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THE RANK OF A SUBMATRIX
OF COINTEGRATION

Ely Kurozumi
Hitotsubashi University
and
Boston University

This paper proposes a test of the rank of the submatrix @fherepg is a cointe-
grating matrix In addition the submatrix of3,, an orthogonal complement &

is investigatedWe construct the test statistic by using the eigenvalues of the qua-
dratic form of the submatrixWe show that the test statistic has a limiting chi-
square distribution when data are nontrendimgereas for trending data we have

to consider a conservative test or other testing procedure that requires the pretest
of the structure of the matriXinite sample simulations show thatthough the
simulation settings are limitethe proposed test works well for nontrending data
whereas we have to carefully use the test for trending data because it may become
too conservative in some cases

1. INTRODUCTION

A vector autoregressiveVAR) process has often been used to model a multi-
variate economic time series gnidllowing the seminal work of Engle and
Granger(1987), a cointegrating relation has been incorporated into the VAR
model A typical n-dimensional VAR model of ordem is

X =d+A X1+ - T AXiem T & (1)

fort=1,...,T, where{g} is independently and identically distributéidi.d.)
with mean zero and a positive definite covariance marand detl, — A;z—
--- — Anz™) has all roots outside the unit circle or equal toThe model(1)
can be written in the error correctiqiEC) format,

m—1
A =d+aB'X 1+ X TAX | + &, )
i=1

wherea andB aren X r matrices with rank, A =1 — L, andL denotes the
lag operatarWe assume O< r < n, and then there are cointegrating rela-
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tions The exact condition of the existence of cointegration is given by Johansen
(1991 1992. We also assume that the cointegrating rank known or esti-
mated by some testing proceduseich as the likelihood rati6LR) test pro-
posed by Johansef1988 1991) or the Lagrange multiplieLM) test by
Lutkepohl and SaikkonefR000 and Saikkonen and Liitkepot2000. Other
testing procedures of the cointegrating rank are reviewed by Hubriatke-
pohl, and Saikkoner{2001) and papers therein

In this paperwe investigate the tests of the rank@®f, the submatrix of3,
and the rank of8,;, the submatrix ofB,, where = [B1,B5]' and B, =
[B11,B..2]", with 8, being an orthogonal complementgoIn practical analy-
sis we sometimes encounter cases where we need to know the rgplané)/or
B..1. For examplethe cointegrating matrix is sometimes normalized3as—=
B(a'B)1, as proposed by Johans&r988 1991) and Paruold1997), wherea
is ann X r matrix with full column rank and the prototype normalization is rep-
resented by = [I,,0]’. However there is no guarantee thafg is of full rank
In such a situationwe would like to know whether the firstrows of 8 have
full rank. The second example is the Granger noncausalityAssthown in Toda
and Phillips(1993, when there is a cointegrating relationshipgeneral the Wald
statistic of the Granger noncausality test from the rgstariables ofx, to the
first n, variables has a nonstandard limiting distributi@@pending on nui-
sance parameterslowever if either the lasing rows of 8 or the firstn, rows of
a have full row rankthe Wald statistic is asymptotically? distributed Then
the testing procedure in this paper is useful to check the rank of the submatrix
of B, whereas the existing testing procedure may be available for the test of the
rank of the submatrix o&. The third example is the test of long-run Granger
noncausality proposed by Yamamoto and Kuroz@201, 2003. In a usual
senseGranger causality is concerned with the one period ahead forddast
concept can be extended to the predictabilith period ahead horizgand long-
run Granger causality is defined when the forecast hortlzgoes to infinity
Seeg for example Bruneau and Jondedi999 and Dufour and Renau(i998.
Yamamoto and Kurozun{2003 proposed the test for long-run block noncau-
sality, in which it is shown that the ranks of the submatriceg@idg, play an
important role in constructing the test statist8ee Yamamoto and Kurozumi
(2003 for more details

Tests of the rank of a matrix have been investigated in the literatune
recent econometric developments can be seen in works by Camba-Mendez
Kapetanios Smith and Weale(2003, Cragg and Donald1996 1997, and
Robin and Smith2000, among othersAlthough these papers proposed tests
of the rank of a matrixthey assumed that the estimator of the matri¥ {$?
consistent and has a limiting normal distribution with a nonstochastic variance
matrix. However the estimator of the cointegrating matrix¥s(or T*?) con-
sistent and has an asymptotic nonstandard distribufiesra result we cannot
apply existing testing procedures to the cointegrating matrix
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The paper is organized as followis Section 2we propose tests of the rank
of B; and B, ; for nontrending dataWe will show that the two test statistics
proposed have asymptoticallyy& distribution and a distribution of the maxi-
mum eigenvalue of the product of normal random matriGection 3 consid-
ers the case of trending data this casethe test statistics do not necessarily
converge to ay? distribution and a distribution of the maximum eigenvalue
To overcome this situatignve propose two testing procedur&ection 4 inves-
tigates the finite sample properties of the teSsction 5 concludes the paper

In regard to notationwe use ve€A) to stack therows of a matrixA into a
column vector[x], to denote the largest integer x, a = a(a’a)™* for a full
column rank matrixa, and L>, i), and= signify convergence in probability
convergence in distributigrand weak convergence of the associated probabil-
ity measuresWe denote the rank ok by rk(A) and the column space @ by
sp(A). We write integrals such aﬁ,lx(s) dY(s)’ simply as/XdY’' to achieve
notational economyand all integrals are from 0 to 1 except where otherwise
noted

2. TEST OF THE RANK OF THE SUBMATRIX
FOR NONTRENDING DATA

2.1. The Model with d=0

In this section we consider a test of rank for nontrending data avithO. The
model considered in this section is

m—1
AX = af'X g+ > [AX | + &. (3)

j=1
We estimate the modé8) by the maximum likelihood ML) method assuming
that{s,} is Gaussianalthough asymptotic properties are preserved under more
general assumptiong/e denote the ML estimator with. For examplethe ML
estimator ofg is denoted by3. Using the result that ~¥2 3 e, = wW(r) for
0 =r =1 by the functional central limit theoremhereW(-) is ann-dimensional
Brownian motion with a variance matr Johanser1988 1995 showed that

TBLE - B) S < J GG ds) f GodV/, @)

wheref = B(B'B) %, Gol-) = B CW(-) with C = B, ([ TB,) a], T = I, —
MITL V() = (a'S ta) /S IW(-), and Gy(-) and V(-) are independent
He also showed tha¥ = aB’B, 2, and I (i = 1,...,m — 1) are consistent
estimators ofx, 3, andI;, respectively
Let us partitiong as B8’ = [B;,B5] where 8, and B, aren; X r and
(n — ny) X r matrices respectively(0 < n; < n). Similarly, we partition
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B1 = [BL.1,B1 2] conformably Note thatB;3, ; does not necessarily equal
zerq whereas3', = 18,1 + B2B8. > must be zeroOur interest lies in find-
ing the rank ofB,, and thus we consider the following testing problem

Ho:tk(By) = f V.. Hy:rk(By) > . (5)

Note that the rank o, is at mostp = min(ny,r).

To test the rank gB,, we follow the same strategy as Robin and Smb00),
who test the rank of a matrix and investigate its quadratic fdnrour situa-
tion, we construct a quadratic form @f. The advantage of considering a qua-
dratic form is that the eigenvalues are nonnegative real vaaves if those of
B1 are complex valueshen the null hypothesi$ly becomes equivalent to the
existence of positive real and; — f zero eigenvalues

Let ¥ and® ber X r andn; X n; possibly stochastic matrices that are sym-
metric and positive definite almost surdlys.). Because they are full rank matri-
ces(as.), the rank ofg; is equal to the rank ob~18,¥g] (as.). Thereforethe
test of the rank of3; is equivalent to that o138, ¥3;, and then we consider
the rank of the latter matrixNote thaf although this strategy is basically the
same as that followed by Robin and Sm{#000, we cannot directly use their
result because they assume that the estimated matrix is asymptotically nor-
mally distributed with a convergence rafe”?, whereasp, is shown to be
T-consistent and the limiting distribution is mixed Gaussian

For the test of the rank g8,, we define¥ = 'S 1« and

(BB 0 ,
B 1 ©

b= , ’ -1 -1
[Bl BJ_,].(BJ_BJ_) ] 0 (fGOG(’)dS> l(ﬁiﬁl)lﬁi,l

TheseV and® are chosen so that the limiting distribution of the test statistic

does not depend on nuisance paramet@ther choices ofb may be possible

becausgas shown in the Appendixhe test statistic asymptotically does not

depend ong,(B'B) 1B}, which appears whefb) is expandedFor example

we can use a constant multiple @’8)* in the second term of6). However

as indicated in the Appendixp has to be invariant to the normalization @f

We use the definitiori6) just because it seems simplest among other choices
LetA; = A, = .- = A, be the ordered eigenvalues ®f '8, ¥, which

are the solution of the determinant equation

|B1¥B1 — A®| = 0. (7)

Then underHp, A; = --- = A > 0 andAgy;, = --- = A, = 0(as).

We construct a sample analogue(@j using the ML estimator and investi-
gate the limiting distributions of the eigenvaludhe sample analogue %)
is given by
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|B,VB; — Ad| =0, (8)

wheref; is the firstn, rows of 8, ¥ = 4’314, and

(B'B) 0 41
b = A’Ai AiAL_l 1. =\t 51 5 5 9
LBy BualPiP)T (FBL%lBL) l(ﬁiﬂnlﬂi,l] ©
A A A A N 1. A\ L.
= Bl(ﬁ’ﬁ)ilﬁi + BL,l(? Bl S_I.IBL) Bi,l, (10)

whereS;; = T 131, R, R}, with Ry, being the regression residual )Qf_l on
AXe_1,...,A%_ms1, and we denote the ordered eigenvalue&dhisi,; = A, =

.= A . Note that whem1 > r, the smalleshl — r eigenvalues are obvi-
ously equal to Othat is Ay g = -+ = A = 0. We can easily see from the
expressiong6) and (9) that @ andd) are posmve deﬂmte(as) whereas the
expression(10) is simpler and may be used to constrdcin practice

To test the rank of3;, we consider the following test statistic

o] Ny
L= T? 2 = 2
i=f+1 —f+1
which rejects the null hypothesis whek takes large valueé’he second equal-
ity is established because = min(n,,r) and Apﬂ = ... = = 0 when
ng >r.

We can also consider the null hypothesisrkfg,) = f against the alterna-
tive of rk(B1) = f + 1. In this casethe test statistic is defined by

MT = Tz;\f+l.

To denote the limiting distribution aM+, we defineAq,,; « as the maximum
eigenvalue of

| X*X* = A*1;| =0, (11)

whereX*" is aj X k matrix with vedX*") ~ N(0, lj«,). The critical points of
this distribution are given in Table 1 for the case whigke k. They are calcu-
lated by simulations with ,000,000 replicationsBecause the nonzero eigen-
values ofX*X*" are the same as those Xf'X*, we can refer to the percentage
points of Amaxk j Whenj < k.

TI;iEOREM 1 Let¥ = &’(?‘1& and ® be given by (10). If &< p, under H,
L1 = x&—t)r—1 and Mr = Ajaxn—t.r—1-

https://doi.org/10.1017/50266466605050188 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466605050188

ssald AusiaAun aBpuguied Ag auluo paysiiand 88105050999¥9920S//L0L°01/610"10p//:sdny

o€

TaBLE 1. Critical values of the\T,, j « and A,ax «

1 2 3 4 5
k A’Fnin /\Tnax X‘;nin /\T'nax Atnin Atnax /\Tnin /\Tnax )‘Tnin )‘Tnax
1.54x 104 2.70 00197 461 0114 625 0294 778 0553 923
1 0.00381 384 0103 601 0348 782 0708 949 114 111
0.0156 666 0210 926 0581 114 1.06 133 160 151
— — 6.27 X 107° 7.01 00100 900 00644 108 0.182 125
2 — — 0.00157 861 00510 107 0.197 127 0431 145
— — 0.00638 122 0.105 146 0.325 168 0.641 188
— — — — 3.97 X 1075 113 0.00669 133 0.0455 152
3 — — — — 9.81x 104 131 0.0342 153 0.138 172
— — — — 0.00396 172 0.0704 195 0.230 217
— — — — — — 2.81x10°° 154 0.00504 175
4 — — — — — — 7.09x 1074 175 0.0254 197
— — — — — — 0.00286 220 0.0523 243
— — — — — — — — 216X 10°° 196
5 — — — — — — — — 547 % 1074 219
— — — — — — — — 0.00222 266

Note: The uppermiddle, and lower entries are 19%%, and 10% critical points for givepandk.
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Remark 1 Because the determinant equati@) converges td7) in distri-
bution the estimated ordered eigenvalues(®f also converge in distribution
to those of(7). Then under the alternativei. , N Air1 > 0 (as.), so that
T2\, goes to infinity Therefore the testsCt and M+ are consistent

Remark 2 Although the test statistics are constructed using the estimator of
B..1, we do not have to assume that it is of full rate can see that the rank
of B, is at leastn; — f underH,, noting that the column space 8f ; must
containn; — f bases that are orthogonal $p(3;) becausd B4, 8,.1] has full
row rankn,. Because3; 8, ; is not necessarily equal to zglibis possible for
sp(B..1) to contain some of the bases that sjgaf}3;), so that the rank 0B, ;
may be greater tham, — f. It is shown in the Appendix that the limiting distri-
butions of the test statistics depend not on the ran® gfbut on the number of
the bases orthogonal ®p(B1), n; — f, unlessf = n;. Whenf = ny, all the
eigenvalues are asymptotically greater than Zar®), and then the test statis-
tics will diverge This case is excluded from the theoréris assumed to be
less thanp = min(n,,r)). In other words our tests cannot be applied for the
null hypothesis of full ranklf we need to check whethed; is of full rank or
not we may test for the null of = n; — 1, and if we rejected the null hypoth-
esis we would conclude that it is a full row rank matrix

Remark 3 Because the hypothesis about the ranjgp€an be regarded as a
restriction on the cointegrating matrik we may consider using the LR test as
proposed hyfor example Johanser(1991, 1995 and Johansen and Juselius
(199Q 1992. In fact, whenf = 0 the null hypothesis is equivalent & = 0,
and this hypothesis can be expressed as a linear restrictighsoch as8 =
H¢, whereH = [0, 1, ]" and¢ is an(n — ny) X r unknown parameteihen
the LR test is applicable to the testfof= 0. However for 0 < f < p, the null
hypothesis is expressed As = ,,81> whereB,, and B34, aren; X f matrices
with full column rankf. Then we have to estimate the model with this restric-
tion. Although the LR test might be applicable to the nonlinear hypothésis
seems tedious to estimate the model with this nonlinear restrjoctibereas
our test uses only the ML estimator without the restrictitins beyond our
scope to investigate the applicability of the LR test to our casd we do not
discuss this in detalil

We may represent the null hypothesis as proposed by Bog@w§R6 and
apply the LR testAccording to his papetthe null hypothesis ofk(3,) = f is
expressed a8 = (Ho¢,y) whereH, = [0,1,.]" and(¢,¢) € R0 x R™,
As pointed out by BoswijK1996 p. 156), the LR test for this hypothesis has
an asymptoticy? distribution only when “no linear combination @f lies in
the column space ofH,. Because there is no guarantee of this condjtiva
do not consider his method in this paper

Next, we consider a test of the rank of the submatrixgof The testing prob-
lem is
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Hoo:rk(B1) =g v.s. Hy :rk(B.1) >g.

For the‘_ same reason as "in the test @f we investigate the rank of
&', VB! ,, whered and ¥ are(n — r) X (n —r) andn; X ng full rank
matrices(a.s.). Similar to (7), we consider the following determinant equation

|B¢,1‘.I"Bi,1 - ,U«"I')| =0, (12)
where¥ = [G,Gjdsand
. (BiBL™ 0 Bl
— ’ -1 ’
O =[B1,B1(B8'B) "] [ 0 (a’Ela)ll l(ﬁ”ﬁ)lﬂi]’

and the sample analogue @f2) is given by
B2 VB, — adl =0, (13)
where¥ = T-14,S,4, and
(BB 0 Bia

0 (&,31&)11 l(é’é)lﬁj'

Letu, = - = pu, andi, = --- = a,, be ordered eigenvalues (f2) and
(13), respectively and we construct the following test statistiagith q =
min(ny, N —r):

b - ml,l,ﬁm'ﬁ)l][ (14)

q M
‘CLT:TZ E i =T? 2 i, MLT:Tzllg‘Fl‘
i=g+1 i=g+1

THEOREM 2 Let ¥ = T78,S,8, and & be given by (14). If g< q,
under H)L: ELT - X(an—g)(n—r—g) and MLT - /\Tnaxnl—g,n—r—g-

Note that the consistency of the tests is shown in a similar way as in Remark 1
We also note that we cannot test the nulkkfB, ;) = q by a similar reason to
that given in Remark .2

Given the preceding two theoremse can test the rank g8, and, ;. In
addition we may consider the procedure to decide the rank of the submatrix
as the cointegrating rank is selected sequentially using the test of the cointe-
grating rank For exampleto decide the rank oB,, we first test the null of
f = 0. If the null hypothesis is acceptethe rank ofg; is decided to be zero
Otherwise we then test the hypothesis 6f= 1. We sequentially continue
to test the rank of3; until the null hypothesis is accepted@hen the null of
f = p — 1is rejectedwe consider thaB; has full rank Similarly, the rank of
B..1 can be decided by the same procedure
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2.2. The Model with d # 0

In the previous sectignve considered the model witth= 0 for nontrending
data However in practice we sometimes consider the mod&) with d # 0
but with the level of data having no linear trerd this casethe constant term
can be expressed ds= apy Wherepg is anr X 1 coefficient vectarso that the
model(2) becomes

m—1
AXe = Bty + D LA + &, (15)
i=1

where 8" = [B/,po]’ and x;"; = [x{_;,1]’. The ML estimator of3* can
be obtained by the reduced rank regression/of on x;~; corrected for
AXi_1,...,AX%_m+1, and the estimator of the cointegrating matrix is the first

rows of 3*. )

To test the rank of the submatrix ¢ for the model(15), we use® de-
fined by
& = By(B'B) A1+ BLa(BLB) L (Y5 S Yr) TL(BLAL) Bl (16)

whereL andYy are(n—r +1) X (n—r) and(n+ 1) X (n —r + 1) matrices

defined by
In- T8, 0

L = " ’ Y‘T = Bl ’
0 0 1

andS; = T 131, R, R}/, with R{; being the regression residual xf ; on
AXi—15 e+ oy AXemme1-

THEOREM 3 Consider the model (15) and lét= &'~ 14 and® be given
by (16). If f< p, under H, L1 5 X2 o) and My 5 Aans prt-

THEOREM 4 Consider the model (15) and ldit = L (Y5 SHYs) L
and c'ISdbe given by (14). If g< g, under Ky, L.+ - X&—g(n-r—g and
MLT - /\tna)g n—g,n—r—g-

In practical analysiswe will obtain 8 by the reduced rank regressjand
we have to calculat@, from 3. If d = 0, 3, can be easily obtained as ex-
plained in Johansefl995 p. 95). Whend = ap,, one of the methods to cal-
culatef, is as follows First we calculate the orthogonal projection matrix of
B, M =1, — B(B'B)1B". Then by the singular value decompositiohl is
expressed abl, M, M/ whereM, andM, aren X (n — r) orthogonal matrices
andM, is an(n — r) X (n — r) diagonal matrix with positive diagonal ele-
ments Becausesp(M) = sp(M;) and they are orthogonal 16, we can uséV,
asf,.
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3. THE TEST OF THE RANK OF THE SUBMATRIX
FOR TRENDING DATA

When data are trending; can be expressed as the sum of the stochastic,trend
the deterministic trencand thel (0) component such that

t
X =C> & +rt+ Cy(L)(g +d)+ x5, (17)

i=1

where C = B,(a|TB,) *a] as defined in Section.2, 7 = Cd, Cy(L) =
(C(L) — C(1))/(1 — L) with C(L) being a lag polynomial whenx; is repre-
sented as the vector moving-average processAike= C(L)(d + &), andxg
is a stochastic component such tigdk; = 0. See Johanse{1991, 1995 for
more details In this case B, is decomposed ta, the coefficient of a linear
trend in(17), andy, ann X (n — r — 1) matrix that is orthogonal ta. We
partitiony andr into [y1,y5]’ and[7],75]" in the same way ag. As shown
in Chapter 12 of Johanseri1995, 8 can be expressed as

- 1
B=B+y(y'y) Upx+ T2 7(7'7) " Upr, (18)

where

UlT d -1 Ul
T - GG’ ds GdV' = , say
U2T U2

where G(r) = [Gi(r),Gs(r)]" with Gy(r) = Go(r) — [Gods Go(r) =
¥'CW(r) and Go(r) = r — 3. We denoteQ) = [GG'ds and partition it into
2 X 2 blocks conformably withU;,U;]’. We express théi, j) block element
of (fGG'ds)* asQl fori,j =1 and 2 In this sectionwe need the estimator
of O, which is given by

0 =TS,

andS;; is defined in the same way as in the previous sectigith R;; being
the regression residual af_; on a constant and\x;_4,...,AX_m1. CONver-
gence of()! to Q! is proved in Lemma dii) in the Appendix whereas the
consistency of other ML estimatgrsuch asz, 3, andﬁ, is shown by Johansen
(1991 1995.
In the following discussioywe will show that the limiting distribution o8,
depends on whether the rank[d;, v,] is n; — 1 orny, or equivalentlywhether
7> = 0 or not We will propose two testing procedures to cope with this problem
Let us consider the testing problef®). Under the null hypothesisve can
find the f linearly independent column vectors i1, and we defing3; as an
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n; X f matrix whose columns consist of thoseectors We also define am; X
(ny — f) matrix6* as an orthogonal complement g, so thaté*'B; = 0. We
show that the direction of* is important in deciding the convergence rate of
B, and it also affects the limiting property of the test statistic

Let us consider the case whare< n — 1. Because3, is the firstn, rows of

B, it is expressed fronil8) as

- 1
Br=B1+ yily'y) Uz + T2 71(7'7) Uyt

Suppose that an, X 1 vectorr; exists that is orthogonal tg, (7;'y, = 0) and
belongs to the column space &f. Herg note that because th@ X n matrix

[B,y,7]is of full rank, the firstn, rows of this matrix[ 81, v1,71], must be of
full row rank, which implies thata’[ 84, y1,71] # O for any nonzero vectaa.

Then becauser; is orthogonal to bottB8, andy, by the assumptignve have
71'[B1, Y1, 7] = [0,0,77' 7] # O, so thatr;’r, # 0. This implies

T¥275 By = 71/ 7u(r'7) H(TUpr) 5 7/ 7y(r'7) TU, = X3, sy, (19)

whereas for am; X (n — r — 1) matrix §; whose columns span the orthogonal
complement tar; in sp(6™*),

T8 B1 = 85 y1(y'y) H(TUr) + Op(T Y2 L 65y, (y'y) WUy = X, say
(20)

On the other handf there exists no vector isp(6*) that is orthogonal to
v1, we have

T6*' By = 6 y1(y'y) H(TUsr) + Ox(T~Y2) L 8%y, (y'y) U, = X!, say.
(21)

Therefore the convergence rate @ depends on whether a vectsjf orthog-
onal toy, exists insp(6*).

The existence ofr; indicates that the column space [g84,y.] does not
include 7; becauser;’B; = 0 andr{’y, = 0. We also note that the rank
of [ B1,y1] must ben, — 1 or n; becausq B4, y1,71] has full rankn,. Then
from another point of viewwe can say that the rank ¢f3;,v,]isn, — 1
if a vector 7 exists whereas the nonexistence af is equivalent to
rk([B1,y1]) = m. Thus we have to consider the asymptotic property sepa-
rately according to the two cases where the rank®f,y,] is n, andn; — 1
whenr < n — 1.

https://doi.org/10.1017/50266466605050188 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466605050188

310 ElJI KUROZUMI

For further investigationlet us consider the case where the rank 8f, y. |
equalsn, — 1. In this casethis matrix is expressed 48,4,0] by some nonsin-
gular transformation from the right-hand sjdehere®,, is ann; X (n; — 1)
matrix with rankn, — 1. Then using the same nonsingular transformatigsy y |
becomes

, say 22
021 622} ¥ (@2)

Let 77 be the orthogonal complement to the column spacedof Then
because;'®, = 0 and using the expressidp2), we can see that thex 1 vec-
tor[7;’,0]" is orthogonal td B,y ]. Thereforein this casethe trend parameter
7, which is orthogonal t@ andy, is a constant multiple ofr;’,0]’. In other
words whenrk[ 81,v.] = n; — 1, 7, must be equal to zerdNote thaf because
71 is orthogonal tesp(8,) andsp(y,), it is essentially the same a$.

On the other handwhen 7, = 0, 7 is expressed a$r;,0]’ and then
71[ B1, 1] equals zero because[ 8,y] = 0. This implies that then; X (n —1)
matrix [ 81, y1] does not have full row rankThen we have the following
proposition

PROPOSITION 1 The rank off B4, y1] is iy — 1 if and only ifr, = 0.

Whenr = n — 1, there is noy, and in this casek(8;) must ben; — 1 orn;.
Then under the null hypothesis ak(B;) = n; — 1, 6* becomes am; X 1
vector and we have

T¥25% 3, = 8 7,(7'7) H(TUyp) 5 X4, say (23)

In this casethe test statistics should be multiplied Bythat is TL+ andTM+
are the appropriate test statistics

In the following theoremthe test statistics are constructed from the eigen-
values of(8) using the samd’ as in the previous section and either

BB 0 B1
. 24
0 ot (?'?)_1%1 (24)

b = [:él’ ?1(?’?)1][
or
(BB 0 0 Bi
=B (I LHuEH I 0 A o || P . (25)
0 0 12| (#'7) 7ty
THEOREM 5 Whenr<n -1,

(i.a) Let¥ = @'S7ta andd6i> be given by (24). If ri{ 8, v:1]) = n; and
f< p, under l’b, ET — X(an—f)(r—f) and MT — /‘tnaxnl—f,r—f-
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(i.b) Let ¥ = @’S71& and ® be given by (25). If rk[81,v1]) = n, and
f < p, under K, £+ and M+ converge in distribution to random vari-
ables that are bounded above b,y(znl,f)(,,f) and Afnaxn,—fr—f
respectively.

(i) Let ¥ = &’'S '@ and ® be given by (25). If rk[81,71]) = n, — 1 and
f <p,under B, L1 -5 xZ _r—10—r) and My - A 11,

Whenr=n -1,

(iii) Let ¥ = @’S~'& and & be given by (25). Under the null hypothesis of
f= ny, — 1,

TLr=TMr =T33}, S x2 .,

Remark 4 In the case ofi.b), L1 converges in distribution tqfnl,f)(r,f) if
and only if %7, = 0, which is equivalent to the case wherg € sp(B;) =
sp(B1). See the proof in the Appendik general the test using25) is conser-
vative if rk([ B1,v1]) = ns.

From Theorem 5if we know the rank off 81,v,1] whenr < n — 1, we can
construct the test statisti€; that converges to g2 distribution by appropri-
ately using(24) or (25). However such information is not available in prac-
tice. Notice that ifrk[B1,y1] = n; — 1, & given by (24) may violate the
condition that it is a full rank matrixand in that casethe test statistic
converges not to the same? distribution as given by Theorem(i5) but
to a random variable that depends on a nuisance paramdten the test
using (24) is not desirable in practiceOn the other handif we use ®
given by (25), we can test the hypothesis by referring toya distribution
irrespective of the rank dfB4, y1], although the test may be conservative and
the degrees of freedom may change depending on the rahB;0f,]. Then

noting that the critical value of{, _t,,—s, in Theorem %i) is greater than
that of x{, _r_1¢—r) in (i), we propose to test the null ak(B;) = f as
follows.

1. We construct the test statisti&; using (25).

2. If L+ is greater than the critical value qf(znl,f)(r,f), we reject the null
hypothesis

3. If L+ is less than the critical value qf(znl,f,b(r,f), we accept the null
hypothesis

The test statisticM+ is used in the same mannén this procedurewe may
encounter the case where the test statistic is greater than the critical value
of x&,_+—1e—r) but less than that off, 1), that is the case where
Cp—t-1(r—1) = L1 = Ciny—t)r—1)» Where ¢y, 1)1, and ¢, -1, 1) are
corresponding critical value§o cope with such a caséhe following corol-

lary is useful
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COROLLARY 1 Let¥ = @’37'& and ® be given by (25). Suppose that
r < n-—1and the rank of3; is f (< p).

(i) If rk([B1,y1]) = nq, TZ/A\p converges in distribution to a random vari-
able that is bounded above ¥, ¢ n, s, Which is the smallest non-
zero eigenvalue of (11) with r — fand k= n, — f.

@iy frk ([By,y1]) = — 1, TZXp converges in probability to zero.

The percentage points af,,, ¢ n,—¢ are tabulated in Table. 1

Using the preceding corollarywe can cope with the situation where
Ciny—t-1)(r—f) = L7 = Ciny—y(r—t)- If Tzﬁp is less than some percentad®, 5,
or 1%) point of Afn ;1 n,—, We reject the hypothesis ok ([ 81, v1]) = n.. In
that casec,, —¢—1)—r) iS an appropriate critical value fa€r, so that the null
of rk(B;1) = f is rejected On the other handf Tzﬁp is greater than the criti-
cal point of Afn —tn,—» W& accept the hypothesis ok([ 31,y.]) = n;, so
that the rank of8; is decided to bé&. We call this testing procedure TEST1

The other strategy is to use the result of Propositiofrém Johanse(i1995,
TY¥2(# — 1) converges in distribution to a normal random vector with mean
zero and the variance matrix given B.C’. Although the Wald-type test may
not be applicable to the test @ = 0 because the variance matrix might be
degeneratewe can test whether each elementrgis zero or not by the-test
statistic We call the following testing procedure TEST2

1. We test each element e}.
2. If some of the elements af, are significantwe use Theorem (b.a).
3. If none of the elements af, are significantwe use Theorem (&).

Next, we investigate a test of the rank gf ;. When data are trending,
can be decomposed infg4, 71| wherey, andr; are the firstn, rows ofy and
7, respectivelyThen testing the rank oB, ; is equivalent to testing the rank of
[v1, 7], and therefore we construct a test statistic frigpy, 7,]. Note thatBl,l
is the firstn, rows of 3, and is not necessarily numerically equal[tp, 71],
although they span the same column space

Let us consider the same determinant equatiofL8swith ,él’l replaced by
[71.71] and

N Q0
vt = » (26)
0 12
@t 0 0 71
C'I.) = [’i\/l’ 7A-17 IBAl(:é”B)il] 0 (/f-’%)72 0 7A'i .
0 0 (a3t LBR B
(27)
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We construct the test statistics 1 and M, 1 in the same way as in the previ-
ous sectionSimilar to Theorem 5we have to distinguish two cases where
r<n-1andr =n-—1 Whenr = n — 1, the rank of8, ; (= 71) must be 0
or 1, and in this casewe consider the null hypothesis gf= 0.

THEOREM 6 Let ¥ and & be given by (26) and (27). When<t n — 1
and g < ¢, under H,, £,r and M, t converge in distribution to random
variables that are bounded above k;y(znl,g)(n,g,r) and Afaxn,—g n—g—r>
respectively.

When r= n — 1, under the null hypothesis of-g 0,

. d
TLr=TM1=T3%, > Xﬁl-

4. SIMULATION RESULTS

In this sectionwe investigate the finite sample properties of the tests proposed
in the previous section¥Ve consider the following four-dimensional EC model
as a data generating proce&3GP):

AX = d+ af'%_q1 + &,

where{e;} ~ i.i.d.N(0, 1,). Let

[ 0.3 [—0.5 0.8 -05
-0.3 0 1 -0.8
7 _ogl *7|-03]" *7|-05” 7| o |
| 08 | —05 -05 -05
[ 0 7 [ 0 1
- 0 1
bl_ 9 b2= ) b3_ 05 ) b4_ 0 )
| —05] | 0 1 0
[ —0.5] [ 06
g 1 J 0.3
1 o5/ 2| —04)|
-1 | | 04

and we consider the following settings of parameters
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Parameter Sets for the Test rf( B1)

Parameter Sets for the Testrbf( 3, 1)

@ B By @ B BL
DGP1 a; by [by, b, b,] DGPlo a, b, [bs, bs, bi]
DGP2 [as,a2] [bs, b;] [bs, by ] DGP20  [a;,a;] [b1, b;] [bs, by ]

DGP3 [a1, a5, a3] [by, by, bs] b,

DGP30  [ay,as a4] [by, by, by] bs

Here DGP110), 2(20), and 330) correspond to the cases where the cointe-
grating rank is 12, and 3 respectivelyWe set the(2,1) element of asc;,
which takes values of,®.005 0.01, 0.025 0.05, 0.075 and Q1, and we con-
sider the test of the rank of the first two rows @f The case ot; = 0 corre-
sponds to the null hypothesis under which the rank3pfis O, 1, and 1 for
DGP1 2, and 3 whereas it is 12, and 2 whenc; # 0, which corresponds to
the alternative For the case of nontrending datee setd = 0 for the zero-
mean processvheread is defined asxp, for the case ofl # 0, wherepg is
set to be 1[1,1]’, and[1,1,1]’' for DGP1(10), 2(20), and 330), respectively
On the other handor the case of trending datd is set to bed,; andd,; the
former corresponds to the case whEfg, v, ] is of full rank (7, # 0), whereas
the rank of B4, v1]isny — 1 (7, = 0) whend = d,.

Similarly, we set the(2,1) element of3, asc, and consider the test of the
rank of the first two rows of3,. In this casec, = 0 implies that the rank of
Bi.1is 1 1, and 0 for DGPolo2, and 03 respectivelywhereas it is 22, and 1

under the alternative af, # 0.

We setx, = 0 and discard the first 100 observations in all experimerhe
number of replication is 00 and the level of significance is set equal to
0.05. We only report the results of the test statisti¢s and £, because the
performances of\+ and M+ are almost the same as thosefand .

Table 2 shows the simulation results of the testkdf3,). When the cointe-
grating rank is 1the empirical size is greater than the nominal sz85, for
T = 100 when data are nontrendifid = 0 or d = apg), whereas it becomes

13 1_%]

closer to 005 for T = 200 When data are trending becomeg—3,3,— 3,

for d = d;, whereas it i 55,55,0,0] for d = d,. Similar to the case of nontrend-

ing data the testing procedure TEST2 tends to overly reject the nud, of O

for T =100, whereas the testing procedure TEST1 seems to be slightly conser-
vative Under the alternative af, # 0, the power increases rapidly arouag=

0.025 for nontrending data and for trending data with TESWRereas the test-

ing procedure TEST1 seems to be less poweiTtis is because TEST1 is a
conservative tesWhen data are trendindpoth TEST1 and TEST2 are more
powerful for the model withrk([ 81,y1]) = n; (d = d;) than the model with

rk([Br,y1]) =m —1(d=dy).

When the cointegrating rank is the relative performance is preserved for

61 61 43

the cases ofl = 0 andd = ap,. For trending datar becomeq gz, g3, 135

2] and[ 5, 25,0,0] for d = d; andd,, respectively Note thatT 2, is numer-
ically equal toL; because the determinant equatidi) with j = k = 1 has
only one eigenvalueThen we can see thaf; and Tzﬁp converge in distri-
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TaBLE 2. Rejection frequencies of the testsréf( 81)

r=1 ¢ d=0 d=ap, TESTLd) TESTAd,) TESTLd,) TEST2d,)
T=100 Q000 Q099 Q118 Q046 Q121 Q040 Q100
0.005 Q119 Q122 Q047 Q137 Q039 Q104
0.010 Q179 Q138 Q053 Q171 Q041 Q112
0.025 Q423 Q222 Q072 Q424 Q065 Q170
0.050 Q732 Q474 Q222 Q804 Q179 Q359
0.075 0886 Q699 Q575 Q952 Q381 0624
0.100 Q960 Q849 Q886 Q989 Q653 Q0862
T=200 Q000 Q074 Q076 Q028 Q084 Q028 Q080
0.005 Q141 Q097 Q030 Q143 Q031 Q089
0.010 Q297 Q156 Q040 Q302 Q041 Q122
0.025 Q703 Q457 Q169 Q814 Q137 Q329
0.050 Q950 Q0845 Q883 Q992 Q615 Q847
0.075 0992 Q971 Q998 1000 Q966 Q998
0.100 Q999 Q995 1000 1000 Q999 1000
r=2 C1 d=0 d= apo TEST].(dl) TESTZdl) TEST].(dg) TESTZdz)
T=100 Q000 Q088 Q097 Q023 Q095 Q001 Q009
0.005 Q105 Q100 Q026 Q102 Q000 Q011
0.010 Q150 Q109 Q030 Q123 Q001 Q014
0.025 Q338 Q176 Q065 Q251 Q001 Q033
0.050 0618 Q353 Q230 Q538 Q005 Q069
0.075 Q800 0559 Q0533 Q755 Q042 Q101
0.100 Q899 Q721 Q781 Q873 Q220 Q124
T=200 Q000 Q069 Q070 Q012 Q077 Q000 Q007
0.005 Q115 Q081 Q018 Q095 Q000 Q012
0.010 Q227 Q115 Q034 Q161 Q000 Q028
0.025 Q0593 Q348 Q203 Q541 Q000 Q071
0.050 0889 Q728 Q799 Q913 Q084 Q095
0.075 Q976 0914 Q975 Q989 Q809 Q115
0.100 Q995 Q972 Q998 Q999 Q990 Q145
r=3 C1 d=0 d=apo d=d1 — d=d2 —
T=100 Q000 Q090 Q094 Q101 — Q055 —
0.005 Q680 Q249 Q961 — Q179 —
0.010 Q902 Q551 Q998 — Q399 —
0.025 Q995 Q938 1000 — Q708 —
0.050 1000 Q996 1000 — Q850 —
0.075 1000 1000 1000 — Q904 —
0.100 1000 1000 1000 — Q927 —
T=200 Q000 Q064 Q068 Q076 — Q045 —
0.005 0879 0555 1000 — Q474 —
0.010 0983 Q901 1000 — Q728 —
0.025 1000 Q999 1000 — Q893 —
0.050 1000 1000 1000 — Q944 —
0.075 1000 1000 1000 — Q960 —
0.100 1000 1000 1000 — Q969 —
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bution to x? underHy, whenrk([B81,v.]) = n, = 2, whereas they converge
in probability to zero wherrk([81,v1]) = n; — 1 = 1. Then the testing
procedure TEST1 accepts the null hypothesis when it is less than the critical
point of y2 On the other handthe asymptotic size of TEST1 becomes 0
whenrk([B1,y1]) = n, — 1 (d = d,) becausel; converges in probability to
zero whenrk([ 81, v1]) = n; — 1. Reflecting this fagtTEST1 is too conserva-
tive for d = d,, and it is not powerful when the alternative is close to the.null
TEST?2 also seems to have no power when the rank3efy,] =n, —1=1
(d = d,). This is because, is very close to zerbeven under the alternative
of ¢, # 0, so that the pretest af, cannot reject the null of, = 0. Whenr, is
judged to be zerothe rank of[ 81,y1] is at mostn, — 1 = 1. Then because
we are testing the null hypothesis (3,) = f = 1, we automatically accept
the hypothesis when, = 0 is accepted in this case

When the cointegrating rank is ®e can see that the first two variablesxf
are cointegratedwhereas the last two variables are stationigte that we
cannot generate the process such that the rayk &f 1 while all the variables
are nonstationaryBecause we want to investigate the property of the test under
the null hypothesiswe allowed several variables to be stationary

In this casethe power property seems to be improved for all the cases com-
pared with the cases wheme= 1 and 2 For trending datar becomes
[L222, 1225 0,0] for d = d;, whereas it i 5, 5,0,0] for d = d,. Note that in
this case the last two rows of the impact mat@ixoecome zero because the
corresponding variables are stationasp thatr,, the last two rows ofCd,
become zero irrespective of the valuedofVe also note that the result of Theo-
rem Siii ) is applied because= n — 1 = 3. That is we do not have to use the
conservative test or the pretest as in the cases wheten — 1. This is the
reason why both the size and power properties are improved for trending data
compared with the cases whare< 3.

Table 3 reports the results of the testr&f 3, ;). From the tablethe test
tends to overly reject the null hypothesis for several cases Wheh0Q whereas
the size becomes reasonable wier 200 except for the case where= 3
andd = d,. In that casgethe test becomes conservative as investigated in Theo-
rem G As to the powerwe can see that the more complicated the deterministic
term becomesghe less powerful is the test

5. CONCLUSION

In this paperwe proposed tests of the rank of the submatrix of cointegration
We can test the hypothesis straightforwardly when data are nontremdiegeas
for trending datawe have to examine whethgB,,v4] is of full rank or not or
we have to use the conservative tddte simulation results show that we have
to carefully use the test ok (3,) when data are trending amd= n, — 1, because
the test might become too conservative to reject the null hypothesis
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TABLE 3. Rejection frequencies of the testsr&f( 3, 1)

r=1 Cy d=0 d=ap0 d=d; d=d,
T=100 Q000 Q106 Q128 Q106 Q051
0.005 Q121 Q135 Q107 Q050
0.010 Q165 Q140 Q114 Q054
0.025 Q374 Q200 Q141 Q081
0.050 Q0658 Q389 0253 Q180
0.075 Q826 Q599 Q417 Q338
0.100 Q909 Q750 0591 Q0522
T =200 Q000 Q072 Q082 Q065 Q031
0.005 Q114 Q089 Q070 Q035
0.010 Q0230 Q126 Q084 Q047
0.025 Q600 Q351 Q0205 Q136
0.050 Q903 Q752 Q579 Q520
0.075 Q982 Q0923 0846 Q0846
0.100 Q996 Q978 Q954 Q960
r=2 Cy d=0 d=apo d=d; d=d,
T =100 Q000 Q083 Q091 Q051 Q056
0.005 Q098 Q097 Q052 Q056
0.010 Q148 Q109 Q057 Q060
0.025 Q369 Q176 Q087 Q106
0.050 Q676 Q397 Q194 Q268
0.075 Q845 0624 Q367 Q478
0.100 Q927 Q777 Q572 Q672
T =200 Q000 Q062 Q065 Q036 Q046
0.005 Q107 Q079 Q040 Q056
0.010 Q237 Q119 Q053 Q082
0.025 Q627 Q377 Q164 Q288
0.050 Q916 Q772 0564 Q734
0.075 Q987 Q940 Q0854 Q938
0.100 Q998 Q985 Q959 Q986
r=3 Co d=0 d=apo d=d; d=d,
T =100 Q000 Q074 Q094 Q024 Q072
0.005 Q125 Q102 Q026 Q096
0.010 Q0258 Q119 Q031 Q171
0.025 Q0636 Q0234 Q074 Q606
0.050 Q0883 Q0539 Q0219 Q915
0.075 Q962 Q760 Q340 Q972
0.100 Q985 Q0885 Q417 Q982
T =200 Q000 Q063 Q064 Q018 Q065
0.005 Q187 Q085 Q027 Q255
0.010 Q440 Q146 Q049 Q701
0.025 Q839 Q497 0226 Q995
0.050 Q979 Q879 Q447 1000
0.075 Q998 Q976 Q0539 1000
0.100 1000 Q996 Q579 1000
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NOTE
84

1. For exampleeven wherc; = 0.1, the third and fourth elements efare — ;5% and 3.
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APPENDIX

We use the notatiohl alternately for different definitions if there is no confusion

Proof of Theorem 1. First, note that we can replacﬁl and,B by ,81 andB in
(8), where 3, is the first n, rows of 8, becausefa’ = Ba’ and B,(B8'8) 18, =
B1(B'B)"1B;. The latter relation is established becagsis obtained by the nonsingular
transformation of the columns @ and3,(8'3) 18, does not depend on the normal-
ization of 8 and3,. We also define

B.=PB.—B(BB) BB, (A1)

whose columns span the orthogonal complemersptg), so that3, and3, span the
same column spac@&his |mp||es that3, can be obtained by the nonsmgular transfor-
mation of the columns of,. Then we can also replacg, by 3, in .

Under the null hypothesisk(3;) is f, and then am; X f matrix 8; exists with rank
f such thatsp(B1) = sp(B8;). We denote the orthogonal complemeni@pby 6*. That
is, 8* is anny X (ny — f) matrix with rank(n,; — f) such thatt*’'g; = 0

LEMMA 1.

() B>pa>ass
(i) T6"'By = T6™(B1 = B1) = 8"'BLa(BLBL) "(JGoGp ds) [ G, dV' = X,
say.
(i) T (BL BL) H —B(B'B) AV Gy(J G, Gy do) .
(iv) T7*B1S1B, > GGy ds.

Proof.

(i) Proved by Johanse1988 1995.

(i) As shown in Chapter 13 of Johanseri1995, 3 can be expressed @#s= 3 +
B, (B, B,) *U; for nontrending datawhere TU; converges in distribution to
(JGoG} ds) 1fG, dV'. BecauseB, is the firstn, rows of 3, we haveB, =
B1+ B.1(BLBL) Uy, so that

-1
To" By =To" By~ Bu) S 6*'&,1(131&)1( I ds) [eaav.

(iii) holds becaus& (B, — B1) = —B(B'B) (B — BYB.T = —B(B'B) H(TUr)
from (A.1).
(iv) is proved by noting thafl ~3;S,,8, N J GGy ds from Johanser(1988

1995, (B — B1) = Op(T 1), and Sy; = Oy(T).
Now, let us consider the determinant equati@® Note that(8) is equivalent to

[H|| 31931 — AD|[H| =0, (A.2)
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whereH = [B5,T6*] is ann X n nonsingular matrixUsing Lemma 1we have

— i BB L 1B (B16°T)
H'B,YB1H = 5\ o B N B s
(T67B)WB1 BT (T6"'B1)W(B167T)

(A.3)

o | Bi'BLYB1BL Bi'B1¥Xo
— .
XoWB1B1 XoWXo

To investigate the asymptotic behaviortéfdH, we conside® with the same expres-
sion as(9). Note that

Op(1) 0p(D)
Op(D)  T8"BL (BBt +0,(T)

H'[B1,BLa(BIB) ] = {

becauseB;’'f; > Bi'Bi, Bi'Bia > Bi'Bri, T8"B1 = Op(1), and T6*/B 1 =
T6"'B1,1 + 0p(T) by Lemma 1 Then AH'®H is asymptotically equivalent to

0 0
24

-1
0 8*,BL,1(BLBL)_1<fGOGé dS) (BJ’_BJ_)_lﬁJ’_,l‘S*

Then the equation(A.2) is asymptotically equal to

1B1VB1BT Bi'B1¥Xo
XoWB1B1 XoWXo

0 0

2

-1
0 a*'m,l(ﬁmﬁ_lg G0 ds) BB

= |1 B1YB1 BL| X | Xo{W — W1 B1(B1' B1YB1BY) BT B1¥}Xo

=0.

-1
- TZM*’BL,l(BiBL)l(fGoGé dS) (BLB.) *Bi 16"
(A.4)
Therefore the eigenvalueéfﬂ,...,?\p converge in probability to zeros and are of order
T2

Here notice thatin the same way as Johansg®88 p. 246), we can find arr X
(r = f) matrix J with rank (r — f) such that

IV =W — Wi BI(BY B1YBIBY) B BV, (A.5)
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with J’'(B8585) = 0 andJ’¥~1J = |, ¢, implying thatJ'(a’'S"*a)"1J = |,_; because
¥ = '3 la. Then because ;' B, ¥B; 85| # 0, (A.4) becomes

-1
XoJJd'Xo = TZAS*’BLJ(BLBL)*(IGOG& dS) (BLBL) *Bi18"| = 0. (A.6)
The variance matrix 0K}J conditioned orGy(-) is given by
-1
5*’&,1(&&)1([6066 d5> (BLBL) 'BLA8" @ 1. (A.7)

Noting thatsp(3,.1) must contairs* becausg 1, 3, 1] is of full row rankn; andsp(3;)
does not contaid*, we can see thal™ B, ; has full row rankn; — f irrespective of the
rank of B, 1, which is greater than; — f as explained in Remark As a resultwe can
see that the conditional variance matrixX¥J is nonsingulara.s.). Then by multiply-
ing the square root of the left-hand side(&f.7) from both sides ofA.6), the determi-
nant equation becomeé41) with j = n; — fandk = r — f, and thenT 2\ converges in
distribution to the solution of11). This proves Theorem.1 |

Proof of Theorem 2. The outline of the proof is the same as the proof of Theorem 1
and thus we omit details
Under the null hypothesisinn, X g matrix 8] ; exists such thagp(B;} ;) = sp(B1,1)

andrk(B} ;) = g, and we denote the orthogonal complemengto by n*. Consider
the following determinant equation

‘H'||BJ_,1{I}BJ,_,1_I1"I.’||H| =0, (A.8)

whereH = [B] ;,Tn*]. As in the previous proofwe replaced” by ~. Becauseg, ; is
the firstn, rows of 3,, we obtain using Lemma fiii ),

-1
To" B = T (B B S —n"Ba(88) " [ dVGé( [ ds) .

Then similar to the previous proofve can show thaT 24 converges in distribution to
a solution of(11) with j = n; — gandk = n —r — g. This proves Theorem.2 u

Proof of Theorems 3 and 4.Let 3* = [B',5]' andB* = [B',5]'. Exactly in the
same way as the proof of Lemma.23n Johansei(1995, we can show that

-1
diag{TB,, TY2}(B+ - B*) S (feg GJ’ds) feg dv,
whereGg = [Gg,1]'. Then because is the firstn rows of 3*, we have

-1
TB.(B—B) HL (fc;g Gg' ds) feg dv’, (A.9)

https://doi.org/10.1017/50266466605050188 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466605050188

322 ElJI KUROZUMI

whose conditional variance is given by (fGg Gg'ds) L ® (a’'S 'a) . Because
B =B+ B.(B.B.) 1B, B as expressed in Johans@®95 p. 179, we have

To" By = 6%BLa(BLA) TBL(B ~ B)
-1
8" BLA(BLR) L ( f Gy Ga'ds) f G dV"

We also havé’; Sf; Yy % [G¢ G¢’ ds which is proved as Lemma(iv), whereYr is Yy
with 3, replaced byB,. Then the theorems are proved similarly to Theorems 1 and 2
|

Proof of Theorem 5. For the case where< n — 1, we give the following lemma

LEMMA 2.

(i) 7 > yand 9, 2 y;, wherey = y — y, (7, y,) 29,y and 7, is the first n
rows ofy with y, =[8,7] andy, =[5, #].
(i) TY2(7 — 1) % CW(D).
@iy 01 % 01 where! is defined as)!! with 9 replaced byy.

Proof.

(i) Becausey, - y, andy/y = 0, ¥ converges in probability tg.
(ii) Proved by Johanse1995.
(i) LettingK =[B,T V2%, T 17], we have
T7'Sit 7 = (TY25'K) (K'Sy, K) H(TV2K'y).

From Lemma 1@ in Johanseri1999, T ~1[%, T ~Y27]'S;1[7, T ~Y27] converges in
distribution toQ wherea$3’'S;18 converges in probability to a positive definite mafrix
S, and[y, T~ Y27]'S;;8 = Op(1). Then

[R5, o}

K'S;K—= . A.10
Su . 0 (A10)

In addition we can see that

(B-B)yT] |,
— —UJ
(7 —7)'yT

8'y = _TB”YL(’?L'YL)717LY = _[B’B:O](T’i'h)l[
becausgd’'r = 0 and?’y = O,(T¥2). Using this resultwe have

TY25'K = [TY25'B(B'B) L7 y(y'y) LT V257 (r'7) 721 5 [0,1,,4,0].
(A.11)

From (A.10) and(A.11), O converges in distribution t@*2, u
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(i.a) Proved in the same way as Theorem 1
(i.b) In this casethe determinant equation becomes asymptotically equivalent to

B BLYBLBII| X IIX = T2A{8" y1(y'y) QM
X (y'y) Yy18* +128% r,(7'7)"%7]8*} = 0.
Note that in generalfor a given symmetric and positive definite matfand a vectob,
(A+bb)tT=A1-AThbA Y(1+ b’A 1), (A.12)
and then
c’'(A+bb)tc=c'Alc

for any nonzero vectorc. By substituting §*y,(y'y) Q¥ (y’y) y;8* and
N126*'7,(7'7)"1 for A andb, we obtain for a givenG(-),

tr(I'X{8* y1(y'y) TQ My y) Y1 8" +126% 7 (7'7) 211671 TX1)
= tr(I'X{8 "y, (y'y) QM (y'y) Hy187 X))
=1tr(X*X") = X(zr—f)(nrf), (A.13)

whereX* is an(r — f) X (n; — f) matrix with veqX*) ~ N(O, |, _¢yn,—r,). The equal-
ity is established if and only i*'7; = 0.

(i) Let us consider the determinant equati@n2) with H = [ 81, T8§, Tr;]. Using
Lemma 2 and by some algebthe determinant equation is shown to be asymptotically
equivalent to

B B ¥BL A1 — 12T 2A(7'7) 2 (71" 7)?|
X X{II Xy = T2A05 valy'y) MM (y'y) 1185 = 0.

This determinant equation implies that there anenzero eigenvaluep — f — 1 eigen-
values of ordeiT 2, and one eigenvalue of order smaller tHBn?. Then we can see
that

P p-1 g
Ly=T2 2 4=T2 2 A +0,(1) 5 x& -1

i=f+1 i=f+1

We can also show that, is of orderT? if we chooseH = [ 81,85, T¥?7;].
For the case whene= n — 1, the limiting distribution is derived similarly usin@3).
|
Proof of Corollary 1.

(i) Note that in general for a given positive definite matri, a vectorb, and a
matrix D,

D'A"'D = D’(A+ bb') 1D + D’Abb’A"1D/(1+ b’A~1h),
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where we used the relatiof\.12). By Theorem 9 of Magnus and Neudecker
(1988 p. 209, we can see that the— fth eigenvalue oD’A™1D is greater than
that of D’(A + bb’)"1D. Then by substitutings*' y,(y'y) Q¥ (y’y) 1y;8
\V126%'7y(r'7)"%, and X'J for A, b, andD, the limiting distribution ofT2A,, is
shown to be bounded above By, .o, becauseD’A™ID = X*X*' in this
case Note thatT 24, LN Nin.r—1,m,—¢ if @and only if 6*'7, = 0.

(i) is proved in Theorem @&i). n

Proof of Theorem 6. Let us defing3} ; andn™ as in the proof of Theorem.2
LEMMA 3.
(i) Tn*%1 % —n*B,(B'B)*U{ = Y', say, where

Vo=y1—via(¥ly) Wy withy, ;=[B1, 7l (A.14)
(i) Tn*# > 0.
Proof.

(i) Becausen*'y, = 0 andn™'7, = 0, we have using(A.14),

(B—=B)yT
Ty, =Tn" (¥1— v = —[n*’ﬁl,O](%n)‘l[ ]

(7 —7)yT
—n"'B(B'B) V.

ii) First, note that becauserl— (a1 Y&l i, 71 is invariant to each nor-

( Bll L BL e

malization of&, andg,. Then we can expres$; as7; = ,8l (@ T8 &) a.
From the expressiofA.1), we can see that

™ By = —n"BuB'B) (B~ B)YT.(B—B)7T]

—n"'B(B'B) UL [1, - 1,0]. (A.15)
We also havgefrom the definition ofr,
7’7 = [In—r—l’o](airﬁl)ilai:u“

Because the left-hand side is zero from the orthogonality betwesmnd r, the
firstn —r — 1 rows of(a| T8, ) *a] u are zeroThen because each estimator is
consistentwe have

[ln-r—1,0)(@ [B,) '@} o 0. (A.16)
Comblnlng (A.15) and (A.16), we obtain Tp*'#; = (Tn*'B,1)(& B,)* %
e 0.
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Similar to the proof of Theorem,2ve consider the same determinant equation as
(A.8). Using Lemma 3we have

™ [72,7] 5 [Y,0] = Y'S,
whereS; = [I,_,-1,0], and thepusing[ ¥4, 71] LN [v1,71] = B.1, (A.8) is expressed as
Y'S,JI'SY—T?an™B(B'B) Ha'2 a) H(B'B)'Bin*| =0, (A.17)

for large values ofT, where an(n — r) X (n — r — g) matrix J satisfiesJ'¥~1J =
In—r—g. Noting that the conditional variance 8fS,J is given by

N7 BB'B) 'S ) H(B'B) BT ® I'SI0MS Y,

the test statistic,  conditioned onG(-) converges in distribution to
tr(Y*J'S{0MS JY*) = tr(Y*' 31, Y), (A.18)
where ve€Y*) ~ N(0, |, —gn-r—g) andJ = [J;,J;]'. Because

IV = 30", +1200, =1, 4,

the limiting distribution(A.18) is bounded above by

(Y7 0L Y") = tr(Y¥ (M, +12353,)Y*) =tr(Y7'Y*). =
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