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Particle-laden flows of sedimenting solid particles or droplets in a carrier gas have
strong inter-phase coupling. Even at low particle volume fractions, the two-way
coupling can be significant due to the large particle to gas density ratio. In this
semi-dilute regime, the slip velocity between phases leads to sustained clustering that
strongly modulates the overall flow. The analysis of perturbations in homogeneous
shear reveals the process by which clusters form: (i) the preferential concentration
of inertial particles in the stretching regions of the flow leads to the formation
of highly concentrated particle sheets, (ii) the thickness of the latter is controlled
by particle-trajectory crossing, which causes a local dispersion of particles, (iii) a
transverse Rayleigh–Taylor instability, aided by the shear-induced rotation of the
particle sheets towards the gravity normal direction, breaks the planar structure
into smaller clusters. Simulations in the Euler–Lagrange formalism are compared
to Euler–Euler simulations with the two-fluid and anisotropic-Gaussian methods. It
is found that the two-fluid method is unable to capture the particle dispersion due
to particle-trajectory crossing and leads instead to the formation of discontinuities.
These are removed with the anisotropic-Gaussian method which derives from a kinetic
approach with particle-trajectory crossing in mind.

Key words: instability, multiphase and particle-laden flows, multiphase flow

1. Introduction
Suspended particles in a carrier fluid can promote heat and mass transfer, catalytic

chemical reactions or combustion. The dynamics of such flows is significantly
more complex than single-phase flows and it is challenging to obtain a physical
understanding of the phenomena at play. A particular feature of particle-laden gas
flows is the tendency of inertial particles to form clusters many times larger than
the particle size. To understand the mechanisms leading to clustering in semi-dilute
(low volume fraction, 〈φ〉� 1, but moderate mass loading, M=O(1)) suspensions of
heavy particles in a gas, we study the case of homogeneously sheared flow. In this
configuration, elongated particle clusters are continuously formed and broken down
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under the combined action of shear, gravity and the preferential concentration of
particles in high strain and low vorticity regions of the flow. Kasbaoui et al. (2015)
previously addressed the onset of clustering of heavy particles with small but non-zero
inertia with a linear stability analysis. The nonlinear regime is addressed in this paper
and reveals a route to clustering in which preferential concentration, flow modulation,
particle-trajectory crossing and the Rayleigh–Taylor instability appear successively.

Semi-dilute particle-laden flow pose special challenges to physical understanding.
The interplay between the two phases leads to behaviours distinctly different from
purely hydrodynamic or granular flows. Most prominently, the interaction between the
two phases leads to the formation of clusters in the particle phase (Squires & Eaton
1991; Boivin, Simonin & Squires 1998; Yang & Shy 2005; Poelma, Westerweel
& Ooms 2007; Jenny, Roekaerts & Beishuizen 2012; Meyer 2012; Capecelatro,
Desjardins & Fox 2015). The aggregates of particles modulate the carrier phase on
scales larger than a single particle. In turbulence, the inter-phase coupling leads to
deviations of the energy and dissipation rate spectra from those predicted by the
usual cascade of energy from large to small scales (Al Taweel & Landau 1977;
Druzhinin 2001; Aliseda et al. 2002; Pai & Subramaniam 2012). For heavy particles
in a carrier gas, this altered energy cascade occurs even in semi-dilute suspensions
and is promoted by gravity (Elghobashi & Truesdell 1993). Instabilities that lead to
clustering of sedimenting particles could provide a mechanism by which gravitational
potential energy is transformed into fluid and particle kinetic energy at length scales
governed by the two-phase dynamics.

The analysis of clustering in unbounded homogeneous shear reveals mechanisms
that can be hard to detect in turbulent flows. This flow retains the simplicity of linear
flows but incorporates key elements of more complex anisotropic inhomogeneous
flows. The seemingly simple flow exhibits singularly rich behaviours when perturbed
sinusoidally and forced by gravity. In the absence of particles, Lord Kelvin (Thomson
1887) showed that these perturbations are diffused by the fluid’s viscosity, yielding an
exponentially stable state. Recently, we showed by means of a linear stability analysis
(LSA) that the addition of particles creates an unstable state through the preferential
concentration mechanism (Kasbaoui et al. 2015). The sinusoidal perturbations create
periodic regions of dominant rotation and dominant strain, which cause particles
to migrate and segregate breaking the homogeneity of the flow. The regions where
particles accumulate force the flow in the direction of gravity more than the depleted
regions do owing to the higher local number density. The overall behaviour is unstable
algebraically with a time scale equal to the inverse of the shear rate. The study also
reveals the existence of a most dangerous length scale, the distance travelled by a
settling particle in one shear time. This most unstable wavelength is intermediate
between the distance to the boundaries and the particle size. When the confining
scales are much larger than this intermediate scale, the shear-driven preferential
concentration instability can occur locally in a shear flow even if the shear rate and/or
particle volume concentration are inhomogeneous at larger scales. This situation is
analogous to the instability of particle concentration waves in fluidized beds which
occur at a preferred wavelength governed by particle inertia, particle pressure and
particle viscosity (Anderson, Sundaresan & Jackson 1995). In contrast the instabilities
of single-phase shear flow emerge from the boundaries. The work exposes the onset
of clustering in homogeneous shear flow based on a simplified Eulerian–Eulerian
model first proposed by Maxey (1987) and then further developed by Druzhinin
(1995) and Ferry & Balachandar (2001) valid for heavy particles with small, but
non-zero inertia. Characterization of the full clustering route requires analysis of the
flow with large perturbations out of the reach of LSA.
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Experimental investigations of clustering in unbounded homogeneous shear are
rendered difficult by the size of parameter space to be explored and flow geometry.
In addition to the usual Reynolds number Re, the mass loading M (ratio of the masses
of the two phases), Stokes number St (product of shear rate and particle characteristic
time) and average particle volume fraction 〈φ〉 are parameters that critically dictate
the working regime of particle-laden flows. Moreover, experiments are often hard to
conduct because of the two phases obstructing each other (Modarress, Elghobashi &
Tan 1984; Shuen et al. 1985; Hardalupas, Taylor & Whitelaw 1989; Mostafa et al.
1989; Prevost et al. 1996; Gillandt, Fritsching & Bauckhage 2001; Yang & Shy
2005; Poelma et al. 2007; Lau & Nathan 2014). These difficulties make numerical
approaches particularly appealing in this context.

Numerical endeavours start by a choice of governing equations to be solved.
There are two dominant paradigms for treating the two phases, each with their
own conceptual difficulties. Euler–Lagrange (EL) simulations rely on solving the
position and momentum of every discrete (Lagrangian) particle in addition to the
fluid’s Navier–Stokes equations. This method is successful in capturing clustering
in mesoscale simulations but cannot realistically scale to match laboratory-scale
experiments, let alone industrial flows, because the number of particles to track
quickly becomes intractable. An alternative formalism relies on an Eulerian description
of the particle phase. Euler–Euler (EE) approaches are usually more computationally
efficient and easier to scale. However, the analysis of clustering with these methods
is challenging. One challenge is the conceptual difficulties in the derivation of partial
differential equations (PDE) for the particle volume fraction and momentum that lead
to limits to their applicability. The particle phase is highly compressible and as such
particles are allowed to accumulate in restricted regions of space. The compressibility
of the particle phase leads to strong volume fraction gradients, shocks and void
bubbles, i.e. depleted regions where the volume fraction approaches zero. According to
Ferrante & Elghobashi (2007) this results in particle velocity fields that contain ‘holes’
indicating a topology change. Moreover, the dynamics of the particle often leads to
local folds in phase space resulting in caustics (Falkovich, Fouxon & Stepanov
2002; Wilkinson, Mehlig & Bezuglyy 2006; Gustavsson et al. 2012; Ravichandran
& Govindarajan 2015). The ability of particles to cross one another’s trajectories
leads to local multiplicity in the particle velocity (Fox 2008). This prompted the
development of kinetic models (Koch 1990) and other approaches inspired by rarefied
gas flows (McGraw 1997; Simonin, Fevrier & Laviville 2002; Desjardins, Fox &
Villedieu 2008; Fox 2008). In this exploratory work, we use leading EE and EL
methods to expose similarities and differences across the methodologies.

Building on the linear analysis, we propose to revisit the instability in the light
of the EL methodology (Capecelatro & Desjardins 2013b) and two EE approaches:
the low volume fraction two-fluid method (TF) (Elghobashi & AbouArab 1983;
Druzhinin 1994) and the anisotropic-Gaussian method (AG) (Vi, Doisneau & Massot
2015). In § 2, we present the governing equations and outlines of the instability.
Section 3 presents the numerical strategies. Careful attention is given to the forcing
by the homogeneous shear and the shear-periodic boundary conditions. In § 4, the
numerical results are compared to the linear stability analysis in the small amplitude
regime. This shows agreement across all methods when the particle distribution
inhomogeneities are small. In § 5, we probe the flow with strong perturbations that
trigger nonlinear effects. This leads to strong clustering in EL and EE simulations,
aided by a secondary Rayleigh–Taylor instability and particle-trajectory crossing.
The differences noted in the three computational approaches expose the importance
of particle-trajectory crossing in removing discontinuities arising in TF simulations.
Concluding remarks are reported in § 6.
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2. Particle-laden homogeneous shear
2.1. Governing equations and particle-phase methods

Consider a dilute monodisperse cloud of particles suspended in an incompressible
Newtonian gas. The carrier phase has a density ρf and viscosity µf and satisfies the
Navier–Stokes equations

∇ ·U= 0, (2.1)

ρf
∂U
∂t
+ ρf U · ∇U=−∇p+µf∇

2U+ ρf g−F, (2.2)

where U is the fluid velocity, p is the pressure, g is the gravitational acceleration
and F is the momentum coupling force with the dispersed phase. For dilute solid
particles of density ρp, diameter dp, velocity V, relaxation time τp = ρpd2

p/(18µf ),
with diameters small enough that the particle Reynolds number Rep = |v− u|dp/ν < 1
(Maxey & Riley 1983), this coupling is captured by the Stokes drag

F= ρpφ
U−V
τp

, (2.3)

where φ is the local volume fraction. The remaining hydrodynamic forces are
neglected. Note that the gravitational force acting on the particles does not directly
force the fluid motion. Instead, the gravitational force alters the particle velocity in a
way that leads to a particle–fluid drag force (2.3) that resembles gravitational loading
when the difference of velocities is nearly relaxed to the terminal velocity at low
Stokes numbers.

It is important to note that semi-dilute suspensions for which the average volume
fraction 〈φ〉 is small can still have a strong coupling between the two phases. Owing
to the large density ratio ρp/ρf of solid particles in gaseous flows, the mass loading
M = 〈φ〉ρp/ρf , a measure of the coupling between the phases, can be of order unity.
This means ensembles of particles can collectively modulate the flow on a level on
par with the mean fluid velocity.

When treating homogeneous shear flows, it is customary to do a decomposition that
isolates the perturbations from the mean homogeneous shear motion

U= Γ yex + u, (2.4)
V = Γ yex + v. (2.5)

Here u and v are the fluctuating fluid and particle velocities, Γ is the shear rate, ex is
the streamwise direction and y is the coordinate along the cross-direction ey =−g/g
which is also parallel to gravity. The fluid fluctuations are given by the following
governing equations:

∇ · u= 0, (2.6)

ρf
∂u
∂t
+ ρf u · ∇u=−∇p+µf∇

2U+ ρf g−F− ρfΓ uyex − ρfΓ y
∂u
∂x
. (2.7)

In the absence of particles, the homogeneous shear flow contains only two intrinsic
scales: the shear characteristic time τf = Γ −1, and the shear viscous dissipation
length scale Lµ =

√
µf /(ρfΓ ). The unboundedness of the flow removes any other

scale. New scales arise in particle-laden shear subject to gravity. As explained in
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Kasbaoui et al. (2015), the unperturbed sheared particle-phase sediments at the speed
of the particle settling velocity Vg= τpg. Based on this characteristic velocity and the
characteristic time τf =Γ

−1, non-dimensionalization of the two-fluid equations reveals
a characteristic length equal to the settling distance in one shear time, Lg = Vg/Γ .
This is a scaling that focuses on the collective dynamics of the particles in shear,
rather than the particle-scale dynamics. It follows that a total of four independent
dimensionless numbers control this flow: the mass loading M, average volume fraction
〈φ〉, Stokes number St = Γ τp and Reynolds number Re = ρf VgLg/µf = (Lg/Lµ)2. In
this context, the Reynolds number is a measure of the relative strength of inertial
accelerations at the scale set by the particles’ sedimentation to the viscous dissipation.
It also shows that fluid perturbations induced by slow settling particles are suppressed
by viscosity. It is noteworthy that, while shear reinforces preferential concentration
(Kasbaoui et al. 2015), it can also lead to reduced flow modulation by strengthening
the dissipation compared to the gravitational effects (Re= (Lg/Lµ)2 ∝ 1/Γ ).

A complete description of particle-laden flows requires governing equations for the
particle phase. Below we examine three approaches used in the present study.

Euler–Lagrange method (EL): Based on the work of Maxey & Riley (1983), the
equation of motion of particle ‘i’ in homogeneous shear is given by

dxi

dt
= vi
+ Γ yiex, (2.8)

dvi

dt
=

u(xi, t)− vi

τp
+ g, (2.9)

where xi and vi are respectively the position and fluctuating velocity of this particle.
Only Stokes drag is retained here for the same reasons as in (2.3).

Euler–Lagrange approaches rely on solving these equations for all N discrete
particles in the flow. The Eulerian particle velocity at the location x is computed
from the Lagrangian velocities in the following way:

v(x, t)=
1
N

N∑
i

vi(t)q(‖x− xi
‖), (2.10)

where q is a filter kernel with width δf comparable to the grid spacing 1x. The
particle volume fraction φ is obtained in a similar way. The construction of these
Eulerian quantities allow the evaluation of the forcing term (2.3) exerted by the
particles on the gas.

Two-fluid Euler–Euler method (TF): Euler–Euler formulations derive from the
observation that on scales significantly larger than the particle diameter but smaller
than the confining apparatus, the particle phase bears a coherent, organized, fluid-like
motion. In these approaches the Eulerian particle velocity v becomes the subject of
models and equations to be solved. The discrete particulate view is lost in favour of
a continuum description in terms of number density n= φπd3

p/6 and particle velocity
field v.

In two-fluid methods for semi-dilute suspensions, the population balance is dictated
by pure advection by the particle velocity field. The latter is found by taking the
derivative in (2.9) along the particle trajectory d/dt = ∂/∂t + v · ∇. The governing
equations for the dispersed phase have the following conservative form:

∂(ρpn)
∂t
+∇ · (ρpnv)=−Γ y

∂(ρpn)
∂x

, (2.11)
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∂(ρpnv)

∂t
+∇ · (ρpnvv)= ρpng+ ρpn

u− v

τp
− ρpnΓ vyex − Γ y

∂(ρpnv)

∂x
. (2.12)

The shear decomposition is assumed in the equations above. Together with the fluid’s
mass and momentum conservation equations, equations (2.11), (2.12), (2.1) and (2.2)
provide a complete set of equations to describe semi-dilute gas–solid flows.

Anisotropic-Gaussian Euler–Euler method (AG): Equation (2.12) relies on the
fundamental hypothesis that the particle velocity field is single valued. This is
not always true for gas–solid flows. In fact, a feature of inertial particulate flows
is the ability of trajectories of particles with different histories to cross leading to
multiple particle velocities at a single point. Kinetic based methods recognize this
as a limitation and borrow from the rarefied-flow community to handle the crossing
characteristics. The idea is to allow the particle velocity field to take multiple values,
by solving a probabilistic equation governing the number density probability density
function (pdf) f (t, x, v). Following Williams (1958), the equation in phase space for
the pdf of a dilute system of collisionless particles interacting only through the mean
fluid velocity is given by

∂f
∂t
+ c · ∇x f +∇c ·

(
f
(

u− v

τp
+ g
))
= 0. (2.13)

Because of the larger space of variables, equation (2.13) is vastly more complicated
to solve. To make this method computationally tractable, many methods rely on
solving for a finite number of moments instead of the full pdf f . Since the transport
of every moment relies on the next-order moment, the difficulty resides in finding a
closure to the high-order ones. One approach is to formulate closures in the form of
constitutive relations linking high-order moments to low-order ones given in physical
space. These are usually applicable for a limited range of Stokes number. See Simonin
et al. (2002), Fvrier, Simonin & Squires (2005) and Kaufmann et al. (2008) for small
Stokes number closures, and Masi & Simonin (2014) for large Stokes number ones.
Another approach is based on postulating a form of the number density pdf itself.
With a choice of pdf using only low-order moments, the high-order moments can
be found from direct integration of the pdf, hence, providing closure to the moment
transport equations (Desjardins et al. 2008; Fox 2008). This is the method we follow
in this paper.

In this work, we focus on the anisotropic-Gaussian closure, originally proposed for
rarefied gases (Levermore & Morokoff 1998) and later extended to particle-laden flows
(Vi et al. 2015). In this method, the number density pdf is approximated by

f (c)=
ρpn

(2π|Pp|)2/3
exp

(
−

1
2
(c− v) · P−1

p (c− v)

)
, (2.14)

where v= (ρpn)−1
∫

cf dc is the Eulerian particle velocity (first-order moment) and Pp
is the particle pressure tensor derived from the energy tensor (second-order moment)
E =

∫
ccf dc = ρpn(Pp + vv). It is clear that moments up to the second order need

to be solved in order to build the presumed AG pdf. Using the shear decomposition,
these read

∂ρpn
∂t
+∇ · (ρpnv)=−Γ y

∂ρpn
∂x

, (2.15)
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∂(ρpnv)

∂t
+∇ ·E= ρpng+

ρpnu− (ρpnv)

τp
− ρpnΓ vyex − Γ y

∂(ρpnv)

∂x
, (2.16)

∂E
∂t
+∇ ·Q = g(ρpnv)+ (ρpnv)g+

(ρpnv)u+ u(ρpnv)− 2E
τp

−Γ (E · ey)ex − Γ ex(ey ·E)− Γ y
∂E
∂x
, (2.17)

where Q is the particle heat flux third-order tensor, a third-order moment that requires
closure. The reconstruction of the AG distribution provides closure by allowing the
direct computation of this moment from the presumed pdf Q=

∫
cccf dc.

Sabat et al. (2016) show that the AG method reproduces the same level of
clustering found in Euler–Lagrange simulations of one-way coupled decaying
homogeneous isotropic turbulence. The agreement holds across the whole range
of Stokes number in contrast to the TF method which leads to excessive clustering
for moderate and large Stokes numbers. The success of this approach stems from its
ability to capture the particle dispersion due to particle-trajectory crossing. It is also
argued to be the most likely distribution, in the sense of entropy maximization, given
the moments of f up to the second order (Vi et al. 2015).

Note that the AG method can be considered as an extension of the TF method. In
the limit of infinitely small Stokes number, the particle pressure tensor vanishes and
the AG distribution collapses onto the mono-kinetic distribution f (t,x, c)=n(t,x)δ(c−
v(t, x)). Integrating the moments of the population balance equation (2.13) with this
distribution yields the TF equations (2.11) and (2.12).

To conclude this section, we shall note that many (Druzhinin 1995; Ferry &
Balachandar 2001; Vi et al. 2015) have argued, based on one-way coupling studies,
that particle trajectory crossing for flows with small volume fraction and small Stokes
number is negligible. However, this has not been verified in the two-way coupled
semi-dilute regime. In the following, the granular temperature Θ =Tr(Pp)/3 from the
AG and EL methods will serve as a measure of the presence of trajectory crossing
as this quantity is identically zero in the TF method.

2.2. An algebraic instability
The instability of particle-laden shear is the result of two concomitant effects:
preferential concentration and an inertial acceleration or gravity. It is possible to
show that preferential concentration is directly related to the extreme compressibility
of the particle phase (Maxey 1987). For particles with small inertia, the rate of
volumetric expansion and contraction is given by

∇ · v ' τp(S− R)+O(τ 2
p ), (2.18)

where S= 1/2(∇u+∇uT) : 1/2(∇u+∇uT) and R= 1/2(∇u−∇uT) : 1/2(∇u−∇uT)
denote the second invariants of the fluid strain and rotation tensors (Squires & Eaton
1991). When the local strain exceeds the local rotation particles accumulate. In the
opposite scenario of local rotation dominating over strain, the particles are expelled.
In pure particle-laden homogeneous shear, strain and rotation perfectly balance each
other S = R = Γ /2 leading to no preferential concentration. Additionally, a cloud of
homogeneously distributed particles exerts a uniform gravitational loading on the fluid,
the effect of which is an increased hydrostatic pressure. This state is possible but not
tenable as minute perturbations quickly alter these balances.
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FIGURE 1. (Colour online) A sinusoidal velocity perturbation alters the balance of strain
and rotation in homogeneous shear. Regions with excess straining accumulate particles by
the preferential concentration mechanism while regions with excess rotation expel particles.
As the particle volume fraction turns in the shear flow and translates due to sedimentation,
the resulting particle distribution perturbation feeds back to the gas due to the stronger
gravitational forcing exerted by the heavier loaded regions of the perturbation.

Figure 1 illustrates the way sinusoidal perturbations grow. First, a perturbation to
the fluid velocity disturbs the balance of strain and rotation. The perturbation creates
alternating regions of dominant strain and dominant rotation. Preferential concentration
acts to expel particles from the rotational regions to the straining ones. The migration
of the particles results in reinforced gravitational loading exerted on the fluid in the
regions with excess particles, and lower loading in the depleted ones. The turning of
the wave in the shear flow and the translation of the particles relative to the fluid
due to sedimentation allow this inhomogeneous forcing to have components in phase
with the initial fluid velocity perturbation. As a result the inhomogeneous gravitational
forcing strengthens the initial fluid velocity perturbation.

Most hydrodynamic instabilities, such as Kelvin–Helmholtz and Rayleigh–Taylor
instabilities, are said to be normal and exhibit an exponential unbounded growth.
On the contrary, in the homogeneous shear instability, perturbations initially grow
algebraically with time and reach a finite amplitude at long times. It broadly falls
under the category of non-modal instabilities (Schmid 2007). The homogeneous
shear pumps energy into the perturbation helping it grow but also has a stabilizing
effect over sinusoidal perturbations. A wave of any initial arbitrary orientation,
i.e. wavevector k = (kx, ky), is rotated by the shear in a few shear times τf = Γ

−1

such that the final orientation is parallel to the shear gradient as illustrated in figure 2.
Formally, this is described by

dk
dt
=∇(Γ yex) · k→ ky(t)= ky,0 − kxΓ t. (2.19)

When the velocity gradient direction is parallel to gravity, the behaviour depicted in
figure 1 and explained above might or might not be sampled depending on the initial
orientation of the perturbations. Waves that are initially oriented upstream (kxky > 0)
sample the normal orientation (kxky= 0) for a brief time before the shear further turn
them downstream (kxky < 0). The normal orientation is a configuration of maximum
coupling between the two phases and strongest growth. Downstream waves do not
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FIGURE 2. (Colour online) The homogeneous shear causes the turning of wave
perturbations and the contraction of length scales. The sketch shows an initial upstream
sinusoidal perturbation in the particle distribution strained at Γ t = 0, 1, 2 and 4 (left to
right).

sample this configuration and hence do not grow substantially. Once the wavevector
is nearly parallel to both shear gradient and gravity, the result is nearly vertically
stacked layers of higher and lower number density. The particle phase cannot drive
fluid velocity perturbations anymore and growth ceases completely in the linear
regime. The activation of nonlinear states will depend on the magnitude of the initial
perturbation.

The growth and saturation of the number density has been studied with a linear
stability analysis by Kasbaoui et al. (2015) for small heavy inertial solid particles in
a gas. To make the derivation analytically tractable, an asymptotic solution to (2.12)
was used in the LSA. Proposed by Ferry & Balachandar (2001), the expansion is valid
in the limit of small Stokes numbers (St� 1) and leads to a relationship between the
particle velocity and the local fluid velocity given by

v = u+Vg − τp

(
∂u
∂t
+ (u+Vg) · ∇u+ Γ y

∂u
∂x
+ Γ uyex

)
+O(τ 2

p ). (2.20)

This expansion was introduced to make the analytical treatment of the linear
stability analysis tractable. One needs only to solve the number density transport
equation (2.11) with the evaluated particle velocity to completely describe the flow.
However, there is no a priori way of determining how small the Stokes number
needs to be for this expansion to be applicable.

In the LSA, the algebraic, non-modal growth of the instability was demonstrated
with sinusoidal disturbances of the form

n(x, t)= 〈n〉 + Stn̂(t) exp(i(kxx+ ky(t)y)), (2.21)
u(x, t)= û(t) exp(i(kxx+ ky(t)y)), (2.22)

where the wavevector obeys (2.19), 〈n〉 = 〈φ〉πd3
p/6 is the mean number density and

n̂ and û are the wave amplitudes. The linearized evolution of the latter quantities is
given by the coupled ordinary differential equations

dn̂
dt
=−iVg · kn̂+

〈n〉
Γ

i2∇ub : kû, (2.23)

dû
dt
= −

(
i

M
1+M

Vg · k+
(

I− 2
kk
k2

)
· ∇uT

b +
ν

1+M
k2

)
û

+
Γ

〈n〉

(
I−

kk
k2

)
M

1+M
Vgn̂. (2.24)
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Î = ˝Lyt

FIGURE 3. Shear-periodic boundary conditions.

Although (2.24) is given in vectorial form, it is sufficient to solve for the velocity
component along the gradient direction y only. The other component can be found
from the continuity equation

kxûx + kyûy = 0. (2.25)

Solutions to (2.23)–(2.25) constitute the LSA result (LSA) and will be compared
to the full numerical solutions of the Euler–Lagrange (EL), two-fluid (TF) and
anisotropic-Gaussian (AG) simulations.

3. Numerical strategies
3.1. Shear periodicity and homogeneous shear treatment

The numerical study of the present flow requires a specially crafted algorithm to
capture the homogeneous shear effects. Our approach is described in Kasbaoui et al.
(2017). Based on the earlier work of Baron (1982) and Gerz, Schumann & Elghobashi
(1989), the equations are solved in physical space without the need to remesh as in
the popular method of Rogallo (1981). The key aspect is to enforce the so-called
shear-periodic boundary conditions (see figure 3)

f (x, Ly, z)= f (x− Γ tLy, 0, z), (3.1)

where f is any quantity of interest like the velocity fluctuation u, and Ly is the extent
of the computational domain in the shear gradient direction y. The distortion terms
Γ y(∂f )/(∂x) are added directly in physical space in a split step approach. In the
reference frame of the laboratory, these terms are responsible for the turning of the
waves. Kasbaoui et al. (2017) show that this method is able to capture the rotation of
the Fourier modes by the shear while maintaining their normal structure, an essential
capability for the present study.

3.2. Euler–Euler simulations
The appearance of clusters and void regions in the particle phase, call for special
attention to the numerics used in Eulerian simulations. When clustering is significant,
the volume fraction can drop significantly to near zero values in the neighbouring
depleted regions. Positivity-preserving, also called realizable, Euler–Euler methods
maintain positive volume fraction even when the solution is nearly devoid of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.796


184 M. H. Kasbaoui, D. L. Koch and O. Desjardins

particles (φ → 0). Stability and mesh convergences of solvers for the dispersed
phase are contingent on this property (Estivalezes & Villedieu 1996; Desjardins et al.
2008).

The particle-phase solver follows the quadrature based method of moments (Fox
2008; Vi et al. 2015; Kong et al. 2017). This is a realizable, second-order spatial
discretization on a collocated mesh. The numerical strategy relies extensively on Lie
operator splitting to ensure that every term in the governing equations is added in a
realizable way. The distortion terms are treated in the same manner as in Kasbaoui
et al. (2017).

At the beginning of the time step, we start by computing the drag term from the
previous time step:

Dn
=
φnun
− (φv)n

τp
, (3.2)

where (φv)n is the particle momentum at the previous step treated as a whole. Note
that the fluid solver mesh is staggered whereas the particle mesh is collocated, making
interpolations of quantities from one mesh to the other necessary. At this point, we
also compute the second-order drag tensor if using AG. Next, the pure convection of
particle volume fraction, momentum and energy is advanced with a third-order Runge–
Kutta scheme. For the volume fraction field this reads

φ̃ = φn
− dt∇ · (φv)n, (3.3)˜̃

φ = 3
4φ

n
+

1
4(φ̃ − dt∇ · (̃φv)), (3.4)

φ = 1
3φ

n
+

2
3(
˜̃
φ − dt∇ · ˜̃(φv)), (3.5)

where the numerical fluxes are computed with a second-order kinetic flux (Vikas et al.
2011). Combined with a minmod slope limiter, the numerical fluxes are both stable
in the presence of shocks and realizable for first-order forward in time integrations.
The three stage Runge–Kutta extends this property to a realizable third-order time
accurate integration by using convex combinations of realizable states. The overall
scheme preserves the volume fraction positivity and is shock capturing.

Further updates are needed to add the remaining forces. In the next step, drag,
gravity and convection of homogeneous shear by the fluctuations are added. For the
particle momentum this reads

φ̂v = φv − dt(Dn
+ gφn

− Γ (φvy)
nex). (3.6)

This operation is also positivity preserving. The last remaining terms are the distortion
terms Γ y∂/(∂x). These are added exactly using the characteristics method as in
Kasbaoui et al. (2017)

(φv)n+1(x)= φ̂v(x−1tΓ yex) (3.7)

and the boundary conditions are applied with time n+ 1.
The algorithm then solves for the fluid phase using the method explained in

Kasbaoui et al. (2017) and with the drag term −Dn interpolated to the fluid mesh as
a source term.
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3.3. Euler–Lagrange simulations
The Euler–Lagrange strategy follows the method of Capecelatro & Desjardins
(2013b). The numerical method uses a volume-filtered approach that captures the
particle modulation of the fluid without resolving the flow on the particle scale.
The position and velocity of each Lagrangian particle (2.8) and (2.9) is advanced
using a second-order Runge–Kutta scheme. Eulerian particle data such as the volume
fraction field are computed from the Lagrangian data using a Gaussian kernel of
width δf multiple of the particle diameter. The unperturbed fluid velocity at the
particle location is computed using the method of Ireland & Desjardins (2017).
This quantity is required for the correct calculation of the drag force and leads to
correct predictions of the particle settling velocity. The method is fully conservative
and yields grid-independent solutions in two-way coupled problems and has been
verified against experiments (Capecelatro & Desjardins 2013a; Capecelatro, Pepiot &
Desjardins 2014).

The imposed homogeneous shear necessitates some additions. The shear term in
(2.8) generally poses no computational challenges. Particles leaving from the top and
bottom of the domain (y=±Ly/2) are reintroduced from the other side with translated
x position and velocity. This procedure is the well-known Lees–Edwards boundary
conditions (Lees & Edwards 1972) and is the discrete analogue of the shear-periodic
boundary conditions (3.1).

4. Linear regime: the preferential concentration instability
In this section, we simulate a homogeneously sheared particle-laden flow traversed

by a small velocity perturbation. We seek to demonstrate the shear instability in a
practical case that allows comparison with the linear stability analysis. The simulations
are conducted with the EL, TF and AG methodologies. Comparisons with the LSA
serve to validate the numerical strategies. Comparisons among the three methodologies
are intended to assess the importance of the discrete nature of the particulate phase
and the occurrence of particle-trajectory crossing.

The flow parameters are shown in table 1. Glass beads of diameter dp=150 µm and
density ρp = 2600 kg m−3 are suspended in air at standard temperature and pressure.
The shear rate is Γ = 0.5 s−1 and gravity is g= 9.8 m s−2. The Stokes number here,
St= 0.09, falls in the range of small stokes numbers for which the expansion (2.20)
is believed to be applicable. The Reynolds number is Re = ρf VgLg/µf = 1.05 × 105.
Although the average volume fraction is small, 〈φ〉 = 2.5 × 10−4, the mass loading
M= 0.54 is O(1) owing to the large ratio ρp/ρf of the density of glass beads to that
of the gas. These parameters allow strong two-way coupling between the two phases
via gravity and preferential concentration.

The choice of computational box size and resolution is guided by the analysis of
the different wavelength perturbations in the LSA. According to the linear analysis,
large-scale perturbations have a typical wavelength comparable to the particle settling
distance in one shear time Lg = Vg/Γ . On the other end, small-scale perturbations of
the size of the dissipation scale Lµ =

√
µ/(ρfΓ ) are rapidly suppressed. To resolve

all scales, we set the two-dimensional computational domain dimensions to Lx= Ly=

Lg and use 512 grid points in each direction to ensure an adequate resolution of the
dissipative scales (1x/Lµ∼ 1.2). The Lagrangian particle filter has a width δf = 47dp,
approximately equal to the grid spacing 1x.

A large-scale sinusoidal perturbation with kx = 2π/Lg initiated in the oblique
direction x= y at t= 0 drives the particle and fluid initial velocities. The initial fluid
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Parameters Expression Value

Fluid density ρf 1.2 kg m−3

Fluid viscosity µ 1.8× 10−5 kg s−1 m−1

Shear rate Γ 0.5 s−1

Particle density ρp 2600 kg m−3

Particle diameter dp 150 µm
Volume fraction 〈φ〉 2.5× 10−4

Gravity g 9.8 m s−2

Settling velocity Vg 1.7695 m s−1

Settling distance Lg 3.5388 m
Amplitude uy,0/Vg = A
wavenumber kx,0 = 2π/Lx

ky,0 = 2π/Lx

Box size Lx = Ly = Lg = Vg/Γ

Grid nx × ny 512× 512
Time step 1t 2× 10−4

TABLE 1. Simulation parameters for the standard case of St= 0.09 and M = 0.5.

velocity field is given by (2.22), which is then used to generate the particle velocity
field according to the expression (2.20). The initial orientation, ky,0/kx = 1, allows
the perturbation to sample the direction of strongest particle–fluid coupling (ky = 0)
during the turning of the wave and experience considerable growth. In Euler–Euler
simulations, the initial volume fraction field is uniform. The particle velocity field is
initialized by direct evaluation of expression (2.20). In Euler–Lagrange simulations,
expression (2.20) is evaluated at the particle location to determine the Lagrangian
particle velocities. Moreover, the particles are seeded randomly in the domain. At
the average volume fraction 〈φ〉 = 2.5 × 10−4 and for particles in table 1, the
two-dimensional simulation domain contains approximately 2.8× 106 particles.

When the perturbation strength A, the ratio of the perturbation magnitude to the
settling velocity, is sufficiently small, a linear evolution of the mode is expected. The
linear stability analysis does not provide an indication on how small A needs to be
to remain in the linear regime. However, one can expect nonlinearities to manifest if
the amplified perturbation was to reach a magnitude comparable to the base state. For
the driving initial mode, k?x = Lgkx/(2π) = 1, the LSA predicts a total amplification
φrms(k?x = 1)/(A〈φ〉) ' 7, where φrms is the volume fraction fluctuation root mean
square (r.m.s.). Consequently, for A� 0.14 one can expect a linear evolution owing
to the small total amplification, φrms�〈φ〉, whereas, cases such that A> 0.14 can be
expected to evolve nonlinearly.

The case in table 1 is simulated with EL and TF methods for the initial perturbation
strength A = 0.02. Snapshots of EL and TF simulations (see figures 4 and 5
respectively) show the emergence of a sinusoidal perturbation in the volume fraction
field. The turning of the perturbation is induced by the background base shear as
explained in § 2.2 and depicted by the sketch in figure 2. The wavelength can be
seen contracting owing to a compression of scales in the gradient direction.

The EL simulations show the existence of small-scale perturbations in addition
to the driving large-scale mode. These perturbations are induced by the random
distribution of the Lagrangian particles. They appear as streaky features in the
volume fraction field at Γ t = 1 which then destabilize and form small bubbles

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.796


Clustering in unbounded homogeneous particle-laden shear 187

1.5

2.0

2.5

3.0

3.5
˝t = 1 ˝t = 2 ˝t = 2.5

˝t = 3 ˝t = 3.5 ˝t = 4

(÷ 10-4) (÷ 10-4) (÷ 10-4)

(÷ 10-4) (÷ 10-4) (÷ 10-4)

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

FIGURE 4. Snapshots of the volume fraction field in EL simulation with perturbation
strength A= 0.02.
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FIGURE 5. Snapshots of the volume fraction field in TF simulation with perturbation
strength A= 0.02.

depleted of particles. The streaky features could be interpreted as the preferential
concentration instability happening at small scales. In fact, according to the LSA, the
fastest growing modes are approximately ten times larger than the dissipation scale
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FIGURE 6. (Colour online) Time evolution of the fluctuations traversing the flow. (a)
Shows the r.m.s. volume fraction fluctuations. The large deviation of the EL curve
compared to the LSA and TF simulations is a consequence of the fluctuations introduced
by the random distribution of the Lagrangian particles. Extracting the fluctuations
associated with the mode k?x = kxLg/(2π) = 1 in EL (b) shows a nearly identical
evolution of to the TF and AG simulations. Fluctuations associated with the modes k?x = 2
and 3 in EL simulations are also shown to remain small in this linear regime. The
r.m.s. fluctuations of the horizontal (c) and vertical (d) particle velocities evolve similarly
in EL and TF simulations and reproduce the same oscillatory behaviour seen from the
LSA. The flow parameters are as in table 1 and correspond to 〈φ〉= 2.5× 10−4, M= 0.54
and St= 0.09. The perturbation strength is A= 0.02.

Lµ which explains the short wavelength of these streaky perturbations. Because the
TF data do not contain these short wavelength perturbations, direct comparisons with
the EL data is difficult. Figure 6(a) shows the evolution of the r.m.s. volume fraction
fluctuations, φrms, in EL and TF simulations. At t= 0, φrms is already non-zero in EL
simulations due to the random distribution of particles. The quantity φrms encompasses
the effects of modes at all scales resulting in the large deviation between the TF and
EL evolutions seen in figure 6(a).

For a meaningful comparison with the TF volume fraction, it is essential to
separate the effects of the imposed perturbation from other fluctuations present in EL
simulations. The procedure adopted here is to compute the Fourier spectrum of the
volume fraction field φ in the sheared reference frame x′ = x − Γ ty and y′ = y and
extract the imposed mode k?x = 1. The complex amplitude associated with the Fourier
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mode kx reads as

〈φ̂(kx, t)〉y′ =
1
Ly

∫
y′

(∫
x′
φ(x′ + Γ ty′, y′)ei2πkxx′ dx′

)
dy′, (4.1)

where 〈·〉y′ denotes the average over the direction y′= y. The larger sample pool yields
better converging statistics. It is also important to realize that this averaging removes
fluctuations in the transverse direction to the wave. Computing ‘frozen’ Fourier modes
in the sheared reference frame is equivalent to computing the rotating Fourier modes
explained in § 2.2. Spectral interpolations are used to evaluate off grid points in φ(x′+
Γ ty, y). The r.m.s. fluctuation associated with the mode kx is

〈φ〉y′,rms(kx, t) =
√
〈(〈φ̂(kx, t)〉y′ei2πkxx′ + 〈φ̂(−kx, t)〉y′e−i2πkxx′)2〉x′

=

√
2(Re{〈φ̂(kx, t)〉y′}2 + Im〈{φ̂(kx, t)}2〉y′). (4.2)

Figure 6(b) shows the first three extracted modes from EL simulations. The
extracted mode k?x = 1 follows closely the EE simulations for much of the integration
time. Small departure beyond Γ t ∼ 3.5 occurs concomitantly with the growth of the
second mode and third modes kx = 2 and 3. The initial random distribution of the
particles helps seed modes. Although they start with significantly smaller amplitudes
than kx, these modes can grow comparatively faster. In this small perturbation case,
their total amplification remains small for Γ t 6 4.

The particle velocity fluctuations r.m.s. are shown in figure 6(c,d). The TF and EL
simulations match well in this linear case. The simulations show a similar oscillatory
behaviour as the one predicted by the LSA. Notice that compressibility effects can
be seen in the plot of vx, since a solenoidal particle velocity field would imply the
relation vx ∼ −ky/kxvy leading to vx = 0 at the time ky cancels, i.e. Γ t = 1. It is
seen in figure 6(d) that vertical fluctuations vrms persist even at long times. These
fluctuations are in the downward direction, and lead to higher particle settling rates. In
the literature of particle-laden turbulence, this is referred to as preferential sweeping
(Wang & Maxey 1993; Yang & Lei 1998; Aliseda et al. 2002; Yang & Shy 2005;
Good et al. 2014; Ireland, Bragg & Collins 2016). The deviation of the EL curve
from the TF one near Γ t∼ 3.5 proves that the long-time persistent particle sweeping
is enhanced by the small-scale perturbations in EL simulations.

In both EL and TF simulations, the volume fraction and particle velocity
fluctuations display similar time dependence to the LSA predictions, but a departure
remains at long times. These differences are controlled by the Stokes number. Figure 7
shows how diminishing St leads to the convergence of TF and EL volume fraction to
the LSA results. The lowering of St from St= 0.18 to St= 0.01 moves the TF curves
upwards towards the LSA curve, which remains an upper limit. As explained in § 2,
the small Stokes expansion (2.20) implies that the LSA is valid in the double limit
of small perturbations (A� 1) and very small particle inertia (St� 1). Despite the
significantly better agreement at St = 0.01, the volume fraction fluctuations remain
higher for the larger Stokes numbers because the total amplification is proportional to
the product StA. For the same reasons as in TF simulations, the lowering of St number
from 0.18 to 0.04 moves the EL curves upwards towards the LSA one. However,
the diminishing signal (proportional to St) results in the small-scale perturbations,
initiated by the random distribution of particles, gaining in relative strength. The
destruction of the seeded large scale mode k?x = 1, shows the difficulty of establishing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.796


190 M. H. Kasbaoui, D. L. Koch and O. Desjardins

0

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80
ELTF

St = 0.18
St = 0.09
St = 0.06
St = 0.04
St = 0.02
St = 0.01

LSA

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
˝t

¯ƒ
˘ y

� ,r
m

s(k
x,t

)/
(A

¯ƒ
˘)

FIGURE 7. (Colour online) Effect of varying the Stokes number in EL and TF simulations.

comparisons with EL methods for very small Stokes number particles. Note that the
variation of the Stokes number St = Γ τp was achieved by varying the shear rate,
rather than the particle density ρp to keep the mass loading constant. One could also
vary the particle diameter in order to change the Stokes number, however, at the same
average volume fraction, smaller particles lead to a higher total count requiring more
computational resources. We also vary the gravitational acceleration proportionally in
order to maintain an identical box size Lx= Lg= gτp/Γ . This ensures an equal count
of particles per cell across all EL simulations and provides sufficient sampling for
the computation of particle quantities.

Lastly, we address the results of AG in the linear regime. Figure 6(b) shows little
difference with the TF method for the case with A= 0.02 and St= 0.09. As mentioned
before, an anisotropic-Gaussian number density pdf collapses onto a mono-kinetic pdf
for very small St number yielding the TF governing equations. The near identical TF
and AG evolutions in figure 6(b) show that particle-trajectory effects modelled by the
AG distribution are absent in the linear regime. By reciprocity, AG also agrees with
the EL simulations. Based on the quantitatively similar growth of the mode k?x = 1
observed with all three simulation strategies, we conclude that particle-trajectory
crossing is negligible for small inhomogeneities traversing a semi-dilute flow with
small Stokes number particles. However, as we show in the next section, when
nonlinearities develop, severe out-of-equilibrium states take place leading to distinctly
different evolutions for the three methods.

5. Nonlinear regime: secondary Rayleigh–Taylor instability and caustics
Understanding the mechanisms leading to clustering in turbulent flows is often

rendered difficult by the presence of multiple of length scales. Instead, we focus
on clustering in the presence of a single perturbed velocity mode. Looking at the
nonlinear regime in this flow configuration, we propose to establish a route to
clustering that unveils the principal mechanisms at play in two-way coupled semi-
dilute flows. As we show below, these mechanisms are: the preferential concentration
instability, particle-trajectory crossing, and the Rayleigh–Taylor instability.
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FIGURE 8. Snapshots of the volume fraction field in EL simulation for the large
perturbation strength A= 0.25. A secondary transverse Rayleigh–Taylor instability breaks
the sheet of particles formed by the primary preferential concentration. The final state
displays sustained clustering.

5.1. Nonlinearities in EL formulation
We start with the analysis of the nonlinearities in EL simulations. The case in table 1
is run with an initial perturbation strength A= 0.25. At this level, a strong deviation
from the linear evolution is guaranteed, since according to the LSA, the sinusoidal
volume fraction perturbation would grow so much that the depleted regions, the
troughs of the sinusoid, would have a non-physical negative volume fraction. Hence,
it is expected that large void regions form and that the sinusoid deforms nonlinearly.

Snapshots of the volume fraction field during 1 6 Γ t 6 4 (see figure 8) show the
gradual evolution towards a state dominated by clusters similar to those seen in the
grid turbulence experiments of Yang & Shy (2005) with copper beads (〈φ〉= 5× 10−5,
M= 0.5, St= 0.36). First, the preferential concentration instability causes the extreme
accumulation of particles along the oblique direction of the rotating perturbation
during 0 < Γ t < 2. Nearly all of the particles are distributed on a sheet of small
thickness. Despite the stronger nonlinear amplification, this first stage is qualitatively
understood from the LSA and the simulations in the linear regime. Shortly after, a
transverse instability manifests around Γ t= 2.1 and is clearly visible on the snapshot
at Γ t= 2.325. This secondary instability is of a Rayleigh–Taylor type as we explain
below. It adds spatial dimensionality to the particle distribution by breaking the
quasi-one-dimensional long band of particles formed by the preferential concentration
instability. Notice that this secondary instability grows in a double helix shape: two
modes in antiphase grow simultaneously. These modes grow on a time scale much
smaller than the shear time Γ −1 and lead to the formation of clusters seen in the
snapshots at Γ t= 3, 3.5 and 4.
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FIGURE 9. (Colour online) Evolution of the perturbation in the EL simulation. (a) Shows
the fluctuations peak around Γ t ∼ 2. (b) Shows significant growth of the unperturbed
modes k?x = 2 and 3. The collapse of these modes coincides with the appearance of the
transverse secondary instability. (c,d) Show the volume fraction and wave-normal particle
velocity as a function of the wave-normal coordinate x′ = k · x/k centred on the high
concentration band of particles. The steepening of the sinusoidal wave leads to a volume
fraction shaped like an impulse (Γ t = 1.6 and 1.9). Particle-trajectory crossing leads to
the spreading of the profiles at Γ t= 2.1.

5.1.1. Preferential concentration instability
Figure 9(a) shows the time evolution of the volume fraction fluctuation. One can see

a clearly different evolution from the linear case in figure 6(a). The volume fraction
fluctuations grow linearly until Γ t∼ 1.5, after which a sharp peak is attained around
Γ t = 2. The total volume fraction fluctuation then drops and eventually plateaus by
the end of the simulation. Figure 9(b) shows that, in addition to the initialized mode
k?x = 1, the shorter wavelength modes k?x = 2 and 3 are also strongly amplified. These
modes exist initially because the random distribution of particles creates perturbations
at all scales. In the nonlinear regime, these modes grow nearly as large as the one
seeded by the deterministic perturbation. These modes collapse when the transverse
perturbations appear, around Γ t ∼ 2.1. Figure 9(c) shows the normalized volume
fraction averaged over the transverse direction and plotted as a function of the
wave-normal coordinate x′ = (k · x)/k. The plots at the consecutive times Γ t = 1.6,
1.9 show the gradual concentration of the field into an impulse function reaching a
peak nearly 18 times higher than the average volume fraction. Such high particle
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(a) (b)

FIGURE 10. (Colour online) Snapshots of the Lagrangian particles in a zoomed-in view
around the high concentration band of particles at Γ t = 2.05. Particle-trajectory crossing
in EL simulations leads to: (a) the formation of caustics, long intersecting filaments of
particles, and (b) particles within one grid cell with widely different velocity vectors. The
arrows indicate the velocity directions of individual particles. The Lagrangian particles
have been magnified three times for easier visualization.

concentrations have also been observed in particle-laden turbulent simulations. Squires
& Eaton (1991) report a volume fraction inside clusters reaching 25 times the average
volume fraction in EL simulations of homogeneous isotropic turbulence with St= 0.15
particles.

5.1.2. Caustics and particle-trajectory crossing
The two antiphase transverse modes forming the double helix (snapshot at

Γ t = 2.325 in figure 8) originate from two streams of particles that cross at the
high concentration sheet. To understand how this takes place, we report the Eulerian
wave-normal particle velocity vx′ = (k · v)/k, where v is the Eulerian particle velocity
computed from the Lagrangian data on the mesh. The figure shows clear steepening
of the original sinusoidal wave. This nonlinear process occurs as particles migrate to
the location of the high concentration sheet. Particles from the two sides move in two
opposing streams causing the slope of the centred wave-normal velocity to steepen
and the volume fraction impulse to sharpen. When the two streams meet, around
Γ t = 2.1, particle-trajectory crossing takes place, i.e. the two streams inter-penetrate
and continue moving in opposite directions. This has four consequences. First, the
gradient of the wave-normal velocity vx′ drops, as seen in figure 9(d), due to the
presence of particles with opposing velocities within one grid cell in the crossing zone.
Second, the crossing of the streams leads to the spreading of the volume fraction
impulse (see figure 9c). Third, particle-trajectory crossing is known to manifest as
caustics (Gustavsson et al. 2012), long intersecting filaments of aligned particles. This
can be seen in figure 10(a) in a zoomed-in view around the high concentration sheet.
Fourth, the crossing of the particle streams along with transverse perturbations lead
to particles within one grid cell having non-parallel velocity vectors (see figure 10b).

The spreading of the particle number density field by caustics effectively puts an
end to the nonlinear amplification of the grid-resolved mean volume fraction variation
due to preferential concentration. A quantitative measure of trajectory crossing is given
by the granular temperature defined as the variance of the velocities of particles within
a grid cell. Figure 11(a) shows that the domain-averaged granular temperature 〈Θ〉
reaches a peak around the same time φrms peaks. Furthermore, figure 11(b) shows this
peak is spatially located near the region of particle crossing.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.796


194 M. H. Kasbaoui, D. L. Koch and O. Desjardins

0

0.01

0.02

0.03

¯Œ
˘/

(A
V g

)2

¯Œ
˘ y

� /(
AV

g)
2

0.04

0.05(a) (b)

0.5 1.0 1.5 2.0

˝t (x� - x �
s)/Lg

 
2.5 3.0 3.5 4.0 -0.4 -0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1.0

1.2
˝t = 1.6
˝t = 1.9
˝t = 2.1

FIGURE 11. (Colour online) Granular temperature in the EL simulation. (a) Shows a peak
of the domain-averaged granular temperature near the time caustics start appearing. (b)
Shows the granular temperature peaks sharply at the location of the high concentration
sheet of particles.

5.1.3. Rayleigh–Taylor instability
The nonlinear amplification of the preferential concentration instability triggers a

transverse instability seen at Γ t= 2.325. The secondary instability happens on a time
scale significantly shorter than that of the shear. As a result the one-dimensional wave
resulting from the preferential concentration instability at Γ t∼ 2 can be considered a
quasi-steady base state for the secondary instability. The shear forcing is negligible
over the short duration of the development of the secondary instability and gravity
is left as the sole driving force. To describe this secondary instability, we revert to
a simpler formalism treating the particles and fluid as mixture. Using the expansion
(2.20), one can show that a simplification of the governing equations of the particle-
laden flow at a lower order in Stokes number yields the equations for a variable
density fluid

ρm

(
∂uf

∂t
+ uf · ∇uf

)
=−∇p+µ∇2uf + (ρm − ρf )g+O(τp), (5.1)

∇ · uf = 0, (5.2)
∂ρm

∂t
+ u · ∇ρm =O(τp), (5.3)

where ρm = ρf + ρpφ is the mixture density, and the preferential concentration
terms are confined in the O(τp) terms. When completely neglecting the latter, the
stability studies of unbounded variable density flows by Batchelor & Nitsche (1991)
become of great relevance. Among the many base states they considered two of
them are amenable to the configurations studied here: (i) sinusoidally varying density
in the vertical direction, and (ii) long horizontal sheet of high density. Batchelor
& Nitsche (1991) show that these configurations are subject to a Rayleigh–Taylor
instability. Hence, to the extent that the quasi-steady flow and negligible preferential
concentrations effects assumptions hold, the transverse secondary instability seen in
figure 8 can be considered of a Rayleigh–Taylor type due to the mixture behaving as
a variable density fluid.

The results of Batchelor & Nitsche (1991) could be used to estimate the growth
rate of the secondary modes. Case (i) might describe a transverse Rayleigh–Taylor
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FIGURE 12. (Colour online) Evolution of mode k?x =1 for the initial perturbation strengths
A = 0.15, 0.20 and 0.25. The later decline of this mode for diminishing A shows that
the transverse perturbations are also delayed until a more favourable orientation and
amplification are attained.

instability growing at the early stages of the evolution of the mode k?x = 1, i.e. while
it remains sinusoidal. We focus on case (ii) since this is almost identical to the final
stage of the nonlinear preferential concentration instability, around Γ t = 2, when the
secondary Rayleigh–Taylor instability becomes evident. In the present case, the long
band of particles is inclined rather than horizontal. Nevertheless, the results of the
analysis of Batchelor & Nitsche (1991) can be used replacing the natural gravity by
the effective wave-normal gravity gn=‖g · k‖/k= gky/k. To make use of the analysis,
we will also assume a quasi-steady base state at Γ t= 2, meaning that the transverse
perturbations grow on a time scale significantly smaller than Γ −1. Batchelor & Nitsche
(1991) also assume that the transverse modes evolve in an inviscid fashion and have
a wavelength much larger than the thickness of the band. Given these assumptions, a
transverse mode with a wavenumber α grows exponentially at the rate

σ =
(π

2

)1/4
(α3lg2

n)
1/4B1/2, (5.4)

where l and B represent the width and height of the mixture density impulse: ρm =

ρf (1+ B exp(−y2/l2)) and B' ρp/ρfφmax − 1. The ratio of time scales can be written
in the following way:

σ

Γ
=

(π

2

)1/4
(αl)3/4

√
Lg

l
ky

k
B
St
. (5.5)

The dependence on the inverse of the Stokes number shows that for small Stokes
particles a quasi-steady assumption (σ/Γ � 1) is valid. Expression (5.5) also
shows that waves that achieve a more modest nonlinear growth by the preferential
concentration instability, i.e. lower B, will destabilize at an orientation closer to
horizontal, i.e. larger ky/k. This trend is confirmed in figure 12 representing the
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FIGURE 13. Effect of varying the initial perturbation strength A on the orientation and
wavelength of the transverse mode.

evolution of the mode k?x = 1 for different initial strengths. The time at which this
mode collapses indicates the time at which the transverse Rayleigh–Taylor instability
appears. We see that for weaker initial strengths A (and thus lower B) the secondary
instability is delayed, which allows the wave to further turn towards the horizontal.

The relation (5.5) can also be used to estimate the most likely transverse mode to
grow. The scaling of the growth rate in (αl)3/4 suggests that shorter wavelengths grow
faster and the most likely mode to grow is such that αl ∼ 1. From figure 9(c), we
estimate l' 0.05Lg, B' 17M' 9.18 and ky/k' 0.67 at t= 1.9. This gives a transverse
wavelength λRT = 2π/α ' 0.31Lg growing at the fast rate σ ' 41Γ . The estimated
wavelength is in agreement with the one seen in the snapshot at Γ t=2.325 in figure 8.
The wavelength of the triggered mode in the transverse direction also depends on
the strength of the initial perturbation driving the preferential concentration instability.
Figure 13 shows that increasing the perturbation strength A from 0.15 to 0.30 leads
to the selection of larger wavelengths, in addition to triggering the instability earlier.
A rigorous quantitative description of the most likely transverse perturbation to grow
at finite Stokes number requires an analysis beyond the analogy made with the study
of Batchelor & Nitsche (1991). In particular, the assumptions of quasi-steady base flow
and infinitely small Stokes number behind expression (5.5) need to be relaxed.

5.2. Nonlinearities in EE formulations
Having described in detail the nonlinear dynamics revealed in Euler–Lagrange
(EL) simulations, we now turn to consider the fidelity with which Euler–Euler
formulations capture these effects. In particular, we show results of the two-fluid
equations (TF) which consider the particle velocity field to be single valued and the
anisotropic-Gaussian (AG) model that allows for multiplicity of particle velocities
in a single grid cell. The preferential concentration instability in these simulations
is seeded with a fluid velocity perturbation of strength A = 0.25 as in the EL
simulations. Some small perturbation with variations normal to the imposed wave
vector is required to trigger secondary instabilities. In the EL simulations, these
perturbations were provided by the initial random distribution of particle positions.
To provide a close comparison with this case we initialize the EE simulations with
a volume fraction field computed based on grid cell averages of the initial discrete
particle distribution used in EL simulations.

The nonlinear perturbation triggers the same qualitative dynamics in all three
simulation approaches. The snapshots of volume fraction, shown in figures 14 and 15
for TF and AG simulations depict similar dynamics as shown in figure 8 for EL
simulations: the initially sinusoidal wave of volume fraction sharpens into a highly
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FIGURE 14. Snapshots of the volume fraction field in TF simulation at A= 0.25.
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FIGURE 15. Snapshots of the volume fraction field in AG simulation at A= 0.25.

concentrated particle sheet, which becomes unstable at Γ t ∼ 2.3 to a transverse
Rayleigh–Taylor instability leading eventually to a state of sustained clustering. The
r.m.s. of the volume fraction over the entire cell grows nonlinearly and peaks at
Γ t∼ 2 in all three methodologies (see figure 16).

While AG and TF simulations lead to a chain of mechanisms similar to the one
analysed for EL simulations in § 5.1, the particle sheet developed at Γ t = 2.1 and
the clusters developing by Γ t = 4 are finer with higher local concentration in the
TF simulations. This behaviour can be linked to the effects of particle-trajectory
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FIGURE 16. (Colour online) Evolution of the volume fraction fluctuations in the three
simulation methods.

crossing. The TF method used here is based on a mono-kinetic assumption whereby
all particle velocity vectors are equal within one grid cell. Thus it does not capture
particle-trajectory crossing. Without the dispersive effect of particle-trajectory crossing,
particle concentrations can become very large and particle velocity fields can become
nearly discontinuous in space limited only by a slope limiting condition applied in the
numerical evaluation of the TF model. Figure 17(b) shows the wave-normal velocity
for the times Γ t= 1.6, 1.9 and 2.1 in TF and EL simulations. One can see that both
methods collapse at the two earliest times during the wave steepening. However, at
Γ t = 2.1 the velocity profile broadens in the EL simulation as a result of trajectory
crossing, while the TF velocity profile retains a large gradient. The shock-like wave
normal velocity profile in the TF method leads to a sharp volume fraction impulse
as seen in figure 17(a). In contrast, the wave-normal velocity profile broadens in the
AG method by Γ t= 2.1 in qualitative agreement with the EL simulations as seen in
figure 17(d). This results in a spread out volume fraction profile in AG simulations
at Γ t= 2.1 (figure 17c) as in EL simulations, although this profile appears smoother
likely due to limited numerical resolution.

A key element in removing the discontinuity in AG is the incorporation of a poly-
kinetic sub-grid model for the particle number density pdf controlled by the particle
pressure tensor. The trace of the latter, i.e. the granular temperature, is seen to reach
a high peak at the particle sheet location in figure 18(a). Despite differences in the
magnitudes reached in AG and EL simulations, the trends are qualitatively similar.
In particular, the time for the onset of significant granular temperature indicative of
trajectory crossing is Γ t ∼ 2 in both AG and EL simulations as seen in the plot of
the domain-averaged granular temperature in figure 18(b).

Thus, the AG method reproduces all the major aspects of the nonlinear state seen
in the EL simulations as outlined in § 5.1: the nonlinear growth and sharpening
of the wave due to the preferential concentration, particle-trajectory crossing and
the secondary Rayleigh–Taylor instability. The most striking difference between
the AG and EL results seen by comparing figures 15 and 8 is the presence of
smaller wavelength features in the EL simulations. This is seen both during the
onset of the secondary instability at Γ t ∼ 2–2.3 and the final clustered state
at Γ t = 4. The fine-scale features in the EL simulations can be attributed in
part to initial sub-grid-scale particle volume fraction fluctuations captured by the
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FIGURE 17. (Colour online) Volume fraction and wave-normal velocity as function of
the centred wave-normal coordinate in TF (a,b) and AG (c,d) simulations. The inability
of the TF method to resolve particle-trajectory crossing leads to a higher volume fraction
peak (a) and steeper wave-normal velocity (b) than in EL at Γ t = 2.1. The assumption
of anisotropic-Gaussian particle number density pdf leads to a spread out volume fraction
field (c) and lower gradient of the wave-normal velocity (d) at Γ t= 2.1 than in TF.

randomly distributed particles in the EL formulation which eventually influence the
grid-averaged structure. In addition, EE methods by their nature exhibit numerical
diffusion of resolved small-scale volume fractions while the EL method is able to
retain small-scale volume fractions through the initial growth period so that they can
participate in the later time Γ t > 2 dynamics.

6. Conclusion

An investigation of clustering in homogeneously sheared particle-laden flow in
the two-way coupling regime reveals a ‘route to clustering’ that involves three
mechanisms leading to a state of significant clustering. Perturbations of the particle
and fluid velocities induce inhomogeneities in the particle distribution by the
preferential concentration mechanism. In the presence of shear, these perturbations
grow algebraically by a two-way mechanism that is promoted by preferential
concentration and gravity. This first stage in the ‘route to clustering’, leads to
the accumulation of particles on fine sheets with a concentration about 18 times
higher than the average. When the local volume fraction reaches high magnitudes
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FIGURE 18. (Colour online) Granular temperature in AG simulations. Similarly to EL,
graphs of the granular temperature in the wave-normal direction (a) display a sharp peak
at the particle sheet location, although lower to the one observed in EL. The domain-
averaged granular temperature (b) in AG and EL display qualitatively similar evolutions.
The peak at Γ t ∼ 2 due to the two particle streams crossing at the high concentration
band is well reproduced in AG.

(>10−3), particle-trajectory crossing leads to a local dispersion of particles due to the
formation of caustics. This also induces a spreading of the high concentration sheets.
Finally, the turning of the sheets by the shear towards the horizontal leads to the
appearance of a secondary Rayleigh–Taylor instability. The transverse perturbations
breaks the particle sheet into smaller clusters. In the final stages of the simulations,
these particle structures continue to sharpen and break repeatedly. These structures
traverse each other and only interact through their coupling with the fluid.

The simulations were conducted in the Euler–Lagrange and Euler–Euler formulations
with a methodology that emulates the unboundedness of homogeneous shear. The use
of the shear-periodic boundary conditions allows the forcing of fluctuations by the
linear homogeneous shear without the introduction of confining scales, such as in
mixing layers or wall-driven shear. This allows the accurate description of the rotation
of Fourier modes by the shear. The evolution of these modes in the linear regime
was described in a prior study (Kasbaoui et al. 2015) using a two-fluid representation
of the two phases. Full nonlinear simulations with two Euler–Euler methods, the
two-fluid and anisotropic-Gaussian methods, show agreement with Euler–Lagrange
simulations and the linear stability analysis for small Stokes number particles, as long
as the particle distribution inhomogeneities remain small.

In presence of strong clustering characterized by large void regions and highly
concentrated particle structures, differences in the Euler–Lagrange and Euler–Euler
methods emerge. The two-fluid method relying on a mono-kinetic description of
the local particle velocity pdf lead to the formation of discontinuities at the high
concentration sheets. The volume fraction across these sheets takes the shape of an
impulse. The particle velocity across the sheet steepens from a sinusoidal function
to a nearly step function. Particle-trajectory crossing in Euler–Lagrange simulations
removes the discontinuity. The crossing of two streams of particle coming from both
sides of the sheet of particles leads to the spreading of the volume fraction field
around the sheet and lower gradients. This poly-kinetic behaviour is approximated in
the anisotropic-Gaussian method which models the sub-grid particle number density
pdf with an anisotropic-Gaussian distribution. In particular, the particle-trajectory
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crossing at the particle sheet is reproduced with this Eulerian method. The granular
temperature, a measure of particle-trajectory crossing, is reproduced qualitatively.
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