
PROBLEMS AND SOLUTIONS

PROBLEMS

00+2+1+ Degeneration of Feasible GLS to 2SLS in a Limited Information Si-
multaneous Equations Model, proposed by Chuanming Gao and Kajal Lahiri+
Consider a simple limited information simultaneous equations model,

y1 5 gy2 1 u, (1)

y2 5 Xb 1 v, (2)

wherey1, y2 areN31 vectors of observations on two endogenous variables+ X is
N3 K matrix of predetermined variables of the system, andK $1 such that~1! is
identified+ Each row of~u, v! is assumed to be i+i+d+ ~0,S!, andS is p+d+s+

Following Lahiri and Schmidt~1978!, feasible GLS for~1! and~2! based on a
consistent estimate ofS yields a consistent estimate forg+ Pagan~1979! showed
that an iterated Aitken estimator will generate LIML estimate ofg+

Denote [g2SLS5 ~y2
'Py2!21y2

'Py1,whereP5X~X 'X !21X '+The residuals[u5y2
[g2SLSy2 and [v5 My2, whereM 5 IN 2 P, may be used to generate a consistent

estimate forS, e+g+,

ZS 5
1

N F [u' [u [u' [v

[v' [u [v' [vG+
Show that a feasible GLS estimate ofg using ZS ~i+e+, the first iterate of iterated
Aitken! degenerates to[g2SLS+

REFERENCES

Lahiri, K+ & P+ Schmidt~1978! On the estimation of triangular structural systems+ Econometrica46,
1217–1222+

Pagan, A+ ~1979! Some consequences of viewing LIML as an iterated Aitken estimator+ Economics
Letters3, 369–372+

00+2+2+ The Maximum Number of Omitted Variables, proposed by Dmitri L+
Danilov and Jan R+Magnus+ Consider the standard partitioned regression model
y5X1b11X2b21u,whereX[~X1 :X2! is a nonstochasticn3kmatrix with full
column rankk5 k1 1 k2+We are interested in estimatingb1 and considerb2 as a
nuisance parameter+ Let r 5 rank~X1

'X2!+ Show that we may assume,without loss
of generality, thatk2 5 r and, hence, in particular thatk2 # k1+ Can we still make
this simplifying assumption when drawing inferences aboutb1?

In the special case wherer 5 0 and where consequentlyX2 is orthogonal toX1,
we may deleteX2 altogether, a well-known result+
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In another special case wherek1 5 1 ~one “focus” parameter and the rest nui-
sance parameters!, it is sufficient to consider justonenuisance parameter+

00+2+3+ Effects of Transforming the Duration Variable in Accelerated Failure
Time (AFT) Models, proposed by S+K+Sapra+Consider the followingAFT model,

ln t 5 b 'x 1 «, (1)

wherex is a~m31! vector of known constants, b is a~m31! vector of unknown
parameters, « 5 ln t0 2 E~ ln t0!, andt0 is a random variable with a density func-
tion not involvingx or b+

~a! Show that the following transformations oft lead to AFT models: ~i! y5 kt, k . 0,
and~ii ! y 5 t k, wherek is a constant+

~b! Show that the following transformations oft do not lead to AFT models: ~i! y5 a1
bt, a . 0,b . 0, and~ii ! y 5 exp~a 1 bt!, wherea andb are constants+

~c! Derive the hazard functions for the density functions ofy in parts~a! and~b! by
using the transformations oft defined therein+

00+2+4+ Conflict Among Criteria for Testing Hypotheses: Examples from Non-
Normal Distributions, proposed by Badi H+ Baltagi+ Berndt and Savin~1977!
showed thatW$ LR ^ LM for the case of a multivariate regression model with
normal disturbances+ Ullah and Zinde-Walsh~1984! showed that this inequality
is not robust to non-normality of the disturbances+ In the spirit of the latter article,
this problem considers simple examples from non-normal distributions and illus-
trates how this conflict among criteria is affected+

~a! Consider a random samplex1, x2, + + + , xn from a Poisson distribution with parameter
l+ Show that for testingl 5 3 versusl Þ 3 yieldsW$ LM for Sx # 3 andW# LM
for Sx $ 3+

~b! Consider a random samplex1, x2, + + + , xn from an exponential distribution with pa-
rameteru+Show that for testingu53 versusuÞ3 yieldsW$ LM for 0, Sx# 3 and
W# LM for Sx $ 3+

~c! Consider a random samplex1, x2, + + + , xn from a Bernoulli distribution with param-
eteru+ Show that for testingu 5 0+5 versusu Þ 0+5, we will always getW $ LM +
Show also, that for testingu5 2

3
_ versusuÞ 2

3
_ we getW# LM for 1

3
_ # Sx# 2

3
_ andW$

LM for 2
3
_ # Sx # 1 or 0, Sx # 1

3
_ +
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SOLUTIONS

99+3+1 The Eigenvalue Decomposition of a Symmetric Matrix—Solution+1 The
following solutions have been proposed independently by Simo Puntanen,George
P+H+ Styan and Hans Joachim Werner, and by Geert Dhaene+ These solutions are
based on different types of interesting arguments+

Solution 1, proposed by Simo Puntanen,George P+H+ Styan and Hans Joachim
Werner+ We give two different eigenvalue decompositions of the 2n 3 2n real
symmetric matrix

S0 2S

S 0 D 5: M,

say+ Precisely, we prove thatM ~1! is unitarily similar and~2! also orthogonally
similar ~becauseM is real symmetric! to the 2n 3 2n diagonal matrix

L :5 1
2D 0 0 0 0 0

0 D 0 0 0 0

0 0 D 0 0 0

0 0 0 2D 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
of its eigenvalues+ Corresponding eigenvectors may be chosen as the column
vectors of~1! the complex unitary matrix

U :5
1

2SX 1 iY X1 iY X2 iY X2 iY N N

Y2 iX 2Y1 iX 2Y2 iX Y1 iX 2iN iND
and then

M 5 ULU *,

whereU * is the conjugate transpose ofU, or as the column vectors of~2!the real
orthogonal matrix

P :5
1

#2SX X Y 2Y N 0

Y 2Y X X 0 ND+
and then

M 5 PLP'+
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In U andP the realn3 ~n22k! matrixN is any matrix so that the columns ofN0#2
constitute an orthonormal basis of the null space of the transpose of then 3 2k
block-partitioned matrix~X Y!5Z, say+BecauseX 'X5 Ik,Y 'Y5 Ik, andX 'Y5
0, we haveZ 'Z5 I2k and hencen $ 2k and rank~Z! 5 rank~X ! 1 rank~Y! 5 2k+

Proof 1. Clearly, by checkingMU5UL,U *U5 I2n,MP5PL, andP'P5 I2n,
our two claims above are established+

Proof 2. This is a constructive proof based on the following two well-known
results; see Chapter 21+11 in Harville ~1997! or Theorem 6+19 in Zhang~1999!
for Lemma 1 and Corollary 5 in Dhrymes~1978! or Theorem 2+8 in Zhang~1999!
for Lemma 2+

LEMMA 1 + Let A be an m3 m matrix and B a p3 p matrix+ Suppose that A
has m~not necessarily distinct! eigenvalues, sayl1, + + + ,lm, and let x1, + + + , xm

represent a linearly independent set of eigenvectors with xj corresponding tol j

~ j 5 1, + + + ,m!+ Moreover, let m1, + + + ,mp represent the~not necessarily distinct!
eigenvalues of B, and let yj ~ j 5 1, + + + , p! be eigenvectors of B corresponding
to m j ~ j 5 1, + + + , p! such that the p eigenvectors y1, + + + , yp are linearly indepen-
dent+ Then, the Kronecker product AJ B has mp~not necessarily distinct!
eigenvaluesl j mk ~ j 5 1, + + + ,m; k 5 1, + + + , p!, and xj J yk is an eigenvector of
A J B corresponding tol j mk+

LEMMA 2 + Let A and B be, respectively, m3 n and n3 m matrices, where
m# n+ Then the eigenvalues of BA~an n3 n matrix! consist of n2 m zeros and
the m eigenvalues of AB~an m3 m matrix!+

Clearly, M 5 H J S, with

H :5 S0 21

1 0 D+
Because

S5 ~X Y!S 0 D

2D 0DSX '

Y 'D,
it follows from Lemma 2 thatShasn2 2k eigenvalues zero and that the remain-
ing eigenvalues ofSare the 2k eigenvalues of the matrix

S 0 D

2D 0DSX '

Y 'D~X Y! 5 S 0 D

2D 0D5 H ' J D+

It is easy to check thati and2i, with i 5#21, are the two eigenvalues ofH ' ; the
vector~1 i !'0#2 is an eigenvector ofH ' corresponding to the eigenvaluei, and
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~1 2i !'0#2 is an eigenvector corresponding to the eigenvalue2i+ The positive
definite diagonal matrixD has eigenvaluesdj ~ j 5 1, + + + , k!; the corresponding
eigenvectors may be chosen asej ~the jth column ofIk!+ According to Lemma 1,
it thus follows that the eigenvalues ofH ' J D areidj and2idj ~ j 51, + + + , k!; the
corresponding eigenvectors may be chosen as

1

#2S1

iD J ej ,
1

#2S 1

2iD J ej ~ j 5 1, + + + , k!+

AlthoughSandH ' J D have the same nonzero eigenvalues, the corresponding
eigenvectors are in general different+ It is evident that a set of eigenvectors ofS
corresponding to these nonzero eigenvalues can be obtained from the correspond-
ing eigenvectors ofH ' J D by premultiplication with the column-orthonormal
matrix ~X Y!+We see, therefore, that the columns of the two matrices

1

#2
~X 1 iY! and

1

#2
~X 2 iY!

are eigenvectors ofScorresponding consecutively to its 2k nonzero eigenvalues
id1, + + + , idk and2id1, + + + ,2idk+When choosing the~real! matrix N0#2 such that
its columns constitute an orthonormal basis of the null space of~X Y!', the
columns of thisn3 ~n2 2k! matrixN0#2 are triviallyn2 2k linear independent
eigenvectors ofScorresponding to itsn 2 2k zero eigenvalues+

An eigenvalue decomposition ofM can now be obtained by applying Lemma 1
once more, this time to the Kronecker productM 5 H J S+ WhereasH andH '

have the same eigenvalues, the corresponding eigenvectors are different+ The
vector~1 2i !'0#2 is an eigenvector ofH corresponding to the eigenvaluei, and
the vector~1 i !'0#2 is an eigenvector ofH corresponding to the eigenvalue2i+
Combining our results and using Lemma 1, it follows that

MU 5 UL, (*)

or, equivalently,

M 5 ULU *,

which is, as claimed above, our first eigenvalue decomposition ofM+
To see thatM is also orthogonally similar toL, we recall thatM is real and so

~* ! holds true not only forU but separately also for the real part ofU and for the
imaginary part ofU+ The real matrices

P1 :5 #2Re~U ! 5
1

#2SX X X X N N

Y 2Y 2Y Y 0 0D
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and

P2 :5 #2Im~U ! 5
1

#2S Y Y 2Y 2Y 0 0

2X X 2X X 2N ND
of normalized eigenvectors ofM are, however, not orthogonal because they are
both rank deficient+ We construct our orthogonal matrixP from P1 andP2 by
selecting appropriately signed linearly independent block pairs~with 2n rows!,
and thus

M 5 PLP'

is, as claimed above, our second eigenvalue decomposition ofM+

Solution 2, proposed by Geert Dhaene+ The eigenvalue decomposition has the
form

A 5 F0 2S

S 0 G5 PLP',

with P orthogonal andL diagonal, given by

P 5
1

#2FX X Y Y Z Z

Y 2Y X 2X Z 2ZG (1)

and

L 5 3
2D 0 0 0 0 0

0 D 0 0 0 0

0 0 D 0 0 0

0 0 0 2D 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 , (2)

whereZ is ann 3 ~n 2 2k! matrix such that@X Y Z# is orthogonal+ ~In the
event thatn 2 2k 5 0, assumeZ and the zero rows and columns inL away+!
Below, two constructivemethods of proof of this decomposition are given+ Use
will be made of the matrix

B 5 FX 0 Y 0 Z 0

0 X 0 Y 0 ZG+
Method a (Diagonalization ofA). By successive transformationsArG'AG,

whereG is orthogonal, and one can try to diagonalizeA+Given the structure ofA
and noting thatSX5 2YD, SY5 XD andSZ5 0, an obvious candidate forG is B+
This gives
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B'AB 5 3
0 0 0 2D 0 0

0 0 D 0 0 0

0 D 0 0 0 0

2D 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4 +
It is not difficult now to find an orthogonal matrix that transformsB'AB into a
diagonal matrix+ Such a matrix is given by

C 5
1

#2 3
I I 0 0 0 0

0 0 I 2I 0 0

0 0 I I 0 0

I 2I 0 0 0 0

0 0 0 0 I I

0 0 0 0 I 2I

4 ,
which givesC 'B'ABC5 L andBC5 P, as can be verified+

Method b (Decomposition ofA2) Taking the square ofA yields

A2 5 F2S2 0

0 2S2G5 PL2P'+ (3)

The eigenvalue decomposition of2S2 is easily found as

2S2 5 XD2X ' 1 YD2Y ' 5 @X Y Z#3
D2 0 0

0 D2 0

0 0 0
4 3

X '

Y '

Z '
4 + (4)

It follows from ~3! and~4! that the eigenvalues ofA2 are the diagonal elements
of D2, each with multiplicity 4, and 2~n 2 2k! zeroes+ The eigenvalues ofA are
the positive or negative square roots of those ofA2 and sum to zero because
tr~A! 5 0+ Hence, they are given by the diagonal elements ofD and of2D, each
with multiplicity 2 and 2~n 2 2k! zeroes+ A solution forL is therefore given by
~2!+ It also follows from~3! and~4! that the eigenvectors ofA2 are given by the
columns ofB and by~specific! linear combinations thereof+ Due to the increased
multiplicity of the nonzero eigenvalues in going fromA to A2, the eigenvectors of
A are only a subset of those ofA2+ In any case, they are also~specific! linear
combinations of the columns ofB+ To find the correct linear combinations, ob-
serve that

AB 5 F 0 YD 0 2XD 0 0

2YD 0 XD 0 0 0G +
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It is easy now to find a matrixQ such thatAQ5 QL and the columns ofQ are
mutually orthogonal+ Such a matrix is given by

Q 5 FX X Y Y Z Z

Y 2Y X 2X Z 2ZG+
The solution forP given by~1! follows after normalizingQ+

Remark. It is easily checked that the above eigenvalue decomposition also
holds under the weaker condition thatD is a diagonal matrix+

NOTE

1+ Excellent solutions have been proposed independently by P+R+ Hansen, by S+ Lawford, by M+
van de Velden and H+ Neudecker, by S+ Zernov, and by R+W+ Farebrother, the poser of the problem+

REFERENCES

Dhrymes, P+J+ ~1978! Mathematics for Econometrics.New York: Springer-Verlag+
Harville, D+A+ ~1997! Matrix Algebra from a Statistician’s Perspective.New York: Springer-Verlag+
Zhang, F+ ~1999! Matrix Theory: Basic Results and Techniques.New York: Springer-Verlag+

99+3+2+ Maximum-Likelihood Estimation under Singularity—Solution,1 pro-
posed by Steve Lawford+We may write them3 1 score vector as

] ln L

]a
5 2

n

2

] ln6A6

]a
5 2

n

2S ] ln6A6

]A'
DS ]A

]E '
DS ]E

]a
D+ (1)

We note the three results

] ln6A6

]A'
5 A21, (2)

]A

]E '
5

2

n
E ' (3)

and

]E

]a
5 2l n, (4)

wherel n is then31 summation vector@1,1, + + + ,1# '+ Result~3! follows fromA5
1

n
E 'E 1

1

m
lmlm
' , given thatn $ m1 1, because

]A

]E '
5

1

n

]~E 'E!

]E '
1

1

m

]~lmlm
' !

]E '
5

1

n

]~E 'E!

]E '
5

2

n
E '+ (5)
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Result~4! follows from «i
'5 yi

'2 a'2 xi
'G ', ~i 5 1,2, + + + , n!, because

]«i
'

]a
5

]yi
'

]a
2

]a'

]a
2

]xi
'

]a
G ' 5 21+ (6)

Substituting~2!, ~3!, and~4! into ~1! gives

] ln L

]a
5 2

n

2
~A21!S2

n
E 'D~2ln! 5 A21E 'ln

5 A21 (
i51

n

«i 5 A21 (
i51

n

~ yi 2 a 2 Gxi ! 5 0 (7)

as the first-order maximum conditions with respect toa+ Thus,

[a 5
1

n (
i51

n

~ yi 2 Gxi !+ (8)

To check second-order conditions, we write them3 m Hessian matrix as

]2 ln L

]a]a'
5

]

]a'
S ] ln L

]a
D5

]SA21 (
i51

n

«iD
]a'

5
]

]a' (i51

n

A21«i 5 (
i51

n ]

]a'
A21«i + (9)

Noting that

]

]a'
A21«i 5 S ]A21«i

]«i
' DS ]«i

]a'D, (10)

where

]A21«i

]«i
' 5 A21 (11)

and

]«i

]a'
5

]yi

]a'
2

]a

]a'
2 G

]xi

]a'
5 2

]a

]a'
5 2lmlm

' , (12)

we obtain

]2 ln L

]a]a' *~a5 [a!

5 2n ZA21lmlm
' + (13)

From6 lmlm
' 65 0, it follows that the Hessian matrix is singular for alla ~not just

at the optimum!:

62nA21lmlm
' 6 5 ~2n!m6A621 6 lmlm

' 65 0+ (14)

Therefore, we cannot ascertain whether[a is a maximum, a minimum, or a saddle
point ~Magnus and Neudecker, 1988, p+ 123!+
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NOTE

1+ An excellent solution has been proposed independently by H+ Neudecker, the poser of the
problem+

REFERENCE

Magnus, J+R+& Neudecker,H+ ~1988! Matrix Differential Calculus with Applications in Statistics and
Econometrics.Chichester: John Wiley & Sons+

99+3+3+ Non-Normality and Explanatory Data Analysis—Solution, proposed
by David M+ Levy+ The first step is to provide a workable definition of explor-
atory data analysis~EDA!+ I propose to define EDA pragmatically, that is, in
terms of the beliefs and actions of the modeler+As the sample size increases, the
posited model changes as variables move from the error term to the model+ The
second step is to ask whether such dynamic modeling is consistent with normality
of the error term+ In general, the answer is no+

Nonstandard analytical devices shall be employed to replace integration argu-
ments with simple summation~Nelson, 1987!+ This substitution makes the proof
entirely transparent for the linear case+ Because “the model” under EDA is de-
fined in terms of acting individuals who are allowed to learn from ever increasing
samples and not in terms of a timeless platonic object in the realm of ideas, it is
entirely appropriate that we employ nonstandard devices+ For a platonist, consis-
tency is the mark of existence+ Both formalists~Robinson, 1974, p+ 282! and
pragmatists, as I take Tukey to be, would deny this link+

Let us write the traditional linear model that expresses a random variableYt as
a function of a finite number~K ! of independent variablesX1t + + +XKt and an error
term«t + Thus, for t 5 1+ + +T,

Yt 5 (
k51

K

bk Xtk 1 «t +

Suppose that«t is normal+ The Lindeberg–Feller~Feller, 1971! conditions allow
us to decompose a normal distributed random variable into normal and non-
normal components+Those components,which are normally distributed,we label
ht and proceed to other concerns+ Now, consider the infinite number~H ! of non-
normal components of«t , which the Lindeberg–Feller conditions allow+ If each
of these random variablesXK11t + + +XHt is real valued, then there must be infini-
tesimalsdK11+ + +dH such that we can rewrite«t in terms of the product of reals and
infinitesimals+ Thus, we obtain

Yt 5 (
k51

K

bk Xkt 1 (
k5K11

H

dk Xkt 1 ht +
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Although this formulation is not sufficient to establish the normality of«t , it is
necessary+ If any of thedk were, contrary to supposition, noninfinitesimal andXk

were non-normal, then this contribution to«t would have to be a real-valued
non-normal, thus violating the Lindeberg–Feller conditions+

The definition of EDA proposed here to moving a variable from the infinites-
imal d list to the realb list+At TN11 but not atTN, it may be possible to reject the
hypothesis thatbK11 5 0+We consider two types of EDA: local and global+With
local EDA, for someT2 . T1, the model expands fromK noninfinitesimal con-
tributions toK 11+With global EDA, in addition to local EDA atT1, if local EDA
at TN, then local EDA atTN11+

THEOREM+ If local EDA and the discoveredvariable is non-normal, then
there is non-normality at T1+

Proof. The Lindeberg–Feller conditions were violated atT1 because not all of
the excluded variables had the infinitesimal impact required for normality: the
discovered non-normal variable, XK11, has real impact+

THEOREM+ If global EDA and the discovered variables are non-normal,
then non-normality exists for all T+

Proof. The induction step to establish the inconsistency of global EDA and
normality is provided by the definition of global EDA+ There is noT for which
EDA is not possible+

It can be seen from this argument that normality is equivalent to the supposi-
tion that a regression model is correctly specified with respect to the non-normal
variables+No non-normal variable with a noninfinitesimal impact is omitted from
the model+ Successful EDA violates this condition+

REFERENCES

Feller,W+ ~1971! An Introduction to Probability Theory and Its Applications, 2nd ed+New York: John
Wiley & Sons+

Nelson, E+ ~1987! Radically Elementary Probability Theory.Princeton: Princeton University Press+
Robinson, A+ ~1974! Non-Standard Analysis, 2nd ed+ Amsterdam: North-Holland+

99+3+4+The Overdispersion Test in Count Data as Gauss–Newton Regression—
Solution,1 proposed by M+ Douglas Berg+ For the negative binomial II regres-
sion model~e+g+, Cameron and Trivedi, 1986!, we haveE~Yi 6Xi ! 5 eXi

'b and
var~Yi 6Xi ! 5 eXi

'b~1 1 aeXi
'b !+ Thus, we have the following regression model

Yi 5 E~Yi 6Xi ! 1 ei 5 eXi
'b 1 ei , (1)

whereei has zero mean and var~ei 6Xi !5var~Yi 6ei !5eXi
'b~11aeXi

'b !+UnderH0

of a Poisson model, we have var~ei 6Xi ! 5 eXi
'b ~a 5 0 underH0!+ Below, we
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transform model~1! into a conditional homoskedastic error model underH0+
Multiplying ~1! by e2Xi

'b02 gives

e2Xi
'b02Yi 5 e2Xi

'b02eXi
'b 1 e2Xi

'bei

5 eXi
'b02 1 ei

*, (2)

whereei
*5 e2Xi

'b02ei has zero mean and var~ei
* 6Xi ! 5 1 1 aeXi

'b+ UnderH0 of
a 5 0, var~ei

* 6Xi ! 5 1+ Therefore, testing overdispersion is equivalent to test
conditional homoskedasticity ofei

*, i+e+, testinga 5 0 in ei
*2511 aeXi

'b 1 error+
Or equivalently, testinga 5 0 in

ei
*2 2 1 5 aeXi

'b 1 error+ (3)

Using the Gauss–Newton regression~GNR! method suggested by David-
son and MacKinnon~1993!, we regressei

*2 2 1 on ]~aeXi
'b !0]a 5 eXi

'b and
]~aeXi

'b !0]b 5 aXi e
Xi
'b, i+e+, we estimate the following artificial regression

model:

[ei
*2 2 1 5 eXi

'bg0 1 ~aXi e
Xi
'b !g1 1 error+ (4)

Replacingb andei
* by Zb and [ei

*5 e2Xi
' Zb02 [ei , where Zb is the maximum likeli-

hood estimator ofb underH0 ~a Poisson model! and [ei 5Yi 2eXi
' Zb+Also imposing

H0 of a 5 0 in ~4! leads to

[ei
*2 2 1 5 eXi

' Zbg0 1 error+ (5)

Davidson and MacKinnon’s~1993! GNR test is to testg0 5 0 in ~5!+ Let
[g0 denote the least squares estimator ofg0 from ~5! and var~ [g0! be the esti-

mated asymptotic variance of[g0+ Then, [g00% var~ [g0! r N~0,1! in distribution
underH0 ~large sample result!+

For the second part of the question, note that the overdispersion test of Cameron
and Trivedi~1990, p+ 353! is to testg0 5 0 in the following regression equation:

~#2 [m i !
21$~Yi 2 [m i !

2 2 Yi % 5 ~#2 [m i !
21~ [m i !

2 1 error, (6)

where [m i 5 eXi
' Zb+Multiplying ~6! by#2 and using the identityYi 5 eXi

' Zb 1 [ei , ~6!
becomes

@ [ei
*2 2 1 2 e2Xi

' Zb [ei # 5 eXi
' Zbg0 1 error+ (7)

Comparing~5! and~7!, we see that Cameron and Trivedi’s~1990! test~CT!
differs from the GNR-based test of~5! in that the former test has an extra term,
2e2Xi

' Zb, on the dependent variable+ Let [g0,GNR and [g0,CT denote the least squares
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estimator ofg0 based on~5! and~7!, respectively+ Standard law of large numbers
and central limit theorems arguments lead to

!n [g0,GNR 5 @E~e2Xi
'b !#21n2102 (

i51

n

eXi
'b~ei

*2 2 1! 1 op~1! r N~0,V!, (8)

in distribution, whereV 5 $E @e2Xi
'b #%22var~eXi

' Zb~ei
*2 2 1!!, and

[g0,CT 5 @E~e2Xi
'b !#21n2102 (

i51

n

eXi
'b @ei

*2 2 1 2 e2Xi
'bei # 1 op~1! r N~0,S!, (9)

in distribution, whereS 5 $E @e2Xi
'b #%22var~eXi

' Zb @ei
*2 2 1 2 e2Xi

'bei # !+
Consistent estimators ofV andS can be easily obtained by using White’s het-

eroskedastic robust method+ Let ZV and ZS denote the consistent estimators ofV
andS, respectively+ Then we have, underH0,

!n [g0,GNRY% ZV r N~0,1! in distribution,

and

!n [g0,CTY% ZS r N~0,1! in distribution+

NOTE

1+ An excellent solution has been proposed independently by Badi H+ Baltagi and Dong Li, the
posers of the problem+
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