pn (n ∈ N) be the canonical projection from X onto Yn, that is,

Pn((yi)) = yn for any n. Let Jn = TnPn ∈ L(X, Y). Then

σ(Jn) = σ(Jn(BX)) = σ(An) =
εn

n
and

‖Jn‖S = ‖Tn‖S ≥ εn

since JnIn = Tn, where In : Yn → X is the natural inclusion from Yn into X. This
completes the proof. �

4. Quantitative relationship of an operator and its dual

In order to give an application of Theorem 3.6, in this section we study some basic
properties of Banach spaces having the super weakly compact approximation property.
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We focus on some classical Banach sequence spaces. Then, by applying Theorem 3.6,
we construct an example to show that σ(T) is not equivalent to σ(T∗).

Astala and Tylli [3] introduced the weakly compact approximation property (WAP
for short) and proved that �1 has WAP while c0, C[0, 1] and L1(0, 1) fail to have WAP.
Odell and Tylli [15] and Saksman and Tylli [18] considered more examples involving
WAP and showed that, for example, �1(�p) and �p(�1) (1 < p < ∞) do have WAP.
They also obtained results about the quasi-reflexive James’ space J and its dual J∗,
the James’ tree space JT , the nuclear operator space N(�p, �q) and others.

It is trivial that super reflexive spaces have SWAP, so �p (1 < p < ∞) has SWAP
by its uniform convexity. Since �1 is a Schur space, the super weak compactness is
equivalent to weak compactness according to Lemma 3.3. So, SWAP is equivalent to
WAP in �1 and, hence, �1 has SWAP.

THEOREM 4.1. �p (1 ≤ p < ∞) has the super weakly compact approximation property.

We next prove that c0 does not have SWAP. Recall that an operator T ∈ L(X, Y) is
completely continuous if the sequence (Txn) is norm convergent whenever a sequence
(xn) is weakly convergent. A Banach space X is called an L∞ space if there is λ ≥ 1
such that any finite-dimensional subspace E of X is contained in a finite-dimensional
subspace F such that

dM(F, �n∞) ≤ λ,

where dM(F, �n∞) is the Banach–Mazur distance of F and �n∞. Note that c0 and �∞ are
L∞ spaces. It is known that every weakly compact operator in W(X) is completely
continuous whenever X is an L∞ space [14].

THEOREM 4.2. c0 and �∞ do not have the super weakly compact approximation
property.

PROOF. Let A := {ei}, where {ei} is the standard unit vector basis of c0. By the result
in [5, Example 2.2], A is super weakly compact. Assume to the contrary that c0 has
SWAP. Then, for ε = 1/3, there is a super weakly compact operator R : c0 → c0 such
that

sup
x∈A
‖x − Rx‖ ≤ ε.

Since ‖ei − ej‖ = 1 whenever i � j,

‖Rei − Rej‖ ≥ 1/3. (4.1)

On the other hand, R(A) is relatively compact, because c0 is an L∞ space and R is
a weakly compact operator by Lemma 3.3. The relative compactness of R(A) conflicts
with (4.1). So, by the assumption, c0 does not have SWAP.

Similarly, A = {ei} ⊂ �∞ is super weakly compact since it is the image of A ⊂ c0
under the canonical inclusion operator. Following the above procedure, we conclude
that �∞ does not have SWAP. �
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THEOREM 4.3. If X has the super weakly compact approximation property, then so
does any complemented subspace Y of X.

PROOF. Suppose that X has SWAP and let A ⊂ Y be a super weakly compact set. It is
clear that A as a subset of X is super weakly compact, too. By the assumption, there
is λ > 0 such that for any ε > 0, there is a super weakly compact operator R : X → X
satisfying

sup
x∈A
‖x − Rx‖ ≤ ε and ‖R‖ ≤ λ.

Since Y is complemented in X, there is a bounded projection P : X → Y . Clearly, the
operator PR : Y → Y is super weakly compact and

‖PR‖ ≤ λ‖P‖.

Furthermore, for any x ∈ A,

‖x − PRx‖ = ‖Px − PRx‖ ≤ ‖P‖‖x − Rx‖ ≤ ‖P‖ε.

This completes the proof. �

Assume that (Xi, ‖ · ‖i), with i ∈ N, is a sequence of Banach spaces and that
1 ≤ p < ∞. Consider the Banach space �p(Xi) of all sequences (xi) with xi ∈ Xi such
that
∑∞

i=1 ‖xi‖p < ∞. For any x = (xi) ∈ �p(Xi), the norm of x is

‖x‖ = ‖(xi)‖ =
( ∞∑

i=1

‖xi‖p
)1/p

.

We write �p(Y) for short when Xi = Y for each i ∈ N. Let Pi, i ∈ N, be the canonical
projection from �p(Xi) onto Xi. Clearly, Pi(BX) = BXi , where X := �p(Xi). If A is a subset
of �p(Xi), set Ai = Pi(A). We wish to investigate under what conditions the space �p(Xi)
has SWAP.

For any x ∈ �1(Xi), let dn(x) := dn(x1, x2, . . . ) = (0, 0, . . . , 0, xn, xn+1, . . . ). For A ⊂
�1(Xi), set dn(A) := {dn(x) : x ∈ A} and ‖dn(A)‖ := {‖dn(x)‖ : x ∈ A}.

LEMMA 4.4 [20, Corollary 7]. A subset A of �1(Xi) is relatively super weakly compact
if and only if:

(a) A is bounded;
(b) Ai is relatively super weakly compact for all i ∈ N;
(c) limn ‖dn(A)‖ = 0.

THEOREM 4.5. �1(Xi) has the super weakly compact approximation property if and
only if every Xi has the super weakly compact approximation property with a common
constant for all i ∈ N.

PROOF. Let X = �1(Xi) and suppose that X has SWAP with a constant λ. Since Xi is a
1-complemented subspace in X, by the proof of Theorem 4.3, each Xi has SWAP with
the constant λ.
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On the other hand, suppose that every Xi has SWAP with a uniform constant λ.
Let ε > 0. For any super weakly compact set A ⊂ X = �1(Xi) and i ∈ N, Ai is relatively
super weakly compact. By the assumption, there is a super weakly compact operator
Ri : Xi → Xi such that

sup
x∈Ai

‖x − Rix‖ ≤
ε

2i/p and ‖Ri‖ ≤ λ.

Since A is super weakly compact, by Lemma 4.4, there is n ∈ N such that

sup
x∈A

∞∑
i=n+1

‖xi‖ ≤ ε.

For any x ∈ X, let Rx = (R1x1, . . . , Rnxn, 0, 0, . . . ). Since ‖Ri‖ ≤ λ, we have R ∈ L(X)
and ‖R‖ ≤ λ. By Lemma 4.4, the set R(BX) is relatively super weakly compact, because
Ri(BXi ) (1 ≤ i ≤ n) is relatively super weakly compact. Hence, R is a super weakly
compact operator. For any x ∈ A, it is easy to see that

‖x − Rx‖ =
n∑

i=1

‖xi − Rixi‖ + ε ≤ 2ε.

Consequently, X has SWAP. �

COROLLARY 4.6. �1(�p) (1 < p < ∞) has the super weakly compact approximation
property.

REMARK 4.7. Odell and Tylli [15] proved that �p(�1) (1 < p < ∞) enjoys the weakly
compact approximation property. But we do not know whether or not such a conclusion
is true for the super weakly compact case, that is, whether the Banach space
�p(�1) (1 < p < ∞) has SWAP.

It is known that an operator T is super weakly compact if and only if its dual T∗ is
super weakly compact [9, page 177]. It is natural to study the quantitative relationship
of super weak compactness between an operator T and its dual T∗, that is, whether
σ(T) and σ(T∗) are equivalent.

Let A be an ideal of operators. Astala [1] introduced the measure γA induced by
the idealA. For any bounded D ⊂ Y ,

γA(D) := inf{t > 0 | D ⊂ T(BZ) + tBY , T ∈ A(Z, Y)}, (4.2)

where the infimum is taken over all Banach spaces Z. For any T ∈ L(X, Y), set γA(T) :=
γA(TBX) and ‖T‖A = inf{‖T − J‖ | J ∈ A}.

Since the collection of super weakly compact operators S(X, Y) is an ideal of
operators, we may take A = S(X, Y). For any bounded D ⊂ Y , it is easy to see that
σ(D) ≤ γA(D) since the set T(BZ) in (4.2) is relatively super weakly compact. On
the other hand, for any super weakly compact convex set K ⊂ Y , there are a Banach
space X and a super weakly compact operator T : X → Y such that K ⊂ T(BX) (see
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[16, Theorem 4.5]). Hence, σ(D) ≥ γA(D). Consequently, σ(T) = γA(T) when A =
S(X, Y).

An ideal A of operators is called symmetric if T ∈ A(X, Y) implies that T∗ ∈
A(Y∗, X∗). It is clear that S(X, Y) is a symmetric ideal of operators. The following
lemmas from Astala [1] are crucial in what follows.

LEMMA 4.8 (Astala). If A is a symmetric ideal of operators, then γA(T∗∗) ≤ γA(T)
for any T ∈ L(X, Y).

A Banach space Y is said to have the extension property if for any closed subspace
M of an arbitrary Banach space X and any T ∈ L(M, Y), there exists an operator
S ∈ L(X, Y) such that T = SJM and ‖T‖ = ‖S‖, where JM : M → X is the canonical
inclusion. It is well known that the Banach space �∞ has the extension property. For
more information about the extension property, we refer to [13, Section 2.f].

LEMMA 4.9 (Astala). Suppose that A is a symmetric ideal of operators and T ∈
(X, Y). If Y has the extension property, then γA(T∗) = ‖T∗‖ = ‖T‖A.

Let us recall that Theorem 4.2 states that c0 fails to have the super weakly compact
approximation property. We use Theorem 3.6 to construct an example showing that
γ(T) and γ(T∗) are not equivalent.

THEOREM 4.10. There are a separable space X and a sequence Tn ∈ L(X, c0) such
that

σ(T∗n ) = 1 and σ(T∗∗n ) ≤ σ(Tn)→ 0

for each n ∈ N.

PROOF. Note that c0 does not have the super weakly compact approximation property.
By the proof of Theorem 3.6, there is a separable Banach space X = c0(Xi) such that
each Xi is isomorphic to c0. Replace Tn : X → c0 in the proof of Theorem 3.6 by
Tn/‖Tn‖S and still denote it by Tn. Obviously, Tn ∈ L(X, c0). Moreover, by Theorem
3.6, it is easy to see that ‖Tn‖S = 1 and σ(Tn) ≤ 1/n. Lemma 4.8 implies that σ(T∗∗n ) ≤
σ(Tn) ≤ 1/n. Let J : c0 → �∞ be the natural embedding.

Claim 1: ‖Tn‖S ≤ 2‖JTn‖S. For any ε > 0, by (3.4), there is a super weakly compact
operator S ∈ S(X, �∞) such that ‖JTn − S‖ ≤ ‖JTn‖S + ε. Since S(BX) is relatively super
weakly compact (and, hence, weakly compact) and a weakly compact set in �∞ is
separable, the space Y := span{Jc0, S(X)} is separable. By [13, Theorem 2.f], c0 is
separable injective and there is a projection P : X → c0 with ‖P‖ ≤ 2. Thus,

‖Tn‖S ≤ ‖Tn − PS‖ = ‖P(JTn − S)‖ ≤ 2‖JTn‖S + 2ε.

The claim follows immediately since ε is arbitrary.

Claim 2: σ(T∗n ) = ‖JTn‖S. Since J∗ : �∗∞ → �1 is surjective and J∗(B�∗∞) ⊂ B�1 , we have
σ(T∗n ) = σ(T∗nJ∗). Moreover, because �∞ has the extension property, by Lemma 4.9, it
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is clear that

σ(T∗nJ∗) = ‖(JTn)∗‖S = ‖JTn‖S.

We complete the proof by replacing Tn by Tn/σ(T∗n ). �
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