
Theory and Practice of Logic Programming 1 (2): 129–184, March 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

129

Knowledge and the
action description language A

JORGE LOBOã
Network Computing Research Department, Bell Laboratories, Murray Hill, NJ 07974, USA

e-mail: jlobo@research.bell-labs.com

GISELA MENDEZ†
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Abstract

We introduce Ak , an extension of the action description language A (Gelfond and Lifschitz,

1993) to handle actions which affect knowledge. We use sensing actions to increase an agent’s

knowledge of the world and non-deterministic actions to remove knowledge. We include

complex plans involving conditionals and loops in our query language for hypothetical

reasoning. We also present a translation of Ak domain descriptions into epistemic logic

programs.1

KEYWORDS: action theories, epistemic logic programs

1 Introduction

Since its introduction, the action description language A has served as a platform

to study several aspects that arise when we try to formalize theories of actions in

logic (Gelfond and Lifschitz, 1993). A was designed as a minimal core of a high

level language to represent and reason about actions and their effects. Domain

descriptions written in this language have direct translations into extended logic

programs. Extensions to A have been developed to study and reason about the

concurrent execution of actions (Baral and Gelfond, 1997), the non-deterministic

effects of some actions (Thielscher, 1994) and to study many instances of the

qualification and ramification problems (Kartha and Lifschitz, 1994; Kartha and

Lifschitz, 1997; McCain and Turner, 1997).

ã Partially funded by Argonne National Laboratory under Contract No. 963042401. The research was
partially conducted at the EECS department of the University of Illinois at Chicago.

† Work done while visiting the University of Illinois at Chicago and Bell Labs.
1 This paper extends the results of the work first presented in Lobo et al. (1997).
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130 J. Lobo and others

In this paper we propose a new action description language called Ak . Ak is a

minimal extension of A to handle sensing actions. A sensing action is an action

that does not have any effect in the world. The effect is only in the perception of

the reasoning agent about the world. The execution of a sensing action will increase

the agent’s knowledge about the current state of the world. Take for example a

deactivated agent placed inside a room. The agent has duties to carry out and will

be activated by a timer. Let us assume the agent is always placed facing the door.

The agent, once activated, may become damaged if it attempts to leave the room

and the door is closed. Before the agent tries to leave the room it needs to perform

some act of sensing in order to determine whether the door is opened or not. The

agent has incomplete knowledge with respect to the door. A sensing action such as

looking at the door would provide information to the agent concerning the status of

the door.

In our simple model there will be two sources of knowledge available to an agent:

initial knowledge, i.e. knowledge provided to the agent at initialization time, and

knowledge gained from sensing actions. We will assume that the agent is acting in

isolation. Thus, once an agent has gained knowledge about its world, only its actions

or limitations of its reasoning mechanism (such as limited memory) could make the

agent lose knowledge. We will assume an ideal agent and expect that only actions

can remove knowledge. An action can cause the loss of knowledge if its effect is

non-deterministic. Take for example the action of tossing a coin. We know it will

land with either heads showing or with tails showing, but exactly which cannot be

predicted. Non-deterministic actions and sensing actions have opposite effects on an

agent’s knowledge.

The main contributions of this paper are:

• The language Ak , which incorporates sensing and non-deterministic actions.
• A query sub-language with complex plans that allow hypothetical reason-

ing in the presence of incomplete information. These complex plans include

conditionals (if-then-else) and routines (while-do).
• A sound and complete translation of domain descriptions written in a subset

of Ak into epistemic logic programs.

The paper is organized as follows. In Section 2, we start with the syntax and

semantics of domains with deterministic and sensing actions only. Section 3 presents

the query sub-language of Ak with conditional plans. In Section 4, the language is

extended to include non-deterministic actions and Section 5 adds loops to the query

language. Section 6 gives an outline of epistemic logic programs as they pertain to

Ak . In Section 7, we present the translation of domains in Ak into epistemic logic

programs. In Section 8, we discuss how our work relates to other work in the field.

Section 9 presents a few directions for future work and concluding remarks.

2 Ak: Domain Language

2.1 Syntax of Ak

The language of Ak consists of two non-empty disjoint sets of symbols F , A. They

are called fluents and actions . As in A, fluents are statements or observations about
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the world. The set A consists of two disjoint sets of actions, sensing actions and

non-sensing actions. Actions will be generically denoted by a, possibly indexed. A

fluent literal is a fluent or a fluent preceded by a ¬ sign. A fluent literal is negative

when preceded by ¬ and is positive otherwise. Fluent literals will be denoted by f,

p and q possibly indexed.

There are three kinds of propositions in Ak: object effect propositions, value

propositions and non-deterministic effect propositions. We discuss non-deterministic

effect propositions in Section 4. Object effect propositions are expressions of the

form

a causes f if p1, . . . , pn (1)

where a is a non-sensing action, and f and p1, . . . , pn, with n 6 0, are fluent literals.

This expression intuitively means that in a situation where p1, . . . , pn are true, the

execution of a causes f to become true.

When n = 0 in the preconditions of (1) we will write the proposition as

a causes f (2)

A value proposition is an expression of the form

initially f (3)

where f denotes a fluent literal. Value propositions describe the initial knowledge

the agent has about the world.

There are also knowledge laws. Knowledge laws are expressions of the form

as causes to know f if p1, . . . , pn (4)

where as is a sensing action, f is a fluent and p1, . . . , pn are preconditions as in

(1). Intuitively this expression says that in a situation where p1, . . . , pn are true the

execution of as causes the agent to realize the current value of f in the world. We

do not allow sensing actions to occur in any effect proposition.

If n = 0 in (4), we will write the knowledge law as

as causes to know f (5)

At this point we should remark that we are assuming the agent may have

incomplete but always correct knowledge about the world. Propositions and laws in

Ak describe how the knowledge of the agent changes, but if these changes are the

result of propositions like (1) we assume that the effects in the world would be the

same as if the world were in a state where p1, . . . , pn are true, that is, there are not

external entities that modify the world and the specification of the laws are correct

and deterministic.

Definition 2.1

A collection of the above propositions and laws is called a domain description . A

domain description D is simple if for any sensing action as and any fluent f there

exists at most one knowledge law in D of type (4).

The following example illustrates how knowledge laws can be used to reason

about actions.
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Example 2.2

A robot is instructed to replace the bulb of a halogen lamp. If the lamp is on when

the bulb is screwed in, the robot’s circuits will get burned out from the heat of the

halogen bulb, and it will not be able to complete the task. The robot will have to

find a sequence of actions that will allow it to complete the task without burning

out. We assume that the robot is already at the lamp. This is represented by the

following domain description,

D1



r1 : initially ¬burnOut
r2 : initially ¬bulbFixed
r3 : changeBulb causes burnOut if switchOn

r4 : changeBulb causes bulbFixed if ¬switchOn
r5 : turnSwitch causes switchOn if ¬switchOn
r6 : turnSwitch causes ¬switchOn if switchOn

It follows from D1 that in the initial state the robot does not know the state of the

switch in the lamp. Hence, there does not exist a way to determine before hand

what will be the result of the action changeBulb. When the robot goes to carry out

the action changeBulb, it could end up in a resulting state in which either bulbFixed

is true or in a state where it will be burned out and unable to complete the task.

Without knowing whether the switch is on or off, the robot will not be able to find

a plan to accomplish its task. The robot must first check the state of the switch.

After realizing whether the switch is on or off, it will take the appropriate actions

to complete the task. The robot will need a knowledge law such as:

r7 : checkSwitch causes to know switchOn if ¬burnOut
After checking the switch the robot will know whether the switch is on or off.

Sensing gives the robot that extra knowledge it would need to accomplish the task

without burning out and provides a branching point in its hypothetical reasoning.

If the switch is on it will turn the switch and replace the bulb. If the switch is off

it will directly replace the bulb. This conditional reasoning will enable the robot to

show that there is a sequence of actions to accomplish the task.

2.2 Semantics of Ak

The semantics ofAk must describe how an agent’s knowledge changes according to

the effects of actions defined by a domain description. We begin by presenting the

structure of an agent’s knowledge. We will represent the knowledge of an agent by a

set of possibly incomplete worlds in which the agent believes it can be. We call these

worlds situations and a collection of worlds an epistemic state. A situation, since it

could be an incomplete description of the world, will be represented by a collection

of sets of fluents. A set of fluents will be called a state. If a formula is true in an

epistemic state of an agent (to be defined later), by our assumption it means that

the agent knows that the formula is true in the real world. Epistemic states will also
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Fig. 1. Epistemic states for Agent A and Agent B.

allow us to distinguish when the agent knows that the disjunction f1 ∨ f2 is true

from when it either knows f1 or knows f2.2

We will say that a fluent f is true or holds in a state σ (denoted by σ |= f) iff

f ∈ σ. A fluent f does not hold in a state σ (denoted by σ 6|= f) iff f 6∈ σ. σ |= ¬f iff

σ 6|= f. For more complex formulas, their truth value can be recursively defined as

usual. A formula ϕ made of fluents is true in (or modeled by) a situation Σ (denoted

by Σ |= ϕ) if the formula is true in every state in Σ; it is false if ¬ϕ is true in every

state Σ. A formula is true in an epistemic state if is true in every situation in the

epistemic state; it is false if its negation is true.

A situation is consistent if it is non-empty; otherwise it is inconsistent . A situation

is complete if it contains a single state; otherwise it is incomplete. An epistemic state

is inconsistent if it is empty or contains an inconsistent situation; otherwise it is

consistent. An epistemic state is complete if it contains only one complete situation.

Figure 1 shows two consistent epistemic states in which the fact “Ollie is wet”

(represented by wet) is known by Agent A and Agent B. In the epistemic state (a),

containing an incomplete situation, Agent A does not have knowledge about the

weather. In the other epistemic state (b), containing two complete situations, Agent

B either knows it is raining or knows that it is not raining outside. Recall that

epistemic states will be used in the context of plans for hypothetical reasoning. That

is, predicting properties if the plan were executed. Thus, if an agent plans to execute

a series of actions that takes it to the epistemic state (a), it will not know how to

dress if it needs to go outside and does not want to get wet. In the epistemic state

(b), the agent will know how to proceed.

Interpretations forAk are transition functions that map pairs of actions and situa-

tions into situations. To define when an interpretation models a domain description,

we will define an auxiliary function that interprets the effect of actions at the state

level. We call this function a 0-interpretation . 0-interpretations are functions that

map actions and states into states3. A 0-interpretation Φ0 is a 0-model of a domain

description D iff for every state σ:

2 Note the similarity with a collection of belief sets in Gelfond and Przymusinska (1991).
3 0-interpretations and 0-models are similar to interpretations and models for domains in A.
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1. For a fluent f of any effect proposition of the form “a causes f if p1, . . . , pn”

in D, the fluent f holds in Φ0(a, σ) if its preconditions p1, . . . , pn holds in σ,

2. For a fluent literal ¬f of any effect proposition of the form ‘a causes ¬f
if p1, . . . , pn’ in D, the fluent f does not hold in Φ0(a, σ) if its preconditions

p1, . . . , pn holds in σ,

3. For a fluent f, if there are no effect propositions of the above types, then

f ∈ Φ0(a, σ) if and only if f ∈ σ.

Before we define when an interpretation Φ is a model of a domain description D, we

need the following definition that will let us interpret knowledge laws. The interest

of the defintion will become clear after we explore the scenarion in Example 2.4.

Definition 2.3

Let Σ be a consistent situation, f a fluent and ϕ a disjunction of conjunctions of

fluent literals (preconditions). A consistent situation Σ′ is ‘f, ϕ-compatible’ with Σ iff

Σ′ = Σ whenever f is either true or false in Σ. Otherwise Σ′ must satisfy one of the

following conditions:

1. Σ′ = {σ ∈ Σ | ϕ is not true in σ}
2. Σ′ = {σ ∈ Σ | ϕ is true in σ, f 6∈ σ}
3. Σ′ = {σ ∈ Σ | ϕ is true in σ, f ∈ σ}

Example 2.4

Let us return to the agent scenario from the introduction. Imagine that currently

the agent is deactivated in the room. The agent will be automatically activated by

an internal clock. Then it needs to find the door, leave the room, and perform

some duties. When the agent is initially activated it will know nothing about its

surroundings and will remain ignorant of its surroundings until it performs a sensing

action. We will show how the conditions presented in Definition 2.3 are enough to

represent the result of sensing. Its only action is to look. We assume the action

consist of opening its ‘eyes’ and looking. This domain is represented below with

only one knowledge law,

D2

{
r1 : look causes to know doorOpened if facingDoor

This initial situation of complete ignorance is represented by the situation

{{}, {doorOpened}, {facingDoor}, {doorOpened, facingDoor}}.
If the action look is executed in the real world the agent may find that it is not facing

the door and will not know whether the door is opened or not, this is represented

by the situation

{ { }, {doorOpened} }.
Another possibility could be that the agent was facing the door and after it is

activated, it will know that it is facing the door and will also know that the door is

not opened

{ {facingDoor} }.

https://doi.org/10.1017/S1471068400001022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068400001022


Knowledge and the action description language A 135

Still another possibility could be that the agent was facing the door and after being

activated, it will learn that it is facing the door and that the door is opened

{ {doorOpened, facingDoor} }.
Since the agent will be doing hypothetical reasoning (i.e. planning) it will have no

way of knowing which situation it will be in until the action is actually executed.

Thus, the agent can only assume that it will be in one of the three situations,

so when the agent analyses what would be the consequences of executing look it

concludes that the result will take it to the epistemic state that consists of the

following situations:

1. { { }, {doorOpened} }
2. { {facingDoor} }
3. { {doorOpened, facingDoor} }

Each situation is doorOpened, facingDoor − compatible. The first situation corre-

sponds to the first case of Definition 2.3. The agent knows it is not facing the door

since facingDoor is false in all states contained in the situation. The same cannot

be said for doorOpened since in one state it is false and the other state it is true.

This is to be expected since in this situation the agent is not facing the door, and it

cannot know if the door is opened or closed.

The second situation corresponds to the second case of Definition 2.3. This

situation contains all the states in which the precondition facingDoor is true and

the fluent doorOpen is false. The agent not only knows it is facing the door but also

knows the door is not opened.

The last situation is from the last case of Definition 2.3. In this situation the agent

knows it is facing the door and also knows that the door is opened.

Observe that a result of sensing is that the preconditions of the sensing action

will become known to the agent if the value of the fluent being sensed is initially

unknown. This occurs even if the effect of the action remains unknown after

executing the action, which hapens in the situation coming from the states where

the preconditions of the execution of the sensing action in a knowledge laws are not

true.

Definition 2.5

A state σ is called an initial state of a domain description D iff for every value

proposition of the form ‘initially ϕ’ in D, ϕ is true in σ. The initial situation Σ0 of D

is the set of all the initial states of D.

Definition 2.6

A fluent f is a potential sensing effect of a sensing action as in a domain D if there

is a knowledge law of the form

as causes to know f if ϕ

in D. We will also say that f is the potential sensing effect of the knowledge law.
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The knowledge precondition of a fluent f with respect to a sensing action as in a

domain D is the disjunction ϕ1 ∨ . . . ∨ ϕn if and only if

as causes to know f if ϕ1

...

as causes to know f if ϕn

are all the knowledge laws in which as occurs and f is a potential sensing effect.

Note that if the domain is simple (Definition 2.1) then the knowledge precondition

of any fluent in the domain with respect to any sensing actions is either empty or it

has only one disjoint.

Definition 2.7

Given an interpretation Φ of Ak , Φ is a model of a domain description D, if and

only if for any consistent situation Σ:

1. There exists a 0-model Φ0 of D, such that for any non-sensing action a,

Φ(a,Σ) =
⋃
σ∈Σ

{Φ0(a, σ)}.
2. For each sensing action as, let f1, . . . , fn be the potential sensing effects of as

and ϕi the knowledge precondition of fi with respect to as. Then, Φ(as,Σ)

must be consistent and if n = 0, Φ(as,Σ) = Σ otherwise Φ(as,Σ) =
⋂
i∈[1..n] Σi,

such that each Σi is a situation fi, ϕi − compatible with Σ.

Φ(a,Σ) = ∅ for any action a if Σ = ∅.

Example 2.8

The third floor agent of a building has the job of making sure the white-board in a

room on that floor is clean. The agent will approach the room, look into the room,

clean the white-board if it is not clean, and then leave the room. We focus here on

‘looking into the room’. When the agent looks into the room it will know whether

the white-board in that room is clean. Also if the curtains are open the agent will

learn whether it is raining outside. Sensing actions can not appear in object effect

propositions, but there is no restriction on the number of knowledge laws associated

with a sensing action. Thus, the action could affect the truth value of several fluents

simultaneously. In this example the sensing action lookInRoom will appear in two

knowledge laws. We will see how the resulting situations are f, ϕ-compatible with

the initial situation and briefly discuss the models of this domain description. The

following simple domain description illustrates the scenario:

D3


r1 : initially curtainOpen

r2 : initially lightOn

r3 : lookInRoom causes to know rainOutside if curtainOpen

r4 : lookInRoom causes to know boardClean if lightOn
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The initial situation Σ0 of D3 has four states4

Σ0 = { {curtainOpen, lightOn},
{rainOutside, curtainOpen, lightOn},
{boardClean, curtainOpen, lightOn},
{rainOutside, boardClean, curtainOpen, lightOn}}

There is only one action in D3, and any model of D3 applied to the initial situation

Σ0 may behave in one of the following forms:

Φ1(lookInRoom,Σ0) = {{curtainOpen, lightOn}}
Φ2(lookInRoom,Σ0) = {{rainOutside, curtainOpen, lightOn}}
Φ3(lookInRoom,Σ0) = {{boardClean, curtainOpen, lightOn}}
Φ4(lookInRoom,Σ0) = {{rainOutside, boardClean, curtainOpen, lightOn}}

Models may differ in how they behave when they are applied to other situations

different to Σ0, but for Σ0 they must be equal to one of the Φi above. Unlike domains

in A in which given an initial situation there is only one model for the domain, our

language allows for several models.

Observe, too, that since lookInRoom is a sensing action, its occurrence does not

change any fluent’s value. If we start from Σ0, and then reach one of the four

situations, any new execution of lookInRoom will result in the same situation.

To verify that each of the Φi can be a partial description of a model of r3 and r4,

let

Σ1 = { {curtainOpen, lightOn}, {boardClean, curtainOpen, lightOn}}
Σ2 = { {rainOutside, curtainOpen, lightOn},

{rainOutside, boardClean, curtainOpen, lightOn}}
Σ3 = { {curtainOpen, lightOn}, {rainOutside, curtainOpen, lightOn}}
Σ4 = { {boardClean, curtainOpen, lightOn},

{rainOutside, boardClean, curtainOpen, lightOn}}
Note that Σ1 and Σ2 are rainOutside, curtainOpen-compatible with Σ0, and that Σ3

and Σ4 are boardClean, lightOn-compatible with Σ0, and

Φ1(lookInRoom,Σ0) = Σ1 ∩ Σ3

Φ2(lookInRoom,Σ0) = Σ2 ∩ Σ3

Φ3(lookInRoom,Σ0) = Σ1 ∩ Σ4

Φ4(lookInRoom,Σ0) = Σ2 ∩ Σ4

Note also that none of the situations are f, ϕ-compatible with Σ0 by part (1) of

Definition 2.3 because there is no knowledge precondition ϕ of either rainOutside or

boardClean with respect to lookInRoom in the domain description D3 that is false

in any of the states in the initial situation Σ0.

4 Observe that the initial epistemic state of the robot has always a single situation. To be able to specify
more complex initial epistemic states the language must be changed.
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3 Ak: Query language – part I

Given a domain description, an agent would like to ask how the world would be

after the execution of a sequence of actions starting from the initial situation. Using

actions as in A, queries in Ak can be of the form

ϕ after [a1, . . . , an] (6)

where ϕ is a conjunction of fluent literals. The answer to this query will be yes (or

true) in a domain D if for every model Φ of D the test condition ϕ is true in the

situation

Φ(an,Φ(an−1, . . .Φ(a1,Σ0) · · ·))
i.e. the situation that results after the execution of a1, . . . , an from the initial situation

Σ0 of D. The answer will be no (or false) if for every model Φ of D ϕ is false

in Φ(an,Φ(an−1, . . .Φ(a1,Σ0) · · ·)). Otherwise the answer will be unknown. With this

notion we can define an entailment relation between domain descriptions and queries.

We say that a domain D entails a query Q, denoted by D |= Q, if the answer for Q

in D is yes. For example, if we add initially switchOn to D1, it can be easily shown

that

D1 |= bulbFixed after [turnSwitch, changeBulb]

However, from the original D1 (even including r7) there does not exist a sequence

of actions α such that D1 |= bulbFixed after α. The inferences from D1 are condi-

tioned to the output of the sensing action: if the switch is on then the sequence

[turnSwitch, changeBulb] will cause the light to be fixed, else the single action

[changeBulb] will fix it. Reasoning in the presence of sensing actions requires the

projections to be over plans more complex than a simple sequence of actions.

We recursively define a plan as follows:5

1. an empty sequence denoted by [] is a plan.

2. If a is an action and α is a plan then the concatenation of a with α denoted

by [a|α] is also a plan.

3. If ϕ is a conjunction of fluent literals and α, α1 and α2 are plans then

[ if ϕthen α1|α] and [ if ϕthen α1else α2|α] are (conditional) plans.

4. Nothing else is a plan.

Now we redefine a query to be a sentence of the form

ϕ after α (7)

Where ϕ is a test condition (a conjunction of fluent literals) and α is a plan.

5 We will use the list notation of Prolog to denote sequences.
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Example 3.1

(Conditionals) Here we add the knowledge law to D1 and rename it D1′ .

D1′



r1 : initially ¬burnOut
r2 : initially ¬bulbFixed
r3 : changeBulb causes burnOut if switchOn

r4 : changeBulb causes bulbFixed if ¬switchOn
r5 : turnSwitch causes switchOn if ¬switchOn
r6 : turnSwitch causes ¬switchOn if switchOn

r7 : checkSwitch causes to know switchOn if ¬burnOut
We can define a conditional plan to fix the bulb:

bulbFixed after [checkSwitch,

if ¬switchOn then [changeBulb]

else [turnSwitch, changeBulb]].

The above query provides two alternatives for reasoning. The else clause is followed

if the test condition is false. A conditional can be expanded to a case statement in

general when reasoning needs to be done along several different sequences of plans.

Note that if the conditional plan was attempted before or without the sensing action

checkSwitch, the query may not succeed because the test condition could evaluate

to neither true nor false, but rather unknown. Sensing actions need to be executed

before the conditionals to ensure the test conditions will evaluate to either true or

false.

3.1 Plan evaluation function and query entailment

To formally define entailment we need to define first the evaluation of a plan in

terms of interpretations. In other words, we define how the plan will change an

initial situation based on an interpretation.

Definition 3.2

The plan evaluation function ΓΦ of an interpretation Φ is a function such that for

any situation Σ:

1. ΓΦ([],Σ) = Σ.

2. ΓΦ([a|α],Σ) = ΓΦ(α,Φ(a,Σ)) for any action a.

3. ΓΦ([ if ϕthen α1|α],Σ) = ΓΦ(α,Σ′), where

Σ′ =


ΓΦ(α1,Σ) if ϕ is true in Σ

Σ if ϕ is false in Σ

∅ otherwise

4. ΓΦ([ if ϕthen α1else α2|α],Σ) = ΓΦ(α,Σ′), where

Σ′ =


ΓΦ(α1,Σ) if ϕ is true in Σ

ΓΦ(α2,Σ) if ϕ is false in Σ

∅ otherwise
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Definition 3.3

A query ϕ after α is entailed by a domain description D (D |= ϕ after α) iff for every

model Φ of D, ϕ is true in ΓΦ(α,Σ).

It is easy to check that

D1′ |= bulbFixed after [checkSwitch,

if ¬switchOn then [changeBulb]

else [turnSwitch, changeBulb]].

It is easy to see the task will be completed regardless of what model we are in.

This is due in part to the combination of the sensing action and the conditional

plan.

4 Actions with non-deterministic effects

There are several different reasons why knowledge may be removed from the set of

facts known by the agent. There may be decay of the knowledge, difficulty accessing

the knowledge, or it may execute an action that makes a particular knowledge

no longer valid. In our description, we assume an ideal agent; an agent whose

knowledge persists and is not subject to any type of failure or obstacles preventing

the quick access of its knowledge. Given this assumption, the first two possibilities

for the removal of knowledge are impossible. However, non-deterministic actions may

remove knowledge. A non-deterministic action is an action in which the outcome

cannot be predicted beforehand. An example of such an action with an unpredictable

outcome is the toss of a coin. A coin on a table will show either heads or tails.

Looking at the coin, one can gain knowledge of which side of the coin shows. Once

the action of tossing the coin takes place we are no longer certain of which side

will show. The coin will land and will show either heads or tails. We will not know

which side shows until we do the sensing action of looking. We describe the removal

of knowledge as no longer knowing the truth value of a fluent.

A non-deterministic effect proposition is an expression of the form

a may affect f if p1, . . . , pn (8)

where a is a non-sensing action and f is a fluent. The preconditions p1, . . . , pn are

defined as in equation (1). Intuitively the proposition states that the truth value of

f may change if a is executed in a situation where p1, . . . , pn is true.

When n = 0, equation (10) becomes

a may affect f (9)

We now re-define 0-interpretations to take into account non-deterministic actions.

A 0-interpretation Φ0 is a 0-model of a domain description D iff for every state σ,

Φ0(a, σ) is such that

1. For a fluent f of any effect proposition of the form ‘a causes f if p1, . . . , pn’ in

D, f ∈ Φ0(a, σ) if p1, . . . , pn holds in σ,

2. For a fluent literal ¬f of any effect proposition of the form ‘a causes ¬f if

p1, . . . , pn’ in D, the f 6∈ Φ0(a, σ) if p1, . . . , pn holds in σ,
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3. For a fluent f such that there are no effect propositions of the above types,

f ∈ Φ0(a, σ) if and only if f ∈ σ unless there is a non-deterministic effect

proposition of the form ‘a may affect f if p1, . . . , pn’ for which p1, . . . , pn holds

in σ.

Example 4.1
Our agent is ordered at this time to put ice from a bag into cups. The ice in the bag

is solid. The agent needs to break the ice into pieces that are able to fit in the cups.

The agent decides to drop the bag of ice as a means to complete the task.

D5



t1 : initially inHandIceBag

t2 : initially solidIce

t3 : initially noDrops

t4 : pickUp causes inHandIceBag if ¬inHandIceBag
t5 : drop causes ¬inHandIceBag if inHandIceBag

t6 : drop may affect solidIce if noDrops

t7 : drop may affect solidIce if fewDrops

t8 : drop causes fewDrops if noDrops

t9 : drop causes enoughDrops if fewDrops

t10 : drop causes ¬solidIce if enoughDrops

t11 : checkIce causes to know solidIce

t12 : putIceInCups causes iceInCups if ¬solidIce
This example combines many of the ideas previously presented. Let us examine this

domain description to see how this all fits together.

• Rules t1–t3 establish what is initially known in the world. The values of all

other fluents are unknown at this time.
• Rules t4 and t5 describe the effect that theactions Drop and pickUp have on

inHandIceBag.
• Rules t6 and t7 describe the non-deterministic effect of the action drop on the

ice.
• Rules t8–t10 are object effect propositions which ensure that the ice will break

after no more than three drops (i.e. the execution of the action drop three

times). In the example noDrops is equated with 0 drops, fewDrops with one

drop, and enoughDrops with two drops.
• Rule t11 is the sensing action which allows the agent to know whether the ice

is broken or not after the execution of the non-deterministic action drop. Rule

t12 is the goal of the task the agent is to perform.

The non-determinism appears in the action of dropping the bag of ice. Before

the action is carried out, the agent knows that the ice is solid. After the non-

deterministic action, the agent is no longer certain if the ice is still solid or in pieces.

The knowledge of knowing the ice is solid has been removed. The agent can only

regain that knowledge by performing a sensing action.

If the robot wants to fill the cup with ice it will iterate the process of dropping

the ice until it breaks. A plan to accomplish this goal will look like:

while ¬solidIce do [drop, pickup, checkIce], putIceInCups]

Adding loops to plans is the topic of the next section.
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5 Ak: Query language – part II

If we allow while-loops in our plan we could verify that D5 entails the following

query:

iceInCups after [while ¬solidIce do [drop, pickUp, checkIce], putIceInCups]

Similar to conditional plans, a sensing action is placed before checking the exit

condition of the loop. We extend the definition of plans to include loops as follows:

1. An empty sequence denoted by [] is a plan.

2. If a is an action and α is a plan then the concatenation of a with α denoted

by [a|α] is also a plan.

3. If ϕ is a conjunction of fluent literals and α, α1 and α2 are plans then

[ if ϕ then α1|α] and [ if ϕ then α1else α2|α] are (conditional) plans.

4. If ϕ is a conjunction of fluent literals and α and α1 are plans then

[ while ϕ do α1|α] is also a (routine) plan.

5. Nothing else is a plan.

5.1 Plan evaluation function and query entailment

To extend the definition of entailment to plans with while loops we need to extend

the definition of the plan evaluation function ΓΦ. We will define this function using

very elementary tools from denotational semantics for programming languages (as

in Chapter 4 of (Davey and Priestley, 1990)). The intuitive idea of the denotational

semantics is to associate the execution of a plan (or a program) of the form

‘ while ϕ do α’ with one of the while-free plans:6

if ϕ then ∅
if ϕ then [α, if ϕ then ∅]
if ϕ then [α, if ϕ then [α, if ϕ then ∅]]

...

If the while-plan terminates then there exists an n such that the nth plan in

this infinite sequence computes exactly the same function that the while-plan

computes. Moreover, for each m < n, the mth plan is an approximation of the

computation of the while-plan. If the while-plan does not terminate, any plan

in the sequence is an approximation of the while-plan, but none is equivalent

since the while-plan computation is infinite. Thus, to define this sequence we

start by defining a partial order over the set of functions that map situations

into situations. The order will arrange the functions as in the sequence of plans

above.

6 Recall that the situation ∅ represents inconsistency.
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Definition 5.1

Let E be the set of all situations and P the set of all total functions f mapping

situations into situations, P = {f | f : E → E }. We say that for any pair of functions

f1, f2 ∈ P, f1 6 f2 if and only if for any Σ ∈ E if f1(Σ) 6= ∅, then f1(Σ) = f2(Σ).

Then, we associate a (continuous) transformation inside this order to each plan

α. Informally speaking, the transformation starts with the first plan in the sequence

and in each application returns the next element in the sequence. Finally, we will

define the meaning of the plan based on the least fix-points of these transformations.

Let f∅ denote the function that maps any situation into the empty situation ∅.
Definition 5.2

Let α be a plan and Γ a function that maps plans and situations into situations. Let

ϕ be a conjunction of fluent literals. Then, we define the function FΓ
α,ϕ : P → P

such that for any function f ∈ P,

FΓ
α,ϕ(f)(Σ) =


Σ if ϕ is false in Σ

f(Γ(α,Σ)) if ϕ is true in Σ

∅ otherwise

We can define the powers of FΓ
α,ϕ as follows:

1. FΓ
α,ϕ ↑ 0 = f∅.

2. FΓ
α,ϕ ↑ n+ 1 =FΓ

α,ϕ(FΓ
α,ϕ ↑ n).

3. FΓ
α,ϕ ↑ ω = . . .FΓ

α,ϕ . . . (FΓ
α,ϕ(FΓ

α,ϕ(FΓ
α,ϕ ↑ 0)) . . .) . . ., i.e. the infinite composition

of FΓ
α,ϕ applied to f∅.

It can be shown that this power is correctly defined. Proof and a formal definition

of powers can be found in Appendix A.

We now extend the definition of the evaluation function ΓΦ to apply to plans with

routines by adding item

5. ΓΦ([ while ϕ do α1|α],Σ) = ΓΦ(α,Σ′), where Σ′ =FΓΦ

ifϕthenα1 ,ϕ
↑ω

to Definition 3.2. The definition of entailment remains unchanged. That is, D |=
ϕ after α iff for every model Φ of D, ϕ is true in ΓΦ(α,Σ0).

Example 5.3

D5 |= iceInCups after [ while ¬solidIce do [drop, pickup, checkIce],

putIceInCups]

5.2 Plan termination

Notice that the query above with the while loop could have been written using three

nested conditionals. A more natural example will replace rules t6−10 with the single

rule

drop may affect solidIce
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However, in this domain we are not be able to prove termination. The verification of

termination is a difficult task, especially for planning. How do we really know that

the ice will eventually break? Or how do we know that the cup is filling up? With

time the ice will either melt or break, and if we do not place infinitesimally small

amounts of ice in the cup the cup will eventually fill up or we will run out of ice. We

have simplified the problem in our example by adding t6–t10. These propositions

state that the ice will break with no more than three ‘drops’.

We are faced with a similar situation in the following example.

Example 5.4

Consider the following situation. On the floor of a room there are cans. An agent is

given an empty bag and instructed to fill the bag with cans. We assume that there

are more than enough cans on the floor to fill the bag. The domain description for

this task is

D4


r1 : initially ¬bagFull
r2 : drop causes ¬canInHand
r3 : drop causes canInBag if canInHand

r4 : lookInBag causes to know bagFull

r5 : pickUp causes canInHand if ¬canInHand
This task of picking up cans and dropping them into the bag involves the repetition

of a small sequence of actions. There is a degree of uncertainty inherent in this

task because it is unknown how many cans are needed to fill the bag. Therefore a

loop that executes the sequence of actions repeatedly until the task is completed is

needed. If the number of cans needed to fill the bag is known beforehand, then the

set of actions would be repeated sequentially for those number of times.

A query that we would like to prove is

bagFull after [lookInBag, while ¬bagFull do [ pickUpCan,

dropCanInBag,

lookInBag]]

Ideally, we would like to use a routine which could solve any type of task that involves

uncertainty of its end. However, each task has its own conditions for termination.

For example, filling the volume of a bag differs from finding an unfamiliar store

in an unfamiliar area based on the vague directions of a stranger. Do we really

know the bag will become full? Or how useful are vague directions such as, ‘Just

walk down Lincoln Avenue, you can’t miss it’ when generating a plan. A hole may

tear in the bag, or suppose that the stranger who had all the best intentions was

mistaken about the location of the store. To ensure termination (either with success

or failure) we need to add to our domain descriptions general axioms or constraints.

We do not have constraints in Ak but we may be able to add them by using other

extensions of A such as the one in Baral et al. (1997). To address this problem we

should first look at the standard techniques of problem verifications such as those

founded in Aho and Ullman (1995) or Cousot (1990). These classical ideas have

been used by Manna and Waldinger (1987) to prove termination of plans with loops
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but without sensing actions. For sensing, it might also be useful to consider the

techniques described in Gefner and Bonet (1998) to detect loop-termination using

probability approaches. However, analysis of the termination of plans is outside the

scope of this paper. We will discuss in Section 9 how some of the problems of

termination may be addressed in simple situations.

6 Epistemic logic programs

In the past, domain descriptions of dialects ofA have been translated into extended

logic programs (Baral and Gelfond, 1997; Gelfond and Lifschitz, 1993). Extended

logic programs use two types of negation to represent incomplete information.

There is strong or classical negation ¬ and negation as failure not. The semantics of

extended logic programs is defined by a collection of sets of literals called answer

sets (Gelfond and Lifschitz, 1991). However, we are required to represent incomplete

information that crosses over multiple sets of answer sets. This will be the case in

our translation of domain descriptions into logic programs where situations will be

closely related to sets of answer sets, and domain descriptions act over epistemic

states which are sets of situations. In this case, extended logic programs will no

longer be sufficient to codify domain descriptions.

Gelfond has extended disjunctive logic programs to work with sets of sets of

answer sets (Gelfond and Lifschitz, 1991). He calls his new programs epistemic logic

programs . In epistemic logic programs, the language of extended logic programs is

expanded with two modal operators K and M. KF is read as ‘F is known to be

true’ and MF is read as ‘F may be believed to be true’.

Universal and existential quantifiers are also allowed as well as the epistemic

disjunctive ‘or’ which the semantics is based on the minimal model semantics

associated with disjunctive logic programs (Lobo et al., 1992). As an example, when

F or G is defined as a logic program, its models are exactly F and G. Note that the

classical F ∨ G cannot be defined as a logic program, because it has models which

are not minimal.

In the rest of this section, we will review the syntax and the semantics of the

subclass of epistemic logic programs that will be required to represent our domain

descriptions. Readers interested in more details about epistemic logic programs are

referred to Gelfond (1994).

The semantics of an epistemic logic program is defined by pairs 〈A,W 〉. A is a

collection of sets of ground literals called the set of possible beliefs . Each set in A

can be indexed as A = {A1 . . . An}. W is a set in A called the working set of beliefs .

To define the semantics, we restrict our formulas to be: ground literals, a ground

literal preceded by a modal operator, a ground literal preceded by a modal operator

and ¬, or a conjunction of such formulas. The truth of a formula F in 〈A,W 〉 is

denoted by 〈A,W 〉 |= F and the falsity by 〈A,W 〉 =|F , and are defined as follows:

〈A,W 〉 |= F iff F ∈W , when F is a ground atom.

〈A,W 〉 |= KF iff 〈A,Ai〉 |= F, ∀Ai ∈ A.

〈A,W 〉 |= F ∧ G iff 〈A,W 〉 |= F and 〈A,W 〉 |= G.
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〈A,W 〉 |= ¬F iff 〈A,W 〉 =| F .

〈A,W 〉 =| F iff ¬F ∈W , when F is a ground atom.

〈A,W 〉 =| KF iff 〈A,W 〉 6|= KF

〈A,W 〉 =| F ∧ G iff 〈A,W 〉 =|F or 〈A,W 〉 =|G.

〈A,W 〉 =| ¬F iff 〈A,W 〉 |= F .

〈A,W 〉 |= F or G iff 〈A,W 〉 |= ¬(¬F ∧ ¬G)

Note that when a formula G is of the form KF , or ¬KF , its evaluation in 〈A,W 〉
does not depend on W . Thus, we will write A |= G or A = | G. Moreover, the

evaluation of object formulas does not depends on A. If G is objective we sometimes

write W |= G or W =| G.

An epistemic logic program is a collection of rules of the form

F1 or . . . or Fk ← G1, . . . , Gm, not Fm+1, . . . , not Fn (10)

where F1 . . . Fk and Fm+1 . . . Fn are (not necessarily ground) objective literals (without

K or M) and G1 . . . Gm are (not necessarily ground) subjective (with K or M) or

objective literals.

Let Π be an epistemic logic program without variables, not, or modal operators.

A set W of ground literals is a belief set of Π if it is a minimal set of ground literals,

satisfying the following properties:

1. W |= F for every rule F ← G1 . . . Gm in Π which W |= G1 ∧ . . . ∧ Gm.

2. If there is a pair of complementary literals, i.e F and ¬F , in W then W is the

set of all literals.

Let Π be an epistemic logic program with not and variables but does not contain

any modal operator. Let Ground(Π) be the epistemic logic program that is obtained

from Π by replacing each rule in Π with all its ground instances. Let W be a set of

ground literals ( literals in W and Π are from the same language). ΠW is obtained

from Π by removing from Ground(Π)

1. All the rules which contain formulas of the form not G such that W |= G.

2. All occurrences of formulas of the form not G from the remaining rules.

W is a belief set of Π if and only if W is a belief set of ΠW .

Let Π be any epistemic logic program, and A a collection of sets of literals. [Π]A

is the epistemic logic program obtained by removing from Ground(Π)

1. All rules with formulas of the form G such that G contains M or K , and

A 6|= G,

2. All occurrences of formulas containing M or K from the remaining rules.

A set A is a world view of Π if A is the collection of all belief sets of [Π]A. A world

view of Π is consistent if it does not contain the belief set of all literals. An epistemic

logic program is consistent if it has at least one consistent non-empty world view.

In epistemic logic programs the only working sets of beliefs that are considered are
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world views and the possible belief is always a member of the working set under

consideration (i.e. a belief set).

Let Π be an epistemic logic program and A be a world view of Π. A literal L is

true in A iff for every ground instance F of L, 〈A, Ai〉 |= F for all Ai in A. F is true

in Π, denoted by Π |= F , iff A |= F for every world view A of Π.

Example 6.1

The epistemic program

1. q(a) ← ¬Kp(a),
2. p(a) ← ¬Kq(a),

has two world views

{{p(a)}} {{q(a)}}
In the first world view Kp(a) is true and Kq(a) is true in the second.

The epistemic program

1. q(a) or q(b).

2. p(a) ← ¬Kq(a).

has one world view

{{p(a), q(a)}, {p(a), q(b)}}
Note that Kq(a) is not true in this world view because q(a) is not member of the

second belief set. The main intuition to have when reading a formula of the form

KF is that it will be true iff F is true in every belief set of the program.

7 Translation to epistemic logic programs

In this section we start with a sound and complete translation of simple domain

descriptions into epistemic logic programs. This will let us explain the logic program

rules under the simple scenario and will make clear the rules for the general case.

Our epistemic logic programs will use variables of three sorts: situation variables

denoted by S or S ′ possibly indexed, fluent variables denoted by F or F ′ possibly

indexed, action variables denoted by A or A′ possibly indexed, and the special

situation constant s0 that represents the initial situation. We will also have a constant

symbol for each fluent symbol f in the language, and we add the constant symbol

f̄ to represent ¬f. For simplicity we will denote the fluent literal constants by the

fluent literal they represent. We will also add the special constant symbol true to the

set of fluent literal constants.

7.1 The domain independent translation

We start by first giving the rules for inertia. These rules encode that a fluent remains

unchanged if no actions that affect the fluent is executed. Whenever a fluent literal

appears as an argument in a predicate, it is representing a corresponding constant

in the program. For any fluent literal l, if l = ¬f, l̄ will denote f in the program.
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For every fluent literal f there is an inertia rule of the form:

holds(f, res(A, S))← holds(f, S), not ab(f̄, A, S).

For every fluent symbol f there is an or-classicalization rule of the form

holds(f, s0) or holds(f̄, s0).

The above rule states that our belief sets are complete in the sense that either

holds(f, s0) or holds(f̄, s0) must be true since f ∨ ¬f is a tautology in every state.

Note that because of the minimal model semantics interpretation of the ‘or’ we will

not have both holds(f, s0) or holds(f̄, s0) holding simultaneously.

We will also have two more domain independent rules that we will call rules of

suppression:

holds(true, res(A, S))← holds(true, S)

holds(F, S)← holds(true, S)

These rules will be used to implement compatibility. For example, if a situation

Σ = {σ1, σ2} with two states is split into two situations Σ1 = {σ1} and Σ2 = {σ2},
for compatibility after the execution of a sensing action, Σ1 will be generated

by suppressing σ2 from Σ using these rules. How this is accomplished will become

apparent when we introduce the domain dependent rules produced by the knowledge

laws.

7.2 The domain dependent translation

Value propositions of the form ‘initially f’ are translated into

holds(f, s0)

The translation of effect propositions of the form ‘a causes f if p1, . . . , pn’ is the

standard translation for effect propositions introduced by Gelfond and Lifschitz in

Gelfond and Lifschitz (1993) for A. The translation produces two rules. The first

one is

holds(f, res(a, S))← holds(p1, S), . . . , holds(pn, S)

It allows us to prove that f will hold after the result of the execution of a if

preconditions are satisfied. The second rule is

ab(f, a, S)← holds(p1, S), . . . , holds(pn, S), not holds(true, res(a, S))

where the predicate ab(f, a, S) disables the inertia rule in the cases where f can be

affected by a.

We will introduce the domain dependent translation of knowledge laws using the

following domain description.

Example 7.1

D0
1

{
r1 : initially ¬bulbFixed
r2 : checkSwitch causes to know switchOn if ¬burnOut
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In this example the initial situation is:

Σ = {{burnOut,¬bulbFixed, switchOn},
{burnOut,¬bulbFixed,¬switchOn},
{¬burnOut,¬bulbFixed, switchOn},
{¬burnOut,¬bulbFixed,¬switchOn}}

after the robot executes the action checkSwitch we will have the following resulting

situations:

Φ1(checkSwitch,Σ) = { {¬burnOut,¬bulbFixed, switchOn}}
Φ2(checkSwitch,Σ) = { {¬burnOut,¬bulbFixed,¬switchOn}}
Φ3(checkSwitch,Σ) = { {burnOut,¬bulbFixed, switchOn},

{burnOut,¬bulbFixed,¬switchOn}}
These correspond to the three (switchOn,¬burnOut)-compatible sub-sets of Σ (see

Definition 2.3). Note also that

Φ1(checkSwitch,Φ1(checkSwitch,Σ)) = Φ1(checkSwitch,Σ)

Φ2(checkSwitch,Φ2(checkSwitch,Σ)) = Φ2(checkSwitch,Σ)

Φ3(checkSwitch,Φ2(checkSwitch,Σ)) = Φ3(checkSwitch,Σ)

Our logic program translation of this domain will have three world views, one

corresponding to each of the transition functions Φ1 Φ2, and Φ3. Φ1 is depicted on

the left-hand side of Figure 2, Φ2 on the right hand side and Φ3 in the middle.

The world view associated with Φ1 on the left-hand side of the figure will have four

belief sets. One will contain the union of the two sets

W 1
s0

= {holds(burnOut, s0), holds(bulbFixed, s0), holds(switchOn, s0)}
and

W 1
res(cs,s0) = { holds(burnOut, res(checkSwitch, s0)),

holds(bulbFixed, res(checkSwitch, s0),

holds(switchOn, res(checkSwitch, s0))}
This union represents the fact that {¬burnOut,¬bulbFixed, switchOn} is an initial

state (encoded W 1
s0

) and that the same set is also a state in Φ1(checkSwitch,Σ)

(encoded in W 1
res(cs,s0)). The rest of the literals in W 1 are the same as in W 1

res(cs,s0)

except that the situation constant in each literal is replaced by situation constants of

the form res(checkSwitch, res(. . . , res(checkSwitch, s0) . . .)) representing that the state

remains the same after any number of applications of the action checkSwitch to the

state (the loop arc on the left of the figure).

The second belief set will contain

W 2
s0

= {holds(burnOut, s0), holds(bulbFixed, s0), holds(switchOn, s0)}
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¬switchOn
¬burnOut ¬bulbFixed

¬switchOn
¬burnOut ¬bulbFixed

switchOn

¬burnOut ¬bulbFixed
¬switchOn

burnOut ¬bulbFixed
switchOn

burnOut ¬bulbFixed
¬switchOn

Φ1

checkSwitch
Φ3

checkSwitch

checkSwitch
Φ1

Φ3
checkSwitch

burnOut ¬bulbFixed
switchOn

burnOut ¬bulbFixed

¬burnOut ¬bulbFixed
switchOn

checkSwitch

checkSwitch

Φ2

Φ2

Fig. 2

representing that {¬burnOut,¬bulbFixed,¬switchOn} is also an initial state. How-

ever, this state is not part of Φ1(checkSwitch,Σ). Then, we need to suppress this state

from the world view. We will do that by adding the set

W 2
res(cs,s0) = { holds(burnOut, res(checkSwitch, s0)),

holds(bulbFixed, res(checkSwitch, s0),

holds(switchOn, res(checkSwitch, s0))

} ⋃
{ holds(burnOut, res(checkSwitch, s0)),

holds(bulbFixed, res(checkSwitch, s0),

holds(switchOn, res(checkSwitch, s0)),

holds(true, res(checkSwitch, s0)}
to the belief set. Actually, we will have in the domain dependent translation a

rule that adds holds(true, res(checkSwithc, s0)), and the second domain independent

suppression rule will add the rest. The rest of the literals in W 2 are the same as

in W 2
res(cs,s0) except that the situation constant is replaced by situation constants of

the form res(checkSwitch, res(. . . , res(checkSwitch, s0) . . .)) representing that the state
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remains suppressed in the result of applying the action checkSwitch to the state. This

is the effect of the first domain independent suppression rule.

The other two belief sets W 3 and W 4 are similar to W 2:

W 3
s0

= {holds(burnOut, s0), holds(bulbFixed, s0), holds(switchOn, s0)}
W 4

s0
= {holds(burnOut, s0), holds(bulbFixed, s0), holds(switchOn, s0)}

The rest of W 3 and W 4 is exactly as in W 2 since the states they represent are also

suppressed from the result.

Note that both holds(f, res(checkSwitch, s0)) and holds(f, res(checkSwitch, s0)) are

members of the belief sets W 2, W 3 and W 4, for any fluent f. Therefore, for any

fluent literal g, the proof of holds(g, res(checkSwitch, s0) in the world view is not

affected by these belief sets. The consequence is that we are ignoring three states

after the execution of checkSwitch under the model Φ1.

There are two more world views that correspond to the transitions in the middle

and on the right-hand side of the figure. The definition is very similar to the first

world view. There are four belief sets in the middle, two of them suppressing initial

states, and four belief sets in the last world view, three of them suppressing initial

states.

Thus, the domain dependent translation of D0
1 will be:

holds(bulbFixed, s0)←
Rule x1 is the translation of rule r1. The rest of the rules correspond to the different

suppression cases since states that are not suppressed by the transition will be moved

to the next situation by the domain independent rule of inertia. Take for example,

Φ1:

Φ1(checkSwitch,Σ) = {σ ∈ Σ|σ |= ¬burnOut, switchOn ∈ σ}
Hence, we would like to suppress two kinds of states. 1) States where ¬switchOn is
true, and 2) States where burnOut is true. The rule for the first case is:

holds(true, res(checkSwitch, S)) ← Kholds(switchOn, res(checkSwitch, S))

Kholds(burnOut, res(checkSwitch, S)),

holds(switchOn, S) (11)

The first two literals in the body of the rule verify that we are in the case of Φ1,

that is, both switchOn and ¬burnOut are true in every state of the resulting situation

(i.e. the two literals Kholds(switchOn, res(checkSwitch, S)) and Kholds(burnOut, res

(checkSwitch, S)) are true). The last predicate checks that we are suppressing the

state where ¬switchOn is true in the current situation (i.e. holds(switchOn, S)).
The rule for the second case is very similar. We only need to change the last

literal to indicate that we are suppressing the state where burnOut is true (i.e.
holds(burnOut, S)):

holds(true, res(checkSwitch, S)) ← Kholds(switchOn, res(checkSwitch, S))

Kholds(burnOut, res(checkSwitch, S)),

holds(burnOut, S) (12)
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Let us look now at Φ2:

Φ2(checkSwitch,Σ) = {σ ∈ Σ|σ |= ¬burnOut, switchOn 6∈ σ}
We also suppress two kinds of states. 1) States where switchOn is true, and 2) States
where burnOut is true. We need to check that ¬switchOn and ¬burnOut are true in
every state of the resulting situation (i.e. Kholds(switchOn, res(checkSwitch, S)) and
Kholds(burnOut, res(checkSwitch, S)) are true) to verify that we are in the case of Φ2.
The rules for the cases are:

holds(true, res(checkSwitch, S)) ← Kholds(switchOn, res(checkSwitch, S))

Kholds(burnOut, res(checkSwitch, S)),

holds(switchOn, S)

holds(true, res(checkSwitch, S)) ← Kholds(switchOn, res(checkSwitch, S))

Kholds(burnOut, res(checkSwitch, S)),

holds(burnOut, S) (13)

For Φ3 all the states where ¬burnOut holds (i.e. holds(burnOut, S)) should be

suppressed since

Φ3(checkSwitch,Σ) = {σ ∈ Σ|σ 6|= ¬burnOut}
To verify that we are in the case of Φ3 we need to check there is at least one state
in the result where burnOut holds (i.e. ¬Kholds(burnOut, res(checkSwithc, S))). The
rule for this case is:

holds(true, res(checkSwitch, S)) ← ¬Kholds(burnOut, res(checkSwitch, S))

holds(burnOut, S) (14)

There is a condition that must be added to all the rules. The condition is that if the

fluent switchOn is already known in the original situation (for example if we have

initially ¬switchOn) then none of the states is suppressed from the situations. In

other words, the rules above applied only if switchOn is unknown. To check that this

is the case we must add to the body of each rule the literals ¬Kholds(switchOn, S)

and ¬Kholds(switchOn, S). These literals are not required in this particular example

but it must be part of the general case.
In general, knowledge laws of the form ‘a causes to know f if p1, . . . , pn’ are

translated into the rules:

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S),

¬Kholds(p1, res(a, S)),

holds(p1, S), . . . , holds(pn, S)

...

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S),

¬Kholds(pn, res(a, S)),

holds(p1, S), . . . , holds(pn, S) (15)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f̄, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(f, S) (16)

https://doi.org/10.1017/S1471068400001022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068400001022


Knowledge and the action description language A 153

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f̄, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(p̄1, S)

...

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f̄, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(p̄n, S) (17)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(f̄, S) (18)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(p̄1, S)

...

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f, res(a, S)),

Kholds(p1, res(a, S)), . . . , Kholds(pn, res(a, S)),

holds(p̄n, S) (19)

We have added to every rule the condition ¬Kholds(f, S),¬Kholds(f̄, S). None

of these rules apply if f is currently known. In this case, by inertia everything stays

the same after the execution of the sensing action a. Assume now that neither f

nor f̄ holds in the ‘situation’ S . Thus, according to the definition of compatibility

(Definition 2.3), we would have three types of world views. (1) One type for which

we can find a pi for each of the belief sets such holds(pi, res(a, S)) does not hold;

(2) World views in which Kholds(f̄, res(a, S)) and every Kholds(pi, res(a, S)) hold; (3)

World views in which Kholds(f, res(a, S)) and every Kholds(pi, res(a, S)) hold.

Intuitively, to capture these three cases the logic programming rules will suppress

the belief set that breaks the rules. To suppress a belief set in the situation res(a, S)

the rules will add holds(true, res(a, S)) to the belief set, and this atom together with

the second suppression rule will add holds(l, res(a, S)), for every fluent literal l. Recall

that the effect of having every literal hold for a particular situation in a belief set

is that the belief set can be ignored when checking if the literal holds in the world

view. Case (1) is captured by the first set of rules (15). Case (2) is captured by rule

(16) and the set of rules (17). Case (3) is captured by rule (18) and the set of rules

(19).

A non-deterministic effect proposition of the form ‘a may affect f if p1, . . . , pn’ is

translated into

holds(f, res(a, S))← not holds(f̄, res(a, S)),

holds(p1, S), . . . , holds(pn, S)

holds(f̄, res(a, S))← not holds(f, res(a, S)),

holds(p1, S), . . . , holds(pn, S)
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ab(f, a, S)← not holds(f̄, res(a, S)), holds(p1, S), . . . , holds(pn, S),

not holds(true, S)

ab(f, a, S)← not holds(f, res(a, S)), holds(p1, S), . . . , holds(pn, S),

not holds(true, S)

To illustrate this translation, we use Rule t6 from domain description D5, and show

how it will work from the initial situation s0. We also include the translation for

t8, holds(noDrops, s0) and holds(solidIce, s0) along with the inertia rule to get the

following program. Notice that the suppression rules do not apply here since we are

not considering any knowledge laws:

holds(solidIce, res(drop, s0))← not holds(solidIce, res(drop, s0)),

holds(noDrops, s0).

holds(solidIce, res(drop, s0))← not holds(solidIce, res(drop, s0)),

holds(noDrops, s0).

ab(solidIce, drop, s0)← not holds(solidIce, res(drop, s0)),

holds(noDrops, s0), not holds(true, s0).

ab(solidIce, drop, s0)← not holds(solidIce, res(drop, s0)),

holds(noDrops, s0), not holds(true, s0).

holds(noDrops, res(drop, s0))← holds(noDrops, s0).

ab(noDrops, drop, s0)← holds(noDrops, s0).

holds(noDrops, s0)←
holds(solidIce, s0)←
holds(noDrops, res(drop, s0))← holds(noDrops, s0),

not ab(noDrops, drop, s0).

holds(noDrops, res(drop, s0))← holds(noDrops, s0),

not ab(noDrops, drop, s0).

holds(solidIce, res(drop, s0))← holds(solidIce, s0),

not ab(solidIce, drop, s0).

holds(solidIce, res(drop, s0))← holds(solidIce, s0),

not ab(solidIce, drop, s0).

The program only has objective formulas. Thus, its semantics is given by its world

view which consists of belief sets (belief sets are the same as answer sets in extended

logic programs). The world view W of the above program is W = {B1, B2}
B1 = { holds(solidIce, res(drop, s0)), ab(solidIce, drop, s0),

holds(solidIce, s0), holds(noDrops, res(drop, s0)),

ab(noDrops, drop, s0), holds(noDrops, s0)

}
B2 = { holds(solidIce, res(drop, s0)), ab(solidIce, drop, s0),

holds(solidIce, s0), holds(noDrops, res(drop, s0)),

ab(noDrops, drop, s0), holds(noDrops, s0)

}
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Notice that the query holds(noDrops, res(drop, s0)) evaluates to true for the above

belief sets. If we were to ask the queries holds(solidIce, res(drop, s0)) or holds(solidIce,

res(drop, s0)), we see neither would be able to produce an answer of yes or no. Both

queries’ answer is unknown.

The recursion through negation provides the desired effect of two possible inter-

pretations for the effect of a in f (note that the two first rules of the example have

the form c← not b and b← not c and this program has two answer sets, one is {c}
and the other is {b}).

The translation of a domain D is defined as the union of the domain dependent

and domain independent rules.

7.3 General domains

The assumption that we made for simple domains was that for any sensing action

as and fluent f there is at most one knowledge law of the form

as causes to know f if p1, . . . , pn (20)

Suppose now we have the following domain

D

{
r1 : lookInRoom causes to know boardClean if curtainOpen

r2 : lookInRoom causes to know boardClean if lightOn

and assume we start with the following situation

Σ = {{boardClean, curtainOpen}, {boardClean, lightOn}, {boardClean}, {}}
There is one model Φ1 that will result in the states where the fluent boarClean

is true and the knowledge precondition curtainOpen ∨ lightOn of boardClean with
respect to lookInRoom is also true (this corresponds to the third case of compatibil-
ity).

Φ1(lookInRoom,Σ) = {{boardClean, curtainOpen}, {boardClean, lightOn}}
We will need a suppression rule similar to the rules in group (19) of the translation

of simple domains. The rule will be something like

holds(true, res(lookInRoom, S))

← ¬Kholds(boardClean, S),¬Kholds(boardClean, S),

Kholds(boardClean, res(lookInRoom, S)),

“Kholds(curtainOpen ∨ lightOn, res(lookInRoom, S))”,

holds(curtainOpen, S), holds(lightOn, S),

The question is how to encode “Kholds(curtainOpen ∨ lightOn, . . .)”? We will do

it by adding two rules to the program

holds(plookInRoomboardClean , S)← holds(curtainOpen, S)

holds(plookInRoomboardClean , S)← holds(lightOn, S)

Now the disjunction can be replaced by “Kholds(plookInRoomboardClean , res(lookInRoom, S))”.

The symbol plookInRoomboardClean is a new constant symbol not appearing anywhere else in the

program. We complete the program with the rule

holds(plookInRoomboardClean , S)← not holds(plookInRoomboardClean , S)
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and the translation becomes

holds(true, res(lookInRoom, S))

← ¬Kholds(boardClean, S),¬Kholds(boardClean, S),

Kholds(boardClean, res(lookInRoom, S)),

Kholds(plookInRoomboardClean , res(lookInRoom, S)),

holds(plookInRoomboardClean , S)

In general, if D is a domain description (not necessarily simple) then, for any sensing

action a and any fluent f, if ϕ1 ∨ . . . ∨ ϕm with ϕi = pi1 ∧ . . . ∧ piki , i = 1, . . . , m, is the

knowledge precondition of f with respect to a in the domain D, we will have a new

constant symbol paf in the language of the logic program. Then for the knowledge

laws:

a causes to know f if ϕ1

...

a causes to know f if ϕm

the domain dependent translation will have the rules:

holds(paf, S) ← holds(p1
1, S), . . . , holds(p1

k1
, S)

...

holds(paf, S) ← holds(pm1 , S), . . . , holds(pmkm , S) (21)

holds(paf, S) ← not holds(paf, S) (22)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S),

¬Kholds(paf, res(a, S)),

holds(paf, S) (23)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f̄, res(a, S)),

Kholds(paf, res(a, S)), holds(f, S) (24)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f̄, res(a, S)),

Kholds(paf, res(a, S)),

holds(paf, S) (25)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f, res(a, S)),

Kholds(paf, res(a, S)), holds(f̄, S) (26)

holds(true, res(a, S)) ← ¬Kholds(f, S),¬Kholds(f̄, S), Kholds(f, res(a, S)),

Kholds(paf, res(a, S)),

holds(paf, S) (27)

The set of rules (15) corresponds to rule (23). Rule (16) corresponds to rule (24).

The set of rules (17) correspond to rule (25). Rule (18) corresponds to rule (26) and

rule (19) corresponds to rule (27).

7.4 Query translation

To answer queries in the epistemic logic program we need to include rules to

implement the evaluation functions Γ. The query ‘f after α’ will be true in a
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consistent domain D if and only if holds after plan(f, α) is true in the epistemic

logic program obtained from D plus the rules:

holds after plan(F, P )

← find situation(P , s0, S), holds(F, S)

find situation([], S , S)

←
find situation([a|α], S , S1)

← find situation(α, res(a, S), S1)

find situation([ if ϕ then α1|α2], S , S1)

← Kholds(ϕ, S), find situation(α2, S , S1)

find situation([ if ϕ then α1|α2], S , S1)

← Kholds(ϕ, S), find situation(α1, S , S
′),

find situation(α2, S
′, S1)

find situation([ if ϕ then α1 else α′1|α2],

S , S1)

← Kholds(ϕ̄, S), find situation(α′1, S , S ′),
find situation(α2, S

′, S1)

find situation([ if ϕ then α1 else α′1|α2],

S , S1)

← Kholds(ϕ, S), find situation(α1, S , S
′),

find situation(α2, S
′, S1)

find situation([ while ϕ do α1|α2], S , S1)

← Kholds(ϕ̄, S),

find situation(α2, S , S1)

find situation([while ϕ do α1|α2], S , S1)

← Kholds(ϕ, S),

find situation(α1, S , S
′),

find situation([while ϕ do α1|α2], S ′, S1)

As you may note from the rules, holds after plan(F, P ) works in two steps. First,

it finds the situation s that results from applying P to the initial situation (using

find situation(P , s0, S)) and then shows that F holds in that situation. Since the

translation of the domain may have several world views the program needs to find

a situation for each world view. The following example illustrates how the process

works.

Example 7.2

D1
1



r1 : initially ¬burnOut
r2 : initially ¬bulbFixed
r3 : changeBulb causes burnOut if switchOn

r4 : changeBulb causes bulbFixed if ¬switchOn
r5 : turnSwitch causes switchOn if ¬switchOn
r6 : turnSwitch causes ¬switchOn if switchOn

r7 : checkSwitch causes to know switchOn if ¬burnOut
Assume we would like to show that

D1
1 |= bulbFixed after [ checkSwitch,

if switchOnthen [turnSwitch],

changeBulb]
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The states in the initial situation of this example are:

Σ = { {¬burnOut,¬bulbFixed, switchOn},
{¬burnOut,¬bulbFixed,¬switchOn}}

It has two models Φ1 and Φ2 that for the sensing action checkSwitch behave

very much like in Example 7.1. Then, the logic program translation of this do-

main has two world views. The world view W corresponding to Φ1 has two

belief sets W 1 and W 2, such that W 1
s0
∪ W 1

res(cs,s0) from Example 7.1 is a sub-

set of W 1 and W 2
s0
∪ W 2

res(cs,s0) is a subset of W 2. W 1 also contains the sets

W 1
res(ts,res(cs,s0)) =

{holds(burnOut, res(turnSwitch, res(checkSwitch, s0))),

holds(bulbFixed, res(turnSwitch, res(checkSwitch, s0)),

holds(switchOn, res(turnSwitch, res(checkSwitch, s0)))}
and

W 1
res(cb,res(ts,res(cs,s0))) =

{holds(burnOut, res(changeBulb, res(turnSwitch, res(checkSwitch, s0)))),

holds(bulbFixed, res(changeBulb, res(turnSwitch, res(checkSwitch, s0)))),

holds(switchOn, res(changeBulb, res(turnSwitch, res(checkSwitch, s0))))}
and W 2 the set

W 2
res(ts,(res(cs,s0))) = {holds(burnOut, res(turnSwitch, res(checkSwitch, s0))),

holds(bulbFixed, res(turnSwitch, res(checkSwitch, s0))),

holds(switchOn, res(turnSwitch, res(checkSwitch, s0)))}⋃
{holds(burnOut, res(turnSwitch, res(checkSwitch, s0))),

holds(bulbFixed, res(turnSwitch, res(checkSwitch, s0))),

holds(switchOn, res(turnSwitch, res(checkSwitch, s0))),

holds(true, res(turnSwitch, res(checkSwitch, s0)))}
There is also a similar set W 2

res(cb,res(ts,(res(cs,s0)))), with the same elements of

W 2
res(ts,(res(cs,s0))), replacing the situation argument with

res(changeBulb, res(turnSwitch, (res(checkSwitch, s0))))

This corresponds to the sequence

Σ,

Φ1(checkSwitch,Σ),

Φ1(turnSwitch,Φ1(checkSwitch,Σ)),

Φ1(changeBulb,Φ1(turnSwitch,Φ1(checkSwitch,Σ)))

Thus, in this world view the predicate

find situation([ checkSwitch,

if switchOn then [turnSwitch],

changeBulb], s0, S)
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will hold in W iff S = res(changeBulb, res(turnSwitch, res(checkSwitch, s0))). The

second step will check if

holds(bulbFixed, res(changeBulb, res(turnSwitch, res(checkSwitch, s0)))

is in W. The answer is yes since the atom belongs to both W 1 and W 2.

The world view associated with Φ2 is defined in a similar manner, but in this

world view S = res(changeBulb, res(checkSwitch, s0)).

Let ΠD be the epistemic logic program corresponding to the translation of a

domain description D, and denote by ΠQ
D the union of ΠD and the rules to interpret

queries given above. Then we can show:

Theorem 7.3

Given a consistent domain description D and a plan β. D |= F after β iff ΠQ
D |=

holds after plan(F, β).

Proof See the appendix.

8 Relation to other work

In Levesque (1996) there is also a programming language based on the situation

calculus which uses sensing actions. This work is based on previous work from

Scherl and Levesque (1993), in which knowledge is represented using two levels.

There is a representation of the actual situation (called s) in which the agent is in,

and there are situations accessible from s (called s′) which the agent thinks it might

be in. Something is known to the agent as being true (false) if it is true (false) in

all situations s′ which are accessible from the actual situation s and is unknown

otherwise. In other words Scherl and Levesque (1993) distinguish between what is

known by the agent and what is true in world. We only represent what is know by

the agent, and assume that this knowledge might be incomplete, but always correct.

Something is known in our representation if its value is the same throughout the

states in a situation and unknown otherwise.

Levesque (1996) and Scherl and Levesque (1993) use preconditions which are

executability conditions for an action’s execution. For example, a precondition to

clean a white-board is one must be in front of the white-board. Our preconditions

differ in that they are conditions on the effects. We can always execute an action, but

its effect varies according to its precondition in the effect propositions. Extending

Ak to include executability conditions can be done as for extensions of A. The use

of conditions on effects, however, allows us to represent a phenomenon of sensing

in which the value of previously unknown preconditions are learned along with the

fluent we are trying to gain knowledge about. This is shown in examples 2.4 and 2.8

where the robot will know whether or not it is facing the door after executing the

action look.

In Levesque (1996), once knowledge is gained it is never lost. We, on the other

hand, explore the use of non-deterministic actions as a mechanism to remove

knowledge. Our use of non-deterministic actions is similar to Thielscher (1994),

where the effect of a non-deterministic action is to make a fluent true or false, but
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exactly which is indeterminate. As might be expected, there are cases where the

possible outcome is not intuitive. Take for example a deterministic action Shoot that

causes Ollie to be dead. Any observation, which depends on Ollie being alive, such

as ‘Ollie is walking’ can be made false using the same action Shoot. Shoot can be

used as a restriction which causes Ollie not to walk. In the resulting situation, Ollie

will not be alive and therefore will not be walking around. This is not the case when

Shoot has the non-deterministic effect of making Ollie dead or leaving Ollie alive

(suppose that the gun is not working well). With the same restriction, Ollie may

be dead and not walking in one situation and alive and not walking in the other.

Assuming one can walk as long as one is alive, then the later situation makes no

sense. The same holds true without the restriction but this time Ollie will be dead

and walking in one situation. If shoot also has a non-deterministic effect on walking,

we are no better off.

These cases are prevented with integrity constraints as in Kartha and Lifschitz

(1994). Our language could be extended to include constraints as in Baral et al. (1997)

but our interest in non-determinism is its effect on knowledge. We discuss the topic

of integrity constraints in Section 9.

Most translations for dialects ofA are to extended logic programs. Our translation

is to epistemic logic programs because of its ability to represent knowledge and

incomplete information. To the best of our knowledge this is the first use of

epistemic logic programs in a translation from action languages. The closest work

related to our results is presented in Baral and Son (1997). In that paper A is

also extended to handle sensing actions but the semantics is some what limited

because they work with a three value semantics and only approximate knowledge.

Furthermore, in their language sensing actions have no conditional effects. These

restrictions allow Baral and Son to write translations into extended logic programs.

Showing whether is possible to find a translation into extended logic programs or

first order logic of our domains is an open question.

9 Future work

We already mentioned the need to clarify the complexity of adding sensing actions to

domain descriptions. Our translation suggests that it might be computationally more

complex to deal with conditional sensing actions than sensing with no conditions.

Two other possible directions of research are: first, the ability of an agent to

query itself about what it knows (i.e introspection). This is useful when the cost of

executing a series of plans is expensive maybe in terms of time. Allowing an agent

to query whether it knows that it knows something may be a cheaper alternative

and cost effective. The use of a modal operator as shown below may be sufficient to

accomplish this.

if ¬knows(ϕ) then [α] (28)

where ϕ is a test condition (as defined in Section 5), α a plan, and knows(ϕ) would

be an introspective operator on the test condition.

https://doi.org/10.1017/S1471068400001022 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068400001022


Knowledge and the action description language A 161

Take for example Agent A in Fig. 1 from Section 2. Agent A knows that Ollie is

wet (denoted by wet), but does not know if it is raining outside (denoted by rain).

Agent A would have to find a window and then look out that window to see if it

is raining outside. Suppose the program or control module for finding a window in

a building is long and very costly as far as battery power, Agent A would have to

find a window and then check for rain. Agent B would benefit from the conditional

if ¬knows(ϕ) then [findWindow, lookOutside]

Without an introspective operator, both Agent A and Agent B would have to find

a window and then look outside. Agent B can save on battery power if it has the

ability to query itself on what it knows.

Secondly, we could investigate expanding the initial epistemic state. At present,

domains only may start from a situation with only one initial epistemic state. For

more states or to represent multiple initial situations in a domain, the language to

describe domains must be extended with modal operators.

As mentioned earlier in this paper, integrity constraints could be added. Integrity

constraints define dependency relationships between fluents. Taking the example

from the previous section, walking depends on Ollie being alive. This could be

represented following the approach outlined in Kartha and Lifschitz (1994) and

Lifschitz (1996):

never ϕ if ψ (29)

where ϕ and ψ are conjunctions of fluent literals. It states that ϕ can not be true

when ψ is true. Our example with Ollie would look like this

never walking if ¬alive
Conditions of effect are used throughout this paper. An example of a executability

condition is the fact that one has to be at a light bulb to change the light bulb.

Executability conditions found in Lifschitz (1996) could be implemented using the

methods found in Kartha and Lifschitz (1994) and Lifschitz (1996):

impossible A if ψ (30)

where A is an action and ψ is a conjunction of fluent literals. The execution of

action A cannot take place as long as ψ is true.

Using (30) we could express the constraint that in order to change the bulb, one

has to be at the lamp as

impossible changeBulb if ¬atLamp
This paper will conclude with three thoughts. One is relaxing the assumption

that an agent has incomplete but always correct knowledge of its world. One could

imagine the agent not only reasoning on information that it knows is true, but also

reasoning on what it believes is true. At present we have not explored this topic.

The other idea is given thatAk is a high level action description language that deals

with incomplete information across multiple possible worlds, it stands to reason that

Ak could be translated to formalisms, such as Levesque’s (Levesque, 1996; Scherl
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and Levesque, 1993) or autoepistemic logic (Moore, 1985; Marek and Truszczynski,

1991), which also hold this property. The third refers to the termination of routines;

there are certain tasks for which routines can be limited by a sensing action that

determines the ‘size’ of the problem. Take for example the number of pages in a

book or the number of doors on the second floor of an office building. The number

of pages contained in a book will ensure the termination of a search for a word

through that book. The same applies to the number of doors on the second floor

with respect to a security routine which checks that all the doors on the second floor

are locked. For this type of task, a counter is sufficient. To include counters, we do

not require constraints but variables in Ak . These loops correspond to for-loops in

regular programming languages. Consider the situation described in Section 5.4. On

the floor of a room there are cans. An agent is given an empty bag and instructed

to fill the bag with cans. We assume that there are more than enough cans on the

floor to fill the bag. We can model the space left in the bag by having initially true

one (and only one) of the following fluents:

spaceLeft(0)

spaceLeft(s(0))
...

spaceLeft(sn(0))
...

The effect of drop can be now described by the effect proposition:

r1 : drop causes spaceLeft(x) if spaceLeft(s(x))

However, we need to restrict the world to only allow one spaceLeft fluent to be true

at any moment. This can be described with a constraint of the form

never spaceLeft(x) ∧ spaceLeft(y) if x 6= y

Note that the constraint encodes a ramification of drop since not only the execution

of the action drop makes spaceLeft(x) true, but also indirectly causes spaceLeft(s(x))

to become false.

An orthogonal problem to the issue of constraints, is that we still need in our

domain a value proposition that tells us how much space we initially have in the

bag. Adding the initial value proposition is not a completely satisfactory solution

since the plan

while nospaceLeft(0) do [dropCanInBag]

fills the bag irrespectively of the initial situation and (in normal circumstances) the

plan will always terminate. Furthermore, in a realistic setting, plans need to consider

limitation of resources. Plans may need to limit the amount of time devoted to any

task or limit the amount of energy that can be used. These bounds can be applied

to all tasks, but still a counter is required. Further research in termination, specially

in a common-sense approach to proof of termination is necessary to deal with loops

in plans.
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A While-evaluation function

Definition A.1

Let E be the set of all situations and P the set of all total functions f mapping

situations into situations, P = {f | f : E → E }. We say that for any pair of functions

f1, f2 ∈ P, f1 6 f2 if and only if for any Σ ∈ E if f1(Σ) 6= ∅, then f1(Σ) = f2(Σ).

The next proposition follows from the above definition.

Proposition A.2

The above relation 6 defines a partial order in P.

Moreover, this partial order is a complete semi-lattice with the bottom element

equal to the function that maps every situation to ∅. We will denote the bottom

element by f∅.

Definition A.3

Let α be a plan and Γ a function that maps plans and situations into situations. Let

ϕ be a conjunction of fluent literals. Then, we define the function FΓ
α,ϕ : P → P

such that for any function f ∈ P,

FΓ
α,ϕ(f)(Σ) =


Σ if ϕ is false in Σ

f(Γ(α,Σ)) if ϕ is true in Σ

∅ otherwise

Our goal is to show that FΓ
α,ϕ is continuous. For this, we will need to show that

for any directed set D ⊆ P, the least upper bound of D, denoted by
⊔
D exists, and

that FΓ
α,ϕ(
⊔
D) =

⊔{FΓ
α,ϕ(d) | d ∈ D}. A directed set is a set such that for any finite

subset of it, the least upper bound of that set exists, and belongs to the directed set.

The existence of
⊔
D follows from the following proposition.

Proposition A.4

Let D be a directed subset of P, and let d ∈ D. If d(Σ) = Σ
′ 6= ∅, for a situation Σ,

then for any d
′ ∈ D either d

′
(Σ) = ∅ or d

′
(Σ) = Σ

′
.

It follows from this proposition that,⊔
D(Σ) =

{ ∅ if ∀d ∈ D, d(Σ) = ∅
Σ
′

if ∃d ∈ D such that d(Σ) = Σ
′

and Σ 6= ∅
A similar function is defined by

⊔{FΓ
α,ϕ(d) | d ∈ D}. This function will be used in

the proof of the following theorem.

Theorem A.5

For any plan α and any conjunction of fluent literals ϕ, the function FΓ
α,ϕ is

continuous with respect to the order 6.
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Proof

Let
⊔FΓ

α,ϕ[D] denote the function
⊔{FΓ

α,ϕ(d) | d ∈ D}. To prove the theorem, it

suffices to show that, for any directed set D ⊆ P, FΓ
α,ϕ(
⊔
D) =

⊔FΓ
α,ϕ[D]. Let Σ be

a situation.

(a) If ϕ is false in Σ then for any f ∈ P, FΓ
α,ϕ(f)(Σ) = Σ. Hence,

FΓ
α,ϕ(
⊔
D)(Σ) = Σ =

⊔FΓ
α,ϕ[D](Σ).

(b) If ϕ is true in Σ, then FΓ
α,ϕ(
⊔
D)(Σ) =

⊔
D(Γ(α,Σ)). Let

⊔FΓ
α,ϕ[D](Σ) = Σ

′
.

By Proposition A.4, Σ
′

= ∅ iff FΓ
α,ϕ(d)(Σ) = ∅, for any d ∈ D since FΓ

α,ϕ(d)(Σ) =

d(Γ(α,Σ)) and D is directed. Therefore, FΓ
α,ϕ(
⊔
D)(Σ) must be ∅. If Σ

′ 6= ∅, then for

every d ∈ D such that FΓ
α,ϕ(d)(Σ) 6= ∅, it must be the case that FΓ

α,ϕ(d)(Σ) = Σ
′

since

FΓ
α,ϕ(d)(Σ) = d(Γ(α,Σ)) and D is directed. Then FΓ

α,ϕ(
⊔
D)(Σ) = Σ

′
.

(c) When ϕ is neither true nor false in Σ, the proof is similar to part (a) since

FΓ
α,ϕ(f)(Σ) = ∅ for any f ∈ P. q

We define the powers of FΓ
α,ϕ as follows:

1. FΓ
α,ϕ ↑ 0 = f∅.

2. FΓ
α,ϕ ↑ n+ 1 =FΓ

α,ϕ(FΓ
α,ϕ ↑ n).

3. FΓ
α,ϕ ↑ ω =

⊔{FΓ
α,ϕ ↑ n | n 6 ω}.

From the continuity of FΓ
α,ϕ the corollary below follows.

Corollary A.6

The least fix-point of FΓ
α,ϕ is FΓ

α,ϕ ↑ ω.

B Proofs

In this section we present the proof of Theorem 7.3 by givingn a detailed proof

of the correctness of the translation for simple domains. The proof for the general

case is a direct extension. In our proofs we will use the splitting lemma of extending

logic programs (Lifschitz and Turner, 1994). For completeness we will include some

definitions and the statement of the lemma below.

Consider a nonempty set of symbols called atoms. A literal is an atom possibly

preceded by the classical negation symbol ¬. A rule is determined by three finite

set of literals – the set of head literals , the set of positive subgoals and the set of

negated subgoals. The rule with the head literals L1, . . . , Lq , the positive subgoals

Li+1, . . . , Lm and the negated subgoals Lm+1, . . . , Ln is written as

L1 or . . . or Lq ← Lq+1, . . . , Lm, not Lm+1, . . . , Ln

The three parts of a rule r are denoted by head(r), pos(r) and neg(r); lit(r) stands

for head(r) ∪ pos(r) ∪ neg(r).
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Definition B.1

(Splitting set) (Lifschitz and Turner, 1994) A splitting set for a logic program Π

is any set U of literals such that, for every rule r ∈ Π, if head(r) ∩ U 6= ∅ then

lit(r) ⊆ U. If U is a splitting set for Π, we also say that U splits Π. The set of rules

r ∈ Π such that lit(r) ⊆ U is called the bottom of Π relative to the splitting set U

and is denoted by bU(Π). The subprogram Π− bU(Π) is called the top of Π relative

to U.

Definition B.2

(Partial evaluation) (Lifschitz and Turner, 1994) The partial evaluation of a program

Π with splitting set U w.r.t. a set of literals X is the program eU(Π, X) defined as

follows. For each rule r ∈ Π such that:

(pos(r) ∩U) ⊆ X ∧ (neg(r) ∩U) ∩X = ∅
put in eu(Π, X) the rule r′ which satisfies the following property:

head(r′) = head(r), pos(r′) = pos(r)−U, neg(r′) = neg(r)−U.

Definition B.3

(Solution) (Lifschitz and Turner, 1994) Let U be a splitting set for a program Π. A

solution to Π w.r.t. U is a pair (X,Y ) of sets of literals such that:

• X is an answer set for for bU(Π);

• Y is an answer set for eU(Π − bU(Π), X);

• X ∪ Y is consistent.

Lemma B.4

(Splitting lemma) (Lifschitz and Turner, 1994) Let U be a splitting set for a program

Π. A set A of literals is a consistent answer set of Π if and only if A = X ∪ Y for

some solution (X,Y ) to Π w.r.t. U.

From now on we will refer to the simple domain description 20, as domain descrip-

tion to simplify the statements.

The proof of Theorem 7.3 (Theorem: Given a consistent domain description D and

a plan β. D |= F after β iff ΠQ
D |= holds after plan(F, β).) is organized as follows:

1. First, we will prove that the epistemic logic program translation models cor-

rectly the execution of a single non-sensing action. Intuitively this can be done

by looking at all the predicates of the form holds(f, res(a, s0)), for any non-

sensing action a. Furthermore, we should be able to replace the initial constant

s0 with any fixed situation constant s of the form res(a1, . . . , res(ak, s0) . . .). In

the proof we will show that given any situation constant s, state σ, and 0-

model of the domain Φ0, we can find a sub-set of the program ground(ΠD)

in which assuming s to be the initial situation constant one of its belief sets

corresponds to Φ0. We will also prove the other direction. That is, for any

belief set of the mentioned sub-set of ground(ΠD), there exists a corresponding

function Φ0, 0-model of D. This covers the general case of a single non-sensing

action applied to a situation since, by the definition of 2.7, this reduces to the

application of 0-interpretations to each of the states in the situation.
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2. The second part of the proof extends the first part to cover the execution

of sensing actions. In this case the sub-set of ground(ΠD) includes rules with

the modal operator K . We show that each world view of the sub-program

corresponds to an interpretation Φ, model of D. We also show that for any

model Φ of D there is an associated world view of the sub-program.

3. The next step extends step 2 from the application of a single action to the

application of any sequence of actions by induction.

4. The final step extends the proof from sequence a of actions to complex plans.

The proof shows by structural induction on the complexity of the plans that

given a fixed world view any plan (that terminates) can be reduced to the

execution of a sequence of actions.

Given a situation constant s, denote by Π1
(D,s) the subprogram of Ground(ΠD) that

is restricted to those rules in ground(ΠD), such that either the only situation constant

appearing in the heads is of the form res(a, s) for an action symbol a, or is of the

form ab(f, a, s) for a fluent literal f and action symbol a.

For any possible action a, we will denote by Π1
(D,a,s) the subprogram of Π1

(D,s) that

is restricted to those rules in ΠD that only involve the action a in its predicates,

besides other action symbols occurring in s. We call a domain description a universal

domain if there are no value propositions in the domain. Given a universal domain

description D, and state σ, we denote by Dσ the domain consisting of D∪{initially f :

f ∈ σ} ∪ {initially ¬f : f 6∈ σ}.
Definition B.5

For a domain description D, let σ be a state, s a situation constant, and Φ0 a

0-interpretation, We define the set of literals A(Φ0 ,σ,s) as follows:

For any action a and any fluent f,

1. holds(f, s) ∈ A(Φ0 ,σ,s) ⇐⇒ f ∈ σ,

2. holds(f̄, s) ∈ A(Φ0 ,σ,s) ⇐⇒ f 6∈ σ,

3. holds(f, res(a, s)) ∈ A(Φ0 ,σ,s) ⇐⇒ f ∈ Φ0(a, σ),

4. holds(f̄, res(a, s)) ∈ A(Φ0 ,σ,s) ⇐⇒ f 6∈ Φ0(a, σ).

5. ab(f, a, σ) ∈ A(Φ0 ,σ,s) if and only if there exists an object effect proposition of

the form

a causes f if p1 . . . pm

such that p1 . . . pm holds in σ or a non deterministic effect proposition of the

form

a may affectf if p1, . . . , pm

in D such that p1, . . . , pm holds in σ and f holds Φ0(a, σ).

6. ab(f̄, a, σ) ∈ A(Φ0 ,σ,s) if and only if there exists an object effect proposition of

the form

a causes ¬f if p1 . . . pm

such that p1 . . . pm or a non deterministic effect proposition of the form

a may affectf if p1, . . . , pm
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in D such that p1, . . . , pm and f does not hold in Φ0(a, σ).

Nothing else belongs to A(Φ0 ,σ,s).

Definition B.6

Let D be a domain description, Φ0 a 0-interpretation, and σ a state. We will say that

the pair (Φ0, σ) is a 0-specific model of the domain description D if σ is an initial

state of D and Φ0 one of its 0-models.

In the next two theorems we will prove that the logic program models correctly

the execution of a single non-sensing action.

Theorem B.7

Let D be a consistent universal domain description with no knowledge laws, and

σ a state. If (Φ0, σ) is a 0-specific model of Dσ , then A(Φ0 ,σ,s) satisfies every rule in

Π1
D(σ,s)

, for any situation constant s.

Proof

Assume that (Φ0, σ) is a 0-specific model of Dσ . Then any fact holds(f, s) or holds(f̄, s)

in Π1
(Dσ,s)

is such that either holds(f, s) is in A(Φ0 ,σ,s) or holds(f̄, s) is in A(Φ0 ,σ,s), which

is obvious. Furthermore, for any literal of the form holds(f, s) (resp. holds(f̄, s))

in Π1
(Dσ,s)

obtained from the translation of a proposition of the form initially f

(resp. initially ¬f), we will have by construction that holds(f, s) ∈ A(Φ0 ,σ,s) (resp.

holds(f̄, s) ∈ A(Φ0 ,σ,s)). Now, let us take a pair of rules of the form

holds(f, res(a, s))← holds(p1, s) . . . , holds(pm, s)

ab(f, a, s)← holds(p1, s), . . . , holds(pm, s), not holds(true, s)

obtained from the translation of a proposition of the form

a causes f if p1, . . . , pm,

and assume that holds(p1, s), . . . , holds(pm, s) ∈ A(Φ0 ,σ,s). Then by construction,

p1, . . . , pm holds in σ and holds(true, s) 6∈ A(Φ0 ,σ,s). Therefore ab(f, a, s) ∈ A(Φ0 ,σ,s)

and f is in Φ0(a, σ). Consequently, holds(f, res(a, s)) holds in A(Φ0 ,σ,s).

The rules:

holds(true, res(A, S))← holds(true, S)

holds(F, S)← holds(true, S)

are trivially satisfied since there are no atoms of the form holds(true, s) in A(Φ0 ,σ,s).

Now we will make several considerations on A(Φ0 ,σ,s) to evaluate the other rules

(ground instances of the inertia rule and rules obtained from the translation of

non-deterministic effect propositions):

1. ab(f, a, s) holds in A(Φ0 ,σ,s)

Any rule of the form holds(f̄, res(a, s)) ← holds(f, s), not ab(f, a, s) (instance

of the inertia rule) is removed from Π1
(Dσ,s)

to verify that A(Φ0 ,σ,s) is a belief
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set of Π1
(Dσ,s)

. Moreover, by the definition of A(Φ0 ,σ,s), there must be an effect

proposition with one of the following forms

a causes f if p1, . . . , pm

with p1, . . . , pm true in σ or

a may affectf if p1, . . . , pm

in Dσ with p1, . . . , pm true in σ and holds(f, res(a, s)) member of A(Φ0 ,σ,s) by case

(3) above. So any pair of rules of the form

ab(f, a, s)← not holds(f̄, res(a, s)),

holds(p1, s)), . . . holds(pn, s)), not holds(true, s)

holds(f, res(a, s))← not holds(f̄, res(a, s)),

holds(p1, s), . . . holds(pn, s)

coming from the translation of a non-deterministic effect proposition of the

form

a may affectf if p1, . . . , pm

will be trivially satisfied in A(Φ0 ,σ,s). The other two rules obtained from the

non-deterministic effect propositions are of the form

ab(f̄, a, s)← not holds(f, res(a, s)),

holds(p1, s)), . . . , holds(pn, s), not holds(true, s)

holds(f̄, res(a, s))← not holds(f, res(a, s)),

holds(p1, s), . . . holds(pn, s)

and they will also be removed from Π1
(Dσ,s)

to verify that A(Φ0 ,σ,s) is a belief set

of Π1
(Dσ,s)

, since holds(f̄, res(a, s)) ∈ A(Φ0 ,σ,s), and this concludes the proof for

this case.

2. ab(f̄, a, s) holds in A(Φ0 ,σ,s)

Similar to previous case.

3. Neither ab(f, a, s) nor ab(f̄, a, s) are in A(Φ0 ,σ,s)

In this case we will have no effect propositions of the form:

• a causes f if p1, . . . , pn
• a causes f̄ if p1, . . . , pn
• a may affectf if p1, . . . , pn

in Dσ with p1, . . . , pn true in σ. Therefore any rule r in Π1
(Dσ,s)

with predicates

involving not , a and f, will be such that the body of r does not hold in

A(Φ0 ,σ,s), unless, possibly for those rules of the form

holds(f, res(a, s))← holds(f, s), not ab(f̄, a, s)

holds(f̄, res(a, s))← holds(f̄, s), not ab(f, a, s)

instances of the inertia rule. So we will verify these by cases,

• holds(f, s) holds in A(Φ0 ,σ,s), then holds(f̄, s) does not belong to A(Φ0 ,σ,s) and

there is nothing to verify for the second rule. The first rule is transformed

into
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holds(f, res(a, s))← holds(f, s) and it is satisfied by A(Φ0 ,σ,s) because f is

in σ and since there are no effect propositions of the above types, and f is

true in Φ0(a, s), by definition of A(Φ0 ,σ,s), we have holds(f, res(a, s)) ∈ A(Φ0 ,σ,s).

• holds(f̄, s) holds in A(Φ0 ,σ,s)

The proof is similar to the previous case.

Theorem B.8

Let D be a consistent universal domain description with no knowledge laws, and σ

be a state. If (Φ0, σ) is a 0-specific model of Dσ , then A(Φ0 ,σ,s) is a belief set of Π1
D(σ,s)

,

for any situation constant s.

By the above theorem we just need to prove that A(Φ0 ,σ,s) is minimal in the family

of models of Π1
D(σ,s)

. Let B be a proper subset of A(Φ0 ,σ,s) and Q some predicate in

A(Φ0 ,σ,s) \ B. Then Q could be a literal of one of the following five types:

(i) Q = holds(f, s), in this case there will be a fact in Π1
(Dσ,s)

not covered by B, so

it would not be a belief set of Π1
(Dσ,s)

.

(ii) Q = holds(f, res(a, s)). f ∈ Φ0(a, σ) since Q is in A(Φ0 ,σ,s),
7 therefore,

— If there is a rule ‘a causes f if p1, . . . , pm’ in Dσ with p1, . . . , pm hold-

ing in σ, there is a rule holds(f, res(a, s)) ← holds(p1, s), . . . , holds(pm, s)

in Π1
(Dσ,s)

with holds(p1, s) . . . , holds(pm, s) members of A(Φ0 ,σ,s) and by (i),

holds(p1, s) . . . , holds(pm, s) hold in B, therefore this rule will not be satisfied

in B.

— If there is a rule a may affectf if p1, . . . , pm with p1, . . . , pm in σ, since

holds(f̄, res(a, s)) can not be in B (otherwise A(Φ0 ,σ,s) would be inconsistent)

and holds(f, res(a, s)) is not in B, we will have that B does not satisfies the

rule holds(f, res(a, s))← not holds(f̄, res(a, s)), holds(p1, s), . . . , holds(pm, s).

— If there are no effect propositions in Dσ involving a and f, then, we have

that f is in σ, because in this case f ∈ Φ0(a, σ) if and only if f ∈ σ, and the

rule that will not be satisfied by B is the (ground instance of the) inertia

rule holds(f, res(a, s))← holds(f, s), not ab(f̄, a, s).

(iii) Q = holds(f̄, res(a, s))

The proof of this case is similar to the previous case.

(iv) Q = ab(f, a, s)

In this case we have that there is either an effect proposition of the form

a causes f if p1, . . . , pm

with p1, . . . , pm true in σ or

a may affectf if p1, . . . , pm

in Dσ with p1, . . . , pm true in σ, and holds(f, res(a, s)) ∈ A(Φ0 ,σ,s).

7 Note that by consistence of Dσ (we are assuming that (Φ0, σ) is a 0-specific model) there is no rule of
the form ‘a causes ¬f if p1, . . . , pm’ in Dσ with p1, . . . pm holding in σ.
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Hence, one of the following two rules are not satisfied in B

ab(f, a, s)← holds(p1, s) . . . holds(pm, s), not holds(true, s)

ab(f, a, s)← not holds(f̄, res(a, s)),

holds(p1, s), . . . , holds(pm, s), not holds(true, s).

(v) Q = ab(f̄, a, s).

Similar to previous case.

We prove completeness in two steps. First, we show that if a belief set of Π1
(Dσ,s)

is

defined as in Defintion B.5 then (Φ0, σ) is a 0-specific model of Dσ . Then we show

that every belief set of Π1
(Dσ,s)

must be of this form.

Theorem B.9

Let D be a consistent universal domain description with no knowledge laws, Φ0 a

0-interpretation, and σ a state. If A(Φ0 ,σ,s) is a belief set of Π1
(Dσ,s)

, then (Φ0, σ) is a

0-specific model of Dσ .

Proof

Let A(Φ0 ,σ,s) be a belief set of Π1
(Dσ,s)

. Clearly, by construction, σ is an initial state

of Dσ . Now let f be a fluent such that there is an effect proposition of the form

‘a causes f if p1, . . . , pm’ in Dσ , and assume that p1, . . . , pm hold in σ. Then, by

construction, there is a rule of the form

holds(f, res(a, s))← holds(p1, s), . . . , holds(pm, s)

in Π1
(Dσ,s)

such that holds(p1, s), . . . , holds(pm, s) ∈ A(Φ0 ,σ,s).

Therefore holds(f, res(a, s)) ∈ A(Φ0 ,σ,s) and hence f ∈ Φ0(a, σ). The proof is analo-

gous for effect propositions of the form a causes ¬f if p1, . . . , pm. If f is a fluent such

that there are no effect propositions of the above two types we have two possible

situations:

(i) If there are no non-deterministic effect propositions of the form

a may affectf if p1, . . . , pm

with p1, . . . , pm holding in σ, we will have that there are no rules in Π1
(Dσ,s)

such that

ab(f, a, s) appears in the head of the rule and whose body holds in A(Φ0 ,σ,s). Therefore

by the rules

holds(f, res(a, s))← holds(f, s), not ab(f, a, s) and

holds(f̄, res(a, s))← holds(f̄, s), not ab(f, a, s),

(ground instances of the inertia rule), we will have that either holds(f, res(a, s)) is

in A(Φ0 ,σ,s) or holds(f̄, res(a, s)) is in A(Φ0 ,σ,s), since either f ∈ σ or f 6∈ σ, forc-

ing either holds(f, s) or holds(f̄, s) to be in A(Φ0 ,σ,s). Thus, holds(f, res(a, s)) (resp.

holds(f̄, res(a, s))) is in A(Φ0 ,σ,s) if and only if holds(f, s) (resp. holds(f̄, s)) is in A(Φ0 ,σ,s).

Therefore f ∈ Φ0(a, σ) if and only if f is in σ.

(ii) On the other hand, if there is a proposition of the form

a may affectf if p1, . . . , pm
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in Dσ with p1, . . . , pm holding in σ, by construction, we will have in Π1
(Dσ,s)

the

following rules

:

holds(f, res(a, s)) ← not holds(f̄, res(a, s)),

holds(p1, s), . . . , holds(pm, s)

holds(f̄, res(a, s)) ← not holds(f, res(a, s)),

holds(p1, s), . . . , holds(pm, s)

ab(f, res(a, s)) ← not holds(f̄, res(a, s)), not holds(true, s),

holds(p1, s), . . . , holds(pm, s)

ab(f̄, an, res(a, s)) ← not holds(f, res(a, s)), not holds(true, s),

holds(p1, s), . . . , holds(pm, s)

Thus, since A(Φ0 ,σ,s) is a belief set of Π1
(Dσ,s)

and the holds(pi, s) are assumed to

belong to A(Φ0 ,σ,s) for every i, then either holds(f, res(a, s)) or holds(f̄, res(a, s)) must

be in A(Φ0 ,σ,s), but not both. Therefore it does not matter if f is or is not part of

Φ0(a, σ). Hence (Φ0, σ) is a 0-specific model of Dσ .

Observe that for any domain description D, any state σ and any initial situation

constant s, a set of predicates A will be a belief set of Π1
(D,s) if and only if A is the union

of belief sets of Π(D,s,a), for each possible action a. A =
⋃{Aa : a is a possible action}

with each Aa a belief set of Π(D,s,a). This is because if a1 and a2 are two different

actions then none of the predicates in rules in Π(D,s,a1) appear in any predicate of

any rule in Π(D,s,a2), so the computation of the belief sets for one of the programs

does not affect the computation for the other one.

Theorem B.10

Given a consistent domain description D, and a situation constant s. If A is a belief

set for Π1
(D,s) , then there exists a state σ, and a 0-specific model Φ0 of Dσ such that

A = A(Φ0 ,σ,s).

Proof

By definition of Π1
D,s, A must be complete. That is, for any fluent f we have that either

holds(f, s) is in A or holds(f̄, s) is in A. Thus, if we let σ = {f : holds(f, s) ∈ A} and Φ0

be such that for any possible action a, f ∈ Φ0(a, σ) if and only if holds(f, res(a, s)) ∈ A,

we will have by completeness that f 6∈ σ if and only if holds(f̄, s) is in A and

f 6∈ Φ0(a, s) if and only if holds(f̄, res(a, s)) ∈ A. Moreover, if some predicate

ab(f, a, s) is in A then one of the following facts holds:

• There is a rule in Π1
(D,s) whose body is

holds(p1, s), . . . , holds(pm, s), not holds(true, s)

and whose head is ab(f, a, s) such that holds(pi, s) ∈ A for any i = 1, . . . , m,

and holds(true, s) 6∈ A. Thus, there must be an effect proposition of the form

‘a causes f if p1, . . . , pm’ in D with p1, . . . , pm true in σ.

• There is a rule in Π1
(D,s) whose body is

not holds(f̄, res(a, s)), holds(p1, s), . . . , holds(pm, s), not holds(true, s) whose head
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is ab(f, a, s) such that holds(f, res(a, s)) and each holds(pi, s) are in A, for each

i = 1, . . . , m, and holds(true, s) is not in A. In this case there exists a non-

deterministic effect proposition of the form ‘a may affectf if p1, . . . , pm’ in D

with f, p1, . . . pm true in σ.

If for some fluent f, ab(f, a, s) is in A, we will have by similar reasons that there

exists a proposition of the form

a causes ¬f if p1, . . . , pm or a may affectf if p1, . . . , pm

in D such that p1, . . . , pm hold in σ and f 6∈ Φ0(a, σ).

So we have proved that A = A(Φ0 ,σ,s), and by Theorem B.10, (Φ0, σ) is a 0-specific

model.

We now extend the proof to handle sensing actions. Let Mod0(D,Σ) denote the

set {(Φ0, σ) : 0-specific model of D, σ ∈ Σ}, where Σ is the set of initial states of

D. Note that the set can be empty if there is no state in Σ that is an initial state of

D.

Definition B.11

Given a consistent situation Σ, and an interpretation Φ. (Φ,Σ) will be a 1-specific

model of a consistent domain description D if:

1. Σ is an initial situation of D.

2. For any non-sensing action a, Φ(a,Σ) =
⋃

Φ0∈Mod0(D,Σ)

⋃
σ∈Σ{Φ0(a, σ)}.

3. For each sensing action a, if

a causes to know f1 if ϕ1

...

a causes to know fs if ϕsa

are all the knowledge laws in D where a occurs. Then, Φ(a,Σ) must be

consistent and if sa = 0, Φ(a,Σ) = Σ; otherwise Φ(a,Σ) =
⋂
l=1,...,s Σl such that

each Σl is a situation (fl , ϕl)-compatible with Σ. (Recall that since D is simple,

all the fi are different.)

Definition B.12

Let (Φ,Σ) be a 1-specific model of a domain description D. Denote by AssoD(Φ,Σ)

the set of 0-specific models of D such that for any non-sensing action a, Φ(a,Σ) =⋃
σ∈Σ{Φ0(a, σ)}.

Let a be a sensing action. Define:

Aa(σ,s) = {holds(f, res(a, s)) : σ |= f with f a fluent literal } if σ ∈ Φ(a,Σ). Otherwise,

Aa(σ,s) = {holds(true, res(a, s))} ∪ {holds(f, res(a, s)) : f fluent literal }.
Let A′(Φ0 ,σ,s)

= A(Φ0 ,σ,s) ∪
⋃
a∈Sensing Aa(σ,s).

Let A(Φ,Σ,s) = {A′(Φ0 ,σ,s)
: (Φ0, σ) ∈ AssoD(Φ,Σ)}.

As a straightforward consequence of this definition we have that for any fluent f

and any action a, Φ(a,Σ) |= f iff A(Φ,Σ,s) |= holds(f, res(a, s)).
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For any set A of literals we will denote by σA the state σA = {f : holds(f, s) ∈ A}.
We will denote by Dn.s the set of value and effect propositions in D, and by Dsen

the set of knowledge laws in D.

As a corollary of the theorems [B.8, B.10] we will have the soundness and

completeness of the logic program translation for the execution of a single action

(sensing or not). The next corollary shows soundness and Corollary B.14 shows

completeness.

Corollary B.13

Let D be a consistent domain description. If (Φ,Σ) is a 1-specific model of D then

A(Φ,Σ,s) is a world view of Π1
(D,s).

Proof

Let us suppose that (Φ,Σ) is a 1-specific model of D. We will prove that A(Φ,Σ,s) is a

world view of Π1
(D,s). In other words, we will show that A(Φ,Σ,s) is the collection of

belief sets of [Π1
(D,s)]A(Φ,Σ,s)

(see Section 6 for the definition of [Π]A and [Π]AA). Given

an A ∈ A(Φ,Σ,s), let A = A′(Φ0 ,σ,s)
, and denote by Π the program [Π1

(D,s) \Π1
(Dn.s,s)]

A
A(Φ,Σ,s)

which is equal to [Π1
(Dsen,s)]

A
A(Φ,Σ,s)

union all the rules of the form holds(true, res(a, s))←
holds(true, s) and holds(f, res(a, s)) ← holds(true, res(a, s)) where f is a fluent literal

and a is a sensing action.

The set U = lit(Π1
(Dn.s,s)) split [Π1

(D,s)]A(Φ,Σ,s)
, and by theorem B.8 A(Φ0 ,σ,s) is a belief

set of Π1
(Dn.s,s), moreover bU(Π1

(D,s)) = Π1
(Dn.s,s) and any answer set of eU([Π1

(D,s)]A(Φ0 ,σ,s)
\

Π1
(Dn.s,s), AΦ0 ,σ,s)) is a belief set of AΦ0 ,σ,s)).

Hence by Splitting Lemma we only need to prove that A is a belief set of A(Φ0 ,σ,s)∪Π.

We first prove that all the rules in the program hold in A and then we show that A

is minimal.

Obviously, any fact in A(Φ0 ,σ,s) ∪Π is in A, thus we will prove that any rule R in

Π holds in A. Let, for a given sensing action a,

a causes to know f1 if p1
1, . . . , p

1
n1

...

a causes to know fsa if psa1 , . . . , p
sa
nsa

be all the knowledge laws in D, involving a, and Φ(a,Σ) =
⋂sa
l=1 Σl where each Σl is

(fl , p
l
1, . . . , p

l
nl

)-compatible with Σ. The rules R in Π that mention a either in its body

or in its head will be evaluated as follows:

1. If Σ |= fl or Σ |= ¬fl , there are no rules in the program with the predicate

holds(true, res(a, s)) in the head that are not ground instances of domain

independent rules ( because any rule in Π1
(Dsen,s) will be removed, to get

[Π1
(Dsen,s)]

A
A(Φ,Σ,s)

after checking

¬Kholds(f1, res(a, s)),¬Kholds(f̄1, res(a, s))).

2. If Σ 6|= fl and Σ 6|= ¬fl , then either (a) Φ(a,Σ) |= pl1, . . . , p
l
nl

, and Φ(a,Σ) |= fl .

In this case, R must be one of the following:
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holds(true, res(a, s))← holds(p̄l1, s)
...

holds(true, res(a, s))← holds(p̄lnl , s)

holds(true, res(a, s))← holds(f̄l , s)

and each of these rules are verified in A, because; if holds(f̄l , s) is in A or for

some i holds(p̄li , s) ∈ A then σA |= p̄li or σA |= f̄l and in both cases σA 6∈ Φ(a,Σ),

and hence, holds(true, res(a, s)) ∈ A,by definition of Aa(σ,s).

(b) Φ(a,Σ) |= pl1, . . . , p
l
nl

, and Φ(a,Σ) |= f̄l This case is similar to (a) changing

the last rule for

holds(true, res(a, s))← holds(fl , s).

3. Σ 6|= fl and Σ 6|= ¬fl , and there exists i = 1, . . . , nl , such that Φ(a,Σ) 6|= pli . In

this case, there is only one rule that remains in the program;

holds(true, res(a, s))← holds(pl1, s), . . . , holds(p
l
nl
, s)

Now, if for any i = 1, . . . , nl , holds(p
l
i , s) ∈ A, then σA |= pli , for every i = 1, . . . , nl ,

and σA 6∈ Φ(a,Σ). Thus, holds(true, res(a, s)) ∈ A.

4. From the domain independent rules, R could also be of the form

holds(true, res(a, s))← holds(true, s)

But, by construction of A, holds(true, s) 6∈ A, and thus, R is satisfied by A.

5. The last rules to consider, also coming from the domain independent rules,

are all the rules of the form holds(f, res(a, s)) ← holds(true, res(a, s)), where f

is a fluent literal. If holds(true, res(a, s)) belongs to A then, by construction,

σA 6∈ Φ(a,Σ). Therefore, by construction too, holds(f, res(a, s)) also belongs to

A, for every f, fluent literal.

To prove the minimality of A, let C be a proper subset of A and h a predicate in

A \ C .8 We will find a rule R in [Π1
(D,s)]

A
A(Φ,Σ,s)

such that R does not hold in C .

If h is of the form ab(f, a, s), holds(f, s) or holds(f, res(a, s)), with a a non-sensing

action, then R can be found in [Π1
(Dn.s,s)]

A
A(Φ,Σ,s)

by Theorem [B.8]. Thus, all these h

must be in C . Therefore, it suffices to consider the case when h = holds(f, res(a, s)),

with a a sensing action. If h = holds(f, res(a, s)), with f a fluent literal, and the rule

holds(f, res(a, s)) ← holds(true, res(a, s)) is satisfied in C , then holds(true, res(a, s)) 6∈
C , in which case, if holds(true, res(a, s)) is in A′(Φ0 ,σ,s)

= A then σ 6∈ Φ(a,Σ), hence

we will have that there exists an l = 1, . . . , sa, such that σ 6∈ Σl ,then since Φ(a,Σ) is

fl , p
l
1, . . . , pnl -compatible with Σ and the remark at the end of [B.12] we will have

8 Recall that A = A′(Φ0 ,Σ,s)
.
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that one rule R of the following:

holds(true, res(a, s)) ← holds(f̄l , s)

holds(true, res(a, s)) ← holds(fl , s)

holds(true, res(a, s)) ← holds(p̄l1, s)
...

holds(true, res(a, s)) ← holds(p̄lnl , s)

holds(true, res(a, s)) ← holds(pl1, s), . . . , holds(p
l
nl
, s)

has to be such that both (i) R ∈ [Π1
(Dsens,s)]

A
A(Φ,Σ,s)

and (ii) the fluent literals appearing

on the body of R will be in σA. Hence the body of R will be true in A and therefore

in C , thus we can conclude that R is not satisfied by C . If holds(true, res(a, s)) is

not in A, then σ ∈ Φ(a,Σ) and holds(f, res(a, s)) is in A, but this happens if and

only if f ∈ σ, which is true iff holds(f, s) ∈ A, and the inertia rule will not be true

in C . To complete the proof we need to show that any belief set of [Π1
(D,s)]A(Φ,Σ,s)

is of the form A′(Φ0 ,σ,s)
, for some (Φ0, σ) ∈ AssoD(Φ,Σ). Take now A, a belief set

of [Π1
(D,s)]A(Φ,Σ,s)

. By the splitting lemma, the set A0 = A \ {holds(f, res(a, s)) : a

sensing action }, is a belief set of Π1
(Dn.s,s). Then by (B.10) there exists (Φ0, σ) in

AssoD(Φ,Σ) such that A0 = A(Φ0 ,σ,s) = A(Φ0 ,σA,s) taking Φ(a,Σ) =
⋃
σ∈Σ{Φ0(a, σ)}, it

only remains to be shown that for any sensing action a, both of the following

are satisfied: (i) If σA ∈ Φ(a,Σ) then f ∈ σA ⇔ holds(f, res(a, s)) ∈ A, and (ii)

σA 6∈ Φ(a,Σ)⇔ holds(true, res(a, s)) ∈ A.

For case (i), let σA ∈ Φ(a,Σ). Then, for any l = 1, . . . , sa, σA ∈ Σl . The rules with

heads of the form holds(f, res(a, s)) and f a fluent literal are: holds(f, res(a, s)) ←
holds(true, res(a, s)) and the one of the ground instances of the inertia rule. The body

of the first rule is false in A because any rule with holds(true, res(a, s)) in its head must

have its body false in A. Then, holds(f, res(a, s)) ∈ A⇔ holds(f, s) ∈ A⇔ f ∈ σA.

For (ii), holds(true, res(a, s)) ∈ A if and only if there exists a rule R which body is

true in A and its head holds(true, res(a, s)). Hence, R must be one of the following

rules:

holds(true, res(a, s)) ← holds(f̄l , s)

holds(true, res(a, s)) ← holds(fl , s)

holds(true, res(a, s)) ← holds(p̄l1, s)
...

holds(true, res(a, s)) ← holds(p̄lnl , s)

holds(true, res(a, s)) ← holds(pl1, s), . . . , holds(p
l
nl
, s)

for some l = 1, . . . , sa, and in any case, the rule R belongs to [Π1
(D,s)]A(Φ,Σ,s)

and its

body is true in A, if and only if σA 6∈ Σl . Hence, σA 6∈ Φ(a,Σ).

Corollary B.14

(Completeness) Let D be a consistent domain description. If A is a world view of

Π1
(D,s) then there exists a 1-specific model (Φ,Σ) of D such that A = A(Φ,Σ,s).
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Proof

Let A be a world view of Π1
(D,s). Let Σ = {σA : A ∈ A}. If A ∈ A, ΦA

0 will be a

0-interpretation such that A(ΦA
0 ,σA,s)

= A \ {holds(f, res(a, s)) : a is a sensing action

and f is true or a fluent literal}, which can be found making use of Theorem [B.10].

We define an interpretation Φ such that AssoD(Φ,Σ) = {(ΦA
0 , σA) : A ∈ A}, and

Φ(a,Σ) = {σA : holds(true, res(a, s)) 6∈ A} for any sensing action a. Note that if (Φ,Σ)

is a 1-specific model of D then A = A′
(ΦA

0 ,σA,s)
for any A ∈ A. Thus, we will show

that (Φ,Σ) is a 1-specific model of D and we will have that A = A(Φ,Σ,s). It is clear

that Σ is the initial situation of D. Then, if a is a non-sensing action, by definition,

Φ(a,Σ) =
⋃{{ΦA

0 (a, σA)} : A ∈ A} =
⋃{{Φ0(a, σ)} : (Φ0, σ) ∈ AssoD(Φ,Σ)}.

If a is a sensing action and, a causes to know fl if pl1, . . . , p
l
nl
, l = 1, . . . , sa

are exactly the knowledge laws where a appears, we need to show that for each

l = 1, . . . , sa, there exists a Σl , (fl , p
l
1, . . . , p

l
nl

)-compatible with Σ such that Φ(a,Σ) =⋂
l=1,...,sa

Σl:

1. If A |= holds(fl , s) or A |= holds(f̄l , s) then let Σl = Σ.

2. If A 6|= holds(fl , s) and A 6|= holds(f̄l , s) and A |= holds(pli , res(a, s)), for i =

1, . . . , nl , then:

(a) if A |= holds(fl , res(a, s)), then let Σl = {σ ∈ Σ : σ |= pl1, . . . , p
l
nl
, fl}.

(b) if A |= holds(f̄l , res(a, s)), then let Σl = {σ ∈ Σ : σ |= pl1, . . . , p
l
nl
, f̄l}.

3. If A 6|= holds(fl , s) and A 6|= holds(f̄l , s) and A 6|= holds(pli , res(a, s)), for some

i = 1, . . . , nl , we let Σl = {σ ∈ Σ : ∃k = 1, . . . , nl , σ 6|= plk}.
We need to show next that Φ(a,Σ) =

⋂sa
l=1 Σl . For that, we will prove that for any

σA ∈ Σ, σA 6∈ ⋂l=1,...,sa
Σl if and only if holds(true, res(a, s)) ∈ A.

First, we will show that if σA 6∈ ⋂l=1,...,sl
Σl , then holds(true, res(a, s)) ∈ A. Let k be

an l such that σA 6∈ Σl . Thus, since σA ∈ Σ then Σ 6|= fk and Σ 6|= ¬fk and case (1)

above does not occur, and one of the following cases must hold:

2.a. A |= holds(pki , res(a, s)), for every i = 1, . . . , nk , and A |= holds(fk, res(a, s)).

Therefore, either σA 6|= pkj for some j = 1, . . . , nk or σA 6|= fk . Hence,

holds(p̄kj , s) ∈ A or holds(f̄k, s) ∈ A and the following rules will be part of

[Π1
(D,s)]

A
A(Φ,Σ,s)

:

holds(true, res(a, s))← holds(p̄kj , s)

holds(true, res(a, s))← holds(f̄k, s)

Thus, holds(true, res(a, s)) ∈ A.

2.b. A |= holds(pki , res(a, s)), for i = 1, . . . , nk , and A |= holds(f̄k, res(a, s)), is similar

to (2.a).

3. A 6|= holds(pki , res(a, s)), for some i = 1, . . . , nk . Therefore, for every j = 1, . . . , nk ,

σA |= pkj . Hence A |= holds(pkj , s) and the following rule will be part of

[Π1
(D,s)]

A
A(Φ,Σ,s)

:

holds(true, res(a, s))← holds(pk1, s), . . . , holds(p
k
nk
, s)

Thus, holds(true, res(a, s)) ∈ A.
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For the other direction, assume holds(true, res(a, s)) ∈ A. Then, it must be the case

that there exists a rule in [Π1
(D,s)]

A
A(Φ,Σ,s)

with holds(true, res(a, s)) in the head and its

body true in A. Note that this rule cannot be holds(true, res(a, s))← holds(true, s) by

the construction of A. Thus, A 6|= holds(f, s) and A 6|= holds(f̄, s); otherwise, there

will be no rule in [Π1
(D,s)]

A
A(Φ,Σ,s)

with holds(true, res(a, S)) in its head (these are ground

instances of rules derived from knowledge laws). We will inspect the remaining rules

with holds(true, res(a, s)) in the head and we will show that there exists Σk such that

σA 6∈ Σk .

1. If the rules are of the form:

holds(true, res(a, s))← holds(p̄kj , s)

holds(true, res(a, s))← holds(f̄k, s)

then A |= holds(pki , res(a, s)), for i = 1, . . . , nk , and A |= holds(fk, res(a, s)).

Therefore, since holds(p̄kj , s) or holds(f̄k, s) has to belong to A, σA 6∈ Σk .

2. If the rules are of the form:

holds(true, res(a, s))← holds(p̄kj , s)

holds(true, res(a, s))← holds(fk, s)

then, similar to 1, A |= holds(pki , res(a, s)), for i = 1, . . . , nk , and A |= holds

(f̄k, res(a, s)). Therefore, since holds(p̄kj , s) or holds(fk, s) has to belong to A,

σA 6∈ Σk .

3. If the rule is of the form:

holds(true, res(a, s))← holds(pk1, s), . . . , holds(p
k
nk
, s)

then A 6|= holds(pki , res(a, s)), for some i = 1, . . . , nk . Therefore, since for every

j = 1, . . . , nk holds(p
k
j , s) has to be in A, σA 6∈ Σk .

The next step is to show soundness and completeness for sequences of actions.

Sequences of actions are the most simple plans. We then extend the proof to plans

of all classes. The general proof will be by induction on the complexity of the plans.

Thus, we start by formally defining complexity and other definitions required for

the inductions.

Definition B.15

We will define the complexity of a plan β (comp(β)) by: if the empty plan is [],

comp([]) = 0. For an action a comp(a) = 1. For complex plans, comp( if ϕ then α)

and comp( while ϕ do α) is comp(α) + 1 and comp( if ϕ then α1 else α2) and

comp([α1, α2] is comp(α1) + comp(α2).

We will say that a plan α is an n-plan if it has complexity n, it will be an 6 n-plan

if it has complexity less or equal than n. Pn will denote the set of n-plans, and P6n
the set of 6 n-plans.

We define the complexity of a situation constant s inductively as 0 if s = s0; or

1 plus the complexity of s′ if s = res(a, s′), for any action a. A situation s will be

called an n-situation if its complexity is n. The complexity of a predicate of the

form holds(f, s) with f a fluent literal, or holds(true, s), will be the complexity of s,

the complexity of predicates of the form ab(f, a, s), with f a fluent literal and a an
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action will be equal to the complexity of s plus one, the complexity of predicates

of the form find situation(β, s1, s) will be the complexity of β plus the complexity of

s1, and the complexity of a predicate of the form holds after plan(F, β) will be the

complexity of the plan β. We will say that a predicate h is an 6 n-predicate, if h has

complexity m and m 6 n. Given a plan α, [α1] will denote the plan α and [αn+1] will

denote the plan [α|[αn]]. Denote by Πn
D the subprogram of ΠD restricted to those

rules in ΠD with 6 n-predicates. Note that in any k-predicate in Πn
D , the constant

situation is a sequence of k actions.

Given a domain description D denote by Dr the sub-domain of D obtained when

we remove from D any value proposition.

Definition B.16

For any n > 0, we will say that a pair (Φ,Σ) where Φ is an interpretation and Σ a

situation, is an n + 1-specific model of D if and only if it is an n-specific model of

D and for any sequence of actions seqn = a1, . . . , an, (Φ,ΓΦ([seqn],Σ)) is a 1-specific

model of Dr (i.e. D minus the value propositions). (Φ,Σ) will be a specific model of

D if it is an n-specific model of D for any n > 1.

Definition B.17

Given a sequence of actions seq = a1, . . . , an and a situation constant s, res((seq), s)

denotes the situation constant res(an, . . . , res(a1, s)), seq∅ denotes the empty sequence

and res((seq∅), s) will be equal to s. Let Actn be the set of all the sequences of n

actions. For any set of literals A we take σ(A,(seq)) as the state such that f ∈ σ(A,(seq)) ⇔
holds(f, res((seq), s0)) ∈ A.

Definition B.18

Given a pair (Φ,Σ) of interpretation and situation, n > 0 and the situation constant

s0, we will denote by An+1
(Φ,Σ,s0) the following family of sets:

• if n = 1, A1
(Φ,Σ,s0) = A(Φ,Σ,s0)

• If n > 1, let for any set A of (6 n + 1)-predicates, An and A1 denote the sets

of (6 n)-predicates in A and (n + 1)-predicates in A (resp.). Then, An+1
(Φ,Σ,s0) is

defined as a family of sets A of (6 n+ 1)-predicates, such that the following is

satisfied:

1. An ∈ An
(Φ,Σ,s0).

2. If holds(true, (seqn, s0)) is in An then A1 =
⋃
seqn∈Actn A(seqn) with A(seqn)

the set of all the predicates of the form holds(true, res((seqn, a), s0)) or

holds(f, res((seqn, a), s0))

3. If holds(true, (seqn, s0)) is not in An then A1 = An ∪⋃seqn∈Actn A(seqn) where

A(seqn) is A′(Φ0 ,σ(An,seqn ) ,res((seqn),s0)) for some (Φ0, σ(An,(seqn))) in

AssoDr (Φ,ΓΦ((seqn),Σ).

Lemma B.19

Given n > 0, a consistent domain description D, a pair (Φ,Σ), n-specific model of

D, the initial situation constant s0. We will have that for any fluent literal f and

any sequence of actions seq = a1, . . . , an, holds(f, res((seq), s0) holds in An
(Φ,Σ,s0) if and

only if f ∈ ΓΦ([seq],Σ).
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Proof

The proof is by induction on n and it is straightforward from the definition of

An+1
(Φ,Σ,S).

The next corollary proves by induction on the length of the sequence of actions

that the logic program translation is sound and complete for the execution of a

sequence of actions.

Corollary B.20

Given a consistent domain description D and n > 0. A is a world view of Πn
D if and

only if there exists a pair (Φ,Σ), n-specific model of D such that

A = An
(Φ,Σ,s0)

Proof

• The base case (n = 0) follows from B.13 and B.14.

• Suppose the result is valid for any m 6 n.
• (⇒) Let A be a world view of Πn+1

D . As in Definition B.18, define for any

A ∈ A, An to be the subset of A restricted to those predicates in A involving

just 6 n-predicates, so An = {An : A ∈ A} will be a world view of Πn
D , and

by inductive hypothesis there is a pair (Φ1,Σ), n-specific model of D such that

An = An
(Φ1 ,Σ,s0).

We first define an interpretation Φ such that (Φ,Σ) is n + 1-specific model of D.

Given an action a, let A′′ be the set {holds(f, res((seqn), s0)) ∈ An : holds(true, res

((seqn), s0)) 6∈ An ∧ seqn ∈ Actn} and A1 be A′′ union

[{holds(f, res((seqn, a), s0)) : seqn is any sequence of n actions}
∪{ab(f, a, res((seqn), s0)) : seqn is any sequence of n actions}
∪{holds(true, res((seqn, a), s0)) : seqn is any sequence of n actions}] ∩ A

Note that A = An ∪ A1. By the splitting lemma, A1 is a belief set of A′′ ∪⋃
seqn∈Actn[Π

1
(Dr,res((seqn),s0)]

A
A.

Hence by B.14 there exists an interpretation Φ2 and a 0-interpretation Φ0 such

that for any sequence of n actions seqn with holds(true, res((seqn), s0)) 6∈ An, the

following properties are satisfied:

1. (Φ2,ΓΦ1
([seqn],Σ)) is a 1-specific model of Dr .

2. (Φ0, σ(An,(seqn))) is in AssoDr (Φ2,ΓΦ1
([seqn],Σ)).

3. A1 =⋃{A′(Φ0 ,σ(An,(seqn )) ,res((seqn),s0)) : seqn ∈ Actn ∧ holds(true, res((seqn), s0)) 6∈ An} ∪ A′′.
Defining Φ such that for any sequence of actions seqn ∈ Actn if the atomic formula

holds(true, res((seqn), s0)) is not in An, then ΓΦ([seqn],Σ) is equal to ΓΦ1
([seqn],Σ),

we will have that (Φ,Σ) is an n-specific model of D. Moreover if we take Φ such

that for any action a and any sequence of actions seqn ∈ Actn, Φ(a,ΓΦ([seqn],Σ)) =

Φ2(a,ΓΦ([seqn],Σ)), we will have that for any sequence of actions seqn ∈ Actn,

(Φ,ΓΦ([seqn],Σ)) is a 1-specific model of Dr . Therefore, (Φ,Σ) is an n + 1-specific

model of D.
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It is clear by construction that either the predicate holds(true, res((seqn), s0)) is a

member of An, and by the inertia rules, A1 is the set of predicates of the form

holds(true, res((seqn, a), s0)) and holds(f, res((seqn, a), s0)) with a an action, (seqn) a

sequence of n actions and f a fluent literal, or holds(true, res((seqn), s0)) 6∈ An and for

any sequence of n actions seqn the following propositions hold:

1. (Φ0, σ(An,(seqn))) ∈ AssoDr (Φ,ΓΦ([seqn],Σ)),

2. A1 = A′(Φ0 ,σ(An,(seqn )) ,res((seqn),s0)).

Therefore by definition of An+1
(Φ,Σ,s0), we have proved that A ∈ A if and only if it is

in An+1
(Φ,Σ,s0).

(⇐) Reciprocally, let (Φ,Σ) be an (n+1)-specific model of D. Then, by B.13, induction

and by the splitting lemma, to prove that An+1
(Φ,Σ,s0) is a world view of Πn+1

D , it suffices

to show that for any A, A ∈ An+1
(Φ,Σ,s0) if and only if A = An ∪ BA where An is the set

of predicates in A of 6 n-complexity and BA is a belief set of the program

Π = An ∪ [Πn+1
D −Πn

D]An+1
(Φ,Σ,s0)

= An ∪ [
⋃

seqn∈Actn
Π1

(Dr,res((seqn),s0))]An+1
(Φ,Σ,s0)

To prove this, we will show that the beliefs sets of the program Π are exactly the

sets of the form An ∪ A1 defined in B.18.

First note that the belief sets of [
⋃
seqn∈Actn Π1

(Dr,res((seqn),s0))]An+1
(Φ,Σ,s0)

are the unions of

belief sets of [Π1
(Dr,res((seqn),s0))]An+1

(Φ,Σ,s0)
where seqn is varying over the set of sequences

of n actions. This is so because these programs are independent of each other.

Hence, we will calculate the belief sets of each program Π1
(Dr,res((seqn),s0))]An+1

(Φ,Σ,s0)
where

seqn ∈ Actn and we will prove that the set of these union is An+1
(Φ,Σ,s0).

To show this, let seqn be a sequence of n actions. Then there are two possible

cases:

1. holds(true, res((seq), s0)) ∈ An, and An∪[Π1
(Dr,res((seqn),s0))]An+1

(Φ,Σ,s0)
has only the belief

set BA = An∪A1 with A1 the set of predicates of the form holds(true, res((seq, a),

s0)) or holds(f, res((seq, a), s0)) where a is any action and f is any fluent literal.

2. holds(true, res((seq), s0)) 6∈ An and by theorem [B.14], any belief set of

An ∪ [Π1
(Dr,res((seqn),s0))]An+1

(Φ,Σ,s0)

is equal to An ∪ A′(Φ0 ,σ(An,seqn ) ,res((seqn),s0)) for some 0-interpretation such that

(Φ0, σ(An,seqn)) ∈ AssoDr (Φ,ΓΦ(([seqn, a],Σ)).

Therefore the belief sets of An ∪ [Π1
(Dr,res((seqn),s0))]An+1

(Φ,Σ,s0)
are precisely the elements

on An+1
(Φ,Σ,s0), and this implies that An+1

(Φ,Σ,s0) is a world view of Πn+1
D .

Definition B.21

Given a domain description D, an initial situation constant s0 and a specific-model

(Φ,Σ) of D, we will denote by Aω
(Φ,Σ,s0) the following family of sets, A ∈ Aω

(Φ,Σ,s0) if and

only if for any n > 1 there exist An ∈ An
(Φ,Σ,s0) and An+1 ∈ An+1

(Φ,Σ,s0) with An ⊆ An+1,

and A =
⋃
n>1 An We will denote by AQ

(Φ,Σ,s0) the family of sets A, such that A is the

union of sets AΠ and AQ where AΠ is an element of Aω
(Φ,Σ,s0) and AQ is a belief set

of AΠ ∪ [Q]AΠ

Aω
(Φ,Σ,s0)
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Lemma B.22
Given a consistent domain description D and the initial situation constant s0, A is a

world view of ΠD , if and only if there exists a specific model (Φ,Σ) of D such that

A = AQ
(Φ,Σ,s0).

Proof

Given a world view A of Πω
D , and A ∈ A, we will denote by AΠ the subset of A

restricted to those predicates in A of the form holds(f, s) or ab(f, a, s) where s is a

situation constant and a is an action, then the set AΠ = {AΠ : A ∈ A} is a world

view of ΠD , and by (B.20) there exists a specific model of ΠD such that AΠ is

equal to Aω
(Φ,Σ,s0), since [Q]AA is equal to [Q]AAω

(Φ,Σ,s0)
, applying the splitting lemma to

[ΠQ
D]AA = [ΠD]AA ∪ [Q]AA we have the result.

Theorem B.23
Let D be a domain description, s0 be an initial constant situation and (Φ,Σ) be

a specific model of D. Then, given a sequence of actions seq = a1, . . . , ak , and the

situation constant s = res((seq), s0), we will have that, for any situation constant s1
and any plan β, there exists a sequence of actions seq(β,s) such that ΓΦ([seq, seq(β,s)],Σ)

is equal to ΓΦ(β,ΓΦ([seq],Σ) and for any A ∈ AQ
(Φ,Σ,s0), find situation(β, s, s1) belongs

to A if and only if s1 = res((seq, seq(β,s)), s0).

Proof

The proof will be a double induction, using the loop nesting in the plan and the com-

plexity of the plans. Thus, the while-complexity of a plan β, denoted by wcomp(β),

is 0 if β is either the empty plan [] or an action a, max(wcomp(α1), wcopm(α2) If

β = if ϕthen α1else α2 or β = [α1|α2], 1 + wcomp(α) if β = while ϕ do α.

Taking wcomp(β) = 0 we will do induction on comp(β).

• If β = [], the result is immediate, because

ΓΦ(β,ΓΦ([seq],Σ)) = ΓΦ([],ΓΦ([seq],Σ)),

and for any A ∈ AQ
(Φ,Σ,s0) find situation([β], s, s1) is in A if and only if s1 = s.

Therefore taking seq(β,s) = seq∅ the claim follows.
• Suppose the theorem is valid for 6 n-plans.
• Let β be an (n+ 1)-plan. Then we have the following possibilities:

(I) β = [a|α] where α is an n-plan and a is an action. Then, by inductive

hypothesis ΓΦ(α,ΓΦ([seq, a],Σ)) is equal to ΓΦ([seq, a, seq(α,res(a,s))],Σ), therefore

we will have that

ΓΦ(β,ΓΦ([seq],Σ)) =

ΓΦ([a, α],ΓΦ([seq],Σ)) =

ΓΦ(α,ΓΦ([seq, a],Σ)) =

ΓΦ([seq(α,res(a,s))],ΓΦ([seq, a],Σ)) =

ΓΦ([a, seq(α,res(a,s))],ΓΦ([seq],Σ)) =

ΓΦ([seq(β,s)],ΓΦ([seq],Σ)) =

ΓΦ([seq, seq(β,s)],Σ).
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Moreover for any A in AQ
(Φ,Σ,s0), find situation(β, s, s1) is in A if and only if

find situation(α, res(a, s), s1) is in A.

Thus, if we take seq(β,s) = (seq(α,res(a,s)), a), since by inductive hypothesis

find situation([α], res(a, s), s1) is in A if and only if s1 is equal to res(((seq, a),

seq(α,res(a,s))), s0), we have that find situation([β], s, s1) is in A if and only if

s1 = res((seq, (a, seq(α,s))), s0) which is equal to the situation res((seq, seq(β,s)), s0),

and

ΓΦ([β],ΓΦ([seq],Σ)) =

ΓΦ([seq, seq(β,s)],ΓΦ([seq],Σ)) =

ΓΦ([seq(β,s)],ΓΦ([seq],Σ))

(II) β = [ if ϕ then α1, α2] where α1, α2 are n1 and n2-plans respectively, with

n1 + n2 = n then, we have that for any A in AQ
(Φ,Σ,s0), find situation(β, s, s1) is in

A if and only if either:

(i) holds(ϕ̄, s) holds in AQ
(Φ,Σ,s0) and find situation([α2], s, s1) is in A, or

(ii) holds(ϕ, s) holds in AQ
(Φ,Σ,s0) and find situation([α1, α2], s, s1) is in A.

By inductive hypothesis ΓΦ(α2,ΓΦ([seq],Σ)) is equal to ΓΦ([seq, seq(α2 ,s)],Σ) and

ΓΦ([α1, α2], ΓΦ([seq],Σ)) is equal to ΓΦ([seq, seq([α1 ,α2],s)],Σ) for the sequences of

actions seq(α2 ,s) and seq([α1 ,α2],s)

Hence by [B.19] and inductive hypothesis, find situation(β, s, s1) is in A if and

only if either

(i) ϕ̄ holds in ΓΦ([seq],Σ), and s1 = res((seq, seq(α2 ,s)), s0). or

(ii) ϕ holds in ΓΦ([seq],Σ), and s1 = res((seq, seq([α1 ,α2],s)), s0).

Thus, if we take seq(β,s) = seq(α2 ,s) in case (i), and in case (ii) seq(β,s) equal

to seq([α1 ,α2],s) we will have that ΓΦ(β,ΓΦ([seq],Σ)) = ΓΦ([seq, seq(β,s)],Σ)) and

find situation(β, s, s1), belongs to A if and only if s1 is equal to the situation

res((seq, seq(β,s)), s0).

(III) β = [ if ϕ then α1 else α′1, α2], where α1, α
′
1 and α2 are n1, n

′
1 and n2-plans

(resp.) with max(n1, n
′
1) + n2 = n. This case is similar to the previous one.

(IV) β = [ while ϕ do α1, α2], where α1 and α2 are n1 and n2-plans (resp.),

with n1 + n2 = n. Here we may suppose by inductive hypothesis that for any

k > 0 the plans [αk1] and [αk1, α2] verify the theorem, and we will denote by

seq(k,α1) the sequence seq(α1 ,s) and by seq(k,α2) the sequence seq([α2],res((seq
([αk

1
],s)

),s0)).

Using the fix-point operator TΠ defined by TΠ(I) = {p : ∃ a rule p← q1, . . . , qn
in Π with each qi a fact in I}, for any positive logic program Π, we know that

if TΠ↑1 is defined to be equal to TΠ(∅) and TΠ↑k+1= TΠ(TΠ↑k), then TΠ↑ω ,

which is the set
⋃
k>1 TΠ↑k , is a fix-point for TΠ. Moreover A is a belief set for

[Πω
(D,s0)]

A

A
Q
(Φ,Σ,s0)

if and only if

A = T[Πω
(D,s0)]

A

A
Q
(Φ,Σ,s0)

↑ω .

Therefore, h = find situation(β, s, s1) is in A if and only if there exists k > 0

such that h is in T[Πω
(D,s0)]

A

A
Q
(Φ,Σ,s0)

↑k+1.
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Let k0 be the minimum k such that h belongs to T[Πω
(D,s0)]

A

A
Q
(Φ,Σ,s0)

↑k+1. We have

that h ∈ T[Πω
(D,s0)]

A

A
Q
(Φ,Σ,s0)

↑k0+1, if and only if there exists m such that the following

properties are satisfied:

(1) For any j < m holds(ϕ, res((seq, seq(j,α1)), s0) holds in AQ
(Φ,Σ,s0)

(2) holds(ϕ̄, s′) holds in AQ
(Φ,Σ,s0)

(3) find situation([αm1 ], s, s′) ∈ A
(4) find situation([α2], s′, s1) ∈ A
If we fix m with properties (1), (2), (3) and (4), we have by inductive hypothesis

and [B.19] that, h ∈ A if and only if ϕ holds in ΓΦ([seq, seq(m,α1)], s0), s′ =

res((seq(m,α1)), s0) and s1 = res((seq(m,α2)), s0). Hence taking seq(β,s) = seq(m,α2), we

will have that ΓΦ(β,ΓΦ([seq],Σ) is equal to ΓΦ([seq, seq(β,s)],Σ) and h ∈ A if

and only if s1 = res((seq(β,s)), s0).

The inductive step on wcomp(β) follows the same reasoning as in the base case.

Corollary B.24

Given a consistent domain description D, the initial situation constant s0 and a

specific model of D, (Φ,Σ), we will have that for any fluent f and any plan β,

hold after plan(f, β) holds in AQ
(Φ,Σ,s0) if and only if f ∈ ΓΦ(β,Σ).

Proof

Let seq(β,s0) be the sequence of actions described in [B.23], such that ΓΦ(β,Σ) =

ΓΦ([seq(β,s0)],Σ) and find situation(β, s0, s1) holds in AQ
(Φ,Σ,s0) if and only if s1 =

res((seq(β,s0)), s0). Then since hold after plan(f, β) holds in AQ
(Φ,Σ,s0) if and only if

find situation(β, s0, s1) and holds(f, s1) hold in AQ
(Φ,Σ,s0), we have by [B.19]

hold after plan(f, β) holds in AQ
(Φ,Σ,s0) if and only if f ∈ ΓΦ([seq(β,s0)],Σ) = ΓΦ(β,Σ).

Hence by [B.22] we have the following:

Corollary B.25

Given a simple and consistent domain description D and a plan β. D |= F afterβ if

and only if ΠQ
D |= hold after plan(F, β).

Theorem 7.3 Given a simple consistent domain description D and a plan β. D |=
F afterβ if and only if ΠQ

D |= hold after plan(F, β).

Proof Direct from Corollary B.25.
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