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This paper proposes a test of the rank of the submatrix ofb, whereb is a cointe-
grating matrix+ In addition, the submatrix ofb4, an orthogonal complement tob,
is investigated+We construct the test statistic by using the eigenvalues of the qua-
dratic form of the submatrix+ We show that the test statistic has a limiting chi-
square distribution when data are nontrending, whereas for trending data we have
to consider a conservative test or other testing procedure that requires the pretest
of the structure of the matrix+ Finite sample simulations show that, although the
simulation settings are limited, the proposed test works well for nontrending data,
whereas we have to carefully use the test for trending data because it may become
too conservative in some cases+

1. INTRODUCTION

A vector autoregressive~VAR! process has often been used to model a multi-
variate economic time series and, following the seminal work of Engle and
Granger~1987!, a cointegrating relation has been incorporated into the VAR
model+ A typical n-dimensional VAR model of orderm is

xt 5 d 1 A1 xt21 1 {{{ 1 Amxt2m 1 «t , (1)

for t 5 1, + + + ,T, where$«t % is independently and identically distributed~i+i+d+!
with mean zero and a positive definite covariance matrixS and det~In 2 A1z2
{{{ 2 Amzm! has all roots outside the unit circle or equal to 1+ The model~1!
can be written in the error correction~EC! format,

nxt 5 d 1 ab 'xt21 1 (
j51

m21

Gj nxt2j 1 «t , (2)

wherea andb aren 3 r matrices with rankr, n 5 1 2 L, andL denotes the
lag operator+ We assume 0, r , n, and then there arer cointegrating rela-
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tions+ The exact condition of the existence of cointegration is given by Johansen
~1991, 1992!+ We also assume that the cointegrating rankr is known or esti-
mated by some testing procedure, such as the likelihood ratio~LR! test pro-
posed by Johansen~1988, 1991! or the Lagrange multiplier~LM ! test by
Lütkepohl and Saikkonen~2000! and Saikkonen and Lütkepohl~2000!+ Other
testing procedures of the cointegrating rank are reviewed by Hubrich, Lütke-
pohl, and Saikkonen~2001! and papers therein+

In this paper, we investigate the tests of the rank ofb1, the submatrix ofb,
and the rank ofb4,1, the submatrix ofb4, where b 5 @b1

' ,b2
' # ' and b4 5

@b4,1
' ,b4,2# ' , with b4 being an orthogonal complement tob+ In practical analy-

sis, we sometimes encounter cases where we need to know the rank ofb1 and0or
b4,1+ For example, the cointegrating matrix is sometimes normalized asb* 5
b~a'b!21, as proposed by Johansen~1988, 1991! and Paruolo~1997!, wherea
is ann 3 r matrix with full column rank and the prototype normalization is rep-
resented bya 5 @Ir ,0# ' + However, there is no guarantee thata'b is of full rank+
In such a situation, we would like to know whether the firstr rows of b have
full rank+ The second example is the Granger noncausality test+As shown in Toda
and Phillips~1993!, when there is a cointegrating relationship, in general the Wald
statistic of the Granger noncausality test from the lastn3 variables ofxt to the
first n1 variables has a nonstandard limiting distribution, depending on nui-
sance parameters+ However, if either the lastn3 rows ofb or the firstn1 rows of
a have full row rank, the Wald statistic is asymptoticallyx2 distributed+ Then,
the testing procedure in this paper is useful to check the rank of the submatrix
of b, whereas the existing testing procedure may be available for the test of the
rank of the submatrix ofa+ The third example is the test of long-run Granger
noncausality proposed by Yamamoto and Kurozumi~2001, 2003!+ In a usual
sense, Granger causality is concerned with the one period ahead forecast+ This
concept can be extended to the predictability ofh period ahead horizon, and long-
run Granger causality is defined when the forecast horizonh goes to infinity+
See, for example, Bruneau and Jondeau~1999! and Dufour and Renault~1998!+
Yamamoto and Kurozumi~2003! proposed the test for long-run block noncau-
sality, in which it is shown that the ranks of the submatrices ofb andb4 play an
important role in constructing the test statistic+ See Yamamoto and Kurozumi
~2003! for more details+

Tests of the rank of a matrix have been investigated in the literature, and
recent econometric developments can be seen in works by Camba-Mendez,
Kapetanios, Smith, and Weale~2003!, Cragg and Donald~1996, 1997!, and
Robin and Smith~2000!, among others+ Although these papers proposed tests
of the rank of a matrix, they assumed that the estimator of the matrix isT 102

consistent and has a limiting normal distribution with a nonstochastic variance
matrix+ However, the estimator of the cointegrating matrix isT ~or T 302! con-
sistent and has an asymptotic nonstandard distribution+ As a result, we cannot
apply existing testing procedures to the cointegrating matrix+
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The paper is organized as follows+ In Section 2, we propose tests of the rank
of b1 and b4,1 for nontrending data+ We will show that the two test statistics
proposed have asymptotically ax2 distribution and a distribution of the maxi-
mum eigenvalue of the product of normal random matrices+ Section 3 consid-
ers the case of trending data+ In this case, the test statistics do not necessarily
converge to ax2 distribution and a distribution of the maximum eigenvalue+
To overcome this situation, we propose two testing procedures+ Section 4 inves-
tigates the finite sample properties of the tests+ Section 5 concludes the paper+

In regard to notation, we use vec~A! to stack therows of a matrixA into a
column vector, @x# , to denote the largest integer# x, Sa 5 a~a'a!21 for a full
column rank matrixa, and

p
&&, d

&&, andn signify convergence in probability,
convergence in distribution, and weak convergence of the associated probabil-
ity measures+ We denote the rank ofA by rk~A! and the column space ofA by
sp~A!+ We write integrals such as*0

1 X~s! dY~s!' simply as*XdY' to achieve
notational economy, and all integrals are from 0 to 1 except where otherwise
noted+

2. TEST OF THE RANK OF THE SUBMATRIX
FOR NONTRENDING DATA

2.1. The Model with d = 0

In this section we consider a test of rank for nontrending data withd 5 0+ The
model considered in this section is

nxt 5 ab 'xt21 1 (
j51

m21

Gj nxt2j 1 «t + (3)

We estimate the model~3! by the maximum likelihood~ML ! method assuming
that $«t % is Gaussian, although asymptotic properties are preserved under more
general assumptions+We denote the ML estimator with[ + For example, the ML
estimator ofb is denoted by Zb+ Using the result thatT2102 (t51

@Tr# «t n W~r ! for
0 # r # 1 by the functional central limit theorem, whereW~{! is ann-dimensional
Brownian motion with a variance matrixS, Johansen~1988, 1995! showed that

Tb4
' ~ Db 2 b! d

&& SEG0G0
' dsD21EG0 dV ', (4)

where Db 5 Zb~ Nb ' Zb!21, G0~{! 5 Nb4' CW~{! with C 5 b4~a4
' Gb4 !21a4

' , G 5 In 2
( i51

m21 Gi , V~{! 5 ~a 'S21a!21a 'S21W~{!, and G0~{! and V~{! are independent+
He also showed thatJa 5 [a Zb ' Nb, ZS, and ZGi ~i 5 1, + + + ,m 2 1! are consistent
estimators ofa, S, andGi , respectively+

Let us partition b as b ' 5 @b1
' ,b2

' # where b1 and b2 are n1 3 r and
~n 2 n1! 3 r matrices, respectively~0 , n1 , n!+ Similarly, we partition
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b4
' 5 @b4,1

' ,b4,2' # conformably+ Note thatb1
' b4,1 does not necessarily equal

zero, whereasb 'b4 5 b1
' b4,1 1 b2

' b4,2 must be zero+ Our interest lies in find-
ing the rank ofb1, and thus we consider the following testing problem:

H0 : rk~b1! 5 f v+s+ H1 : rk~b1! . f+ (5)

Note that the rank ofb1 is at mostp [ min~n1, r !+
To test the rank ofb1, we follow the same strategy as Robin and Smith~2000!,

who test the rank of a matrix and investigate its quadratic form+ In our situa-
tion, we construct a quadratic form ofb1+ The advantage of considering a qua-
dratic form is that the eigenvalues are nonnegative real values, even if those of
b1 are complex values+ Then, the null hypothesisH0 becomes equivalent to the
existence off positive real andn1 2 f zero eigenvalues+

Let C andF be r 3 r andn1 3 n1 possibly stochastic matrices that are sym-
metric and positive definite almost surely~a+s+!+ Because they are full rank matri-
ces~a+s+!, the rank ofb1 is equal to the rank ofF21b1Cb1

' ~a+s+!+ Therefore, the
test of the rank ofb1 is equivalent to that ofF21b1Cb1

' , and then we consider
the rank of the latter matrix+ Note that, although this strategy is basically the
same as that followed by Robin and Smith~2000!, we cannot directly use their
result because they assume that the estimated matrix is asymptotically nor-
mally distributed with a convergence rateT 102, whereas Zb1 is shown to be
T-consistent and the limiting distribution is mixed Gaussian+

For the test of the rank ofb1, we defineC 5 a 'S21a and

F 5 @b1,b4,1~b4
' b4 !21# 3

~b 'b!21 0

0 SEG0G0
' dsD214 F b1

'

~b4
' b4 !21b4,1

' G+ (6)

TheseC andF are chosen so that the limiting distribution of the test statistic
does not depend on nuisance parameters+ Other choices ofF may be possible
because, as shown in the Appendix, the test statistic asymptotically does not
depend onb1~b 'b!21b1

' , which appears when~6! is expanded+ For example,
we can use a constant multiple of~b 'b!21 in the second term of~6!+ However,
as indicated in the Appendix, F has to be invariant to the normalization ofb+
We use the definition~6! just because it seems simplest among other choices+

Let l1 $ l2 $ {{{ $ ln1
be the ordered eigenvalues ofF21b1Cb1

' , which
are the solution of the determinant equation

6b1Cb1
' 2 lF6 5 0+ (7)

Then, underH0, l1 $ {{{ $ l f . 0 andl f11 5 {{{ 5 ln1
5 0 ~a+s+!+

We construct a sample analogue of~7! using the ML estimator and investi-
gate the limiting distributions of the eigenvalues+ The sample analogue of~7!
is given by
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6 Zb1 ZC Zb1
' 2 Zl ZF6 5 0, (8)

where Zb1 is the firstn1 rows of Zb, ZC 5 [a ' ZS21 [a, and

ZF 5 @ Zb1, Zb4,1~ Zb4' Zb4 !21#F~ Zb ' Zb!21 0

0 S 1

T
NZb4' S11

NZb4D21GF Zb1
'

~ Zb4' Zb4 !21 Zb4,1'
G (9)

5 Zb1~ Zb ' Zb!21 Zb1
' 1 Zb4,1S 1

T
Zb4' S11 Zb4D21

Zb4,1' , (10)

whereS11 5 T21 (t51
T R1t R1t

' , with R1t being the regression residual ofxt21 on
nxt21, + + + ,nxt2m11, and we denote the ordered eigenvalues of~8! as Zl1 $ Zl2 $
{{{ $ Zln1

+ Note that whenn1 . r, the smallestn1 2 r eigenvalues are obvi-
ously equal to 0, that is, Zlr11 5 {{{ 5 Zln1

5 0+ We can easily see from the
expressions~6! and ~9! that F and ZF are positive definite~a+s+!, whereas the
expression~10! is simpler and may be used to constructZF in practice+

To test the rank ofb1, we consider the following test statistic:

LT 5 T 2 (
i5f11

p

Zl i 5 T 2 (
i5f11

n1

Zl i ,

which rejects the null hypothesis whenLT takes large values+ The second equal-
ity is established becausep 5 min~n1, r ! and Zlp11 5 {{{ 5 Zln1

5 0 when
n1 . r+

We can also consider the null hypothesis ofrk~b1! 5 f against the alterna-
tive of rk~b1! 5 f 1 1+ In this case, the test statistic is defined by

MT 5 T 2 Zlf11+

To denote the limiting distribution ofMT , we definelmax, j, k
* as the maximum

eigenvalue of

6X*'X* 2 l*Ij 6 5 0, (11)

whereX*' is a j 3 k matrix with vec~X*'! ; N~0, Ij3k!+ The critical points of
this distribution are given in Table 1 for the case wherej $ k+ They are calcu-
lated by simulations with 1,000,000 replications+ Because the nonzero eigen-
values ofX*X*' are the same as those ofX*'X*, we can refer to the percentage
points oflmax, k, j when j , k+

THEOREM 1+ Let ZC 5 [a ' ZS21 [a and ZF be given by (10). If f, p, under H0,
LT

d
&& x~n12f !~r2f !

2 andMT
d
&& lmax, n12f, r2f
* .
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Table 1. Critical values of thelmin, j, k
* andlmax, j, k

*

j

1 2 3 4 5

k lmin
* lmax

* lmin
* lmax

* lmin
* lmax

* lmin
* lmax

* lmin
* lmax

*

1+54 3 1024 2+70 0+0197 4+61 0+114 6+25 0+294 7+78 0+553 9+23
1 0+00381 3+84 0+103 6+01 0+348 7+82 0+708 9+49 1+14 11+1

0+0156 6+66 0+210 9+26 0+581 11+4 1+06 13+3 1+60 15+1

— — 6+27 3 1025 7+01 0+0100 9+00 0+0644 10+8 0+182 12+5
2 — — 0+00157 8+61 0+0510 10+7 0+197 12+7 0+431 14+5

— — 0+00638 12+2 0+105 14+6 0+325 16+8 0+641 18+8

— — — — 3+97 3 1025 11+3 0+00669 13+3 0+0455 15+2
3 — — — — 9+813 1024 13+1 0+0342 15+3 0+138 17+2

— — — — 0+00396 17+2 0+0704 19+5 0+230 21+7

— — — — — — 2+813 1025 15+4 0+00504 17+5
4 — — — — — — 7+09 3 1024 17+5 0+0254 19+7

— — — — — — 0+00286 22+0 0+0523 24+3

— — — — — — — — 2+16 3 1025 19+6
5 — — — — — — — — 5+47 3 1024 21+9

— — — — — — — — 0+00222 26+6

Note:The upper, middle, and lower entries are 1%, 5%, and 10% critical points for givenj andk+

3
0

4
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Remark 1+ Because the determinant equation~8! converges to~7! in distri-
bution, the estimated ordered eigenvalues of~8! also converge in distribution
to those of~7!+ Then, under the alternative, Zlf11

d
&& lf11 . 0 ~a+s+!, so that

T 2 Zlf11 goes to infinity+ Therefore, the testsLT andMT are consistent+

Remark 2+ Although the test statistics are constructed using the estimator of
b4,1, we do not have to assume that it is of full rank+ We can see that the rank
of b4,1 is at leastn1 2 f underH0, noting that the column space ofb4,1 must
containn1 2 f bases that are orthogonal tosp~b1! because@b1,b4,1# has full
row rankn1+ Becauseb1

' b4,1 is not necessarily equal to zero, it is possible for
sp~b4,1! to contain some of the bases that spansp~b1!, so that the rank ofb4,1
may be greater thann1 2 f+ It is shown in the Appendix that the limiting distri-
butions of the test statistics depend not on the rank ofb4,1 but on the number of
the bases orthogonal tosp~b1!, n1 2 f, unlessf 5 n1+ When f 5 n1, all the
eigenvalues are asymptotically greater than zero~a+s+!, and then the test statis-
tics will diverge+ This case is excluded from the theorem~ f is assumed to be
less thanp 5 min~n1, r !!+ In other words, our tests cannot be applied for the
null hypothesis of full rank+ If we need to check whetherb1 is of full rank or
not, we may test for the null off 5 n1 2 1, and if we rejected the null hypoth-
esis, we would conclude that it is a full row rank matrix+

Remark 3+ Because the hypothesis about the rank ofb1 can be regarded as a
restriction on the cointegrating matrixb, we may consider using the LR test as
proposed by, for example, Johansen~1991, 1995! and Johansen and Juselius
~1990, 1992!+ In fact, when f 5 0 the null hypothesis is equivalent tob1 5 0,
and this hypothesis can be expressed as a linear restriction onb such asb 5
Hf, whereH 5 @0, In2n1

# ' andf is an~n 2 n1! 3 r unknown parameter+ Then,
the LR test is applicable to the test off 5 0+ However, for 0 , f , p, the null
hypothesis is expressed asb1 5 b11b12

' whereb11 andb12 aren1 3 f matrices
with full column rankf+ Then, we have to estimate the model with this restric-
tion+ Although the LR test might be applicable to the nonlinear hypothesis, it
seems tedious to estimate the model with this nonlinear restriction, whereas
our test uses only the ML estimator without the restriction+ It is beyond our
scope to investigate the applicability of the LR test to our case, and we do not
discuss this in detail+

We may represent the null hypothesis as proposed by Boswijk~1996! and
apply the LR test+ According to his paper, the null hypothesis ofrk~b1! 5 f is
expressed asb 5 ~Hof,c! whereHo 5 @0, In2

# ' and~f,c! [ Rn23~r2f ! 3 Rn3f +
As pointed out by Boswijk~1996, p+ 156!, the LR test for this hypothesis has
an asymptoticx2 distribution only when “no linear combination ofc lies in
the column space of”Ho+ Because there is no guarantee of this condition, we
do not consider his method in this paper+

Next, we consider a test of the rank of the submatrix ofb4+ The testing prob-
lem is
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H04 : rk~b4,1! 5 g v+s+ H14 : rk~b4,1! . g+

For the same reason as in the test ofb1, we investigate the rank of
\F21b4,1 \Cb4,1

' , where \F and \C are ~n 2 r ! 3 ~n 2 r ! and n1 3 n1 full rank
matrices~a+s+!+ Similar to ~7!, we consider the following determinant equation:

6b4,1 \Cb4,1
' 2 m \F6 5 0, (12)

where \C 5 *G0G0
' ds and

\F 5 @b4,1,b1~b 'b!21#F~b4
' b4 !21 0

0 ~a 'S21a!21GF b4,1
'

~b 'b!21b1
'G ,

and the sample analogue of~12! is given by

6 Zb4,1 Z \C Zb4,1' 2 [m Z \F6 5 0, (13)

where Z \C 5 T21 NZb4' S11
NZb4 and

Z \F 5 @ Zb4,1, Zb1~ Zb ' Zb!21#F~ Zb4' Zb4 !21 0

0 ~ [a ' ZS21 [a!21GF Zb4,1'

~ Zb ' Zb!21 Zb1
'G + (14)

Let m1 $ {{{ $ mn1
and [m1 $ {{{ $ [mn1

be ordered eigenvalues of~12! and
~13!, respectively, and we construct the following test statistics, with q 5
min~n1, n 2 r !:

L4T 5 T 2 (
i5g11

q

[m i 5 T 2 (
i5g11

n1

[m i , M4T 5 T 2 [mg11+

THEOREM 2+ Let Z \C 5 T21 NZb4' S11
NZb4 and Z \F be given by (14). If g, q,

under H04, L4T
d
&& x~n12g!~n2r2g!

2 andM4T
d
&& lmax, n12g, n2r2g
* .

Note that the consistency of the tests is shown in a similar way as in Remark 1+
We also note that we cannot test the null ofrk~b4,1! 5 q by a similar reason to
that given in Remark 2+

Given the preceding two theorems, we can test the rank ofb1 and b4,1+ In
addition, we may consider the procedure to decide the rank of the submatrix,
as the cointegrating rank is selected sequentially using the test of the cointe-
grating rank+ For example, to decide the rank ofb1, we first test the null of
f 5 0+ If the null hypothesis is accepted, the rank ofb1 is decided to be zero+
Otherwise, we then test the hypothesis off 5 1+ We sequentially continue
to test the rank ofb1 until the null hypothesis is accepted+ When the null of
f 5 p 2 1 is rejected, we consider thatb1 has full rank+ Similarly, the rank of
b4,1 can be decided by the same procedure+
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2.2. The Model with d Þ 0

In the previous section, we considered the model withd 5 0 for nontrending
data+ However, in practice, we sometimes consider the model~2! with d Þ 0
but with the level of data having no linear trend+ In this case, the constant term
can be expressed asd 5 ar0 wherer0 is anr 3 1 coefficient vector, so that the
model~2! becomes

nxt 5 ab1'xt21
1 1 (

j51

m21

Gj nxt2j 1 «t , (15)

where b1 5 @b ',r0# ' and xt21
1 5 @xt21

' ,1# ' + The ML estimator ofb1 can
be obtained by the reduced rank regression ofnxt on xt21

1 corrected for
nxt21, + + + ,nxt2m11, and the estimator of the cointegrating matrix is the firstn
rows of Zb1+

To test the rank of the submatrix ofb for the model~15!, we use ZF de-
fined by

ZF 5 Zb1~ Zb ' Zb!21 Zb1
' 1 Zb4,1~ Zb4' Zb4 !21L'~YT

' S11
1 YT !21L~ Zb4' Zb4 !21 Zb4,1' , (16)

whereL andYT are~n 2 r 1 1! 3 ~n 2 r ! and~n 1 1! 3 ~n 2 r 1 1! matrices
defined by

L 5 FIn2r

0 G, YT 5 FT2102 NZb4 0

0 1G ,
and S11

1 5 T21 (t51
T R1t

1 R1t
1' , with R1t

1 being the regression residual ofxt21
1 on

nxt21, + + + ,nxt2m11+

THEOREM 3+ Consider the model (15) and letZC 5 [a ' ZS21 [a and ZF be given
by (16). If f , p, under H0, LT

d
&& x~n12f !~r2f !

2 andMT
d
&& lmax, n12f, r2f
* .

THEOREM 4+ Consider the model (15) and letZ \C 5 $L'~YT
' S11

1 YT !21L%21

and Z \F be given by (14). If g, q, under H04, L4T
d
&& x~n12g!~n2r2g!

2 and
M4T

d
&& lmax, n12g, n2r2g
* .

In practical analysis, we will obtain Zb by the reduced rank regression, and
we have to calculateZb4 from Zb+ If d 5 0, Zb4 can be easily obtained as ex-
plained in Johansen~1995, p+ 95!+ Whend 5 ar0, one of the methods to cal-
culate Zb4 is as follows+ First we calculate the orthogonal projection matrix of
Zb, M 5 In 2 Zb~ Zb ' Zb!21 Zb ' + Then, by the singular value decomposition, M is

expressed asMl Ml Mr
' whereMl andMr aren 3 ~n 2 r ! orthogonal matrices

and Ml is an ~n 2 r ! 3 ~n 2 r ! diagonal matrix with positive diagonal ele-
ments+ Becausesp~M ! 5 sp~Ml ! and they are orthogonal toZb, we can useMl

as Zb4+
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3. THE TEST OF THE RANK OF THE SUBMATRIX
FOR TRENDING DATA

When data are trending, xt can be expressed as the sum of the stochastic trend,
the deterministic trend, and theI ~0! component such that

xt 5 C (
i51

t

«i 1 tt 1 C1~L!~«t 1 d! 1 x0
*, (17)

where C 5 b4~a4
' Gb4 !21a4

' as defined in Section 2+1, t 5 Cd, C1~L! 5
~C~L! 2 C~1!!0~1 2 L! with C~L! being a lag polynomial whennxt is repre-
sented as the vector moving-average process likenxt 5 C~L!~d 1 «t !, andx0

*

is a stochastic component such thatb 'x0
* 5 0+ See Johansen~1991, 1995! for

more details+ In this case, b4 is decomposed tot, the coefficient of a linear
trend in ~17!, and g, an n 3 ~n 2 r 2 1! matrix that is orthogonal tot+ We
partition g andt into @g1

' ,g2
' # ' and @t1

' ,t2
' # ' in the same way asb+ As shown

in Chapter 13+2 of Johansen~1995!, Db can be expressed as

Db 5 b 1 g~g 'g!21U1T 1
1

T 102 t~t 't!21U2T , (18)

where

TFU1T

U2T
G d

&& SEGG' dsD21EG dV' 5 FU1

U2
G , say,

where G~r ! 5 @G1
' ~r !,G2

' ~r !# ' with G1~r ! 5 uG0~r ! 2 * uG0ds, uG0~r ! 5
Tg 'CW~r ! and G2~r ! 5 r 2 1

2
_ + We denoteV 5 *GG' ds and partition it into

2 3 2 blocks conformably with@U1
' ,U2

'# ' + We express the~i, j ! block element
of ~*GG' ds!21 asV ij for i, j 5 1 and 2+ In this section, we need the estimator
of V11, which is given by

ZV11 5 T [g 'S11
21 [g,

andS11 is defined in the same way as in the previous section, with R1t being
the regression residual ofxt21 on a constant andnxt21, + + + ,nxt2m11+ Conver-
gence of ZV11 to V11 is proved in Lemma 2~iii ! in the Appendix, whereas the
consistency of other ML estimators, such as Ja, ZS, and ZGi , is shown by Johansen
~1991, 1995!+

In the following discussion, we will show that the limiting distribution of Db1

depends on whether the rank of@b1,g1# is n1 21 or n1, or equivalently, whether
t2 5 0 or not+We will propose two testing procedures to cope with this problem+

Let us consider the testing problem~5!+ Under the null hypothesis, we can
find the f linearly independent column vectors inb1, and we defineb1

* as an
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n1 3 f matrix whose columns consist of thosef vectors+We also define ann1 3
~n1 2 f ! matrix d * as an orthogonal complement tob1

*, so thatd *'b1
* 5 0+ We

show that the direction ofd * is important in deciding the convergence rate of
Db1 and it also affects the limiting property of the test statistic+

Let us consider the case wherer , n 2 1+ Because Db1 is the firstn1 rows of
Db, it is expressed from~18! as

Db1 5 b1 1 g1~g
'g!21U1T 1

1

T 102 t1~t
't!21U2T +

Suppose that ann1 3 1 vectort1
* exists that is orthogonal tog1 ~t1

*'g1 5 0! and
belongs to the column space ofd *+ Here, note that, because then 3 n matrix
@b,g,t# is of full rank, the first n1 rows of this matrix, @b1,g1,t1# , must be of
full row rank, which implies thata' @b1,g1,t1# Þ 0 for any nonzero vectora+
Then, becauset1

* is orthogonal to bothb1 andg1 by the assumption, we have
t1
*' @b1,g1,t1# 5 @0,0,t1

*'t1# Þ 0, so thatt1
*'t1 Þ 0+ This implies

T 302t1
*' Db1 5 t1

*'t1~t
't!21~TU2T ! d

&& t1
*'t1~t

't!21U2 5 X2
' , say, (19)

whereas for ann1 3 ~n 2 r 2 1! matrix d0
* whose columns span the orthogonal

complement tot1
* in sp~d *!,

Td0
*' Db1 5 d0

*'g1~g
'g!21~TU1T ! 1 Op~T2102! d

&& d0
*'g1~g

'g!21U1 5 X1
' , say+

(20)

On the other hand, if there exists no vector insp~d *! that is orthogonal to
g1, we have

Td *' Db1 5 d *'g1~g
'g!21~TU1T ! 1 Op~T2102! d

&& d *'g1~g
'g!21U1 5 X ', say+

(21)

Therefore, the convergence rate ofDb1 depends on whether a vectort1
* orthog-

onal tog1 exists insp~d *!+
The existence oft1

* indicates that the column space of@b1,g1# does not
include t1

* becauset1
*'b1 5 0 and t1

*'g1 5 0+ We also note that the rank
of @b1,g1# must ben1 2 1 or n1 because@b1,g1,t1# has full rankn1+ Then,
from another point of view, we can say that the rank of@b1,g1# is n1 2 1
if a vector t1

* exists, whereas the nonexistence oft1
* is equivalent to

rk~ @b1,g1# ! 5 n1+ Thus, we have to consider the asymptotic property sepa-
rately according to the two cases where the rank of@b1,g1# is n1 and n1 2 1
when r , n 2 1+
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For further investigation, let us consider the case where the rank of@b1,g1#
equalsn1 2 1+ In this case, this matrix is expressed as@Q11,0# by some nonsin-
gular transformation from the right-hand side, whereQ11 is an n1 3 ~n1 2 1!
matrix with rankn1 21+ Then, using the same nonsingular transformation, @b,g#
becomes

FQ11 0

Q21 Q22
G , say+ (22)

Let st1
* be the orthogonal complement to the column space ofQ11+ Then,

becausest1
*'Q1 5 0 and using the expression~22!, we can see that then31 vec-

tor @ st1
*' ,0# ' is orthogonal to@b,g# + Therefore, in this case, the trend parameter

t, which is orthogonal tob andg, is a constant multiple of@ st1
*' ,0# ' + In other

words, whenrk@b1,g1# 5 n1 2 1, t2 must be equal to zero+ Note that, because
st1
* is orthogonal tosp~b1! andsp~g1!, it is essentially the same ast1

*+
On the other hand, when t2 5 0, t is expressed as@t1

' ,0# ' and then
t1
' @b1,g1# equals zero becauset ' @b,g# 5 0+ This implies that then1 3 ~n 2 1!

matrix @ b1,g1# does not have full row rank+ Then, we have the following
proposition+

PROPOSITION 1+ The rank of@b1,g1# is n1 2 1 if and only if t2 5 0.

Whenr 5 n 2 1, there is nog, and in this case, rk~b1! must ben1 2 1 or n1+
Then, under the null hypothesis ofrk~b1! 5 n1 2 1, d * becomes ann1 3 1
vector, and we have

T 302d *' Db1 5 d *'t1~t
't!21~TU2T ! d

&& X3
' , say+ (23)

In this case, the test statistics should be multiplied byT, that is, TLT andTMT

are the appropriate test statistics+
In the following theorem, the test statistics are constructed from the eigen-

values of~8! using the sameZC as in the previous section and either

ZF 5 @ Zb1, [g1~ [g ' [g!21#F~ Zb ' Zb!21 0

0 ZV11GF Zb1
'

~ [g ' [g!21 [g1
'G (24)

or

ZF 5 @ Zb1, [g1~ [g ' [g!21, [t1~ [t ' [t!21# 3
~ Zb ' Zb!21 0 0

0 ZV11 0

0 0 12
4 3

Zb1
'

~ [g ' [g!21 [g1
'

~ [t ' [t!21 [t1
'
4 + (25)

THEOREM 5+ When r, n 2 1,

(i.a) Let ZC 5 [a ' ZS21 [a and ZF be given by (24). If rk~ @b1,g1# ! 5 n1 and
f , p, under H0, LT

d
&& x~n12f !~r2f !

2 andMT
d
&& lmax, n12f, r2f
* .
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(i.b) Let ZC 5 [a ' ZS21 [a and ZF be given by (25). If rk~ @b1,g1# ! 5 n1 and
f , p, under H0, LT andMT converge in distribution to random vari-
ables that are bounded above byx~n12f !~r2f !

2 and lmax, n12f, r2f
* ,

respectively.
(ii) Let ZC 5 [a ' ZS21 [a and ZF be given by (25). If rk~ @b1,g1# ! 5 n1 2 1 and

f , p, under H0, LT
d
&& x~n12f21!~r2f !

2 andMT
d
&& lmax, n12f21, r2f
* .

When r5 n 2 1,

(iii) Let ZC 5 [a ' ZS21 [a and ZF be given by (25). Under the null hypothesis of
f 5 n1 2 1,

TLT 5 TMT 5 T 3 Zln1

d
&& xn2n1

2 +

Remark 4+ In the case of~i+b!, LT converges in distribution tox~n12f !~r2f !
2 if

and only if d *'t1 5 0, which is equivalent to the case wheret1 [ sp~b1
*! 5

sp~b1!+ See the proof in the Appendix+ In general, the test using~25! is conser-
vative if rk~ @b1,g1# ! 5 n1+

From Theorem 5, if we know the rank of@b1,g1# when r , n 2 1, we can
construct the test statisticLT that converges to ax2 distribution by appropri-
ately using~24! or ~25!+ However, such information is not available in prac-
tice+ Notice that if rk@ b1,g1# 5 n1 2 1, ZF given by ~24! may violate the
condition that it is a full rank matrix, and in that case, the test statistic
converges not to the samex2 distribution as given by Theorem 5~ii ! but
to a random variable that depends on a nuisance parameter+ Then, the test
using ~24! is not desirable in practice+ On the other hand, if we use ZF
given by ~25!, we can test the hypothesis by referring to ax2 distribution
irrespective of the rank of@b1,g1# , although the test may be conservative and
the degrees of freedom may change depending on the rank of@b1,g1# + Then,
noting that the critical value ofx~n12f !~r2f !

2 in Theorem 5~i! is greater than
that of x~n12f21!~r2f !

2 in ~ii !, we propose to test the null ofrk~b1! 5 f as
follows+

1+ We construct the test statisticLT using~25!+
2+ If LT is greater than the critical value ofx~n12f !~r2f !

2 , we reject the null
hypothesis+

3+ If LT is less than the critical value ofx~n12f21!~r2f !
2 , we accept the null

hypothesis+

The test statisticMT is used in the same manner+ In this procedure, we may
encounter the case where the test statistic is greater than the critical value
of x~n12f21!~r2f !

2 but less than that ofx~n12f !~r2f !
2 , that is, the case where

c~n12f21!~r2f ! # LT # c~n12f !~r2f ! , where c~n12f21!~r2f ! and c~n12f21!~r2f ! are
corresponding critical values+ To cope with such a case, the following corol-
lary is useful+
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COROLLARY 1+ Let ZC 5 [a ' ZS21 [a and ZF be given by (25). Suppose that
r , n 2 1 and the rank ofb1 is f ~, p!.

(i) If rk ~ @b1,g1# ! 5 n1, T 2 Zlp converges in distribution to a random vari-
able that is bounded above bylmin, r2f, n12f

* , which is the smallest non-
zero eigenvalue of (11) with j5 r 2 f and k5 n1 2 f.

(ii) If rk ~ @b1,g1# ! 5 n1 2 1, T 2 Zlp converges in probability to zero.

The percentage points oflmin, r2f, n12f
* are tabulated in Table 1+

Using the preceding corollary, we can cope with the situation where
c~n12f21!~r2f ! # LT # c~n12f !~r2f ! + If T 2 Zlp is less than some percentage~10, 5,
or 1%! point of lmin, r2f, n12f

* , we reject the hypothesis ofrk~ @b1,g1# ! 5 n1+ In
that case, c~n12f21!~r2f ! is an appropriate critical value forLT , so that the null
of rk~b1! 5 f is rejected+ On the other hand, if T 2 Zlp is greater than the criti-
cal point of lmin, r2f, n12f

* , we accept the hypothesis ofrk~ @b1,g1# ! 5 n1, so
that the rank ofb1 is decided to bef+ We call this testing procedure TEST1+

The other strategy is to use the result of Proposition 1+ From Johansen~1995!,
T 102~ [t 2 t! converges in distribution to a normal random vector with mean
zero and the variance matrix given byCSC ' + Although the Wald-type test may
not be applicable to the test oft2 5 0 because the variance matrix might be
degenerate, we can test whether each element oft2 is zero or not by thet-test
statistic+ We call the following testing procedure TEST2+

1+ We test each element oft2+
2+ If some of the elements oft2 are significant, we use Theorem 5~i+a!+
3+ If none of the elements oft2 are significant, we use Theorem 5~ii !+

Next, we investigate a test of the rank ofb4,1+ When data are trending, b4,1
can be decomposed into@g1,t1# whereg1 andt1 are the firstn1 rows of g and
t, respectively+ Then, testing the rank ofb4,1 is equivalent to testing the rank of
@g1,t1# , and therefore we construct a test statistic from@ [g1, [t1# + Note that Zb4,1
is the firstn1 rows of Zb4 and is not necessarily numerically equal to@ [g1, [t1# ,
although they span the same column space+

Let us consider the same determinant equation as~13! with Zb4,1 replaced by
@ [g1, [t1# and

Z \C21 5 F ZV11 0

0 12G , (26)

Z \F 5 @ [g1, [t1, Zb1~ Zb ' Zb!21# 3
~ [g ' [g!21 0 0

0 ~ [t ' [t!22 0

0 0 ~ [a ' ZS21 [a!21
4 3

[g1
'

[t1
'

~ Zb ' Zb!21 Zb1
'
4 +

(27)
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We construct the test statisticsL4T andM4T in the same way as in the previ-
ous section+ Similar to Theorem 5, we have to distinguish two cases where
r , n 2 1 andr 5 n 2 1+ When r 5 n 2 1, the rank ofb4,1 ~5 t1! must be 0
or 1, and in this case, we consider the null hypothesis ofg 5 0+

THEOREM 6+ Let Z \C and Z \F be given by (26) and (27). When r, n 2 1
and g , q, under H04, L4T and M4,T converge in distribution to random
variables that are bounded above byx~n12g!~n2g2r !

2 and lmax, n12g, n2g2r
* ,

respectively.
When r5 n 2 1, under the null hypothesis of g5 0,

TL4T 5 TM4T 5 T 3 [m1
d
&& xn1

2 +

4. SIMULATION RESULTS

In this section, we investigate the finite sample properties of the tests proposed
in the previous sections+We consider the following four-dimensional EC model
as a data generating process~DGP!:

nxt 5 d 1 ab 'xt21 1 «t ,

where$«t % ; i+i+d+N~0, I4!+ Let

a1 5 3
0+3

20+3

20+8

0+8
4 , a2 5 3

20+5

0

20+3

20+5
4 , a3 5 3

0+8

1

20+5

20+5
4 , a4 5 3

20+5

20+8

0

20+5
4 ,

b1 5 3
0

0

1

20+5
4 , b2 5 3

1

21

0

0
4 , b3 5 3

0

0

0+5

1
4 , b4 5 3

1

1

0

0
4 ,

d1 5 3
20+5

1

0+5

21
4 , d2 5 3

0+6

0+3

20+4

0+4
4 ,

and we consider the following settings of parameters+
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Parameter Sets for the Test ofrk~b1! Parameter Sets for the Test ofrk~b4,1!

a b b4 a b b4

DGP1 a1 b1 @b2,b3,b4# DGP1o a2 b2 @b3,b4,b1#
DGP2 @a1,a2# @b1,b2# @b3,b4# DGP2o @a1,a2# @b1,b2# @b3,b4#
DGP3 @a1,a2,a3# @b1,b2,b3# b4 DGP3o @a1,a2,a4# @b1,b2,b4# b3

Here DGP1~1o!, 2~2o!, and 3~3o! correspond to the cases where the cointe-
grating rank is 1, 2, and 3, respectively+ We set the~2,1! element ofb as c1,
which takes values of 0, 0+005, 0+01, 0+025, 0+05, 0+075, and 0+1, and we con-
sider the test of the rank of the first two rows ofb+ The case ofc1 5 0 corre-
sponds to the null hypothesis under which the rank ofb1 is 0, 1, and 1 for
DGP1, 2, and 3, whereas it is 1, 2, and 2 whenc1 Þ 0, which corresponds to
the alternative+ For the case of nontrending data, we setd 5 0 for the zero-
mean process, whereasd is defined asar0 for the case ofd Þ 0, wherer0 is
set to be 1, @1,1# ' , and @1,1,1# ' for DGP1~1o!, 2~2o!, and 3~3o!, respectively+
On the other hand, for the case of trending data, d is set to bed1 andd2; the
former corresponds to the case where@b1,g1# is of full rank ~t2 Þ 0!, whereas
the rank of@b1,g1# is n1 2 1 ~t2 5 0! whend 5 d2+

Similarly, we set the~2,1! element ofb4 as c2 and consider the test of the
rank of the first two rows ofb4+ In this case, c2 5 0 implies that the rank of
b4,1 is 1, 1, and 0 for DGPo1, o2, and o3, respectively, whereas it is 2, 2, and 1
under the alternative ofc2 Þ 0+

We setx0 5 0 and discard the first 100 observations in all experiments+ The
number of replication is 5,000, and the level of significance is set equal to
0+05+ We only report the results of the test statisticsLT andL4T because the
performances ofMT andM4T are almost the same as those ofLT andL4T +

Table 2 shows the simulation results of the test ofrk~b1!+ When the cointe-
grating rank is 1, the empirical size is greater than the nominal size, 0+05, for
T 5 100 when data are nontrending~d 5 0 or d 5 ar0!, whereas it becomes
closer to 0+05 for T 5 200+ When data are trending, t becomes@2 1

4
_ , 34_ ,2

1
6
_ ,2 1

3
_#

for d 5 d1, whereas it is@ 9
20
_, 9

20
_,0,0# for d 5 d2+ Similar to the case of nontrend-

ing data, the testing procedure TEST2 tends to overly reject the null ofc1 5 0
for T 5 100, whereas the testing procedure TEST1 seems to be slightly conser-
vative+ Under the alternative ofc1 Þ 0, the power increases rapidly aroundc1 5
0+025 for nontrending data and for trending data with TEST2, whereas the test-
ing procedure TEST1 seems to be less powerful+ This is because TEST1 is a
conservative test+ When data are trending, both TEST1 and TEST2 are more
powerful for the model withrk~ @b1,g1# ! 5 n1 ~d 5 d1! than the model with
rk~ @b1,g1# ! 5 n1 2 1 ~d 5 d2!+

When the cointegrating rank is 2, the relative performance is preserved for
the cases ofd 5 0 and d 5 ar0+ For trending data, t becomes@ 61

84
_, 61

84
_, 43

126
_,

43
63
_# and @ 9

20
_, 9

20
_,0,0# for d 5 d1 andd2, respectively+ Note thatT 2 Zlp is numer-

ically equal toLT because the determinant equation~11! with j 5 k 5 1 has
only one eigenvalue+ Then, we can see thatLT and T 2 Zlp converge in distri-
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Table 2. Rejection frequencies of the tests ofrk~b1!

r 5 1 c1 d 5 0 d 5 ar0 TEST1~d1! TEST2~d1! TEST1~d2! TEST2~d2!

T 5 100 0+000 0+099 0+118 0+046 0+121 0+040 0+100
0+005 0+119 0+122 0+047 0+137 0+039 0+104
0+010 0+179 0+138 0+053 0+171 0+041 0+112
0+025 0+423 0+222 0+072 0+424 0+065 0+170
0+050 0+732 0+474 0+222 0+804 0+179 0+359
0+075 0+886 0+699 0+575 0+952 0+381 0+624
0+100 0+960 0+849 0+886 0+989 0+653 0+862

T 5 200 0+000 0+074 0+076 0+028 0+084 0+028 0+080
0+005 0+141 0+097 0+030 0+143 0+031 0+089
0+010 0+297 0+156 0+040 0+302 0+041 0+122
0+025 0+703 0+457 0+169 0+814 0+137 0+329
0+050 0+950 0+845 0+883 0+992 0+615 0+847
0+075 0+992 0+971 0+998 1+000 0+966 0+998
0+100 0+999 0+995 1+000 1+000 0+999 1+000

r 5 2 c1 d 5 0 d 5 ar0 TEST1~d1! TEST2~d1! TEST1~d2! TEST2~d2!

T 5 100 0+000 0+088 0+097 0+023 0+095 0+001 0+009
0+005 0+105 0+100 0+026 0+102 0+000 0+011
0+010 0+150 0+109 0+030 0+123 0+001 0+014
0+025 0+338 0+176 0+065 0+251 0+001 0+033
0+050 0+618 0+353 0+230 0+538 0+005 0+069
0+075 0+800 0+559 0+533 0+755 0+042 0+101
0+100 0+899 0+721 0+781 0+873 0+220 0+124

T 5 200 0+000 0+069 0+070 0+012 0+077 0+000 0+007
0+005 0+115 0+081 0+018 0+095 0+000 0+012
0+010 0+227 0+115 0+034 0+161 0+000 0+028
0+025 0+593 0+348 0+203 0+541 0+000 0+071
0+050 0+889 0+728 0+799 0+913 0+084 0+095
0+075 0+976 0+914 0+975 0+989 0+809 0+115
0+100 0+995 0+972 0+998 0+999 0+990 0+145

r 5 3 c1 d 5 0 d 5 ar0 d 5 d1 — d 5 d2 —

T 5 100 0+000 0+090 0+094 0+101 — 0+055 —
0+005 0+680 0+249 0+961 — 0+179 —
0+010 0+902 0+551 0+998 — 0+399 —
0+025 0+995 0+938 1+000 — 0+708 —
0+050 1+000 0+996 1+000 — 0+850 —
0+075 1+000 1+000 1+000 — 0+904 —
0+100 1+000 1+000 1+000 — 0+927 —

T 5 200 0+000 0+064 0+068 0+076 — 0+045 —
0+005 0+879 0+555 1+000 — 0+474 —
0+010 0+983 0+901 1+000 — 0+728 —
0+025 1+000 0+999 1+000 — 0+893 —
0+050 1+000 1+000 1+000 — 0+944 —
0+075 1+000 1+000 1+000 — 0+960 —
0+100 1+000 1+000 1+000 — 0+969 —
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bution to x1
2 under H0 when rk~ @b1,g1# ! 5 n1 5 2, whereas they converge

in probability to zero whenrk~ @ b1,g1# ! 5 n1 2 1 5 1+ Then, the testing
procedure TEST1 accepts the null hypothesis when it is less than the critical
point of x1

2+ On the other hand, the asymptotic size of TEST1 becomes 0
when rk~ @b1,g1# ! 5 n1 2 1 ~d 5 d2! becauseLT converges in probability to
zero whenrk~ @b1,g1# ! 5 n1 2 1+ Reflecting this fact, TEST1 is too conserva-
tive for d 5 d2, and it is not powerful when the alternative is close to the null+
TEST2 also seems to have no power when the rank of@b1,g1# 5 n1 2 1 5 1
~d 5 d2!+ This is becauset2 is very close to zero1 even under the alternative
of c1 Þ 0, so that the pretest oft2 cannot reject the null oft2 5 0+ Whent2 is
judged to be zero, the rank of@b1,g1# is at mostn1 2 1 5 1+ Then, because
we are testing the null hypothesis ofrk~b1! 5 f 5 1, we automatically accept
the hypothesis whent2 5 0 is accepted in this case+

When the cointegrating rank is 3, we can see that the first two variables ofxt

are cointegrated, whereas the last two variables are stationary+ Note that we
cannot generate the process such that the rank ofb1 is 1 while all the variables
are nonstationary+ Because we want to investigate the property of the test under
the null hypothesis, we allowed several variables to be stationary+

In this case, the power property seems to be improved for all the cases com-
pared with the cases wherer 5 1 and 2+ For trending data, t becomes
@ 1,215

424
_, 1,215

424
_,0,0# for d 5 d1, whereas it is@ 9

20
_, 9

20
_,0,0# for d 5 d2+ Note that in

this case the last two rows of the impact matrixC become zero because the
corresponding variables are stationary, so thatt2, the last two rows ofCd,
become zero irrespective of the value ofd+We also note that the result of Theo-
rem 5~iii ! is applied becauser 5 n 2 1 5 3+ That is, we do not have to use the
conservative test or the pretest as in the cases wherer , n 2 1+ This is the
reason why both the size and power properties are improved for trending data
compared with the cases wherer , 3+

Table 3 reports the results of the test ofrk~b4,1!+ From the table, the test
tends to overly reject the null hypothesis for several cases whenT5100, whereas
the size becomes reasonable whenT 5 200, except for the case wherer 5 3
andd 5 d1+ In that case, the test becomes conservative as investigated in Theo-
rem 6+ As to the power, we can see that the more complicated the deterministic
term becomes, the less powerful is the test+

5. CONCLUSION

In this paper, we proposed tests of the rank of the submatrix of cointegration+
We can test the hypothesis straightforwardly when data are nontrending, whereas
for trending data, we have to examine whether@b1,g1# is of full rank or not or
we have to use the conservative test+ The simulation results show that we have
to carefully use the test ofrk~b1! when data are trending andf 5 n1 21, because
the test might become too conservative to reject the null hypothesis+
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Table 3. Rejection frequencies of the tests ofrk~b4,1!

r 5 1 c2 d 5 0 d 5 ar0 d 5 d1 d 5 d2

T 5 100 0+000 0+106 0+128 0+106 0+051
0+005 0+121 0+135 0+107 0+050
0+010 0+165 0+140 0+114 0+054
0+025 0+374 0+200 0+141 0+081
0+050 0+658 0+389 0+253 0+180
0+075 0+826 0+599 0+417 0+338
0+100 0+909 0+750 0+591 0+522

T 5 200 0+000 0+072 0+082 0+065 0+031
0+005 0+114 0+089 0+070 0+035
0+010 0+230 0+126 0+084 0+047
0+025 0+600 0+351 0+205 0+136
0+050 0+903 0+752 0+579 0+520
0+075 0+982 0+923 0+846 0+846
0+100 0+996 0+978 0+954 0+960

r 5 2 c2 d 5 0 d 5 ar0 d 5 d1 d 5 d2

T 5 100 0+000 0+083 0+091 0+051 0+056
0+005 0+098 0+097 0+052 0+056
0+010 0+148 0+109 0+057 0+060
0+025 0+369 0+176 0+087 0+106
0+050 0+676 0+397 0+194 0+268
0+075 0+845 0+624 0+367 0+478
0+100 0+927 0+777 0+572 0+672

T 5 200 0+000 0+062 0+065 0+036 0+046
0+005 0+107 0+079 0+040 0+056
0+010 0+237 0+119 0+053 0+082
0+025 0+627 0+377 0+164 0+288
0+050 0+916 0+772 0+564 0+734
0+075 0+987 0+940 0+854 0+938
0+100 0+998 0+985 0+959 0+986

r 5 3 c2 d 5 0 d 5 ar0 d 5 d1 d 5 d2

T 5 100 0+000 0+074 0+094 0+024 0+072
0+005 0+125 0+102 0+026 0+096
0+010 0+258 0+119 0+031 0+171
0+025 0+636 0+234 0+074 0+606
0+050 0+883 0+539 0+219 0+915
0+075 0+962 0+760 0+340 0+972
0+100 0+985 0+885 0+417 0+982

T 5 200 0+000 0+063 0+064 0+018 0+065
0+005 0+187 0+085 0+027 0+255
0+010 0+440 0+146 0+049 0+701
0+025 0+839 0+497 0+226 0+995
0+050 0+979 0+879 0+447 1+000
0+075 0+998 0+976 0+539 1+000
0+100 1+000 0+996 0+579 1+000
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NOTE

1+ For example, even whenc1 5 0+1, the third and fourth elements oft are2 84
2,150
_ and 3

430
_+
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APPENDIX

We use the notationH alternately for different definitions if there is no confusion+

Proof of Theorem 1. First, note that we can replaceZb1 and Zb by Db1 and Db in
~8!, where Db1 is the first n1 rows of Db, because Zb [a ' 5 Db Ja ' and Zb1~ Zb ' Zb!21 Zb1

' 5
Db1~ Db ' Db!21 Db1

' + The latter relation is established becauseDb is obtained by the nonsingular
transformation of the columns ofZb and Zb1~ Zb ' Zb!21 Zb1

' does not depend on the normal-
ization of Zb and Zb1+ We also define

Db4 5 b42 b~ Db 'b!21 Db 'b4, (A.1)

whose columns span the orthogonal complement tosp~ Db!, so that Db4 and Zb4 span the
same column space+ This implies that Db4 can be obtained by the nonsingular transfor-
mation of the columns ofZb4+ Then, we can also replaceZb4 by Db4 in ZF+

Under the null hypothesis, rk~b1! is f, and then ann1 3 f matrix b1
* exists with rank

f such thatsp~b1! 5 sp~b1
*!+ We denote the orthogonal complement tob1

* by d *+ That
is, d * is ann1 3 ~n1 2 f ! matrix with rank~n1 2 f ! such thatd *'b1

* 5 0+

LEMMA 1 +

(i) Db p
&& b, Ja p

&& a, ES p
&& S.

(ii) Td *' Db1 5 Td *'~ Db1 2 b1! d
&& d *'b4,1~b4

' b4 !21~*G0G0
' ds!21*G0 dV ' 5 X0

' ,
say+

(iii) T ~ Db4 2 b4! d
&& 2b~b 'b!21*dV G0

' ~*G0G0
' ds!21.

(iv) T21 NDb4' S11
NDb4

d
&& *G0G0

' ds.

Proof.

~i! Proved by Johansen~1988, 1995!+
~ii ! As shown in Chapter 13+2 of Johansen~1995!, Db can be expressed asDb 5 b 1

b4~b4
' b4 !21UT for nontrending data, where TUT converges in distribution to

~*G0G0
' ds!21*G0 dV ' + Because Db1 is the first n1 rows of Db, we have Db1 5

b1 1 b4,1~b4
' b4 !21UT , so that

Td *' Db1 5 Td *'~ Db1 2 b1! d
&& d *'b4,1~b4

' b4 !21SEG0G0
' dsD21EG0 dV '+

~iii ! holds becauseT~ Db4 2 b4! 5 2b~ Db 'b!21~ Db 2 b!'b4T 5 2b~ Db 'b!21~TUT!'

from ~A+1!+
~iv! is proved by noting thatT21 Nb4' S11 Nb4

d
&& *G0G0

' ds from Johansen~1988,
1995!, ~ NDb4 2 Nb4! 5 Op~T21!, andS11 5 Op~T !+ n

Now, let us consider the determinant equation~8!+ Note that~8! is equivalent to

6H ' 6 6 Db1 EC Db1
' 2 Zl EF6 6H 6 5 0, (A.2)
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whereH 5 @b1
*,Td * # is ann 3 n nonsingular matrix+ Using Lemma 1, we have

H ' Db1 EC Db1
'H 5 F b1

*' Db1 EC Db1
' b1
* b1

*' Db1 EC~ Db1
' d *T !

~Td *' Db1! EC Db1
' b1
* ~Td *' Db1! EC~ Db1

' d *T !G
d
&& Fb1

*'b1Cb1
' b1
* b1

*'b1CX0

X0
'Cb1

' b1
* X0

'CX0
G + (A.3)

To investigate the asymptotic behavior ofH ' EFH, we consider EF with the same expres-
sion as~9!+ Note that

H ' @ Db1, Db4,1~ Db4' Db4 !21# 5 FOp~1! Op~1!

Op~1! Td *'b4,1~b4
' b4 !21 1 op~T !G

becauseb1
*' Db1

p
&& b1

*'b1, b1
*' Db4,1

p
&& b1

*'b4,1, Td *' Db1 5 Op~1!, and Td *' Db4,1 5
Td *'b4,1 1 op~T ! by Lemma 1+ Then, ZlH ' EFH is asymptotically equivalent to

T 2 Zl3
0 0

0 d *'b4,1~b4
' b4 !21SEG0G0

' dsD21

~b4
' b4 !21b4,1

' d *4 +
Then, the equation~A+2! is asymptotically equal to

*Fb1
*'b1Cb1

' b1
* b1

*'b1CX0

X0
'Cb1

' b1
* X0

'CX0
G

2 T 2 Zl3
0 0

0 d *'b4,1~b4
' b4 !21SEG0G0

' dsD21

~b4
' b4 !21b4,1

' d *4 *
5 6b1

*'b1Cb1
' b1
* 63 *X0

' $C 2 Cb1
' b1
*~b1

*'b1Cb1
' b1
*!21b1

*'b1C%X0

2 T 2 Zld *'b4,1~b4
' b4 !21SEG0G0

' dsD21

~b4
' b4 !21b4,1

' d **5 0+

(A.4)

Therefore, the eigenvaluesZlf11, + + + , Zlp converge in probability to zeros and are of order
T22+

Here, notice that, in the same way as Johansen~1988, p+ 246!, we can find anr 3
~r 2 f ! matrix J with rank ~r 2 f ! such that

JJ' 5 C 2 Cb1
' b1
*~b1

*'b1Cb1
' b1
*!21b1

*'b1C, (A.5)
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with J '~b1
' b1
*! 5 0 andJ 'C21J 5 Ir2f , implying that J '~a 'S21a!21J 5 Ir2f because

C 5 a 'S21a+ Then, because6b1
*'b1Cb1

' b1
* 6 Þ 0, ~A+4! becomes

*X0
' JJ'X0 2 T 2 Zld *'b4,1~b4

' b4 !21SEG0G0
' dsD21

~b4
' b4 !21b4,1

' d ** 5 0+ (A.6)

The variance matrix ofX0
' J conditioned onG0~{! is given by

d *'b4,1~b4
' b4 !21SEG0G0

' dsD21

~b4
' b4 !21b4,1

' d * J Ir2f + (A.7)

Noting thatsp~b4,1! must containd * because@b1,b4,1# is of full row rankn1 andsp~b1!
does not containd *, we can see thatd *'b4,1 has full row rankn1 2 f irrespective of the
rank ofb4,1, which is greater thann1 2 f as explained in Remark 2+ As a result, we can
see that the conditional variance matrix ofX0

' J is nonsingular~a+s+!+ Then, by multiply-
ing the square root of the left-hand side of~A+7! from both sides of~A+6!, the determi-
nant equation becomes~11! with j 5 n1 2 f andk 5 r 2 f, and thenT 2 Zl converges in
distribution to the solution of~11!+ This proves Theorem 1+ n

Proof of Theorem 2. The outline of the proof is the same as the proof of Theorem 1,
and thus we omit details+

Under the null hypothesis, ann1 3 g matrix b4,1
* exists such thatsp~b4,1

* ! 5 sp~b4,1!
and rk~b4,1

* ! 5 g, and we denote the orthogonal complement tob4,1
* by h*+ Consider

the following determinant equation:

6H ' 6 6 Db4,1 E \C Db4,1' 2 [m E \F6 6H 6 5 0, (A.8)

whereH 5 @b4,1
* ,Th* # + As in the previous proof, we replaced Z by E + Because Db4,1 is

the first n1 rows of Db4, we obtain, using Lemma 1~iii !,

Th*' Db4,1 5 Th*'~ Db4,1 2 b4,1! d
&& 2h*'b1~b 'b!21EdV G0

'SEG0G0
' dsD21

+

Then, similar to the previous proof, we can show thatT 2 [m converges in distribution to
a solution of~11! with j 5 n1 2 g andk 5 n 2 r 2 g+ This proves Theorem 2+ n

Proof of Theorems 3 and 4.Let Zb1 5 @ Zb ', [r# ' and Db1 5 @ Db ', [r# ' + Exactly in the
same way as the proof of Lemma 13+2 in Johansen~1995!, we can show that

diag$Tb4
' ,T 102%~ Db1 2 b1! d

&& SEG0
1 G0

1' dsD21EG0
1 dV ',

whereG0
1 5 @G0

' ,1# ' + Then, because Db is the firstn rows of Db1, we have

Tb4
' ~ Db 2 b! d

&& L'SEG0
1 G0

1' dsD21EG0
1 dV ', (A.9)
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whose conditional variance is given byL'~*G0
1 G0

1' ds!21L J ~a 'S21a!21+ Because
Db 5 b 1 b4~b4

' b4 !21b4
' Db as expressed in Johansen~1995, p+ 179!, we have

Td *' Db1 5 d *'b4,1~b4
' b4 !21Tb4

' ~ Db 2 b!

d
&& d *'b4,1~b4

' b4 !21L'SEG0
1 G0

1' dsD21EG0
1 dV '+

We also haveEYT
' S11

1 EYT
d
&& *G0

1 G0
1' ds, which is proved as Lemma 1~iv!, where EYT is YT

with Zb4 replaced by Db4+ Then, the theorems are proved similarly to Theorems 1 and 2+
n

Proof of Theorem 5. For the case wherer , n 2 1, we give the following lemma+

LEMMA 2 +

(i) Jg p
&& g and Jg1

p
&& g1, where Jg 5 g 2 g4~ Jg4' g4 !21 Jg4' g and Jg1 is the first n1

rows of Jg with g4 5 @b,t# and Jg4 5 @ Db, [t# .
(ii) T 102~ [t 2 t! d

&& CW~1!.
(iii) EV11 d

&& V11, where EV11 is defined as ZV11 with [g replaced by Jg.

Proof.

~i! Because Jg4
p
&& g4 andg4

' g 5 0, Jg converges in probability tog+
~ii ! Proved by Johansen~1995!+

~iii ! Letting K 5 @ Nb,T2102 Tg,T21 St# , we have

T Jg 'S11
21 Jg 5 ~T 102 Jg 'K !~K 'S11K !21~T 102K ' Jg!+

From Lemma 10+3 in Johansen~1995!, T21@ Tg,T2102 St# 'S11@ Tg,T2102 St# converges in
distribution toV whereasb 'S11b converges in probability to a positive definite matrix,
Sb, and@ Tg,T2102 St# 'S11b 5 Op~1!+ Then,

K 'S11K d
&& F~b 'b!21Sb~b 'b!21 0

0 VG + (A.10)

In addition, we can see that

Tb ' Jg 5 2Tb 'g4~ Jg4g4 !21 Jg4' g 5 2@b 'b,0# ~ Jg4' g4 !21F~ Db 2 b!'gT

~ [t 2 t!'gTG d
&& 2U1

'

becauseb 't 5 0 and [t 'g 5 Op~T 102!+ Using this result, we have

T 102 Jg 'K 5 @T 102 Jg 'b~b 'b!21, Jg 'g~g 'g!21,T2102 Jg 't~t 't!21#
p
&& @0, In2r21,0# +

(A.11)

From ~A+10! and~A+11!, EV11 converges in distribution toV11+ n
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~i+a! Proved in the same way as Theorem 1+
~i+b! In this case, the determinant equation becomes asymptotically equivalent to

6b1
*'b1Cb1

' b1
* 6 6X 'JJ'X 2 T 2 Zl$d *'g1~g

'g!21V11

3 ~g 'g!21g1
' d * 1 12d *'t1~t

't!22t1
' d * %6 5 0+

Note that, in general, for a given symmetric and positive definite matrixA and a vectorb,

~A 1 bb' !21 5 A21 2 A21bb'A210~11 b'A21b!, (A.12)

and then

c'~A 1 bb' !21c # c'A21c

for any nonzero vectorc+ By substituting d *'g1~g
'g!21V11~g 'g!21g1

' d * and
M12d *'t1~t

't!21 for A andb, we obtain, for a givenG~{!,

tr~J 'X$d *'g1~g
'g!21V11~g 'g!21g1

' d * 1 12d *'t1~t
't!22t1

' d * %21X 'J!

# tr~J 'X$d *'g1~g
'g!21V11~g 'g!21g1

' d * %21X 'J!

5 tr~X*X*' ! 5 x~r2f !~n12f !
2 , (A.13)

whereX* is an~r 2 f ! 3 ~n1 2 f ! matrix with vec~X*! ; N~0, I~r2f !~n12f ! !+ The equal-
ity is established if and only ifd *'t1 5 0+

~ii ! Let us consider the determinant equation~A+2! with H 5 @b1
*,Td0

*,Tt1
*# + Using

Lemma 2 and by some algebra, the determinant equation is shown to be asymptotically
equivalent to

6b1
*'b1Cb1

' b1
* 6 62 12T 2 Zl~t 't!22~t1

*'t1!2 6

3 6X1
' JJ'X1 2 T 2 Zld0

*'g1~g
'g!21V11~g 'g!21g1

' d0
* 6 5 0+

This determinant equation implies that there aref nonzero eigenvalues, p 2 f 2 1 eigen-
values of orderT22, and one eigenvalue of order smaller thanT22+ Then, we can see
that

LT 5 T 2 (
i5f11

p

Zl i 5 T 2 (
i5f11

p21

Zl i 1 op~1! d
&& x~n12f21!~r2f !

2 +

We can also show thatZlp is of orderT 3 if we chooseH 5 @b1
*,Td0

*,T 302t1
*# +

For the case wherer 5 n 2 1, the limiting distribution is derived similarly using~23!+
n

Proof of Corollary 1.

~i! Note that, in general, for a given positive definite matrixA, a vectorb, and a
matrix D,

D 'A21D 5 D '~A 1 bb' !21D 1 D 'A21bb'A21D0~11 b'A21b!,
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where we used the relation~A+12!+ By Theorem 9 of Magnus and Neudecker
~1988, p+ 208!, we can see that thep 2 f th eigenvalue ofD 'A21D is greater than
that of D '~A 1 bb'!21D+ Then, by substitutingd *'g1~g

'g!21V11~g 'g!21g1
' d * ,

M12d *'t1~t
't!21, andX 'J for A, b, andD, the limiting distribution ofT 2 Zlp is

shown to be bounded above bylmin, r2f,n12f
* becauseD 'A21D 5 X*X*' in this

case+ Note thatT 2 Zlp
d
&& lmin, r2f,n12f
* if and only if d *'t1 5 0+

~ii ! is proved in Theorem 5~ii !+ n

Proof of Theorem 6. Let us defineb4,1
* andh* as in the proof of Theorem 2+

LEMMA 3 +

(i) Th*' Jg1
d
&& 2h*'b1~b 'b!21U1

' 5 Y ', say, where

Jg1 5 g1 2 g4,1~ Jg4' g4 !21 Jg4' g with g4,1 5 @b1,t1# + (A.14)

(ii) Th*' [t1
p
&& 0.

Proof.

~i! Becauseh*'g1 5 0 andh*'t1 5 0, we have, using~A+14!,

Th*' Jg1 5 Th*'~ Jg1 2 g1! 5 2@h*'b1,0# ~ Jg4g4 !21F~ Db 2 b!'gT

~ [t 2 t!'gTG
d
&& 2h*'b1~b 'b!21U1

' +

~ii ! First, note that, because [t1 5 Zb4,1~ [a4' ZG Zb4 !21 [a4' [m, [t1 is invariant to each nor-
malization of [a4 and Zb4+ Then, we can express[t1 as [t1 5 Db4,1~ Ja4' ZG Db4 !21 Ja4' [m+

From the expression~A+1!, we can see that

Th*' Db4,1 5 2h*'b1~ Db 'b!21 @~ Db 2 b!'gT, ~ Db 2 b!'tT #

d
&& 2h*'b1~b 'b!21U1

' @In2r21,0# + (A.15)

We also have, from the definition oft,

Tg 't 5 @In2r21,0# ~a4
' Gb4 !21a4

' m+

Because the left-hand side is zero from the orthogonality betweeng andt, the
first n 2 r 2 1 rows of~a4

' Gb4 !21a4
' m are zero+ Then, because each estimator is

consistent, we have

@In2r21,0# ~ Ja4' ZG Db4 !21 Ja4' [m
p
&& 0+ (A.16)

Combining ~A+15! and ~A+16!, we obtain Th*' [t1 5 ~Th*' Db4,1!~ Ja4' ZG Db4 !21 3
Ja4' [m

p
&& 0+ n
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Similar to the proof of Theorem 2, we consider the same determinant equation as
~A+8!+ Using Lemma 3, we have

Th*' @ Jg1, [t1# d
&& @Y ',0# 5 Y 'S1,

whereS1 5 @In2r21,0# , and then, using@ Jg1, [t1#
p
&& @g1,t1# 5 b4,1, ~A+8! is expressed as

6Y 'S1 tJ tJ 'S1
'Y2 T 2 [mh*'b1~b 'b!21~a 'S21a!21~b 'b!21b1

' h* 6 5 0, (A.17)

for large values ofT, where an~n 2 r ! 3 ~n 2 r 2 g! matrix tJ satisfies tJ ' \C21 tJ 5
In2r2g+ Noting that the conditional variance ofY 'S1 tJ is given by

h*'b1~b 'b!21~a 'S21a!21~b 'b!21b1
' h* J tJ 'S1

'V11S1 tJ,

the test statisticL4T conditioned onG~{! converges in distribution to

tr~Y*' tJ 'S1
'V11S1 tJY* ! 5 tr~Y*' tJ1

'V11 tJ1Y* !, (A.18)

where vec~Y*! ; N~0, I~n12g!~n2r2g! ! and tJ 5 @ tJ1
' , tJ2
' # ' + Because

tJ ' \C21 tJ 5 tJ1
'V11 tJ1 1 12 tJ2

' tJ2 5 In2r2g,

the limiting distribution~A+18! is bounded above by

tr~Y*' tJ1
'V11 tJ1Y* ! # tr~Y*'~ tJ1

'V11 tJ1 1 12 tJ2
' tJ2!Y* ! 5 tr~Y*'Y* !+ n
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