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Abstract

Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger
than 100 at 1 MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable
beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the
beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a
suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid
for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the
target. The centroid dynamics is controlled by a set of biased electrical plates called “wobblers.” Using a model based
on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid
motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from
the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation
for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion
on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system
for a heavy ion fusion driver is briefly summarized.
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1. INTRODUCTION

Recent heavy ion fusion target studies show that with appro-
priate beam energy ramp and beam smoothing techniques, it
may be possible to achieve ignition with direct drive and
energy gain larger than 100 at 1 MJ (Logan et al., 2008).
With the newly envisioned shock ignition method, it may
be possible that an energy gain of 1000 could be achieved
using 1.5 MJ heavy ion direct drive (Logan, 2011). To realize
these advanced, high-gain heavy ion fusion schemes based
on direct drive, it is important to develop a reliable beam
smoothing technique to mitigate instabilities and facilitate
uniform deposition. It has been proposed recently that the dy-
namics of the beam centroid can be explored as a possible
beam smoothing technique (Hoffmann, 2009; Logan et al.,

2008; Qin & Davidson, 2009; Qin et al., 2010; Sharkov,
2007; Tahir et al., 2001, 2010) to achieve a uniform illumi-
nation over a suitably chosen region of the target. The
basic idea of this technique is to induce an oscillatory
motion of the centroid for each transverse slice of the beam
in such a way that the centroids of different slices strike
different locations on the target. The centroid of different
slices projected onto the target follows a smooth pattern to
achieve the desired uniform illumination over a suitably
chosen region, e.g., an annular region, for significantly, im-
proved stability properties during the target implosion
phase (Kawata et al., 1993; Logan et al., 2008; Piriz et al.,
2003a, 2003b). The improvement of stability properties can
be attributed to two factors. First, uniform illumination
reduces the initial seeding amplitude of the Rayleigh-Taylor
instability. Second, at a given location on the target, the
energy/momentum input is pulsating rapidly with time,
which results in a dynamic stabilization effect for the
instability.
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The centroid dynamics is actively controlled by the deflec-
tion force imposed by a set of biased electrical plates. They
are called “wobblers,” because of the wobbling motion that
these places induce for the beam centroid. The bias voltage
on the wobbler plates needs to oscillate with time in order
to deliver different beam slices to different locations (See
Fig. 1). The wobbling motion is generated before the final
focusing at the upstream, and the x–deflector the y–deflectors
can be interlaced. In the research of laser-driven inertial con-
finement fusion, smoothing systems using distributed phase-
plate technology have been developed to achieve uniform
laser illumination (Skupsky et al., 1993). The wobbler
system for charged beams in the present study is analogous
to these smoothing systems for laser beams.
Beam dynamics is usually studied in terms of envelope

and centroid motions (Barnard, 1996; Lee et al., 1988;
Lund & Barnard, 2009; Lund & Bukh, 2004; Sharp et al.,
1992). However, motions of the centroid and envelope rep-
resent different degrees of freedom. The most common appli-
cations of the envelope dynamics is to design beam focusing
systems (Friedman et al., 2009; Qin et al., 2004), while
the study of centroid dynamics is mainly to minimize the
oscillations of the beam centroid around the design orbit
(Blind & Gilpatrick, 2007). In terms instabilities, two-stream
electron cloud instability (Neuffer et al., 1992; Zimmermann,
2004) can be modeled by the centroid dynamics, and
unstable breathing modes can be described by envelope
instabilities (Bernal et al., 2006; Lund & Bukh, 2004). It is
easy to show that the centroid dynamics and the envelope dy-
namics are decoupled, if the space-charge force is weak. In
this case, the centroid dynamics is governed by the dynami-
cal equations for a singled charged particle moving in the

external focusing lattice and wobbler fields. However, for
heavy ion fusion, the beam intensity is often high, and the
self-generated space-charge force should be considered
when determining the governing equations for the centroid
dynamics. It is especially crucial to determine whether the
centroid dynamics and the envelope dynamics are coupled.
Another issue needs to be addressed is whether a realistic
wobbler system using technologies that are currently avail-
able can be designed to achieve the required wobbler
motion. We will study these important questions regarding
the centroid and envelope dynamics of charged particle
beams in a wobbler field and an external focusing lattice.
We start our study from the nonlinear Vlasov-Maxwell

equations for high-intensity beams (Davidson & Qin,
2001) in a wobbler field and an external focusing lattice,
using two different approaches. In the first approach, a set
of rate equations for the centroid and the root-mean-square
(rms) envelope and emittance is derived by taking moments
of the Vlasov-Maxwell equations. The second approach is to
construct a generalized self-consistent solution of the Vlasov-
Maxwell equations that includes both envelope dynamics and
centroid dynamics. This kinetic solution is similar to the
Kapchinskij-Vladimirskij (KV) (Kapchinskij & Vladimirskij,
1959) in construction. The external deflection force induced
by the wobbler fields is included in the models, in addition to
the transverse focusing lattice. Since the Vlasov-Maxwell
equations are nonlinear, adding this additional physics
could result in unexpected results. In order to systematically
study the wobbler dynamics, we need to carry out a careful
analysis of the Vlasov-Maxwell equations including simul-
taneously all of the relevant physics components, i.e., the
wobbler fields, the focusing lattice, the space-charge force,

Fig. 1. (Color online) Wobbler system and quadrupole focusing lattice with neutralizing plasma lens. The bias voltage on the wobbler
plates oscillates with time to deliver different beam slices to different locations on the target. The projected motion of the centroid
on the target follows a smooth pattern to achieve uniform illumination over a suitably chosen region of the target. The x–deflector the
y–deflectors can be interlaced.
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and the emittance. Using these two models, we show that the
wobbler deflection force acts only on the centroid motion,
and that the envelope dynamics is independent of the wob-
bler fields. Furthermore, if the conducting wall is far away
from the beam, then the envelope dynamics and the centroid
dynamics are completely decoupled even when the space-
charge force is strong. Based on these models, a conceptual
design of the wobbler system for a heavy ion fusion driver
is outlined. We demonstrate that a 10-meter-long, 67 MHz
reversed field (RF) with 0.30 MV/m field strength is able
to impose enough transverse momentum to generate the de-
sired wobbler motion on a 2.5 mm target plane for a
2.43 GeV Cs+ beam with a 2895 A peak current.
This paper is organized as follows. In Section 2, the

moment equations for the beam centroid and envelope are
derived from the nonlinear Vlasov-Maxwell equations. The
self-consistent kinetic solution and associated centroid and
envelope equations are presented in Section 3. We outline
a conceptual design example for the heavy ion fusion
wobbler and final focusing system in Section 4.

2. MOMENT EQUATIONS FOR THE CENTROID
AND ENVELOPE

The transverse dynamics of a particle in a quadrupole focus-
ing lattice with wobbler fields is governed by (Davidson &
Qin, 2001)

x′′ = −κx s( )x− ∂ψ
∂x

+ Fx s( ), (1)

y′′ = −κy s( )y− ∂ψ
∂y

+ Fy s( ). (2)

Here, (x, y) are the transverse coordinates in the laboratory
frame, ψ= ef /γ3mβ2c2 is the normalized self-field poten-
tial, κx (s)=−κy(s)= κq(s) are the focusing strengths of
the quadrupole lattice, and Fx (s) and Fy(s) are the transverse
deflection forces of the wobblers. The nonlinear Vlasov-
Maxwell equations for the beam distribution function f (s,
x, y, vx, vy) and self-field potential ψ are (Davidson & Qin,
2001)

∂f
∂s

+ vx
∂f
∂x

+ vy
∂f
∂y

− κxx+ ∂ψ
∂x

− Fx

( )
∂f
∂vx

− κyy+ ∂ψ
∂y

− Fy

( )
∂f
∂vy

= 0, (3)

∂2

∂x2
+ ∂2

∂y2

( )
ψ = − 2πKb

Nb
∫ f dvxdvy, (4)

where Nb= ∫ fdvxdvydxdy is the line density of the beam par-
ticles, and Kb= 2Nbe

2 /γ3mβ2c2 is the self-field perveance.
Here, m is the rest mass of a beam particle, γ is the relativistic
mass factor, c is the speed of light in vacuo, and βc is the
beam velocity. It is assumed in this model that there is no

longitudinal coupling between different slices of the beam,
and Eqs. (3) and (4) describe the transverse dynamics of
each slice of the beam.

Our first objective is to derive the rms envelope equations
and the centroid equations (Barnard, 1996 ; Lee et al., 1988;
Lund & Barnard, 2009; Lund & Bukh, 2004; Sharp et al.,
1992) by taking phase-space moments of the Vlasov
equation. For any phase-space function χ(x, y, vx, vy, s), the
χ-moment of f is defined as

〈χ〉 ≡ ( ∫ χf dxdydvxdvy)/Nb. (5)

From the Vlasov Eq. (3), we obtain (Davidson & Qin, 2001)
the rate equation for 〈χ〉

d〈χ〉
ds

= 〈
∂χ
∂s

+ vx
∂χ
∂x

+ vy
∂χ
∂y

− κxx+ ∂ψ
∂x

− Fx

( )
∂χ
∂vx

− κyy+ ∂ψ
∂y

− Fy

( )
∂χ
∂vy

〉. (6)

The transverse displacement of the beam centroid is defined
by the first moment of f with respect to displacement, i.e.,

μ ≡ 〈x〉, (7)

n ≡ 〈y〉. (8)

Applying Eq. (6), we obtain

μ′ = 〈x〉′ = 〈x′〉 = 〈vx〉, (9)

n′ = 〈y〉′ = 〈y′〉 = 〈vy〉. (10)

Taking χ= vx and χ= vy in Eq. (6), we acquire the centroid
dynamical equations

μ′′ = 〈vx〉
′ = −κxμ+ Fx − 〈

∂ψ
∂x

〉, (11)

n′′ = 〈vy〉
′ = −κyn+ Fy − 〈

∂ψ
∂y

〉. (12)

It turns out that the rms envelope dimensions (a, b) and trans-
verse emittances (εx, εy) need to be defined relative to the cen-
troid as

a ≡
����������
〈x− μ〉2

√
,

εx ≡ 2
����������������������������������������
a2〈 vx − μ′

( )2
〉− 〈 vx − μ′

( )
x− μ
( )

〉2
√

, (13)

b ≡
����������
〈y− n〉2

√
,

εy ≡ 2
����������������������������������������
b2〈 vy − n′

( )2
〉− 〈 vy − n′

( )
y− n
( )

〉2
√

. (14)

To derive the dynamics equations for a, we need the rate
equations for χ= (x− μ)2/2 and χ= (vx− μ′)(x− μ). For
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χ= (x− μ)2/2, the rate equation is

1
2
d

ds
〈 x− μ
( )2

〉 = d

ds

a2

2
= 〈− x− μ

( ) ∂μ
∂s
〉

+ 〈x′ x− μ
( )

〉+ 〈 x′ − μ′
( )

x− μ
( )

〉. (15)

For χ= (vx− μ ′)(x− μ), the corresponding rate equation is

d

ds
〈 vx − μ′
( )

x− μ
( )

〉 = 〈 x′ − μ′
( )2

〉− κx s( )〈 x− μ
( )2

〉

− 〈
∂ψ
∂x

x− 〈x〉
( )

〉+ 〈Fx x− μ
( )

〉. (16)

Taking another time-derivative on Eq. (15), we obtain

d2

ds2
a2

2
= d

ds
〈 x′ − μ′
( )

x− μ
( )

〉

= 〈 x′ − μ′
( )2

〉− κx s( )〈 x− μ
( )2

〉

− 〈
∂ψ
∂x

x− μ
( )

〉+ 〈Fx(x− μ)〉. (17)

According the definition of εx in Eq. (13), the 〈(x′ − μ′)2〉
term on the right-hand side of Eq. (17) can be expressed as

〈 x′ − μ′
( )2

〉 = ε2x
4a3

− da

ds

( )2

. (18)

Then Eq. (17) can be re-written as the envelope equation
for a,

a′′ + κxa+ ε2x
4a3

− 1
a
〈
∂ψ
∂x

x− μ
( )

〉. (19)

To derive the dynamical equation for εx, we need the rate
equation for χ= (vx− μ′)2, i.e.,

d

ds
〈(vx − μ′)2〉 = 〈2 x′ − μ′

( ) −ks s( )x− ∂ψ
∂x

+ Fx

( )
〉. (20)

From the definition of εx, the time-derivative of εx
2 is

d

ds

ε2x
4
= a2

d

ds
〈 x′ − μ′
( )2

〉+ 〈 x′ − μ′
( )2

〉
da2

ds

− 2〈 x′ − μ′
( )

x− μ
( )

〉
d

ds
〈 x′ − μ′
( )

x− μ
( )

〉. (21)

Making use of Eq. (20), Eq. (21) can be simplified to

d

ds

ε2x
8

( )
= 〈

∂ψ
∂x

x− μ
( )

〉
d

ds

a2

2

( )
− a2〈

∂ψ
∂x

vx − μ′
( )

〉. (22)

Eqs. (19) and (22) are the envelope equations for a and εx.
Similarly, the dynamical equations for b and εy can be

derived, and expressed as

b′′ + κxb = ε2y
4b3

− 1
b
〈
∂ψ
∂y

y− n
( )

〉, (23)

d

ds

ε2y
8

( )
= 〈

∂ψ
∂y

y− n
( )

〉
d

ds

b2

2

( )
− b2〈

∂ψ
∂y

vy − n′
( )

〉. (24)

Eqs. (11), (12), (19), and (22)–(24) forms a equation system
to determine the evolution of the centroid, the rms envelope
dimensions, and the transverse emittances. Eqs. (19) and
(23) indicate that the deflection force of the wobbler fields
does not affect directly the dynamics of envelope and emit-
tances. If the conducting wall is far away from the beam,
then the image-charge effects are negligible. In this case,
we can show that the self-field terms in Eqs. (11) and (12)
vanish (see Eq. (28)), and the self-field potential ψ is a func-
tion of (x− μ, y− n) only. It is clear then that the self-field
force does not affect the centroid, and the dynamics of the
envelope dimensions and emittances is independent of the
centroid. The dynamics of the centroid, envelope dimen-
sions, and emittances are completely decoupled. The cen-
troid motion is controlled only by the focusing lattice and
wobbler fields, and the envelope dimensions and emittances
defined relative to the centroid evolve as if there were no
wobbler fields. This is a preferred situation for the proposed
beam wobbling technique. The wobbler system can be de-
signed to generate the desired centroid motion on the
target without considering it effects on the envelope and
emittance.
On the other hand, if the conducting wall is close to the

beam, the dynamics of the centroid, envelope dimensions
and emittances will be coupled by the self-field force. To de-
termine the effects of the self-field on the centroid, we note
that in Eqs. (11) and (12) the self-field force is

− 〈
∂ψ
∂x

〉, 〈
∂ψ
∂y

〉

( )
= −〈∇ψ〉 = ∫−f∇ψdvxdvydxdy

= − ∫V n∇ψdxdy. (25)

Using the fact that

−n∇ψ = Nb

2πKb
(∇ ·∇ψ)∇ψ

= Nb

2πKb
∇ · ∇ψ∇ψ

( )− (∇ψ ·∇)∇ψ
[ ]

(26)

and

∇
∇ψ
∣∣ ∣∣2

2
= (∇ψ ·∇)∇ψ, (27)

we can express the self-field force as a surface integral over
the conducting wall,

−〈∇ψ〉 = Nb

2πKb
∫wall ∇ψ∇ψ− ∇ψ

∣∣ ∣∣2I( )
· ds. (28)
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Here I is the unit tensor. Eq. (28) states that the self-field
force on the centroid motion is determined by the self-field
on the conducting wall. If the conducting wall approaches
infinity, the self-field force vanishes, which agrees with our
previous estimate. The equations employed in CIRCE code
(Sharp et al., 1992) show that the centroid and envelope
equations become decoupled when the pipe radius is set to
infinity. The self-field potential ψ will depend on (x− μ,
y− n) as well as (μ, n) if the conducting wall is nearby,
which means that the centroid dynamics will affect the
dynamics of the envelope dimensions and emittances. This
effect can be viewed as the image charge effect, and
should be minimized in the design of wobbler systems.
The image charge effect has been previously analyzed (Lee
et al., 1988).
In the present study, we assume that the conducting wall is

far away from the beam and define the envelope dimensions
and emittances relative to the centroid (See Eqs. (13) and
(14)). Then the envelope equations and the emittance
equations are exactly the same as those in the laboratory co-
ordinate system in the absence of centroid dynamics (Qin
et al., 2010). Therefore, known results for the case without
centroid and wobbler fields can be applied directly to Eqs.
(19) and (22)–(24). In terms of envelope equation, an impor-
tant result is for beams with fixed-shape density profiles. If
for all time the beam density profile has the following fixed-
shape form

n X, Y , s( ) = Nb

2πab
S

X2

2a2
+ Y2

2b2

( )
, (29)

where S is the density shape function, it can then be
shown (Davidson & Qin, 2001) that the beam emittance is
a constant of motion and the envelope Eqs. (19) and (23)
reduce exactly to

a′′ + κxa = ε2x
4a3

− Kb

2(a+ b)
, (30)

b′′ + κxa = ε2y
4b3

− Kb

2(a+ b)
. (31)

The difference between Eqs. (30) and (31) and Eqs. (19) and
(23) is that Eqs. (30) and (31) form a closed set of equations
for the envelope dimensions (a, b), and Eqs. (19) and (23)
do not.

3. SELF-CONSISTENT KINETIC DISTRIBUTION
AND ASSOCIATED CENTROID AND ENVELOPE
EQUATIONS

In the last section, we showed that when the conducting wall
is far away, the envelope equations relative to the centroid is
similar to the those without the centroid freedom. Since for
the later case there is a corresponding self-consistent KV
solution of the nonlinear Vlasov-Maxwell equations, this

similarity suggests that a self-consistent solution of the non-
linear Vlasov-Maxwell equations similar to the KV solution
may exist for high-intensity beams including the centroid dy-
namics in a wobbler field and an external focusing lattice. In
this section, we show that such a self-consistent kinetic sol-
ution indeed exists, and it is similar to the KV solution in
phase-space structure (Qin et al., 2010).

Because the self-field potential ψ and the distribution
function is nonlinearly coupled in the Vlasov-Maxwell
equations, to construct the self-consistent solution, we first
assume a specific form for the density profile to determine
the self-field potential ψ, and find the invariants of the par-
ticle dynamics in the external field and the self-field. Any
function of the invariants as a distribution function in the
phase space is a solution of the Vlasov equation. However,
an arbitrary distribution function constructed this way will
not generate the density profile assumed. We will select a
specific distribution function of the invariants and verify
that it indeed generates the initially assumed self-field poten-
tial ψ. Then a self-consistent solution is found, and the
Vlasov-Maxwell equations in the phase space are reduced
to a set of envelope equations that are ordinary differential
equations in terms of time. For a high-intensity beam in a
wobbler field and a quadrupole lattice, we start by assuming
that beam density is constant inside the ellipse centered at
(μ, n) with dimension (ā, �b) and vanishes outside the ellipse,
i.e.,

n = Nb/π�a�b, X2/a2 + Y2/b2 ≤ 1,
0, X2/a2 + Y2/b2 > 1,

{
(32)

where X≡ x− μ and Y≡ y− n are the displacement relative
to the centroid (See Fig. 2). The corresponding self-field is
linear in the centroid frame,

∂ψ
∂x

= −2Kb x− μ
( )

�a(�a+ �b)
,
∂ψ
∂y

= −2Kb y− n
( )

�b(�a+ �b)
, (33)

which is equivalent to assume the self-field potential to be

ψ = − Kb

(�a+ �b)

x− μ
( )2

�a2
+ y− n

( )2
�b
2

[ ]
. (34)

The dynamics of (μ, n) and (ā,�b) in above equations need
to be determined. Obviously, ā and �b are related to the rms
envelope dimensions a and b through �a = ��

2
√

a and
�b = ��

2
√

b. For the centroid dynamics, we let the centroid
motion satisfy

μ′′ + κxμ− Fx = 0, (35)

n′′ + κyn− Fy = 0. (36)
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From Eqs. (1), (2), (35), and (36) evolve according to

X′′ + κx − 2Kb

�a(�a+ �b)

[ ]
X = 0, (37)

Y ′′ + κy − 2Kb

�b(�a+ �b)

[ ]
Y = 0. (38)

Since Eqs. (37) and (38) are linear in X and Y, they admit the
Courant-Snyder invariants for the X and Y motions, i.e.,

AX = ε2xX
2

�a2
+ ε2x �aX′ − X�a′

( )2 = const.,

AY = ε2yY
2

�b
2 + ε2y �bY ′ − Y�b

′( )2= const., (39)

where εx and εy are constants corresponding to the conserved
transverse emittances, and ā and �b are determined from the
envelope equations

�a′′ + κx�a− 2Kb

(�a+ �b)
= ε2x

�a3
, (40)

�b
′′ + κy�b− 2Kb

(�a+ �b)
= ε2y

�b
3 . (41)

Because Ax and Ay are constant of motion, any function of Ax

and Ay is an exact solution of the Vlasov equation (3). But we
also need the distribution function to generate flat-top density
profile assumed in Eq. (32). We now show that the choice of
distribution function (Davidson & Qin, 2001)

f = Nb

π2εxεy
δ

AX

εx
+ AY

εy
− 1

( )
(42)

has this property. To verify this fact, we calculate the beam
density from f,

n X, Y , s( ) = ∫ fdvxdvy = Nb/π�a�b, X2/a2 + Y2/b2 ≤ 1,
0, X2/a2 + Y2/b2 > 1.

{
(43)

This is exactly the same as in Eq. (32). The distribution func-
tion given by Eq. (42) has the same structure as the KV dis-
tribution in the phase-space. We note that this kinetic
distribution does not follow directly from the moment
equations for the envelope and centroid in Section 2, because
the moment equations do not specify the distribution func-
tion. Finding a distribution function that solves the Vlasov-
Maxwell equations is generally non-trivial, and a closed set
of envelope and emittance equations does not guarantee the
existence of an exact kinetic solution in the phase-space.
Working together, with the moment equations and the KV
solution give a leading-order description of the wobbler
dynamics.

4. CONCEPTUAL DESIGN EXAMPLE OF A HEAVY
ION FUSION WOBBLER AND FINAL FOCUSING
SYSTEM

As an example, we give a conceptual design of a final focus
and wobbler system for a heavy ion fusion driver. The layout
of the system is illustrated in Figure 3. The beam is a Cs+

beam with rest mass m= 132.9 au, kinetic energy (γ− 1)
mc2= 2.43 GeV, and current I= 2895 A. These parameters
are for a typical heavy ion fusion driver design described
in Qin et al. (2004). At s= 0 the wobbler fields (not
shown) imposes a transverse momentum to the beam cen-
troid. The beam is then focused onto the target at s= 19 m,
with transverse spot size a= b= 1.2 mm after propagating
through the final focus magnets with focusing strength κq
(s), whose strength is denoted by κq (s) in Figure 3. The nor-
malized strength κ̂q of the four quadrupole magnets is
0.13 m−2, 0.22 m−2, 0.44 m−2, and −0.47 m−2. The initial
envelope dimensions at s= 0 are (a, b)= (4 cm, 2.28 cm).
The region between s= 11 m and s= 19 m is filled with pre-
formed plasma which neutralizes the space-charge potential
of the beam, but not the current (Friedman et al., 2009). In
this region, the size of the beam continues to decrease
before it strikes on the target. This is of course the effect of
a plasma lens. The wobbler fields induce different transverse
momenta for different slices according to oscillatory sinusoi-
dal forces at s= 0. The forces in the x- and y-directions has a
π/2 phase difference. Therefore, the beam centroid traces out
a circle on the target. The centroid dynamics illustrated in
Figure 3 corresponds to the slice where (μ, n)= (1.77 mm,
1.77 mm) on the target, and the normalized momentum
input by the wobbler fields is (μ′, n′)= (6.27 × 10−4,
−0.85 × 10−4) at s= 0. The radius of the centroid circle is
2.5 mm. The required frequency of the wobbler fields is
67 MHz for a beam pulse of 15 ns long. If the effective
length of the wobbler field is 10 m, the RF field strength

Fig. 2. (Color online) Beam density is constant inside the ellipse centered at
(μ, n) with dimension (ā,�b) and vanishes outside the ellipse.
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required is 0.30 MV/m, which are achievable with current
technology. It is also possible to place the wobbler plates
in the upstream of the beam before the longitudinal com-
pression (Qin et al., 2004), then a RF field with lower fre-
quency can be used to achieve the desired wobbling effect
on the target.

5. CONCLUSIONS

In summary, a fully self-consistent solution for high-intensity
charged particle beams in a quadrupole lattice with wobbler
fields is given by Eqs. (42), (40), and (41), and the centroid
dynamics is determined from Eqs. (35) and (36). The deflec-
tion force imposed by the wobbler fields acts only on the cen-
troid, and the self-consistent space-charge field only affects
the envelope motion. This is consistent with the analysis
leading to the rms envelope equations including the centroid
dynamics. These conclusions and the corresponding envel-
ope equations and centroid equations are expected to serve
as theoretical tools in designing beam wobbler systems for
applications to higher energy density physics and heavy
ion fusion. The kinetic solution to the nonlinear Vlasov-
Maxwell equations considered in Section 3 corresponds to
the case where the beam has a flat-top density profile. For
more general choices of beam density profiles that are not
flat-top, we expect that the rms envelope equations and the
centroid equations derived by taking appropriate moments
of the Vlasov-Maxwell equations in Section 2 remain a

good approximation, particularly if the change in beam emit-
tance remains small (Dorf et al., 2009). In the present study,
we have not considered non-ideal effects that may exists in
real accelerators and beam transport system. When the envel-
ope amplitude is large, the effects associated with lens non-
linearities can couple the centroid and envelope dynamics. In
addition, the error field of the wobbler should be taken into
account as well. These effects need to be addressed in
future study.
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