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Introduction

The subject of the cloning and broadcasting of quantum states already has a 30-year
history. Its first appearance dates back to [12] and [6], where a no-cloning theorem was
formulated. No-broadcasting variants were also subsequently discovered. Among numer-
ous papers devoted to cloning and broadcasting, [1] and [9]—in which the problem is
analysed in the Hilbert space set-up—deserve special attention, as do [2] and [3], where
the problem is considered in generic probabilistic models. A common feature of these
approaches is that they restrict their attention to finite-dimensional models; moreover,
in the Hilbert space set-up the map defining cloning or broadcasting is assumed to be
completely positive.

The present work is a continuation of our investigations in [8] and [10] concerning
cloning and broadcasting in the general operator algebra framework. This framework
consists of considering an arbitrary von Neumann or C∗-algebra of operators on a Hilbert
space of arbitrary dimension instead of considering the algebra of all linear operators on
a finite-dimensional Hilbert space. In [8] and [10] we were dealing with von Neumann
algebras, and now we focus our attention on C∗-algebras. It is probably worth mentioning
that although the origin of broadcasting and cloning lies in quantum physics, these
operations nevertheless have a purely mathematical character, being simply some natural
maps between states of C∗-algebras.

The main results of the paper are as follows. We characterize cloneable sets of states
of an arbitrary C∗-algebra in terms of their strong orthogonality—the notion being a
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natural generalization of well-known orthogonality, and reducing for normal states on
von Neumann algebras to the orthogonality of their supports. Furthermore, we investigate
a stronger notion of strong cloning and its relations with almost distinguishability of
states in arbitrary C∗-algebras in a manner similar to that in [2,3]. Some special features
of strong cloning in abelian C∗-algebras are also considered.

It may come as a surprise that many rather diverse notions concerning cloning states
give a fairly consistent picture describing mutual relations between the various forms of
cloneability. We discuss this picture in § 4, and it turns out to be almost complete, at
least insofar as it relates to the questions that we consider in this paper.

1. Preliminaries and notation

Let A be an arbitrary C∗-algebra with identity 1. A state on A is a bounded positive
linear functional on A of norm one.

Let M be a von Neumann algebra. The functionals in the predual M∗ of M are said
to be normal. Let s(ρ) denote the support of a positive element ρ ∈ M∗, i.e. the smallest
projection in M such that ρ(s(ρ)) = ρ(1).

The crucial role in our analysis will be played by the following notions: (1) tensor
products of C∗- and W ∗- (or von Neumann) algebras; (2) the universal representation of
a C∗-algebra. For an exhaustive treatment of these topics the reader is advised to consult
[7,11]. We will use results from those publications freely, referring only occasionally to
the literature.

The main objects of interest to us are the following two operations of cloning and
strong cloning of states.

Let A be a C∗-algebra and consider the injective tensor product A⊗minA. A linear map
K∗ : A∗ → (A ⊗min A)∗ sending states to states is said to clone a state ρ if K∗ρ = ρ ⊗ ρ.
It is said to strongly clone a state ρ if, in addition, it is the adjoint map to a unital
completely positive map K : A ⊗min A → A.

A family of states is said to be cloneable (respectively, strongly cloneable) if there is a
map K∗ that clones (respectively, strongly clones) each member of this family. To clarify
this definition, let us observe that for an arbitrary state ρ we can always find a map that
clones it (even strongly), namely, it is enough to define K∗ as

K∗ϕ = ϕ(1)ρ ⊗ ρ, ϕ ∈ A∗.

However, problems arise when we want to clone a whole family of states. In particular,
the famous no-cloning theorem says that this is impossible for the states of the algebra
B(H) of all linear operators on a finite-dimensional Hilbert space (see [6, 12]). In our
earlier works [8,10] we considered this problem in the general von Neumann algebra set-
up. Now we are going to investigate it in the setting of C∗-algebras. Quite remarkably,
it turns out that the results for von Neumann and C∗-algebras are strongly interrelated.

The notion of orthogonality of states on A is well known and consists in the following.
Let ρ and ϕ be states on A. They are said to be orthogonal if, for each positive linear
functional ω on A such that ω � ρ and ω � ϕ, we have ω = 0 (see, for example, [4]). We
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shall employ the notion of strong orthogonality of states: namely, ρ and ϕ are said to be
strongly orthogonal if ‖ρ − ϕ‖ = 2. From the uniqueness of the Jordan decomposition of
a hermitian functional on A it follows that strong orthogonality implies orthogonality.

2. Cloning in arbitrary algebras

In the rest of our paper we will employ the universal representation of a C∗-algebra
in various contexts. Let us agree to denote this representation by πu, while for tensor
product C∗-algebras we add a tilde on top of πu. Thus, if A is a C∗-algebra, we have a
∗-isomorphism between A and πu(A), and for each state ρ on A, its image ρ ◦ π−1

u on
πu(A) is ultraweakly continuous and has a unique extension to a normal state on the
universal enveloping von Neumann algebra πu(A)′′. Our overall strategy consists of the
following two steps.

(1) Considering the states ρ on A as states on πu(A), i.e. precisely speaking, the states
ρ ◦ π−1

u , and then considering these states as normal states on the von Neumann
algebra πu(A)′′ (after the unique extension).

(2) Transferring the cloning operation K∗ : A∗ → (A ⊗min A)∗ to a suitable cloning
operation K̃∗ : (πu(A)′′)∗ → (πu(A)′′ ⊗πu(A)′′)∗.

While the first step is pretty obvious, the second requires some care because of the variety
of tensor products occurring in the considerations.

In accordance with our idea, for a state ρ on A, by a slight abuse of notation we let
s(ρ) denote the ‘support of ρ in πu(A)′′’, i.e. the support of ρ ◦ π−1

u after its extension to
πu(A)′′.

We have the following characterization of strong orthogonality.

Lemma 2.1. Let ρ and ϕ be states on A. The following conditions are equivalent:

(i) ρ and ϕ are strongly orthogonal;

(ii) s(ρ) s(ϕ) = 0.

Proof. The strong orthogonality of ρ and ϕ is equivalent to the equality

2 = ‖ρ − ϕ‖ = ‖ρ ◦ π−1
u − ϕ ◦ π−1

u ‖,

meaning that
‖ρ ◦ π−1

u − ϕ ◦ π−1
u ‖ = ‖ρ ◦ π−1

u ‖ + ‖ϕ ◦ π−1
u ‖,

which in turn is equivalent to the orthogonality of the supports of ρ ◦ π−1
u and ϕ ◦ π−1

u
(see [11, Theorem III.4.2]). �

Let ρ and ϕ be states on A. Considering ρ ◦ π−1
u and ϕ ◦ π−1

u as normal states on
πu(A)′′, we infer that the product state ρ ◦ π−1

u ⊗ ϕ ◦ π−1
u is a normal state on the tensor

product von Neumann algebra πu(A)′′ ⊗πu(A)′′. From [11, Proposition IV.4.13] we have
the equality

πu(A)′′ ⊗πu(A)′′ = (πu ⊗ πu(A ⊗min A))′′.
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Observe that the following equality also holds true:

πu ⊗ πu(A ⊗min A) = πu(A) ⊗norm πu(A),

where ‘norm’ stands for the norm-closure of the algebraic tensor product of C∗-algebras
of bounded operators on a Hilbert space (i.e. on the right-hand side we have the so-called
represented tensor product of A with itself). Since this closure coincides with the injective
tensor product πu(A) ⊗min πu(A), we shall use the latter notation throughout.

Now the state (ρ ⊗ ϕ) ◦ (πu ⊗ πu)−1 is a state on the C∗-algebra πu ⊗ πu(A ⊗min A),
and for each a, b ∈ A we have

(ρ ⊗ ϕ) ◦ (πu ⊗ πu)−1(πu(a) ⊗ πu(b)) = ρ(a)ϕ(b) = ρ ◦ π−1
u ⊗ ϕ ◦ π−1

u (πu(a) ⊗ πu(b)),

showing that
(ρ ⊗ ϕ) ◦ (πu ⊗ πu)−1 = ρ ◦ π−1

u ⊗ ϕ ◦ π−1
u . (2.1)

In particular, the state (ρ ⊗ ϕ) ◦ (πu ⊗ πu)−1 on the C∗-algebra πu ⊗ πu(A ⊗min A) has a
unique extension to a normal state on the von Neumann algebra (πu ⊗ πu(A ⊗min A))′′.

Let K∗ : A∗ → (A ⊗min A)∗. Define

K∗
u : πu(A)∗ → (πu(A) ⊗min πu(A))∗

as
K∗

u(ρ ◦ π−1
u ) = (K∗ρ) ◦ (πu ⊗ πu)−1, ρ ∈ A∗. (2.2)

If K∗ clones ρ, then on account of (2.1) we have

K∗
u(ρ ◦ π−1

u ) = (K∗ρ) ◦ (πu ⊗ πu)−1 = (ρ ⊗ ρ) ◦ (πu ⊗ πu)−1

= ρ ◦ π−1
u ⊗ ρ ◦ π−1

u ,

showing that K∗
u clones ρ◦π−1

u . Consequently, we have transferred the cloning operation
from the algebra A to the algebra πu(A).

The crucial point of our further analysis will be the observation that cloning a state
ρ (hence the state ρ ◦ π−1

u ) results in obtaining the product state ρ ◦ π−1
u ⊗ ρ ◦ π−1

u ,
which is an element of the algebraic tensor product πu(A)∗ ⊗ πu(A)∗, and thus belongs
to a suitable tensor product πu(A)∗ ⊗β πu(A)∗ (where ‘β’ is a cross-norm on the algebraic
tensor product and, as usual, ‘⊗β ’ denotes completion of this tensor product with respect
to β). To simplify the notation, set

B = πu(A).

Since B is a C∗-algebra of bounded operators in a Hilbert space, we have B ⊗min B =
B ⊗norm B. Let β be the adjoint cross-norm of the injective cross-norm ‘min’. Then,
according to [11, Proposition IV.4.10], B∗ ⊗β B∗ is an invariant subspace of (B ⊗min B)∗.

Let π̃u be the universal representation of B ⊗min B. Then (π̃∗
u)−1 is a linear isometry

of (B ⊗min B)∗ onto (π̃u(B ⊗min B))∗. Since π̃u is the universal representation, all the
elements in (π̃u(B⊗minB))∗ are ultraweakly continuous, thus they have unique extensions
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to normal linear functionals on the von Neumann algebra (π̃u(B ⊗min B))′′. Denote this
extension by

ι : (π̃u(B ⊗min B))∗ → ((π̃u(B ⊗min B))′′)∗,

so in particular for each ψ̃ ∈ (π̃u(B ⊗min B))∗ we have ι(ψ̃) | π̃u(B ⊗min B) = ψ̃.
Set

Θ = ι ◦ (π̃∗
u)−1.

Then Θ is a linear isometry of (B ⊗min B)∗ onto ((π̃u(B ⊗min B))′′)∗.

Lemma 2.2. The space Θ(B∗ ⊗β B∗) is a closed invariant subspace of ((π̃u(B ⊗min

B))′′)∗.

Proof. Take arbitrary x̃, ỹ ∈ B ⊗min B, ψ̃ ∈ B∗ ⊗β B∗. We have

(π̃u(x̃)Θ(ψ̃))(π̃u(ỹ)) = Θ(ψ̃)(π̃u(ỹx̃)) = (ι ◦ (π̃∗
u)−1)(ψ̃)(π̃u(ỹx̃))

= ((π̃∗
u)−1)(ψ̃)(π̃u(ỹx̃)) = ψ̃(ỹx̃) = (x̃ψ̃)(ỹ)

= ((x̃ψ̃) ◦ π̃−1
u )(π̃u(ỹ)) = ((π̃∗

u)−1(x̃ψ̃))(π̃u(ỹ)),

showing that
π̃u(x̃)Θ(ψ̃) = (π̃∗

u)−1(x̃ψ̃)

on π̃u(B ⊗min B). Hence

π̃u(x̃)Θ(ψ̃) = (ι ◦ (π̃∗
u)−1)(x̃ψ̃), (2.3)

since, by definition, π̃u(x̃)Θ(ψ̃) belongs to ((π̃u(B ⊗min B))′′)∗. Taking into account the
definition of Θ, we obtain from (2.3) the equality

π̃u(x̃)Θ(ψ̃) = Θ(x̃ψ̃).

The invariance of B∗ ⊗β B∗ yields x̃ψ̃ ∈ B∗ ⊗β B∗, showing that

π̃u(x̃)Θ(ψ̃) = Θ(x̃ψ̃) ∈ Θ(B∗ ⊗β B∗),

which gives the left invariance of Θ(B∗ ⊗β B∗) with respect to multiplication by the
elements of π̃u(B ⊗min B). We obtain the right invariance in the same way. Now, since
the algebra π̃u(B⊗minB) is σ-weakly dense in the von Neumann algebra (π̃u(B⊗minB))′′,
the claim follows from [11, Theorem III.2.7]. �

One of the main results of the paper is the following characterization of cloneability.

Theorem 2.3. Let Γ be an arbitrary set of states of a C∗-algebra A. The following
conditions are equivalent:

(i) Γ is cloneable;

(ii) the states in Γ are pairwise strongly orthogonal.
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Proof. (i) =⇒ (ii). Let K∗ : A∗ → (A ⊗min A)∗ be an operation cloning all states in
Γ , and define

K∗
u : B∗ → (B ⊗min B)∗

by (2.2). Then, as we saw earlier in the proof of Lemma 2.2, K∗
u clones the states in

Γu = {ρ ◦ π−1
u : ρ ∈ Γ}. The invariance of the space Θ(B∗ ⊗β B∗) shown in Lemma 2.2

yields, by virtue of [11, Theorem III.2.7], the existence of a central projection p̃ in
(π̃u(B ⊗min B))′′ such that

Θ(B∗ ⊗β B∗) = p̃((π̃u(B ⊗min B))′′)∗.

Define a map Π : ((π̃u(B ⊗min B))′′)∗ → Θ(B∗ ⊗β B∗) by the formula

Πψ̃ = p̃ψ̃, ψ̃ ∈ ((π̃u(B ⊗min B))′′)∗.

Then Π is a projection onto Θ(B∗ ⊗β B∗); in particular, Πψ̃ = ψ̃ for ψ̃ ∈ Θ(B∗ ⊗β B∗),
so ΠΘ|B∗ ⊗β B∗ = Θ|B∗ ⊗β B∗.

Since B = πu(A) is the universal representation of A, we have B∗ = (B′′)∗ (after
identifying the elements in B∗ with their extensions to B′′). Consider the map K̃∗ =
Θ−1ΠΘK∗

u . It acts from (B′′)∗ into B∗ ⊗β B∗ = (B′′)∗ ⊗β (B′′)∗; moreover, for all states
in Γu we have

K̃∗(ρ ◦ π−1
u ) = Θ−1ΠΘ(ρ ◦ π−1

u ⊗ ρ ◦ π−1
u ) = ρ ◦ π−1

u ⊗ ρ ◦ π−1
u ,

since Θ−1ΠΘ is the identity on B∗ ⊗β B∗.
Now

B∗ ⊗β B∗ = (B′′)∗ ⊗β (B′′)∗ = (B′′ ⊗B′′)∗,

and thus we have constructed a map

K̃∗ = Θ−1ΠΘK∗
u : (B′′)∗ → (B′′ ⊗B′′)∗

from the predual of a von Neumann algebra into the predual of its tensor power that
clones all states in Γu. By virtue of [10, Theorem 8], the states in Γu have mutually orthog-
onal supports, which on account of Lemma 2.1 shows that they are pairwise strongly
orthogonal.

(ii) =⇒ (i). This has been proven in [10, Theorem 8]. For the sake of completeness
let us repeat the main points of the proof here. Denote the states in Γ by ρi and put
ei = s(ρi). Then the ei are pairwise orthogonal. Define a map K∗

u : (B′′)∗ → (B′′ ⊗B′′)∗
as

K∗
uψ̃ =

∑
i

ψ̃(ei)(ρi ◦ π−1
u ⊗ ρi ◦ π−1

u ), ψ̃ ∈ (B′′)∗.

It follows that K∗
u clones the states ρi ◦ π−1

u , and it is easily seen that a map K∗ : A∗ →
(A ⊗min A)∗ defined as

K∗ = (πu ⊗ πu)∗K∗
u(π∗

u)−1

clones the states ρi (see (2.2)). �
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Remark 2.4. It is worth observing that we have the following reformulation of the
theorem above in terms of the universal enveloping von Neumann algebra: let Γ be a
family of states on a C∗-algebra A; Γ is then cloneable if and only if it is cloneable in
the universal enveloping von Neumann algebra of A.

Remark 2.5. Let us note that the proof of Theorem 3 in [5] essentially shows that if
two pure states on A are cloneable, then they are strongly orthogonal.

Now we are going to give yet another characterization of cloneability for a finite set of
states. To this end let us introduce some necessary notions.

By a measurement (or observable) we shall mean a finite collection of positive elements
{e1, . . . , em} of A such that

m∑
k=1

ek = 1 .

The notion of distinguishability of states as defined below has been used in [2,3] for
a characterization of joint cloneability in finite dimension. It turns out that a weaker
notion of almost distinguishability is also useful for a similar purpose.

States ρ1, . . . , ρr of A are said to be distinguishable if there exists a measurement
{e1, . . . , er} such that ρi(ej) = δij for every i, j = 1, . . . , r. They are said to be almost
distinguishable if for any ε > 0 there exists a measurement {e1, . . . , er} such that ρk(ek) >

1 − ε for each k = 1, . . . , r.

Theorem 2.6. Let ρ1, . . . , ρr be states of A. The following conditions are equivalent:

(i) ρ1, . . . , ρr are almost distinguishable;

(ii) ρ1, . . . , ρr are strongly orthogonal.

Proof. (i) =⇒ (ii). Take an arbitrary positive integer n, and let {e
(n)
1 , . . . , e

(n)
r } be a

measurement such that

ρk(e(n)
k ) > 1 − 1

n
, k = 1, . . . , r.

Let πu be the universal representation of A. Then {πu(e(n)
1 ), . . . , πu(e(n)

r )} is a measure-
ment in πu(A) such that

(ρk ◦ π−1
u )(πu(e(n)

k )) > 1 − 1
n

, k = 1, . . . , r. (2.4)

Since all πu(e(n)
k ) are bounded in norm, we can find a subnet {n′} of {n} such that

πu(e(n′)
k ) → ak σ-weakly, k = 1, . . . , r,

for some ak in the universal enveloping von Neumann algebra πu(A)′′ of A. We clearly
have ak � 0 and

r∑
k=1

ak = 1;
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moreover, from the inequalities (2.4) we obtain

(ρk ◦ π−1
u )(ak) = 1, k = 1, . . . , r.

This in turn shows that for the supports of ρk ◦ π−1
u we have

s(ρk ◦ π−1
u ) � ak,

and the relation
r∑

k=1

s(ρk ◦ π−1
u ) �

r∑
k=1

ak = 1

yields the orthogonality of the supports, which, on account of Lemma 2.1, finishes the
proof.

(ii) =⇒ (i). Define
ek = s(ρk), k = 1, . . . , r.

On account of the Kaplansky density theorem, there exist nets {a
(1)
i }i∈I , . . . , {a

(r)
i }i∈I

in the positive part of the unit ball of πu(A) such that

a
(k)
i → ek strongly, k = 1, . . . , r.

(Passing to subnets if necessary, we may and do assume that the nets have the same
index set.) Define inductively the nets {b

(r)
i }i∈I , . . . , {b

(r)
i }i∈I as follows:

b
(1)
i = a

(1)
i ,

b
(n)
i = [1 − (b(1)

i + · · · + b
(n−1)
i )]a(n)

i [1 − (b(1)
i + · · · + b

(n−1)
i )].

Taking into account the inequality 0 � a
(k)
i � 1 for each k = 1, . . . , r, it is easy to show

that
b
(k)
i � 0

for each k = 1, . . . , r,
b
(1)
i + · · · + b

(r)
i � 1 ,

and
b
(k)
i → ek strongly

for each k = 1, . . . , r, because e1, . . . , er are pairwise orthogonal projections. It follows
that b

(k)
i → ek weakly, and since the nets are bounded, the convergence is also σ-weak.

In particular,
(ρk ◦ π−1

u )(b(k)
i ) → (ρk ◦ π−1

u )(ek) = 1

for each k = 1, . . . , r. Take an arbitrary ε > 0. We can find an index i0 such that

(ρk ◦ π−1
u )(b(k)

i0
) > 1 − ε

for each k = 1, . . . , r. Now we have

b
(1)
i0

+ · · · + b
(r)
i0

� 1 ,
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so substituting 1 −
∑r

k=2 b
(k)
i0

� b
(1)
i0

for b
(1)
i0

and leaving the remaining b
(k)
i0

untouched,
we obtain the measurement {b

(1)
i0

, . . . , b
(r)
i0

} in πu(A) for which the inequality

(ρk ◦ π−1
u )(b(k)

i0
) > 1 − ε, k = 1, . . . , r,

holds. It is obvious that the measurement {π−1
u (b(1)

i0
), . . . , π−1

u (b(r)
i0

)} in A distinguishes
the states ρ1, . . . , ρr up to ε > 0, which completes the proof. �

Remark 2.7. Theorems 2.3 and 2.6 give, for a finite set of states, equivalence of the
following three conditions: (i) cloning, (ii) strong orthogonality and (iii) almost distin-
guishability. Two more natural conditions would be pairwise almost distinguishability
(pairwise distinguishability) and pairwise cloneability, their definitions being (obviously)
almost distinguishability and cloneability of every pair of the states. (Note that the
definition of strong orthogonality has this structure.) It follows that pairwise almost
distinguishability is equivalent to each of the conditions (i)–(iii), since by Theorem 2.6
pairwise almost distinguishability implies pairwise strong orthogonality, i.e. just strong
orthogonality, and by virtue of Theorem 2.3 the same equivalence holds true for pair-
wise cloneability. Clearly, pairwise almost distinguishability and pairwise cloneability are
easier to check than almost distinguishability and cloneability. However, as noted in [2],
distinguishability and pairwise distinguishability are not equivalent.

The following simple theorem shows that distinguishability is a rather strong condition
implying strong cloning even by a completely positive map.

Theorem 2.8. If states ρ1, . . . , ρr are distinguishable, then they are strongly cloneable
by a completely positive map.

Proof. Indeed, let {e1, . . . , er} be a measurement that distinguishes the states
ρ1, . . . , ρr, and define a map K : A ⊗min A → A by the formula

K(ã) =
r∑

k=1

ρk ⊗ ρk(ã)ek, ã ∈ A ⊗min A.

Then K is unital completely positive, and its adjoint has the form

K∗ϕ =
r∑

k=1

ϕ(ek)ρk ⊗ ρk, ϕ ∈ A∗.

Since ρi(ej) = δij , it follows that K∗ clones the ρi. �

3. The commutative case

In this section we take a closer look at the case of a commutative C∗-algebra. It turns
out that additional structure allows one to consider additional notions of orthogonality
of states. As for cloning, the example at the end of the section shows a subtle difference
between strong cloneability and distinguishability.
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Let us therefore assume that A is an abelian C∗-algebra with identity, and identify
it with the algebra C(Ω) of continuous functions on a compact Hausdorff space Ω. The
tensor product A ⊗min A is then identified with the algebra C(Ω × Ω). The states on
C(Ω) are Radon probability measures. Let us recall that these measures are defined on
the Baire σ-field B that is generated by closed Gδ-subsets of Ω. Is is known that Radon
measures have unique extensions to Borel measures defined on the Borel σ-field B(Ω),
thus we can treat the states on C(Ω) as Borel probability measures.

For f ∈ C(Ω) and a state μ, we shall sometimes write μ(f) to denote
∫

Ω
f dμ.

We recall that for a probability measure μ, its support is defined (non-uniquely) as any
measurable set E that satisfies μ(E) = 1. Two such measures are said to be singular if
they have disjoint supports. Another classical notion for a probability measure μ, which
we will call the essential support, is the (uniquely defined) smallest closed set F such that
μ(F ) = 1 (note that the essential support is often called simply the ‘support’, especially
when topological considerations play an important role). Two probability measures are
said to be strongly singular if their essential supports are disjoint.

We shall consider mutual relations between cloneability, strong cloneability, distin-
guishability and orthogonality of states. Besides, we will also give an explicit description
of a strong cloning operation.

Lemma 3.1. Let μ and ν be states on C(Ω). The following conditions are equivalent:

(i) μ and ν are singular;

(ii) μ and ν are almost distinguishable;

(iii) μ and ν are strongly orthogonal.

Proof. (i) =⇒ (ii). There exists a measurable set E such that μ(E) = 1 and ν(E′) = 1
(E′ = Ω \ E). Let ε > 0 be arbitrary. From the regularity of μ and ν, it follows that
there are compact sets A ⊂ E, B ⊂ E′ such that μ(A) > 1− ε and ν(B) > 1− ε. Since A

and B are disjoint, there exists a continuous function f , 0 � f � 1, such that f(ω) = 1
for ω ∈ A and f(ω) = 0 for ω ∈ B. Then (1 − f)(ω) = 1 for ω ∈ B. For a measurement
{f, 1 − f} we have

μ(f) =
∫

Ω

f dμ �
∫

A

f dμ = μ(A) > 1 − ε,

ν(1 − f) =
∫

Ω

(1 − f) dν �
∫

B

(1 − f) dν = ν(B) > 1 − ε,

showing that μ and ν are almost distinguishable.

(ii)⇐⇒ (iii). This is Theorem 2.6.

(iii) =⇒ (i). This follows essentially from the uniqueness of the Jordan decomposition
of a real signed measure. Namely, define ϕ = μ − ν, and let ϕ = ϕ+ − ϕ− be the
Jordan decomposition. Then there are disjoint sets Ω+ and Ω− such that Ω = Ω+ ∪Ω−,
ϕ+(Ω−) = 0, ϕ−(Ω+) = 0, and

2 = ‖ϕ‖ = ‖ϕ+‖ + ‖ϕ−‖ = ϕ+(Ω+) + ϕ−(Ω−) = ϕ+(Ω) + ϕ−(Ω).
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On the other hand,

ϕ+(Ω) − ϕ−(Ω) = ϕ(Ω) = μ(Ω) − ν(Ω) = 0,

and thus
ϕ+(Ω+) = ϕ+(Ω) = 1 = ϕ−(Ω) = ϕ−(Ω−).

Moreover, we have
μ(Ω+) − ν(Ω+) = ϕ(Ω+) = ϕ+(Ω+) = 1,

showing that μ(Ω+) � 1 and thus μ(Ω+) = 1; consequently, ν(Ω+) = 0, i.e. ν(Ω−) = 1,
which means that μ and ν are singular (in particular, we also get ϕ+ = μ, ϕ− = ν). �

As for a relation between distinguishability and strong singularity we have the
following.

Lemma 3.2. Let μ and ν be states on C(Ω). Then μ and ν are distinguishable if and
only if they are strongly singular.

Proof. Assume first that μ and ν are distinguishable, and let {f1, f2} be a measure-
ment (0 � f1, f2 � 1, f1 + f2 = 1) such that

μ(f1) =
∫

Ω

f1 dμ = 1, ν(f2) =
∫

Ω

f2 dν = 1.

It follows that

μ({ω : f1(ω) = 1}) = 1, ν({ω : f2(ω) = 1}) = 1.

Since the sets E1 = {ω : f1(ω) = 1} and E2 = {ω : f2(ω) = 1} are closed, the essential
support of μ is contained in E1 and the essential support of ν is contained in E2, and
since E1 and E2 are disjoint, the conclusion follows.

Assume now that μ and ν are strongly singular, and let E and F be their essential
supports, respectively. By the Urysohn lemma, there is a function 0 � f � 1 such that
f(ω) = 1 for ω ∈ E and f(ω) = 0 for ω ∈ F . For the measurement {f, 1 − f}, we have
μ(f) = 1, ν(1 − f) = 1, showing that μ and ν are distinguishable. �

Remark 3.3. For the sake of simplicity, in our previous considerations we have
restricted our attention to only two states. However, the following natural set-up would
be possible. Let Γ = {μ1, . . . , μr} be a finite set of states of C(Ω). The states in Γ are
said to be singular (respectively, strongly singular) if there exist pairwise disjoint sets
(respectively, closed sets) E1, . . . , Er such that μi(Ei) = 1 for i = 1, . . . , r. In this setting
we would have obvious counterparts of Lemmas 3.1 and 3.2 in which the set of two states
{μ, ν} would be replaced by Γ . It is not difficult to show that in this case the lemmas
above would also hold true.
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Now we are going to describe in some detail a strongly cloning map. The first step in
this direction is a result that as a matter of fact characterizes linear positive unital maps
between algebras of continuous functions on compact Hausdorff spaces. It can safely
be said that results of this type belong to the folklore of the field, but for the sake of
completeness and the lack of a proper reference we present its proof here. We formulate
the theorem in the setting best suited to our purposes but it is easily seen that the
same proof applies for a map between arbitrary algebras C(Ω1) and C(Ω2) of continuous
functions on compact Hausdorff spaces Ω1 and Ω2.

Theorem 3.4. Each linear positive unital map K : C(Ω × Ω) → C(Ω) has the form

(Kf̃)(ω) =
∫

Ω×Ω

f̃ dN(ω, ·), f̃ ∈ C(Ω × Ω), ω ∈ Ω, (3.1)

where {N(ω, ·) : ω ∈ Ω} is a family of probability measures on (Ω × Ω, B ⊗ B) with the
property

for any net {ωi} in Ω with ωi → ω, we have weak convergence N(ωi, ·) =⇒ N(ω, ·).
(∗)

Moreover, if the family {N(ω, ·) : ω ∈ Ω} satisfies condition (∗), then for each Ẽ ∈ B⊗B
the function N(·, Ẽ) on Ω is B-measurable, i.e. N is a Markov kernel on Ω × (B ⊗ B).

Proof. Assume that K : C(Ω × Ω) → C(Ω) is a linear positive unital map. For each
ω ∈ Ω, the mapping

C(Ω × Ω) � f̃ 
→ (Kf̃)(ω)

is a linear bounded positive functional on C(Ω × Ω). Denote this functional by Tω.
We have Tω(1) = 1, and there is therefore a probability Radon measure N(ω, ·) on
(Ω × Ω, B ⊗ B) such that

(Kf̃)(ω) = Tω(f̃) =
∫

Ω×Ω

f̃ dN(ω, ·), f̃ ∈ C(Ω × Ω).

Now, if ωi → ω, then for each f̃ ∈ C(Ω × Ω) we have, by virtue of the continuity of Kf̃ ,
the convergence (Kf̃)(ωi) → (Kf̃)(ω); that is,∫

Ω×Ω

f̃ dN(ωi, ·) →
∫

Ω×Ω

f̃ dN(ω, ·),

which is the weak convergence N(ωi, ·) =⇒ N(ω, ·).
The converse assertion is immediate; namely, if we assume that K is defined by (3.1),

then the weak convergence N(ωi, ·) =⇒ N(ω, ·) entails that K transforms continuous
functions on Ω × Ω into continuous functions on Ω.

Set
R = {Ẽ ∈ B ⊗ B : N(·, Ẽ) is measurable}.
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Since N(ω, ·) is a probability measure it follows that R is a so-called λ-system, i.e. it has
the following properties:

(a) Ω × Ω ∈ R;

(b) if Ẽ1, Ẽ2 ∈ R and Ẽ1 ⊂ Ẽ2, then Ẽ2 \ Ẽ1 ∈ R;

(c) if Ẽ1 ⊂ Ẽ2 ⊂ · · · and Ẽn ∈ R, then
⋃∞

n=1 Ẽn ∈ R.

Now let F̃ be a closed Gδ-subset of Ω × Ω. Then

F̃ =
∞⋂

n=1

G̃n,

where the G̃n are open and G̃1 ⊃ G̃2 ⊃ · · · . Let f̃n be continuous functions such that
0 � f̃n � 1, f̃n(ω̃) = 1 for ω̃ ∈ F̃ and f̃n(ω̃) = 0 for ω̃ ∈ G̃′

n. Then f̃n → χF̃ , where χF̃

is the characteristic function of F̃ . For each ω ∈ Ω, we have

N(ω, F̃ ) =
∫

Ω×Ω

χF̃ dN(ω, ·) = lim
n→∞

∫
Ω×Ω

f̃n dN(ω, ·) = lim
n→∞

(Kf̃n)(ω),

showing that N(·, F̃ ) is Baire-measurable as a limit of continuous functions. This means
that F̃ belongs to R. The family of closed Gδ-sets is a so-called π-system, i.e. the intersec-
tion of two sets from this family belongs to the family too. Consequently, the theorem on
π–λ-systems asserts that the smallest σ-field containing all closed Gδ-subsets of Ω × Ω,
i.e. B ⊗B, is contained in R, which means that N(·, Ẽ) is a measurable function for each
Ẽ ∈ B ⊗ B. �

Remark 3.5. It is immediately seen that the correspondence between the map K and
the Markov kernel N in Theorem 3.4 is one to one.

From Theorem 3.4 we obtain the following characterization of the adjoint map.

Proposition 3.6. Let K : C(Ω × Ω) → C(Ω) be given by (3.1). Its adjoint then has
the form

(K∗μ)(Ẽ) =
∫

Ω

N(ω, Ẽ)μ(dω), μ ∈ C(Ω)∗, Ẽ ∈ B ⊗ B. (3.2)

Proof. It is enough to prove formula (3.2) for a probability measure μ. Define ν̃ : B ⊗
B → R by

ν̃(Ẽ) =
∫

Ω

N(ω, Ẽ)μ(dω), Ẽ ∈ B ⊗ B.

It is easily seen that ν̃ is a probability measure on B ⊗ B. For each f̃ ∈ C(Ω × Ω) we
have

ν̃(f̃) =
∫

Ω×Ω

f̃ dν̃ =
∫

Ω

∫
Ω×Ω

f̃ dN(ω, ·)μ(dω)

=
∫

Ω

(Kf̃)(ω)μ(dω) = μ(Kf̃) = (K∗μ)(f̃),

showing that ν̃ = K∗μ. �
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The proposition above yields the following corollary characterizing strong cloneability
in abelian C∗-algebras.

Corollary 3.7. Let Γ be an arbitrary family of probability measures on a compact
Hausdorff space Ω with Baire σ-field B. Γ is strongly cloneable if and only if there is a
Markov kernel N on Ω × (B ⊗ B) such that for each μ ∈ Γ and each Ẽ ∈ B ⊗ B we have

μ ⊗ μ(Ẽ) =
∫

Ω

N(ω, Ẽ)μ(dω).

The example below shows that distinguishability is a stronger notion than strong
cloneability.

Example 3.8. Let m be the Lebesgue measure on [0, 1] and let δ0 be the Dirac measure
concentrated at 0. We are going to show that m and δ0 are jointly strongly cloneable
despite not being strongly orthogonal, and thus not distinguishable either.

For x ∈ [0, 1] define sets Lx ⊂ [0, 1] × [0, 1] by the formulae

L0 = {(0, 0)}, L1 = {(1, 1)},

Lx =

{
{(u, v) : u, v � 0, u + v =

√
2x}, 0 < x � 1

2 ,

{(u, v) : u, v � 0, u + v = 2 −
√

2(1 − x)}, 1
2 < x < 1,

and let Φx be defined as

(a) for 0 � x � 1
2 ,

Φx : [0,
√

2x] → Lx, Φx(t) = (t,
√

2x − t);

(b) for 1
2 < x � 1,

Φx : [1 −
√

2(1 − x), 1] → Lx, Φx(t) = (t, 2 −
√

2(1 − x) − t).

Define a family {N(x, ·) : x ∈ [0, 1]} of probability measures on [0, 1] × [0, 1] as

N(0, ·) = δ(0,0) = δ0 ⊗ δ0, N(1, ·) = δ(1,1) = δ1 ⊗ δ1,

N(x, ·) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φx ◦ m√
2x

, 0 < x � 1
2 ,

Φx ◦ m√
2(1 − x)

, 1
2 < x < 1.

(The N(x, ·) for 0 < x < 1 are simply normalized Lebesgue measures on the segments
Lx.) It is easily seen that N is a Markov kernel satisfying condition (∗) of Theorem 3.4.

For each continuous function f on [0, 1] × [0, 1], we have

∫ 1

0

∫ 1

0
f dN(x, ·) =

∫∫
Lx

f dN(x, ·) (3.3)
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and

∫∫
Lx

f dN(x, ·) =

{
f(0, 0) for x = 0,

f(1, 1) for x = 1,
(3.4)

∫∫
Lx

f dN(x, ·) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2x

∫ √
2x

0
f(t,

√
2x − t) dt for 0 < x � 1

2 ,

1√
2(1 − x)

∫ 1

1−
√

2(1−x)
f(t, 2 −

√
2(1 − x) − t) dt for 1

2 < x < 1.

(3.5)

Let a strongly cloning map K be defined by (3.1). Then K∗μ is defined by (3.2); in
particular, we have (writing simply dx instead of m(dx))

∫ 1

0

∫ 1

0
f d(K∗m) =

∫ 1

0

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
dx

=
∫ 1/2

0

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
dx +

∫ 1

1/2

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
dx

= I1 + I2.

Taking into account (3.3) and (3.5) we obtain

I1 =
∫ 1/2

0

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
dx =

∫ 1/2

0

(
1√
2x

∫ √
2x

0
f(t,

√
2x − t) dt

)
dx

=
∫ 1

0

∫ u

0
f(t, u − t) dt du =

∫∫
Δ1

f(v, w) dv dw,

where Δ1 = {(v, w) : 0 � v � 1, 0 � w � 1 − v}, and

I2 =
∫ 1

1/2

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
dx

=
∫ 1

1/2

(
1√

2(1 − x)

∫ 1

1−
√

2(1−x)
f(t, 2 −

√
2(1 − x) − t) dt

)
dx

=
∫ 1

0

∫ 1

1−u

f(t, 2 − u − t) dt du =
∫∫

Δ2

f(v, w) dv dw,

where Δ2 = {(v, w) : 0 � v � 1, 1 − v � w � 1}. Consequently,

∫ 1

0

∫ 1

0
f d(K∗m) = I1 + I2 =

∫∫
Δ1

f(v, w) dv dw +
∫∫

Δ2

f(v, w) dv dw

=
∫ 1

0

∫ 1

0
f(v, w) dv dw =

∫ 1

0

∫ 1

0
f d(m ⊗ m),
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showing that
K∗m = m ⊗ m,

i.e. K∗ strongly clones m. Furthermore, (3.3) and (3.4) yield∫ 1

0

∫ 1

0
f d(K∗δ0) =

∫ 1

0

( ∫ 1

0

∫ 1

0
f dN(x, ·)

)
δ0(dx)

=
∫ 1

0

∫ 1

0
f dN(0, ·) = f(0, 0) =

∫ 1

0

∫ 1

0
f d(δ0 ⊗ δ0),

showing that
K∗δ0 = δ0 ⊗ δ0,

i.e. K∗ strongly clones δ0 (the same is of course true of δ1).

4. Summary

Let us finish with the following picture describing the state of affairs for a finite (with
one important exception) number of states in arbitrary C∗-algebras:

distinguishable
† ��

��

∗

��

strongly
cloneable

�� cloneable �� ‡ ��
��

��

strongly
orthogonal��

��

strongly
singular

almost
distinguishable

�� ��
��

∗

��

pairwise
almost

distinguishable��

��

singular pairwise
cloneable

‘†’ means that the reverse implication does not hold even in the abelian case. ‘‡’ means
that the relation holds for an arbitrary number of states. ‘∗’ means that the relation
holds in the abelian case.

The only missing relation is therefore

cloneable � strongly cloneable.

While this seems highly probable, it does still need to be formally proved.
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