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Introduction

Recall that for a vector bundle E over a smooth algebraic variety X , one has a natural

class at(E ) ∈ Ext1(E,�1
X ⊗E ), called the Atiyah class of E , such that the Chern character

of E is obtained as tr(exp(at(E ))) when X is a projective smooth variety over C (see [1]).

This construction also generalises to bounded complexes of vector bundles (see [6]).

Furthermore, it shows up in the formula for the categorical Chern character and, more

generally, the boundary–bulk map (see [3], [15]).
The goal of this article is to generalise the construction of the Atiyah class to the case

of (global) matrix factorisations and to give a formula for the categorical boundary–bulk

map for matrix factorisations.
Thus, we start with a smooth scheme X over C equipped with a function w . We refer

to [5], [8], [14] for the background on categories of matrix factorisations.

We want to construct an analogue of Atiyah class for a matrix factorisation (E,δ) of
w . In the case when X is affine, the construction of such an Atiyah class is known (see

[4], [18]).

It turns out that in the case when w �= 0 one can still construct a certain class ât(E )

(see below) that reduces to 1+at(E ) when w = 0.
Below we denote by Hom∗

MF(w)(·,·) the cohomology of the (Z/2-graded) morphisms

spaces in the category of matrix factorisations of w . When considering the Hochschild
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homology/cohomology of MF(w), we work over k [u,u−1], where deg(u) = 2 (using the

Z/2-grading on the category MF(w)).

Main construction (see Section 1.1). For every matrix factorisation E of w we

construct a natural class

ât(E ) ∈ Hom0
MF(w)(E,[OX

dw� �1
X ]⊗E ),

such that the image of ât(E ) under the natural projection Hom0
MF(w)(E,[OX

dw� �1
X ]⊗

E ) → Hom0
MF(w)(E,E ) is the identity element idE . The formation of ât(E ) is functorial

and compatible with pull-backs.

Next, we define the class

exp(at(E )) ∈ Hom0
MF(w)(E,(�•

X , ∧dw)⊗E )

as the composition of the iterated map

ât(E )(n) : E → [OX
dw� �1

X ]⊗n ⊗E → Sn [OX
dw� �1

X ]⊗E,

where n = dimX , with the isomorphism

Sn [OX
dw� �1

X ]⊗E ∼� (�•
X , ∧dw)⊗E

induced by the isomorphim

Sn [OX
dw� �1

X ] = [OX
ndw� �1 (n−1)dw� → . . .] → (�•

X , ∧dw) (0.1)

given by α0 	→ α0, αi 	→ αi
n(n−1)...(n−i+1)

, where αi ∈ �i
X .

The above definition may look a bit strange; however, it is easily explained by the fact

that when one tries to recover exp(x ) from (1+ x )n in the ring Q[x ]/(xn+1), one has to
rescale x i by the factor 1

n(n−1)...(n−i+1)
.

Below we view exp(at(E )) as an element of H0 of the Z/2-graded complex Hom(E,E )⊗
(�•

X , ∧dw) and denote by

str : Hom(E,E )⊗ (�•
X , ∧dw) → (�•

X , ∧dw)

the supertrace morphism. Here is our main result.

Theorem A. Assume now that w = 0 on the critical locus of w (set-theoretically). Under
the natural identification

HH∗(MF(w)) 
 H ∗(X ,(�•
X , ∧dw)), (0.2)

the categorical boundary–bulk map

Hom∗
MF(w)(E,E ) → HH∗(MF(w))

for a matrix factorisation E of w is equal to the map induced on hypercohomology by the
map

Hom(E,E ) → (�•
X , ∧dw) : x 	→ str(exp(at(E )) · x )

in the Z/2-graded derived category of X .
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Note that we give two constructions of isomorphism (0.2): an abstract one coming from

analogies with Lie theory described below and the one given by an explicit chain map

(this construction is due to [8]).
In the case of matrix factorisations over a regular local ring there is a simpler formula

for the categorical Chern character obtained in [12]. It can be derived from the above

theorem using a connection on the underlying vector bundle of E (see Remark 1.2). In
the case of global matrix factorisations, a formula similar to the one in Theorem A was

obtained by Platt [10]. However, his definition of exp(at(E )) is much more complicated

(based on some explicit resolutions of the relevant objects in the derived category).
Note that for w = 0 – that is, in the classical case of vector bundles – we get a new proof

of the compatibility of the categorical Chern character with the classical one, originally

proved by Caldararu [3]. Our proof is more conceptual than that in [3]: We check the key

techical statement (see Lemma 3.1 below) without using Čech representatives.1

The proof of Theorem A uses analogues of some constructions of Markarian [9] for

matrix factorisations. Recall that he used the Atiyah classes to equip the shifted tangent

bundle TX [−1] with a structure of a Lie algebra in the derived category of X (this
construction goes back to Kapranov [7]) and showed that in an appropriate sense the

universal enveloping of this algebra can be identified with the sheafified Hochschild

cohomology HH ∗(X ). Furthermore, the Hochschild-Kostant-Rosenberg isomorphism can
be viewed as an analogue of the Poincaré-Birkhoff-Witt theorem in this case.

It turns out that there is a similar Lie context for the sheafified Hochschild cohomology

of the category of matrix factorisations, HH ∗ MF(X ,w). The general principle is that the

picture for w �= 0 should be a deformation of the picture for w = 0. In Lie theory there
is a well-known way of deforming the universal enveloping algebras U (g) of a Lie algebra

starting from a central extension of Lie algebras

0 → k ·1 → g̃ → g → 0. (0.3)

Namely, one can view 1 ∈ g̃ as a central element of U (̃g) and consider the quotient
U (̃g)/(1−1), which is a deformation of U (̃g)/(1) 
 U (g).

Given a function w , we will equip the Z/2-graded complex

Lw := [TX
idw� OX ]

(where OX is placed in degree 0) with a structure of a Lie algebra, so that the exact
triangle

OX → [TX
idw� OX ] → TX [1]

can be viewed as a central extension of Lie algebras in D(X ), the Z/2-graded derived
category of X (see Subsection 2.3). Note that such a construction would not work in the

usual Z-graded derived category because it is TX [−1] that has the Lie algebra structure,

not TX [1].
Extending the picture of Markarian [9], we will show that HH ∗ MF(X ,w) can be viewed

as the corresponding quotient of the universal enveloping algebra, U (Lw )/(1−1).

1We were not able to understand Markarian’s proof of a similar statement [9, Proposition 5].
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In Section 4 we consider a version of the above picture for a Z-graded category of matrix
factorisations defined in the presence of a Gm -action. More precisely, we assume that X is

equipped with a Gm -action and we have a function W on X satisfying W (λx ) = λW (x ).

In this context one has a natural Z-graded dg-category MFGm (X ,W ) of Gm -equivariant
matrix factorisations of W . We prove that the analogue of Theorem A holds in this

context. In the particular case when W = 0 and the action of Gm is trivial, the category

MFGm (X ,0) is equivalent to the usual Z-graded derived category of X , so in this case we

recover the classical picture for the latter category as described in [3], [15].
Note that a more natural context for Z-graded categories of matrix factorisations

involves equivariant matrix factorisations with respect to an algebraic group � equipped

with a surjective homomorphism χ : � → Gm such that ker(χ) is finite. However, the
corresponding picture already has a stacky flavour. We intend to consider it elsewhere,

along with a stacky version of Theorem A.

Conventions and notation. We work with matrix factorisations of a regular function w on
a smooth scheme X of dimension n over a field of characteristic 0. By MF(w) = MF(X ,w)

we denote the corresponding derived category of matrix factorisations. Whenever we need

to use the Hochschild-Kostant-Rosenberg (HKR) isomorphism for sheafified Hochschild

homology of the category of matrix factorisations of w , we assume that 0 is the only
critical value of w . We denote by D(X ) the Z/2-graded derived category of X and by

D(X )Z the usual Z-graded derived category.

1. Definition of the Atiyah class

1.1. Global definition

Recall that the Atiyah class for vector bundles (or bounded complexes thereof) is defined
using the canonical exact sequence

0 → �∗�1
X → O�(2) → O� → 0. (1.1)

Here O�(2) := OX2/I 2
�, where I� ⊂ OX2 is the ideal sheaf of the diagonal � ⊂ X 2. For a

vector bundle E (or any object in D(X )), we tensor the above sequence with p∗
2E and

apply p1∗ to get the extension sequence

0 → �1
X ⊗E → J (E ) → E → 0

representing at(E ).
Equivalently, we can view [�∗�1

X → O�(2) ] (in degrees −1 and 0) as a complex quasi-

isomorphic to O�. Then the natural projection to (�1
X )�[1] := �∗�1

X [1] gives a morphism

in D(X 2),

atuniv : O� → (�1
X )�[1], (1.2)

called the universal Atiyah class . From this morphism of kernels we get a morphism of

functors, whose value on E is at(E ).
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Lemma 1.1. The universal Atiyah class, atuniv, is equal to the composition

O�
at(O�)� �1

X2 ⊗O�[1] 
 �∗�∗�1
X2 [1] → �∗�1

X [1],

where the last arrow is induced by the canonical map �∗�1
X2 → �1

X . Equivalently, if we

use the decomposition �1
X2 = p∗

1�
1
X ⊕p∗

2�
1
X , then atuniv is equal to the component

at1(O�) ∈ Hom(O�,p∗
1�

1
X ⊗O�[1]) 
 Hom(O�,�∗�1

X [1])

of at(O�).

Proof. (See [16, Section 5.5].) The class at(O�) corresponds to the canonical extension

0 → �1
X2 ⊗O� → J (O�) → O� → 0,

where J (?) denotes the sheaf of first-order jets. By definition, J (O�) is obtained as the

push-forward of OX4/(J�13 + J�24)
2 ⊗O�34 under p12 : X 4 → X 2, where �ij ⊂ X 4 are

partial diagonals. Using the identification of �34 with X 3 we get

J (O�) 
 p12∗OX3/(J�13 +J�23)
2.

Hence, we have a natural map

J (O�) 
 p12∗OX3/(J�13 +J�23)
2 → p12∗OX3/(J 2

�13
+J�23) 
 OX2/J 2

�.

One can check that it is compatible with the projection �1
X2 ⊗O� → p∗

1�
1
X ⊗O�. Thus,

we get a morphism of exact sequences

0 � �1
X2 ⊗O�

� J (O�) � O�
� 0

0 � p∗
1�

1
X ⊗O�

�
� O�(2)

�
� O�

�
� 0

and our assertion follows.

We observe that the sequence (1.1) has the following analogue in the category of

(coherent) matrix factorisations MF(w̃), where w̃ = w ⊗1−1⊗w ∈ H 0(X 2,O). Note that
we have a natural functor

�∗ : MF(X ,0) → MF(X 2,w̃),

because w̃ |� = 0. We denote by Ow̃
� ∈ MF(X 2,w̃) the image of OX under this functor.

Let us define the matrix factorisaton O(2)
�,w̃ of w̃ as follows:

O(2)
�,w̃ = OX2/I 2

� ⊕O�[1]

δ0 = −w̃ modI 2
� = −dw : O� → I�/I 2

� ⊂ O�(2), δ1 = −1 : O�(2) → O�.

Then we have an exact sequence of matrix factorisations

0 → �∗[OX
dw� �1

X ][1] → O(2)
�,w̃ → Ow̃

� → 0 (1.3)
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that can be viewed as a morphism in the derived category of MF(X 2,w̃),

ât
univ

: Ow̃
� → �∗[OX

dw� �1
X ].

Note that by the definition of the shift functor on complexes, the complex

�∗[OX
dw� �1

X ][1] has OX in odd degree, �1
X in even degree and the differential

is given by −dw . This is compatible with the sign in the definition of the differential on

O(2)
�,w̃ .
Now given a matrix factorisation E ∈ MF(X ,w), we can tensor the exact sequence (1.3)

with p∗
2E and then apply Rp1∗. This will produce a class

ât(E ) ∈ Hom0(E,[OX
dw� �1

X ]⊗E ).

Equivalently, we can obtain ât(E ) from the morphism of kernels

Ow̃
� → �∗[OX

dw� �1
X ]

in MF(w̃) corresponding to the sequence (1.3). By definition, this morphism in MF(w̃)

uses the quasi-isomorphism of the cone of the first arrow in (1.3) with Ow̃
� . It will be

convenient to use a slightly more compact resolution of Ow̃
� , which should be viewed

as a curved analogue of the resolution [(�1
X )� → O�(2) ] of O�. Namely, let us equip

O�(2) ⊕ (�1
X )�[1] with the structure of a matrix factorisation of w̃ using the maps

δ0 : (�1
X )� 
 I�/I 2

� ↪→ O�(2), δ1 : O�(2)
1� O�

dw� (�1
X )�.

Lemma 1.2.

(i) The natural map in MF(w̃),

q : [O�(2) ⊕�∗�1
X [1],δ] → Ow̃

�,

induced by the projection O�(2) → O�, is an isomorphism in the derived category

and ât
univ

is equal to the composition of q−1 with the natural morphism in MF(w̃),

[O�(2) ⊕�∗�1
X [1],δ] → �∗[OX

dw� �1
X ], (1.4)

which is identity on �∗�1
X [1] and the natural projection to O� on O�(2) .

(ii) The composition

Ow̃
� → �∗[OX

dw� �1
X ] → �∗OX = Ow̃

�

is the identity map. Hence, the image of ât(E ) under the natural projection

Hom0(E,E ⊗ [OX
dw� �1

X ]) → Hom0(E,E ) is the identity element idE .

(iii) The universal Atiyah class ât
univ

is obtained as the composition of the Atiyah class

ât(Ow̃
�) : Ow̃

� → [OX2
dw̃� �1

X2 ]⊗Ow̃
�

with the projection

[OX2
dw̃� �1

X2 ]⊗Ow̃
� → [OX2

d(w⊗1)� p∗
1�

1
X ]⊗Ow̃

� 
 �∗[OX
dw� �1

X ].
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Proof.

(i) Let f : �∗[OX
dw� �1

X ][1] → O(2)
�,w̃ be the map from the sequence (1.3) (f is the

identity on O� and is the natural embedding into O�(2) on �∗�1
X ). We have a

natural quasi-isomorphism

Cone(f ) → [O�(2) ⊕ (�1
X )�[1],δ],

which is identical on �∗�1
X [1] and O�(2) , zero on O�[1] and equal to −dw : O� →

�∗�1
X on O�. One can check that its composition with (1.4) is homotopic to the

canonical projection Cone(f ) → �∗[OX
dw� �1

X ] (one uses id : O�[1] → O�[1] as
a homotopy). This implies our assertion.

(ii) This follows easily from (i): The composition of (1.4) with the natural projection

�∗[OX
dw� �1

X ] → �∗OX = Ow̃
� is exactly the map q .

(iii) This is proved similarly to Lemma 1.1.

1.2. Čech representative

Let (Ui) be an affine open covering of X . Over every Ui we can choose an algebraic

connection

∇i : E |Ui → �Ui ⊗EUi ,

which is even; that is, compatible with the Z/2-grading on E |Ui . Over each intersection

Uij = Ui ∩Uj we have a 1-form with values in End0(E ), αij ∈ �1 ⊗End0(E )|Uij , such that

∇j −∇i = αij .

Assume for simplicity that X is separated, so all intersections Ui1...ik are still affine. Then
for any matrix factorisations of w , E and F , we can calculate the space Hom0(E,F ) as

the zeroth cohomology of the Z/2-graded complex

(C •(Hom(E,F )),[δ,?]+dC ),

where C •(?) denotes the Čech complex and dC is the Čech differential. More precisely,

the differential on α ∈ C p(Hom(E,F )) is (−1)p [δ,α]+dC (α).

Proposition 1.3. For a matrix factorisation E ∈ MF(X ,w), the Atiyah class ât(E ) is
represented by the cocycle

(idE , − [∇i,δ],αij ) ∈ C •([O dw� �1
X ]⊗End(E )).

Proof. We use the following general fact: If

0 → E1
f� E2

g� E3 → 0 (1.5)

is an exact sequence of matrix factorisations, then the corresponding class in Hom1(E3,E1)

is represented by the following Čech cocycle. First, we find local retractions ri : E2 → E1
of the embedding E1 → E2, which are morphisms of Z/2-graded O-modules over Ui . Then

we consider αij : E3 → E1 over Uij such that αij g = rj |Uij −ri |Uij . On the other hand, we
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consider βi : E3 → E1[1] over Ui such that βig = [δ,ri ] = δE1ri −riδE2 . Now we claim that

the Čech cocycle c = (βi,αij ) represents the class corresponding to our extension. Indeed,
by definition, this class corresponds to the obvious projection Cone(f ) → E1[1] under the
isomorphism

Hom1(E3,E1)
∼� Hom1(Cone(f ),E1)

induced by g . Now the image of c under the morphism

C 1(Hom(E3,E1)) → C 1(Hom(Cone(f ),E1))

is given by the cocycle

(βig,αij g) = ([δ,ri ],rj − ri).

Subtracting the coboundary of the element (ri) ∈ C 0(Hom(Cone(f ),E1)), we get the

cocycle given by (ri f ) – that is, by idE1 – as claimed.

We apply the above general fact to the sequence

0 → [OX
dw� �1

X ]⊗E [1] → Ĵ (E ) → E → 0 (1.6)

obtained from (1.3) by tensoring with p∗
2E and taking the push-forward p1∗. Note that

Ĵ (E ) = J (E )⊕E [1]

as a Z/2-graded vector bundle. A connection ∇i on E |Ui can be viewed as a retraction

∇i : J (E ) → �1
X ⊗E : 1⊗ s 	→ ∇i(s).

This leads to the claimed formula.

Remark. In the case when the underlying vector bundle E is trivialised, we can take ∇
to be the corresponding connection (defined globally). Then [∇,δ] is the matrix of 1-forms

obtained by taking differentials of the entries of δ (viewed as a matrix of functions). Using

this one can check that in this case the formula of Theorem A for the Chern character is

equivalent to the one obtained in [12] in the case of matrix factorisations over a regular
local ring.

Using Čech representatives one can easily derive the following compatibility of the

Atiyah class construction with the tensor product of a matrix factorisation by a complex
of vector bundles.

Lemma 1.4. For E ∈ MF(X ,w) and F ∈ D(X ), let us consider E ⊗F ∈ MF(X ,w). Then

one has

ât(E ⊗F ) = ât(E )⊗ id+ id⊗at(F ).

1.3. Dolbeault representative

In the case when X is a complex manifold and w is a holomorphic function, the space

Hom0(E,F ) can be calculated using Dolbeault complex

(�0,∗(Hom(E,F )),[δ,?]+ ∂).
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In the case w = 0 it is well known that the Atiyah class is represented by the (1,1)-part of
the curvature of any C∞-connection on E , compatible with the holomorphic structure.

We have the following analogue for matrix factorisations.

Proposition 1.5. Let (E,δ) be a holomorphic matrix factorisation of w . Let ∇ be an

even C∞-connection on E , compatible with the holomorphic structure, and let F 1,1 be the

(1,1)-part of the curvature of ∇. Then ât(E ) is represented by the cocycle

(idE , − [∇,δ],F 1,1) ∈ �≤1,∗(End(E,E )),

where the differential on the latter complex is given by [δ,?]+∧dw + ∂.

Proof. The proof is similar to that of Proposition 1.3, with the Čech resolution

replaced by the Dolbeault resolution. First, one checks that for an exact sequence of
matrix factorisations (1.5), a choice of C∞-retractions r : E2 → E1 gives a Dolbeault

representative for the corresponding class in Hom1(E3,E1). Namely, one should consider

(β,α) ∈ �0,0(Hom(E3,E1)1)⊕�(0,1)(Hom(E3,E1)0),

where

αg = ∂(r), βg = [δ,r ]

(the proof uses the Dolbeault complex of Cone(f ), similar to Proposition 1.3).

Now we apply this for the exact sequence (1.6). We use ∇1,0, the (1,0)-part of the
connection ∇, to get a C∞-retraction of the embedding �1,0 ⊗E → J (E ). This leads to

the claimed formula, where the (1,1)-curvature F 1,1 appears as [∂,∇1,0].

2. Lie algebra analogies

2.1. Lie bracket in the case w = 0
Recall that the Atiyah class at(�1) : �1

X → �1
X ⊗�1

X [1] factors through a map �1
X →

S2(�1
X )[1] whose dual can be viewed as a Lie bracket on TX [−1] (see [7], [9]).

In addition, there is a morphism

ι : TX [−1] → HH ∗(X ) = Rp1∗End(O�) (2.1)

obtained by adjunction from the component

at1(O�) ∈ Hom(O�,p∗
1�

1
X ⊗O�[1]) 
 Hom(p∗

1TX [−1],End(O�))

of the Atiyah class at(O�) ∈ Hom(O�,�1
X2 ⊗O�[1]).

2.2. HKR-isomorphisms in the case w = 0
Recall that in [9, Theorem 1] Markarian showed that HH ∗(X ) can be identifed with the

universal enveloping algebra U (TX [−1]). By definition, this means that the above map ι

satisfies the identity

ι([x,y ]) = ι(x )ι(y)− ι(y)ι(x ) (2.2)
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understood as the equality of morphisms TX [−1]⊗TX [−1] →HH ∗(X ), and the morphism

I abs : S ∗(TX [−1]) → T ∗(TX [−1]) → HH ∗(X ), (2.3)

induced by ι and by the multiplication on HH ∗(X ), is an isomorphism (see
[9, Definition 4]).

One of the key tools in the arguments of [9] is the natural duality between HH ∗(X )

and HH ∗(X ) induced by the canonical functional

ε : HH ∗(X ) = �∗(O�) → OX

and by the canonical action

D0 : HH ∗(X )⊗HH ∗(X ) → HH ∗(X ).

Lemma 2.1. The composition

ε ◦D0 : HH ∗(X )⊗HH ∗(X ) → OX

is a perfect pairing and corresponds to the natural isomorphism

Hom(HH ∗(X ),OX ) = Hom(�∗O�,OX ) 
 Rp1∗�∗Hom(�∗O�,OX )


 Rp1∗Hom(O�,O�).

Proof. Note that for any morphism f : X → Y and sheaves F on Y and G on X , the

composition of the natural maps

Hom(F,f∗G)
f ∗
� Rf∗Hom(f ∗F,f ∗f∗G)

canG� Rf∗Hom(f ∗F,G)

is precisely the (sheafified) adjunction isomorphism. Applying this to f = �, F = O�,
G = OX , we obtain that the composition

Hom(O�,O�)
�∗� �∗Hom(�∗O�,�∗O�)

ε� �∗Hom(�∗O�,OX )

is the adjunction isomorphism. Now the assertion follows from the fact that applying

Rp1∗ to the first arrow we get the map HH ∗(X ) → Hom(�∗O�,�∗O�) defining D0.

Dualising the composition

S ∗(TX [−1])⊗HH ∗(X )
I abs⊗id� HH ∗(X )⊗HH ∗(X )

ε◦D0� OX

we get a map

Iabs : HH ∗(X ) → S ∗(TX [−1])∨ 
 S ∗(�X [1]), (2.4)

which is an isomorphism (see [9, Proposition 3]).
Note that essentially by definition, our isomorphisms I abs and Iabs are compatible with

the duality of Lemma 2.1 and the natural duality between S ∗(TX [−1]) and S ∗(�X [1]).

Theorem 2.2. The isomorphisms I abs and Iabs in D(X ) coincide with the HKR

isomorphisms IHKR and IHKR, given by the explicit chain maps in [3].
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Proof. Recall that the action of TX [−1] on HH ∗(X ) is obtained by applying �∗ to the

map p∗
1TX [−1]⊗O� → O� given by atuniv = at1(O�). We are going to realise the latter

map by an explicit chain map of complexes on X 2, replacing O� by its completed bar

resolution B• (see [17], [3, Section 4]). Recall that Bi is the push-forward to X 2 of the

formal completion of X i+2 along the small diagonal. We denote local sections of Bi as
[a0 ⊗a1 ⊗. . . ⊗ai+1], where aj are local functions on X .

We claim that the map atuniv is represented by the chain map

p∗
1TX ⊗B• → B•[1] : v ⊗ [a0 ⊗a1 ⊗. . . ⊗ai+1] 	→ (−1)i+1[a0v(a1)⊗a2 ⊗. . . ⊗ai+1].

Indeed, it is enough to look at the induced map of complexes p∗
1TX ⊗B• → O�[1] or,

equivalently, B• → �∗�1
X [1] induced by the map f1 :B1 → �∗�1 : [a0⊗a1⊗a2] 	→ a2a0da1.

Now we observe that there is a quasi-isomorphism of complexes,

B2 � B1 � B0

0
�

� �∗�1
X

f1

�
� O�(2) .

1

�

Because atuniv is induced by the exact sequence (1.1), this implies our claim.

It follows that the map

(atuniv)(i) : p∗
1

∧i
TX ⊗O� → O�[i ]

obtained by iterating atuniv and restricting to skew-symmetric tensors is represented by

the chain map

p∗
1

∧i
TX ⊗B• → B•[i ] : (v1 ∧. . . ∧ vi)⊗ [a0 ⊗a1 ⊗. . . ⊗am ]

	→ (−1)im [a0〈v1 ∧. . . ∧ vi,da1 ∧. . . ∧dai 〉⊗ai+1 ⊗. . . ⊗am ].

Composing with the projection B•[i ] →O�[i ], we see that (atuniv)(i) is represented by the

chain map p∗
1
∧iTX ⊗B• → O�[i ], which corresponds by duality to the map

Bi → p∗
1�

i
X ⊗O� 
 �∗�i

X : [a0 ⊗a1 ⊗. . . ⊗ai+1] 	→ ai+1a0da1 ∧. . . ∧dai,

which is exactly the ith component of IHKR. This proves the equality Iabs = IHKR.

Recall (see [3, Section 4]) that the other HKR map

IHKR :
⊕∧i

TX [−i ] → Rp1∗End(O�)

is essentially the dual of IHKR: it is given by the composition
⊕∧i

TX [−i ] = Hom(
⊕

�i
X [i ],OX ) → Hom(�∗O�,OX ) 
 Rp1∗(Hom(O�,O�),

where the last isomorphism follows from the adjunction of (�∗,�∗).
On the other hand, it is easy to see that the composition

HH ∗ ⊗HH ∗
D0� HH ∗

ε� OX
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corresponds to the same duality, so the equality I abs = IHKR follows from the equality

Iabs = IHKR.

Remark. The above theorem can be easily deduced from the arguments in the proof of
[3, Proposition 4.4]. Note that IHKR (and hence I abs) is not an algebra homomorphism

with respect to the natural algebra structures on S ∗(TX [−1]) and HH ∗(X ); to become

one it has to be twisted by the square root of the Todd class (see [3], [2]).

2.3. The general case

The (usual) Atiyah class of the complex L∨
w = [OX

dw� �1
X ] is an element

at(L∨
w ) : L∨

w → �1
X [1]⊗L∨

w .

In the Z/2-graded derived category we have a natural morphism �1
X [1] → L∨

w . Thus,

composing the map at(L∨
w ) with this morphism, we get a map

L∨
w → L∨

w ⊗L∨
w,

or dualising, a map

[·,·] : Lw ⊗Lw → Lw,

which factors through TX [1]⊗Lw .

Lemma 2.3. The dual of the bracket [·,·] factors in the Z/2-graded derived category as

a composition

L∨
w → S2�1

X → �1
X ⊗�1

X → L∨
w ⊗L∨

w .

Hence, the bracket [·,·] is skew-symmetric and OX ⊂ Lw is central with respect to it.

Proof. The proof is a slight variation of the proof of [9, Proposition 1.1]. By definition,

the map at(L∨
w ) corresponds to an exact sequence of complexes

0 → p1∗[I�/I 2
� ⊗p∗

2L
∨
w ] → p1∗[OX2/I 2

� ⊗p∗
2L

∨
w ] → p1∗[O� ⊗p∗

2L
∨
w ] → 0.

Now we use the natural morphism induced by the canonical differential dX2 :OX2 → �1
X2 :

I�/I 3
� → OX2/I 3

�

−dX2� OX2/I 2
� ⊗�1

X2 → �X2/I 2
� ⊗p∗

2�
1
X .

Note that under this morphism, f ⊗1−1⊗ f modI 3
� is sent to 1⊗p∗

2(df ). This morphism

extends to a chain map of complexes

[OX
δ� p1∗(I�/I 3

�)] → p1∗[OX2/I 2
� ⊗p∗

2L
∨
w ],

where δ(f ) = f · (1⊗w −w ⊗ 1), and the map OX → p1∗(OX2/I 2
�) is given by f 	→ f ⊗

1modI 2
�. Furthermore, this chain map extends naturally to a morphism of exact sequences
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of complexes

0 � p1∗(I 2
�/I 3

�)[−1] � [OX → p1∗(I�/I 3
�)] � [OX → p1∗(I�/I 2

�)] � 0

0 � p1∗[I�/I 2
� ⊗p∗

2L
∨
w ]

�
� p1∗[OX2/I 2

� ⊗p∗
2L

∨
w ]

�
� p1∗[O� ⊗p∗

2L
∨
w ]

∼

�
� 0

in which the leftmost vertical arrow can be identified with the natural map S2�1
X [−1] →

�1
X ⊗L∨

w . This implies our assertion.

By analogy with morphism (2.1) we want to define a morphism

ιw : Lw → HH ∗(MF(X ,w)) = Rp1∗End(Ow̃
�) (2.5)

in D(X ). For this we consider the universal Atiyah class

ât
univ = ât

1
(Ow̃

�) ∈ Hom(Ow̃
�,p∗

1L
∨
w ⊗Ow̃

�) (2.6)

(see Lemma 1.2(iii)). Dualising it we get a morphism

p∗
1Lw → End(Ow̃

�)

from which ιw is obtained by adjunction.

Note that to identify an associative algebra U with the algebra of the form U (̃g)/(1−1)

for a central extension of Lie algebras (0.3), one has to provide a linear map ι : g̃ → U
satisfying the universal enveloping algebra identity (2.2), such that ι(1) = 1 and the

natural map

S (̃g)/(1−1) → U (̃g)/(1−1)

induced by ι is an isomorphism. Note that the source of this map can be identified with

lim−→i
S i (̃g), which is a better expression for us because it makes sense also in nonabelian

categories.
We want to check analogues of these properties for the map (2.5) in the derived category.

Similar to the proof of [9, Theorem 1], the universal enveloping algebra identity (2.2) for

ιw is equivalent to the condition that the skew-symmetrisation of the composition

Ow̃
�

ât1(Ow̃
� )� p∗

1L
∨
w ⊗Ow̃

�

id⊗ât1(Ow̃
� )� p∗

1L
∨
w ⊗p∗

1L
∨
w ⊗Ow̃

�

is equal to the composition

Ow̃
�

ât1(Ow̃
� )� p∗

1L
∨
w ⊗Ow̃

�

at1(p∗
1L

∨
w )⊗id� p∗

1L
∨
w ⊗p∗

1L
∨
w ⊗Ow̃

� .
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But this follows immediately from the commutative diagram

Ow̃
�

ât1(Ow̃
� ) � p∗

1L
∨
w ⊗Ow̃

�

p∗
1L

∨
w ⊗Ow̃

�

ât1(Ow̃
� )

�
id⊗ât1(Ow̃

� )� p∗
1L

∨
w ⊗p∗

1L
∨
w ⊗Ow̃

�

ât1(p∗
1L

∨
w⊗Ow̃

� )

�

by applying Lemma 1.4 to the expression ât
1
(p∗

1L
∨
w ⊗Ow̃

�).
The fact that ât(E ) projects to the identity idE implies (by taking E = Ow̃

� ) that the

composition

OX
1� Lw

ιw� HH ∗(MF(X ,w))

is the natural embedding of a unit.

Lastly, we need to check that the map

I abs,w : lim−→
i

S i (Lw ) → HH ∗(MF(X ,w)), (2.7)

induced by ιw , is an isomorphism. It is easy to see that the limit here stabilises and we

have

lim−→
i

S i (Lw ) = Sn(Lw ) 
 (
∧•

(TX ),idw ),

where n = dimX . Here the second isomorphism is dual to (0.1). The fact that the map

(2.7) is an isomorphism can be checked formally locally using the Koszul resolution of

the diagonal matrix factorisation (it also follows from Theorem 2.5 below and from the

results of [8]).
Similar to the case of Lie algebras, where the Poincaré-Birkhoff-Witt theorem can be

used to derive the Jacobi identity (see, e.g., [11, Chapter 5]), one can show that the

properties proved above imply that the bracket [·,·] on Lw satisfies the Jacobi identity
(we will not use this fact).

Similar to the case w = 0, we have a canonical functional

ε : HH ∗(MF(X ,w)) = �∗(Ow̃
�) → OX

coming from the adjoint pair of functors (�∗,�∗) between MF(X ,0) and MF(X 2,w̃).

On the other hand, we have the natural action of HH ∗(MF(X ,w)) = Rp1∗End(Ow̃
�) on

HH ∗(MF(X ,w)),

D : HH ∗(MF(X ,w))⊗HH ∗(MF(X ,w)) → HH ∗(MF(X ,w)).

Lemma 2.4. The composition

ε ◦D : HH ∗(MF(X ,w))⊗HH ∗(MF(X ,w)) → OX
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is a perfect pairing, which corresponds to the natural isomorphism

Hom(HH ∗(MF(X ,w)),OX ) = Hom(�∗Ow̃
�,OX ) 
 Rp1∗�∗Hom(�∗Ow̃

�,OX )


 Rp1∗Hom(Ow̃
�,Ow̃

�),

induced by the adjoint pair of functors (�∗,�∗) between MF(X ,0) and MF(X 2,w̃).

Proof. The proof is very similar to that of Lemma 2.1 and is left to the reader.

Let us consider the composition

Sn(Lw )⊗HH ∗(MF(X ,w))
I abs,w⊗id� HH ∗(MF(X ,w))⊗HH ∗(MF(X ,w))

ε◦D� OX .

Dually, we get a morphism

Iabs,w : HH ∗(MF(X ,w)) → Sn(Lw )∨ 
 [�•
X , ∧dw ], (2.8)

where the last isomorphism is (0.1).

Theorem 2.5. The maps I abs,w and Iabs,w in D(X ) coincide with the maps IHKR,w and

IHKR,w defined using the completed bar resolution in [8] and [10].

Proof. As in the proof of Theorem 2.2, to check the equality Iabs,w = IHKR,w , we first
realise

ât
univ

: p∗
1Lw ⊗Ow̃

� → Ow̃
�

by a closed map of matrix factorisations.

Recall that the completed bar resolution (B•,b) is equipped with the second differential

Bw [a0 ⊗a1 ⊗. . . ⊗am+1] =
m∑
i=0

(−1)ia0 ⊗. . . ⊗ai ⊗w ⊗ai+1 ⊗. . . ⊗am+1,

so that Bw̃ := (B•,b +Bw ) is a (quasicoherent) matrix factorisation of w̃ = w ⊗1−1⊗w .
Similar to the case w = 0, we define a closed morphism of matrix factorisations

p∗
1Lw ⊗Bw̃ → Bw̃ : (v + f )⊗ [a0 ⊗a1 ⊗. . . ⊗am ]

= (−1)m [a0v(a1)⊗a2 ⊗. . . ⊗am ]+ [fa0 ⊗a1 ⊗. . . ⊗am ].

We claim that it represents ât
univ

. Indeed, it is enough to consider the composed map

p∗
1Lw ⊗Bw̃ → Ow̃

�

and compare its dualisation

Bw̃ → p∗
1L

∨
w ⊗Ow̃

� 
 �∗[OX
dw� �1

X ] (2.9)

with ât
univ

. It remains to observe that (2.9) factors as the composition

Bw̃ → (O�(2) ⊕ (�1
X )�[1],δ) → (O� ⊕ (�1

X )�[1],dw),

where the first map is an isomorphism of resolutions of Ow̃
� , and the second map induces

ât
univ

by Lemma 1.2(i).
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Considering the induced map p∗
1S

nLw ⊗Bw̃ →Bw̃ →Ow̃
� , we deduce that Iabs coincides

with the HKR isomorphism IHRK,w given by the map

�∗Bw̃ → (�•
X , ∧dw) : [a0 ⊗. . . ⊗ai+1] 	→ ai+1a0da1 ∧. . . ∧dai .

The equality I abs,w = IHKR,w follows by duality as in the case w = 0.

3. Boundary–bulk map

3.1. Generalities

Recall that the diagonal matrix factorisation Ow̃
� ∈ MF(X 2,w̃) corresponds to the identity

functor on MF(X ,w). The categorical trace functor can be identified with the composition

Tr : MF(X 2,w̃)
�∗� D(X )

R�� D(k).

Thus, the Hochschild homology of the category MF(X ,w) can be computed as

HH∗(MF(X ,w)) = R�(X ,HH ∗(MF(X ,w)),

where

HH ∗(MF(X ,w)) = �∗Ow̃
� .

Furthermore, we have an isomorphism

HH ∗(MF(X ,w)) 
 [�•, ∧dw ].

The sheafified boundary–bulk map

End(E ) → HH ∗(MF(X ,w)), (3.1)

which is a map in D(X ), is obtained by applying �∗ to the evaluation morphism in

MF(X 2,w̃),

evE : E �E∨ → Ow̃
� .

The latter morphism is obtained by dualisation from the morphism

ηE : p∗
1E → E� 
 p∗

2E ⊗Ow̃
�

in MF(X 2,w ⊗1), which corresponds by adjunction to the isomorphism E → Rp1∗(p∗
2E ⊗

Ow̃
�).
Because the boundary–bulk map is obtained from evE by applying the categorical

trace functor Tr, it is obtained from the sheafified boundary–bulk map (3.1) by passing

to derived global sections.

3.2. Exponentials

Our exponentials are analogues of the following Lie-theoretic construction. Let g be a
Lie algebra and M a g-module. Then for every i ≥ 0, we have a morphism given by the

iterated action

ui : g⊗i ⊗M → M : x1 ⊗. . . ⊗ xi ⊗m 	→ x1 · (. . . · (xi−1 · (xi ·m)). . .).
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We denote by si : S i (g) ⊗ M → M the restriction of ui to symmetric tensors. We can
think of si as an element of S i (g)∗ ⊗End(M ). Combining these elements together we get

the element

expM ∈ S •(g)∗ ⊗End(M ).

Now given an object E in D(X ), the Atiyah class of E defines a map

TX [−1]⊗E → E,

which is an action of TX [−1] (viewed as a Lie algebra) on E . Thus, we get the

corresponding element

expE ∈ Hom(E,S •(�X [1])⊗E ) = Hom(E,
⊕
i

�i
X [i ]⊗E ).

Unraveling the definitions, we see that

expE = exp(at(E )),

where the right-hand side is defined in the standard way (see, e.g., [3, Section 4]).

Similarly, we can consider O� as a module over p∗
1TX [−1] using the universal Atiyah

class, atuniv : p∗
1TX [−1]⊗O� → O�. This gives rise to the element

exp(atuniv) ∈ Hom(O�,
⊕
i

p∗
1�

i
X [i ]⊗O�) = Hom(O�,�∗

⊕
i

�i
X [i ]). (3.2)

It is easy to check that if we view exp(atuniv) as a morphism of Fourier-Mukai kernels

then the induced morphism of functors D(X ) → D(X ),

E 	→
⊕
i

�i
X [i ]⊗E,

is precisely exp(at(E )).

In the same way for a matrix factorisation E ∈ MF(X ,w) we define

exp(at(E )) ∈ Hom0(E,(�•
X , ∧dw)⊗E )

using the action of Lw on E given by ât(E ), passing to the induced map

Sn(Lw )⊗E → E

(where n = dimX ), dualising, and using the isomorphism of Sn(L∨
w ) with (�•

X , ∧dw) (see
(0.1)). This is equivalent to the definition given in Theorem A.

Similarly, the universal Atiyah class

ât
univ ∈ Hom(Ow̃

�,p∗
1L

∨
w ⊗Ow̃

�)

gives an action of p∗
1Lw on Ow̃

� that induces an element

exp(atuniv) ∈ Hom(Ow̃
�,p∗

1S
n(L∨

w )⊗Ow̃
�) 
 p∗

1(�
•
X , ∧dw)⊗Ow̃

� .

Again, if we view this as a morphism of Fourier-Mukai kernels, then the induced morphism

of functors MF(X ,w) → MF(X ,w) is given by exp(at(E )) on E ∈ MF(X ,w).
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3.3. Key lemma

First, let us formulate the key assertion about the exponential of the universal Atiyah

class (3.2) in the case w = 0.

Lemma 3.1. One has a commutative triangle

O�
can� �∗�∗O�

�∗
⊕

i �
i
X [i ]

�∗Iabs

�

exp(at univ
)
�

Proof. Because the action of TX [−1] on HH ∗(X ) = �∗O� is obtained by applying �∗ to

atuniv, by naturality of can, we get the following commutative diagram

p∗
1TX [−1]⊗O�

id⊗can� p∗
1TX [−1]⊗�∗�∗O�

O�

atuniv

�
can � �∗�∗O�

�

where the right vertical arrow corresponds to the action of TX [−1] on HH ∗(X ). In other
words, the map can :O� → �∗�∗O� is compatible with the action of p∗

1TX [−1]. Hence, it
is also compatible with the iteration of this action and its restriction to (skew)-symmetric

tensors:

p∗
1S

•(TX [−1])⊗O�
id⊗can� p∗

1S
•(TX [−1])⊗�∗�∗O�

O�

exp(atuniv)

�
can � �∗�∗O�

�

where the left vertical arrow corresponds to exp(atuniv) by duality. Composing with the

map �∗ε : �∗�∗O� → O� (whose composition with can is the identity), we get the
commutative triangle

p∗
1S

•(TX [−1])⊗O�
id⊗can� p∗

1S
•(TX [−1])⊗�∗�∗O�

O�

�

exp(atuniv
)

�

where the vertical arrow is the push-forward by � of the composition

ε ◦D0 ◦ (I abs ⊗ id) : S •(TX [−1])⊗�∗O� → OX .
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Now the assertion follows from the fact that Iabs is obtained from the latter map by
dualisation.

Remark. Note that modulo Theorem 2.2 the assertion of Lemma 3.1 is equivalent to that

of Proposition 4.4 in [3] (which refers to the standard HKR isomorphism defined using
the completed bar resolution). Thus, we get a more conceptual proof of that proposition.

Now let us consider the case of matrix factorisations.

Lemma 3.2. One has a commutative triangle

Ow̃
�

can � �∗�∗Ow̃
�

�∗(�•
X , ∧dw)

�∗Iabs,w

�

exp(at univ
)

�

Proof. The proof is similar to that of Lemma 3.1. We use the fact that the dualisation
of the universal Atiyah class induces an action of p∗

1Lw on Ow̃
� , so we get a commutative

diagram

p∗
1Lw ⊗Ow̃

�

id⊗can� p∗
1Lw ⊗�∗�∗Ow̃

�

Ow̃
�

âtuniv

�
can � �∗�∗Ow̃

�

�

and then use the iteration of this action to get a commutative diagram

p∗
1S

n(Lw )⊗Ow̃
�

id⊗can� p∗
1S

n(Lw )⊗�∗�∗Ow̃
�

Ow̃
�

exp(atuniv)

�
can � �∗�∗Ow̃

� .
�

Finally, composing with �∗ε : �∗�∗Ow̃
� → Ow̃

� and dualising, we get the result.

3.4. Proof of Theorem A

Let us first consider the case w = 0. We can view the commutative triangle of Lemma

3.1 as the triangle of Fourier-Mukai functors from D(X ) to D(X ) (where to a kernel K
in D(X ×X ) we associate the functor Rp1∗(K ⊗ p∗

2(·))). Applying these functors to an
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object E ∈ D(X ), we get a commutative triangle of the form

E canE� �∗O� ⊗E

�•
X ⊗E .

Iabs⊗id

�

exp(at(E
))

�
(3.3)

We claim that the morphism canE is obtained by applying �∗ to the canonical morphism

ηE : p∗
1E → �∗E 
 O� ⊗p∗

2E .

Indeed, first let us observe that for any F,G ∈ D(X ×X ) we have a commutative triangle

F ⊗G aF ⊗idG� �∗�∗F ⊗G

�∗�∗(F ⊗G)

∼

�

a
F⊗G

�

where aF : F → �∗�∗F is the adjunction map, and the vertical arrow is the composition

of the natural isomorphisms

�∗�∗F ⊗G 
 �∗(�∗F ⊗�∗G) 
 �∗�∗(F ⊗G).

Applying this to F = O� and G = p∗
2E we get the commutativity of the triangle in the

diagram

p∗
1E

ηE � O� ⊗p∗
2E

can⊗ id� �∗�∗O� ⊗p∗
2E

�∗�∗p∗
1E

�
�∗�∗ηE� �∗�∗(O� ⊗p∗

2E ).
��

∼

Note that here the vertical arrows are the adjunction maps, so the square in the above

diagram is also commutative. Using the adjointness of (p∗
1,p

∗
1), we get a commutative

diagram

E ∼� Rp1∗(O� ⊗p∗
2E )

Rp1∗(can⊗ id)� �∗O� ⊗p∗
2E

�∗p∗
1E

∼

�
�∗ηE� �∗(O� ⊗p∗

2E ).
� �

∼

By definition, the composition of arrows in the first row is canE , and our claim follows.
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This implies that canE corresponds by dualisation to the sheafified boundary–bulk map

E ⊗E∨ → �∗O� = HH ∗(X )

(obtained as �∗ of the evaluation map E �E∨ → O�). Composing with Iabs and using

commutativity of (3.3) we get its expression in terms of exp(at(E )).
Now we can repeat the same argument in the case of matrix factorisations. For E ∈

MF(X ,w), using Lemma 3.2, we get a commutative triangle

E canE � �∗Ow̃
� ⊗E

(�•
X , ∧dw)⊗E,

Iabs,w⊗id

�

exp(at(E
))

�

where the morphism canE is obtained by applying �∗ to ηE . Because evE corresponds
to ηE by dualisation, this implies that the sheafified boundary–bulk map

�∗(evE ) : End(E ) → �∗(Ow̃
�)

is given by x 	→ str(exp(at(E )) · x ).

4. Graded case

4.1. Basics

4.1.1. Category of Gm -equivariant matrix factorisations. Let X be a smooth

scheme equipped with a Gm -action, and let W be a regular function on X satisfying

W (λx ) = λW (x )

for λ ∈ Gm .

Let χ denote the identity character of Gm . The category MFGm (X ,W ) of Gm -
equivariant matrix factorisations of W has as objects Gm -equivariant Z2-graded bundles

E = E0 ⊕E1 on X equipped with OX -linear maps

δ1 : E1 → E0, δ0 : E0 → E1 ⊗χ,

such that δ0 ◦ δ1 = δ1 ◦ δ0 = W . In order to define morphisms it is more convenient to

replace (E,δ) with the Z-graded bundle equipped with a degree one endomorphism δ

such that δ2 = W ,

C (E ) = C (E,δ) : . . .E1
δ1� E0

δ0� E1 ⊗χ
δ1� E0 ⊗χ → . . .

where the Z-grading on C (E ) is determined by C (E )0 = E0. This complex is equipped

with a chain 2-quasi-periodicity isomorphism

αE : C (E ) 
 C (E )⊗χ [−2].

https://doi.org/10.1017/S1474748020000614 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000614


1466 B. Kim and A. Polishchuk

Now for a pair of matrix factorisations E,F we define the Z-graded complex of
Gm -equivariant bundles, Hom(E,F ), as a subcomplex in the sheafified internal Hom
complex of the corresponding 2-quasi-periodic complexes, Hom(C (E ),C (F )), consisting

of morphisms respecting isomorphism αE and αF .
Then the morphisms from E to F are defined as

Hom(E,F ) := R�(X ,Hom(E,F ))Gm .

More precisely, here R� should be replaced by some functorial multiplicative resolution.
The resulting category MFGm (X ,W ) is a Z-graded dg-category, unlike the usual category

of matrix factorisations, which is only Z2-graded (see [13, Section 1] for more details).

Note that the complex Hom(E,F ) is still 2-quasi-periodic, so in fact we have

Hom(E,F ) = C (Hommf (E,F )),

where Hommf (E,F ) is a Gm -equivariant matrix factorisation of 0 on X .

Note that in the case W = 0 we can associate with every bounded Z-graded complex

of Gm -equivariant vector bundles (V •,d), a Gm -equivariant matrix factorisation mf(V •)
of 0, given by

mf(V •)0 =
⊕
n∈Z

V 2n ⊗χ−n, mf(V •)1 =
⊕
n∈Z

V 2n−1 ⊗χ−n .

Note that the corresponding Z-graded complex C (mf(V •)) is simply

C (mf(V •)) =
⊕
n∈Z

V ⊗χn [−2n].

Example. In the case when the action of Gm on X is trivial, one can easily see that

the composed functor from D(X )Z, the usual Z-graded derived category of coherent

sheaves on X ,

D(X )Z → DGm (X )Z
mf� MFGm (X ,0),

where the first functor equips a complex in D(X )Z with the trivial Gm -action, is an
equivalence (see [13, Section 1.2]).

The above definitions also make sense for more general categories of quasicoherent

(respectively coherent) matrix factorisations.

4.1.2. Tensor product of graded matrix factorisations. If W and W ′ are

functions satisfying W (λx ) = λW (x ), W ′(λx ) = λW ′(x ), then we have a natural operation

of tensor product

⊗ : MFGm (X ,W )×MFGm (X ,W ′) → MFGm (X ,W +W ′),

which is uniquely determined by

C (E ⊗F ) = equaliser(C (E )⊗C (F )
αE⊗id�
id⊗αF

� C (E )⊗C (F )⊗χ [−2]).
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More explicitly,

(E ⊗F )0 = E0 ⊗F0 ⊕E1 ⊗F1 ⊗χ, (E ⊗F )1 = E0 ⊗F1 ⊕E1 ⊗F0

(see [13, Section 1.1]).

In the particular case W = 0 the tensor product gives a structure of a symmetric
monoidal category on MFGm (X ,0).

There is also a natural duality functor

MFGm (X ,W )op → MFGm (X , −W ) : E 	→ E∨,

such that

C (E∨) 
 C (E )∨,

with αE∨ induced by αE . One has an isomorphism of Gm -equivariant matrix factorisations
of 0,

Hommf (E,F ) 
 F ⊗E∨

(see [13, Lemma 1.1.6]).
Note that we have a natural forgetful functor

MFGm (X ,0) → MF(X ,0) = D(X )Z2, (4.1)

where D(X )Z2 is the Z2-graded derived category of coherent sheaves on X . It is easy to
see that this functor is compatible with tensor products.

4.2. Atiyah classes

Let us consider W̃ = W ⊗ 1 − 1 ⊗ W as a function on X 2. Note that it still satisfies
W̃ (λx ) = λW̃ (x ), where we equip X 2 with the diagonal Gm -action. We can associate

with each object K of MFGm (X 2,W̃ ), with support proper with respect to p1, a Fourier-

Mukai-type functor Rp1∗(K ⊗p∗
2(·) from MFGm (X ,W ) to itself.

Because W̃ |�(X ) = 0, we have natural functors

�∗ : MFGm (X ,0) → MFGm (X 2,W̃ ), �∗ : MFGm (X 2,W̃ ) → MFGm (X ,0). (4.2)

We can view OX sitting in degree 0 as a Gm -equivariant matrix factorisation of 0 via

the functor mf. We denote by OW̃
� the corresponding object �∗(OX ) ∈ MFGm (X 2,W̃ ).

Equivalently,

OW̃
� = mf(O�).

Next, let us define a Gm -equivariant matrix factorisation O(2)

�,W̃
of W̃ by

C (O(2)

�,W̃ ) = [. . .O�(2)
−1� O�

−dW� O�(2) ⊗χ → . . .],

where O�(2) sits in degree 0.
Also, let us define a Gm -equivariant matrix factorisation L∨

W of 0 by

L∨
W = mf([OX

dW� �1
X ⊗χ ]),
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where the 2-complex is placed in degrees [0,1]. Then we have a natural exact sequence of

Gm -equivariant matrix factorisations of W̃ ,

0 → �∗L∨
W [−1] φ� O(2)

�,W̃
ψ� OW̃

� → 0,

where the map φ has as components the identity map on O� and the natural embedding

�∗�1
X → O�(2) , and the nontrivial component of ψ is given by the natural projection

O�(2) → O�.

From the above exact sequence we get a morphism in MFGm (X 2,W̃ ),

ât
univ

: OW̃
� → �∗L∨

W 
 p∗
1L

∨
W ⊗OW̃

� .

Applying the corresponding Fourier-Mukai functors, we get for every Gm -equivariant

matrix factorisation E of W a morphism

ât(E ) : E → L∨
W ⊗E .

Example. Assume that the action of Gm on X is trivial and W = 0. Then MFGm (X ,0)

is identified with D(X )Z (see Example 4.1.1). It is easy to see that in this case ât(E ) =
idE +at(E ), where at(E ) : E → �1

X [1]⊗E is the usual Atiyah class of E .

4.3. Lie algebra structure, HKR, and the boundary–bulk map

We are going to equip L∨
W with a Lie algebra structure in the symmetric monoidal

category MFGm (X ,0), such that the embedding mf(OX ) → L∨
W is in the center.

For this we start by applying the construction of the Atiyah class to L∨
W viewed as a

matrix factorisation of 0:

âtL∨
W

: L∨
W → L∨

0 ⊗L∨
W .

Next, we observe that there are canonical chain maps of complexes placed in degrees

[0,1],

[OX
0� �1

X ] → [0 → �1
X ⊗χ ] → [OX

dW� �1
X ⊗χ ].

Applying the functor mf we get a canonical morphism in MFGm (X ,0),

ϕW : L∨
0 → L∨

W .

Now we define the dual of the Lie bracket as the composition

L∨
W

âtL∨
W� L∨

0 ⊗L∨
W

ϕW ⊗id� L∨
W ⊗L∨

W .

Next, using adjunction, from ât
univ

, we get a morphism in MFGm (X ,0),

ιW : LW → Rp1∗Endmf (OW̃
� ) =: HH ∗(MFGm (X ,W ))

(recall that Endmf (OW̃
� ) is a Gm -equivariant matrix factorisation of 0 on X 2).

Using the product in HH ∗(MFGm (X ,W )) we obtain a map of Gm -equivariant matrix
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factorisations of 0

I abs,Gm : Sn(LW ) → HH ∗(MFGm (X ,W )),

where n = dimX .

On the other hand, setting

HH ∗(MFGm (X ,W )) := �∗OW̃
� ∈ MFGm (X ,0),

we have a natural action of HH ∗(MFGm (X ,W )) on HH ∗(MFGm (X ,W )) (understood in

terms of the tensor structure on MFGm (X ,0)) and a canonical functional

ε : HH ∗(MFGm (X ,W )) → mf(OX )

coming from the adjunction for the functors (4.2). Thus, iterating the action of LW on

HH ∗(MFGm (X ,W )) and applying ε, we get similarly to the Z2-graded case a map

Iabs,Gm : HH ∗(MFGm (X ,W )) → SnL∨
W .

Because the maps I abs,Gm and Iabs,Gm lift the previously defined maps I abs and Iabs using
the forgetful functor (4.1), they are quasi-isomorphisms.

Note that we have an isomorphism defined in the same way as (0.1),

SnL∨
W 
 mf(Sn [OX

dW� �1
X ⊗χ ]) 
 mf(

∧•
(�1

X ⊗χ), ∧dW ).

Thus, iterating ât(E ), as in the Z2-graded case, we get for E ∈ MFGm (X ,W ) a map

exp(at(E )) : E → mf(
∧•

(�1
X ⊗χ), ∧dW )⊗E .

Now all of the previous arguments generalise immediately to the graded case and give
the following analogue of Theorem A.

Theorem B. Assume that W = 0 on the critical locus of W (set-theoretically). There is

a natural identification

HH∗(MFGm (X ,W )) 
 H ∗(X ,
∧•

(�1
X ⊗χ), ∧dW )Gm . (4.3)

Under this identification, the categorical boundary–bulk map for E ∈ MFGm (X ,W ),

Hom∗
MFGm (X ,W )(E,E ) → HH∗(MFGm (X ,W )),

is equal to the map induced on the Gm -invariant part of hypercohomology by the map

Hommf (E,E ) → mf(
∧•

(�1
X ⊗χ), ∧dW ) : x 	→ str(exp(at(E )) · x )

in MFGm (X ,0).
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