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PROBLEMS AND SOLUTIONS

PROBLEMS

00.2.1. Degeneration of Feasible GLS to 2SLS in a Limited Information Si-
multaneous Equations Modgroposed by Chuanming Gao and Kajal Lahiri
Consider a simple limited information simultaneous equations model

Y=Y+ 4, 1)
y2 = XB + v, (2)

wherey;, y, areN X 1 vectors of observations on two endogenous variaklées
N X K matrix of predetermined variables of the systamdK = 1 such thatl) is
identified Each row of(u,v) is assumed to beiid. (0,%), ands is p.d.s.

Following Lahiri and Schmidt1978, feasible GLS for(1) and(2) based on a
consistent estimate afyields a consistent estimate fprPagan1979 showed
that an iterated Aitken estimator will generate LIML estimate/ of

Denotey,s s= (Y5PY,) 1y5Py;, whereP = X(X'X) X" The residualg =y —
YosLsY» andd = My,, whereM = Iy — P, may be used to generate a consistent
estimate forz, e.q.,

Show that a feasible GLS estimate;oﬂsingi (i.e, the first iterate of iterated
Aitken) degenerates tf,g, s

REFERENCES

Lahiri, K. & P. Schmidt(1978 On the estimation of triangular structural systefsonometricat6,
1217-1222

PaganA. (1979 Some consequences of viewing LIML as an iterated Aitken estimagamomics
Letters3, 369-372

00.2.2. The Maximum Number of Omitted Variahl@soposed by Dmitri L
Danilov and Jan RMagnus Consider the standard partitioned regression model
y= X181+ X85+ u, whereX= (X;: X,) is anonstochastit X k matrix with full
column rankk = k; + k,. We are interested in estimatifgg and consideB, as a
nuisance parametdretr = rank(X;X,). Show that we may assumaithout loss
of generalitythatk, = r and hencein particular thak, = k;. Can we still make
this simplifying assumption when drawing inferences at®®

In the special case where= 0 and where consequent¥y is orthogonal toX,
we may deleteX; altogethera well-known result
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In another special case whétg= 1 (one “focus” parameter and the rest nui-
sance parameterst is sufficient to consider justnenuisance parameter

00.2.3. Effects of Transforming the Duration Variable in Accelerated Failure
Time (AFT) Modelgproposed by XK. SapraConsider the following AFT model

Int=p8'x+ ¢, (1)

wherexis a(m X 1) vector of known constantg is a(m X 1) vector of unknown
parameterse = Inty — E(Inty), andty is a random variable with a density func-
tion not involvingx or .

(@) Show that the following transformations tiead to AFT models(i) y = kt, k > 0,
and(ii) y = t wherek is a constant

(b) Show that the following transformationstdo not lead to AFT modelsi) y=a+
bt,a> 0,b > 0, and(ii) y = exp(a + bt), wherea andb are constants

(c) Derive the hazard functions for the density functiony af parts(a) and(b) by
using the transformations oflefined therein

00.2.4. Conflict Among Criteria for Testing Hypotheses: Examples from Non-
Normal Distributions proposed by Badi HBaltagi Berndt and Savir{1977)
showed thatW = LR = LM for the case of a multivariate regression model with
normal disturbance®Jllah and Zinde-Walsli1984 showed that this inequality
is not robust to non-normality of the disturbandeshe spirit of the latter article
this problem considers simple examples from non-normal distributions and illus-
trates how this conflict among criteria is affected

(a) Consider arandom sampig x,, ..., X, from a Poisson distribution with parameter
A. Show that for testing = 3 versus\ # 3 yieldsW= LM for X = 3 andW = LM
forx = 3.

(b) Consider a random samptg, x», ..., X, from an exponential distribution with pa-
rameteid. Show that for testing = 3 versug # 3 yieldsW= LM for0 <x=3and
W= LM for x= 3.

(c) Consider arandom sampte, X, ..., X, from a Bernoulli distribution with param-
eterd. Show that for testing = 0.5 versus # 0.5, we will always getW = LM.
Show alsothat for testing = 5 versus) # 3 we getW= LM for 3 =x=< Z andw=
IMfor=x=<1lor0<sx=4%.
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SOLUTIONS

99.3.1 The Eigenvalue Decomposition of a Symmetric Mati$otdtion® The
following solutions have been proposed independently by Simo Puntaeerge
PH. Styan and Hans Joachim Wernand by Geert Dhaen&hese solutions are
based on different types of interesting arguments

Solution 1 proposed by Simo PuntangBeorge FH. Styan and Hans Joachim
Werner We give two different eigenvalue decompositions of the>22n real
symmetric matrix

HARe

say Preciselywe prove thaiM (1) is unitarily similar and2) also orthogonally
similar (becauséM is real symmetrigto the 2h X 2n diagonal matrix

-D O 0 O

o o o U o o
o
o © o o

o O O O O

0
0
-D 0
0
0

O O O o

0

of its eigenvaluesCorresponding eigenvectors may be chosen as the column
vectors of(1) the complex unitary matrix

1<X+iY X+iY X—=iY X—=i¥Y N N>

2\Y—iX —=Y+iX —=-Y—-iX Y+iX =iN iN
and then
M = UAU"

whereU * is the conjugate transposeldf or as the column vectors ¢2)the real
orthogonal matrix

5 1 /X X Y -Y N O
T 2\y -y X X 0 N/

and then

M = PAP".
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In U andPthe reah X (n— 2k) matrixN is any matrix so that the columnsf+/2
constitute an orthonormal basis of the null space of the transpose nfxHzk
block-partitioned matrixX Y)=Z, say BecauseX'X= I, Y'Y=1,,andX'Y =
0, we haveZ’'Z = |, and hence& = 2k and ranKZ) = rank(X) + rank(Y) = 2k.

Proof 1. Clearly by checkingMU =UA, U *U = I,,, MP=PA,andP'P=1,,,
our two claims above are established

Proof 2. This is a constructive proof based on the following two well-known
results see Chapter 211 in Harville (1997 or Theorem 619 in Zhang(1999
for Lemma 1 and Corollary 5in Dhrymé$978 or Theorem 2B in Zhang(1999
for Lemma 2

LEMMA 1. Let A be an mx m matrix ard B a pX p matrix. Suppose that A
has m(not necessarily distingteigenvalues sayAy,...,Ay, and let %, ..., Xy
represent a linearly independent set of eigectors with x corresponding to;
(j=1...,m). Moreaver, let u,,..., up represent thénot necessarily distingt
eigervalues of Band lety (j =1,..., p) be eigemectors of B corresponding
touj (j =1,...,p) such that the p eigerctors y,..., y, are linearly indepen
dent Then the Kronecker product A B has mp(not necessarily distingt
eigenvaluesA;uy (j=1,...,m k= 1...,p), and ¥ & Y is an eigemector of
A ® B corresponding to\; wy.

LEMMA 2. Let A and B berespectiely, m X n and nX m matriceswhere
m = n. Then the eigaralues of BA‘an nxX n matrix) consist of n— m zeros and
the m eigenalues of AB(an mX m matrix).

Clearly M = H & S with
H 0 -1

=11 o)
Because

0 D\/X
o5 5))

it follows from Lemma 2 thaBhasn — 2k eigenvalues zero and that the remain-
ing eigenvalues o are the X eigenvalues of the matrix

0 D\/X 3 OD_,
b olly (X Y)= D o =H’"® D.

Itis easy to check thatand—i, with i = ¥ —1, are the two eigenvalues bff; the
vector(1 i)"/y/2is an eigenvector dfi’ corresponding to the eigenvaluend
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(1 —i)"/J2is an eigenvector corresponding to the eigenvalui€The positive
definite diagonal matrbD has eigenvalued, (j = 1,...,k); the corresponding
eigenvectors may be choseneasthejth column ofl,). According to Lemma 1
it thus follows that the eigenvalues Bf & D areid; and—id; (j =1,...,k); the
corresponding eigenvectors may be chosen as

1/1 1/1 o
ﬁ(i)@)%, T(_i>®% (i=1....k).

AlthoughSandH’ ®) D have the same nonzero eigenvaluibe corresponding
eigenvectors are in general differetitis evident that a set of eigenvectors®f
corresponding to these nonzero eigenvalues can be obtained from the correspond-
ing eigenvectors ofl’ & D by premultiplication with the column-orthonormal
matrix (X Y). We seethereforgthat the columns of the two matrices

1

7 (X+1iY) and

1

7 (X—=1iY)
are eigenvectors @corresponding consecutively to itk Bonzero eigenvalues
idy,...,id,and—id,,...,—id,. When choosing théreal matrix N/v/2 such that
its columns constitute an orthonormal basis of the null spaceXofY)’, the
columns of thisn X (n — 2k) matrix N/+/2 are triviallyn — 2k linear independent
eigenvectors oS corresponding to ite — 2k zero eigenvalues

An eigenvalue decomposition bf can now be obtained by applying Lemma 1

once morethis time to the Kronecker produt = H ¥) S WhereasH andH’
have the same eigenvalydke corresponding eigenvectors are differdrte
vector(1 —i)'/y/2is an eigenvector dfl corresponding to the eigenvalyand
the vector(1 i)'/y/2is an eigenvector dfl corresponding to the eigenvalua.
Combining our results and using Lemmaitifollows that

MU = UA, *)
or, equivalently
M = UAU?
which ig as claimed aboveur first eigenvalue decomposition bf.
To see thaM is also orthogonally similar ta, we recall that is real and so

(*) holds true not only fotJ but separately also for the real partiéfind for the
imaginary part olJ. The real matrices

1/X X X X N
Pi=V2RU=Fly v -y v 0 o
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and
1 Y Y -Y =Y O 0
P,:=+v2ImU) = E( )

-X X =X X =N N

of normalized eigenvectors & are howevey not orthogonal because they are
both rank deficientWe construct our orthogonal matrix from P, and P, by
selecting appropriately signed linearly independent block gaiith 2n rows),
and thus

M = PAP’

is, as claimed aboveur second eigenvalue decompositiorivbf

Solution 2 proposed by Geert DhaeriEhe eigenvalue decomposition has the
form

a-|® T3 Zpap
“|s o |TPAP

with P orthogonal and\ diagona) given by

1[X X Y Y Z 2z
PZE{Y Y X -X Z -Z @)
and
-D 0 0 0 0 0
O DO O 00
O 0D 0 0O
A=10o 0 0 -p o of )
O 00 O 00
L0 0 0 0 0 0

whereZ is ann X (n — 2k) matrix such thafX Y Z]is orthogonal(In the
event thain — 2k = 0, assumeZ and the zero rows and columns Anaway)
Below; two constructivemethods of proof of this decomposition are givelse
will be made of the matrix

X 0Y 02ZO
B_ox0\(oz'

Method a (Diagonalization ofA). By successive transformatioAs—> G'AG,
whereG is orthogonaland one can try to diagonaliZe Given the structure oA
and noting thaBX= —YD, SY= XD andSZ= 0, an obvious candidate f@ is B.
This gives
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"0 0 0 -D 0 0]
0O 0D 0 00
, O DO 0 00
BAB=1 b 00 0 o o
0O 00 O 00O
Lo 0 0 0 0 ¢

It is not difficult now to find an orthogonal matrix that transforl@$AB into a
diagonal matrixSuch a matrix is given by

11 0 0 0 0]

0 0 I -1 0 0

110 o1 1 0 o0
=%l =10 0 0 of
00 0 0 | |

0o 0 0 0 I -1

which givesC'B’ABC= A andBC = P, as can be verified
Method b (Decomposition ofA?) Taking the square of yields
-S2 0

A2 =
0 -

] = PA%P", 3)

The eigenvalue decomposition efS? is easily found as

D2 0 Of|[x
—S2=XD2X'+YD2Y'=[X Y Z| 0 D2 o||Y'|. 4)
o o 0o]lz

It follows from (3) and(4) that the eigenvalues @ are the diagonal elements
of D2, each with multiplicity 4 and 2An — 2k) zeroesThe eigenvalues ok are
the positive or negative square roots of thoseAdfand sum to zero because
tr(A) = 0. Hence they are given by the diagonal elementdfodnd of —D, each
with multiplicity 2 and 2n — 2k) zeroesA solution for A is therefore given by
(2). It also follows from(3) and(4) that the eigenvectors @ are given by the
columns ofB and by(specifig linear combinations theredbue to the increased
multiplicity of the nonzero eigenvalues in going frahito A2 the eigenvectors of
A are only a subset of those #Ff. In any casethey are alsdspecifig linear
combinations of the columns &. To find the correct linear combinationsb-
serve that

0O YD 0 —-XD 0 O
AB = .
-YD 0 XD O 0 0
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It is easy now to find a matriQ such thatAQ = QA and the columns of are
mutually orthogonalSuch a matrix is given by

X X Y Y Z Z

Q=ly v x -x z -z|

The solution forP given by(1) follows after normalizingQ.

Remark. It is easily checked that the above eigenvalue decomposition also
holds under the weaker condition tHais a diagonal matrix

NOTE

1. Excellent solutions have been proposed independentlyfyHansenby S Lawford, by M.
van de Velden and HNeudeckerby S Zernoy and by RW. Farebrotherthe poser of the problem
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99.3.2. Maximum-Likelihood Estimation under Singularit@elution® pro-
posed by Steve LawfordVe may write them X 1 score vector as

dlnL  nalnlAl n<aInA|><aA><aE) 1
da 2 osa 2\ oA oE’ )\ 9a ) @)

We note the three results

dIn|A| .
o A @
A2
" nE ©
and
JE
== (4)

wherel, is then X 1 summation vectdrl,1,...,1]". Result(3) follows fromA =

1
- E'E+ - Imlms given thatn = m + 1, because

0A 10(E'E 1 a(l,1) 10(E'E 2
A _L1HEE) 1y 1IEE) 2, -
JE’ n oJE’ m oE’ n JE’ n
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Result(4) follows frome/ =y —a’ — x/T", (i =1,2,...,n), because

e/ ay; oa’ ox/

o [N S ®)
Ja Jda Ja oa

Substituting(2), (3), and(4) into (1) gives

dlnL n (A1)<2 E’)( )= A TE
sa 2 n no n
n n
=AY =AY (y—a-TIx)=0 (7)
i=1 i=1
as the first-order maximum conditions with respecatdhus
1 n
a= _E(yi_rxi)- (8)
ni=a
To check second-order conditigivge write them X m Hessian matrix as
n
al AT &
92InL 9 [aInL < _21'> P nog
_ = = :_EAilsi:z_AilSi. (9)
Jdada’ Ja’'\ oda Ja’ Ja' = = 0a
Noting that
0 A Le \ [ e
_A_lsi = s (10)
oa’ def oa’
where
(:)Aflsi
—, = A_l (11)
68i
and
aSi . ayl 68. 3Xi . 88. . | |’ (12)
ga’  oda o0a’ oa’ 9a ™™
we obtain
OInL A1 1Y (13)
= -—n .
dada’ |(,-a) e

From|l,I/,| =0, it follows that the Hessian matrix is singular for al{inot just
at the optimuny

[=nA Il = (=)™ Al = 0. (14)

Thereforewe cannot ascertain wheth&is a maximuma minimum or a saddle
point (Magnus and Neudecket988 p. 123).
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NOTE

1. An excellent solution has been proposed independently bi)détideckerthe poser of the
problem

REFERENCE

Magnus JR. & NeudeckerH. (1988 Matrix Differential Calculus with Applications in Statistics and
EconometricsChichesterJohn Wiley & Sons

99.3.3. Non-Normality and Explanatory Data Analysiselution proposed
by David M. Levy. The first step is to provide a workable definition of explor-
atory data analysi$EDA). | propose to define EDA pragmaticallthat is in
terms of the beliefs and actions of the modeferthe sample size increaséise
posited model changes as variables move from the error term to the.rifbdel
second step is to ask whether such dynamic modeling is consistent with normality
of the error termin generalthe answer is no

Nonstandard analytical devices shall be employed to replace integration argu-
ments with simple summatidiNelson 1987). This substitution makes the proof
entirely transparent for the linear cagecause “the model” under EDA is de-
fined in terms of acting individuals who are allowed to learn from ever increasing
samples and not in terms of a timeless platonic object in the realm of idéas
entirely appropriate that we employ nonstandard devi€esa platonistconsis-
tency is the mark of existenc8oth formalists(Robinson 1974 p. 282 and
pragmatistsas | take Tukey to hevould deny this link

Let us write the traditional linear model that expresses a random vahadxe
a function of a finite numbeiK ) of independent variables;; ... Xk and an error
terme;. Thus fort=1...T,

K
Y = E By X T &
k=1

Suppose that; is normal The Lindeberg—Felle(Feller, 1971 conditions allow

us to decompose a normal distributed random variable into normal and non-
normal component¥hose componenta/hich are normally distributedave label

1, and proceed to other concerhw, consider the infinite numbéH ) of non-
normal components af;, which the Lindeberg—Feller conditions alloifreach

of these random variable&. 1; ... X is real valuedthen there must be infini-
tesimalsx. 1...64 such that we can rewritg in terms of the product of reals and
infinitesimals Thus we obtain

K H
Yo= 2 BicXi T X kX + e
k=1

k=K+1
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Although this formulation is not sufficient to establish the normalitygfit is
necessanyf any of thed, were contrary to suppositigmoninfinitesimal andX,
were non-normalthen this contribution te; would have to be a real-valued
non-normayj thus violating the Lindeberg—Feller conditions

The definition of EDA proposed here to moving a variable from the infinites-
imal 6 list to the reaB list. At Ty, but not atTy, it may be possible to reject the
hypothesis thaBy ., = 0. We consider two types of EDAocal and globalWith
local EDA, for someT, > T,, the model expands frod noninfinitesimal con-
tributions toK + 1. With global EDA in addition to local EDA aT, if local EDA
atTy, then local EDA afTy ;.

THEOREM If local EDA and the disceeredvariable is nornormal then
there is noanormality at 7.

Proof. The Lindeberg—Feller conditions were violatedabecause not all of
the excluded variables had the infinitesimal impact required for normaligy
discovered non-normal variah¥, 1, has real impact

THEOREM If global EDA and the disageredvariables are normormal
then nonnormality exists for all T

Proof. The induction step to establish the inconsistency of global EDA and
normality is provided by the definition of global EDAhere is noT for which
EDA is not possible

It can be seen from this argument that normality is equivalent to the supposi-
tion that a regression model is correctly specified with respect to the non-normal
variablesNo non-normal variable with a noninfinitesimal impact is omitted from
the model Successful EDA violates this condition
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99.3.4. The Overdispersion Testin Count Data as Gauss—Newton Regression—
Solution® proposed by MDouglas BergFor the negative binomial Il regres-
sion model(e.g., Cameron and Trivedi1986, we haveE(Y,|X;) = eX'# and
var(Y;| X;) = XA (1 + ae*'#). Thus we have the following regression model

Y= E(YIX) + =€+, (1)

wheree; has zero mean and vag | X;) = var(Y;| ;) = €% (1 + ae*'#). UnderH,
of a Poisson modelve have vafe | X;) = eX# (a = 0 underH,). Below, we
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transform model1) into a conditional homoskedastic error model unégr
Multiplying (1) by e %'#/2 gives

—X{B/2\y — a—X{B/2aX{ —X/
e |B/Yi_e |,B/e|B+e |.3€i
= X2 4 e, @

wheree; = e X'#/2¢, has zero mean and vat'|X;) = 1+ aeX'A. UnderH, of

a = 0, var(e| X;) = 1. Therefore testing overdispersion is equivalent to test
conditional homoskedasticity ef, i.e., testinga = 0 ine;2 =1+ ae*'# + error.

Or equivalentlytestinga = 0 in

€2 —1= aeXP + error (3)

Using the Gauss—Newton regressi@BNR) method suggested by David-
son and MacKinnor(1993, we regress;? — 1 on d(aeX#)/da = eX'# and
d(ae®P)/oB = aX,eXP, i.e, we estimate the following artificial regression
model

&2 —1=e"Pyy+ (X €9P)y, + error 4)

ReplacingB ande* by B andé; = e X'#/2¢, wheref is the maximum likeli-
hood estimator g8 underH, (a Poisson modghndé; = Y, — e~ Also imposing
Hoof @ = 0in (4) leads to

&2 —1=eXPy, + error (5)

Davidson and MacKinnon’$1993 GNR test is to testyy = 0 in (5). Let
Yo denote the least squares estimatorygfirom (5) and vafy,) be the esti-
mated asymptotic variance §f. Then y,/+ var(y,) — N(0,1) in distribution
underH, (large sample resylt

Forthe second part of the questjote that the overdispersion test of Cameron
and Trivedi(199Q p. 353 is to testy, = 0 in the following regression equation

(V2a) MY — )% = Y} = (V24;) (/) + errox (6)
whereg; = XA, Multiplying (6) by V2 and using the identity, = eX'# + ¢, (6)
becomes

[62—1—eXBg] =eXPy,+ error (7)

Comparing(5) and(7), we see that Cameron and Trived{E990 test(CT)
differs Afrom the GNR-based test (§) in that the former test has an extra term
—e X'k on the dependent variableet Yo0.anrR AN o7 denote the least squares
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estimator ofyy based or{5) and(7), respectivelyStandard law of large numbers
and central limit theorems arguments lead to

n
VYo,anr = [E(€29F)] 7 In"72 3 &XF (/% — 1) + 0,(1) = N(0,0), (8)
i=1
in distribution whereQ = {E[e2¥A]} 2var(eX'#(&*2 — 1)), and
Jocr = [E(eXF)] In V2 Y eXh 2 — 1 — e Xhe ]+ 0,(1) — N(0,%), (9)
i=1

in distribution wheres, = {E[e2X/A]} 2var(eX #[2 — 1 — e ¥ F¢,]).

Consistent estimators 6f andz, can be easily obtained by using White’s het-
eroskedastic robust methddet () and3 denote the consistent estimators(pf
and3, respectivelyThen we haveunderH,

V0.enr/V © = N(0,1) in distribution

and
VAdo.cr/vE = N(0,1) in distribution

NOTE

1. An excellent solution has been proposed independently by BaBaHagi and Dong Lithe
posers of the problem
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