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Oblique liquid curtains with a large
Froude number

E. S. Benilov†

Department of Mathematics and Statistics, University of Limerick, Ireland V94 T9PX, Ireland

(Received 3 August 2018; revised 21 October 2018; accepted 9 November 2018;
first published online 19 December 2018)

This paper examines two-dimensional liquid curtains ejected at an angle to the
horizontal and affected by gravity and surface tension. The flow in the curtain is,
generally, sheared. The Froude number based on the injection velocity and the outlet’s
width is assumed large; as a result, the streamwise scale of the curtain exceeds its
thickness. A set of asymptotic equations for such (slender) curtains is derived and
its steady solutions are examined. It is shown that, if the surface tension exceeds
a certain threshold, the curtain – quite paradoxically – bends upwards, i.e. against
gravity. Once the flow reaches the height where its initial supply of kinetic energy
can take it, the curtain presumably breaks up and splashes down.

Key words: interfacial flows (free surface), jets, thin films

1. Introduction
Liquid curtains are used in the manufacturing of paper and similar industrial

processes. To produce paper, the pulp is ejected through a narrow horizontal slot
(outlet) and falls onto a conveyor belt, which carries it away. The productivity of this
process depends on the belt speed – which, clearly, cannot be increased without a
matching increase of the pulp ejection velocity and a change of the ejection angle.
This suggests a need for studying high-velocity, oblique curtains.

Industrial applications, however, are not the only motivation for the present work,
as liquid curtains have been part of classical fluid mechanics for almost 60 years –
since the experimental work by Brown (1961) and theoretical result by G. I. Taylor
(described in Brown’s paper as a private communication). Both examined vertical
curtains, as did all follow-up researchers (e.g. Finnicum, Weinstein & Ruschak 1993;
Li 1993, 1994; Ramos 1996; Roche et al. 2006; Dyson et al. 2009; Benilov, Barros &
O’Brien 2016; Lhuissier, Brunet & Dorbolo 2016). No attempt was made to examine
oblique curtains, whose curved trajectories make their dynamics different from that
of their vertical counterparts.

In this respect, oblique curtains have much in common with jets, so one could try
to borrow methodology developed for those, e.g. the slender-jet equations derived
by Wallwork (2001), Decent, King & Wallwork (2002) and Wallwork et al. (2002).
Those papers employed curvilinear coordinates linked to the jet’s centreline and
assumed them to be orthogonal – which they were not, as it turned out (Entov
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FIGURE 1. The setting: a liquid curtain is ejected from an outlet of width 2H. Coordinates
(x, z) are the Cartesian coordinates and (l, τ ) are the curvilinear orthogonal coordinates
associated with the curtain’s centreline.

& Yarin 1984; Shikhmurzaev & Sisoev 2017) – although the asymptotic equations
derived by Wallwork, Decent and collaborators still happened to be correct, as the
non-orthogonality of the coordinates for slender jets is weak (Decent et al. 2018).

For two-dimensional flows, however, the coordinates of Decent et al. (2002) and
Wallwork et al. (2002) are orthogonal – so, in principle, they could be used in
the present work. Still, a different approach will be employed: the (orthogonal)
coordinates will be sought together with the asymptotic solution of the Navier–Stokes
equations, i.e. the orthogonality condition will be treated as one of the governing
equations. The main advantage of this approach is that it can be readily extended to
three dimensions, providing for these a much simpler framework than that based on
non-orthogonal coordinates. In two dimensions, in turn, it has the added benefit of
making the coordinates preserve the elemental area and angles.

This paper has the following structure. In § 2, we formulate the problem and, in § 3,
derive asymptotic equations for curtains with a large Froude number. Steady solutions
of these equations are examined for the limits of high and low viscosity in §§ 4 and 5,
respectively. In § 6, the results obtained are summarised, discussed and expressed in
terms of measurable parameters.

2. Formulation of the problem

Consider an incompressible liquid (of density ρ, kinematic viscosity ν and surface
tension σ ) ejected from an infinitely long horizontal slot (outlet). Let the flow be
homogeneous in the along-the-outlet direction, i.e. depend on a single horizontal
variable x and the vertical coordinate z (see figure 1).

Consider a set of curvilinear coordinates (l, τ ) such that the Cartesian coordinates
are related to them by

x= x(l, τ , t), z= z(l, τ , t), (2.1a,b)

where t is the time. The curve τ = 0 is assumed to coincide with the curtain’s
centreline, and l on this curve is the centreline’s arc length – but other than that,
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330 E. S. Benilov

(l, τ ) are not related to the coordinates used in Decent et al. (2002), Wallwork et al.
(2002) and Shikhmurzaev & Sisoev (2017).

Let (l, τ ) be orthogonal and with a unit Jacobian, i.e.

∂x
∂l
∂x
∂τ
+
∂z
∂l
∂z
∂τ
= 0,

∂x
∂l
∂z
∂τ
−
∂x
∂τ

∂z
∂l
= 1. (2.2a,b)

Since (2.2) are not complemented with boundary conditions, they do not fix uniquely
the relationship of (x, z) to (l, τ ). One may choose the solution of (2.2) that makes
the forthcoming calculations simpler.

Let the flow be characterised by its pressure p and vector velocity u, and let the
components of the latter with respect to the curvilinear coordinates be us and uτ .
Introduce also so-called Lamé coefficients

hl =

√(
∂x
∂l

)2

+

(
∂z
∂l

)2

, hτ =

√(
∂x
∂τ

)2

+

(
∂z
∂τ

)2

. (2.3a,b)

Representing the gravitational force by −ρg∇z (g is the acceleration due to gravity),
one can write the Navier–Stokes equations in the form(

Du
Dt

)
l

+
1
ρhl

∂p
∂l
= ν(∇2u)l −

g
hl

∂z
∂l
,(

Du
Dt

)
τ

+
1
ρhτ

∂p
∂τ
= ν(∇2u)τ −

g
hτ

∂z
∂τ
,

 (2.4)

∂(ulhτ )
∂l
+
∂(uτhl)

∂τ
= 0, (2.5)

where the l- and τ -components of the material derivative and viscous term are(
Du
Dt

)
l

=
∂ul

∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)](
∂ul

∂l
+

uτ
hτ

∂hl

∂τ

)
+

1
hτ

[
uτ −

1
hτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)]
∂ul

∂τ
−

u2
τ

hlhτ

∂hτ
∂l

+
uτ

hlhτ

[
∂x
∂l

∂2x
∂t ∂τ

+
∂z
∂l

∂2z
∂t ∂τ

−
1
h2
τ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)(
∂x
∂l
∂2x
∂τ 2
+
∂z
∂l
∂2z
∂τ 2

)]
,

(2.6)(
Du
Dt

)
τ

=
∂uτ
∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)]
∂uτ
∂l

+
1
hτ

[
uτ −

1
hτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)](
∂uτ
∂τ
+

ul

hl

∂hτ
∂l

)
−

u2
l

hlhτ

∂hl

∂τ

+
ul

hlhτ

[
∂x
∂τ

∂2x
∂t ∂l
+
∂z
∂τ

∂2z
∂t ∂l
−

1
h2

l

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)(
∂x
∂τ

∂2x
∂l2
+
∂z
∂τ

∂2z
∂l2

)]
,

(2.7)

(∇2u)l =
1
hl

∂

∂l

{
1

hlhτ

[
∂(ulhτ )
∂l
+
∂(uτhl)

∂τ

]}
+

1
hτ

∂

∂τ

{
1

hlhτ

[
∂(ulhl)

∂τ
−
∂(uτhτ )
∂l

]}
,

(2.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.925


Oblique liquid curtains with a large Froude number 331

(∇2u)τ =
1
hτ

∂

∂τ

{
1

hτhl

[
∂(ulhτ )
∂l
+
∂(uτhl)

∂τ

]}
+

1
hl

∂

∂l

{
1

hτhl

[
∂(uτhτ )
∂l

−
∂(ulhl)

∂τ

]}
.

(2.9)
Expressions (2.8) and (2.9) can be found in most fluid mechanics texts (e.g. Kochin,
Kibel & Roze 1964), whereas (2.6) and (2.7) comprise the standard expressions
derived for curvilinear coordinates plus extra terms due to the dependence of the
coordinates on t (see appendix A).

Let the liquid be bounded by two free surfaces described by equations f±(l, τ , t)= 0.
Then, the boundary conditions for the Navier–Stokes equations are

∂f±
∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)]
∂f±
∂l

+
1
hτ

[
uτ −

1
hτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)]
∂f±
∂τ
= 0 if f± = 0, (2.10)

[
ρν

(
1
hl

∂ul

∂l
+

uτ
hlhτ

∂hl

∂τ

)
− p+ σc±

]
1
hl

∂f±
∂l

+ ρν

[
hl

hτ

∂

∂τ

(
ul

hl

)
+

hτ
hl

∂

∂l

(
uτ
hτ

)]
1
hτ

∂f±
∂τ
= 0 if f± = 0, (2.11)

ρν

[
hl

hτ

∂

∂τ

(
ul

hl

)
+

hτ
hl

∂

∂l

(
uτ
hτ

)]
1
hl

∂f±
∂l

+

[
ρν

(
1
hτ

∂uτ
∂τ
+

ul

hlhτ

∂hτ
∂l

)
− p+ σc±

]
1
hτ

∂f±
∂τ
= 0 if f± = 0, (2.12)

where the curvature of the free surfaces is

c± =
1

hlhτ

∂

∂l


hτ
hl

∂f±
∂l√(

1
hl

∂f±
∂l

)2

+

(
1
hτ

∂f±
∂τ

)2

+ 1
hlhτ

∂

∂τ


hl

hτ

∂f±
∂τ√(

1
hl

∂f±
∂l

)2

+

(
1
hτ

∂f±
∂τ

)2

 .
(2.13)

Equation (2.10) is the usual free-boundary kinematic condition, and (2.11) and (2.12)
are equivalent to the standard dynamic conditions (e.g. Benilov, Lapin & O’Brien
2011). Expression (2.13) has been obtained through the usual formula c=∇ ·n, where
n is the unit normal. Note that (2.13) implies that

f± < 0 in the region occupied by the liquid. (2.14)

Subject to specific expressions for x(l, τ , t) and z(l, τ , t) (satisfying (2.2)) and a
suitable boundary condition at the outlet, the boundary-value problem (2.4)–(2.13)
fully determines the evolution of p, ul, uτ and f±.

Note that, despite the intimidating size of the exact equations, the asymptotic ones
turn out to be compact.
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3. Asymptotic analysis
3.1. The scaling

Consider a slender liquid curtain, i.e. such that the streamwise spatial scale L exceeds
the cross-stream scale H (the latter can be identified with, say, half of the outlet’s
width). Since the curvature of an oblique curtain is determined by gravity, let

L=
U2

g
, (3.1)

where U is the velocity scale. Then, the slenderness requirement is ε� 1, where

ε=
gH
U2

(3.2)

is the reciprocal of the Froude number.
One would also be tempted to assume that, due to the slenderness, the streamwise

velocity ul exceeds its cross-stream counterpart uτ – but this is true only for stationary
curtains. For evolving ones, the motion of the curtain as a whole can make uτ be
comparable to ul.

It is still possible to take advantage of the asymmetry between the streamwise and
cross-stream directions by representing (ul,uτ ) as the sum of the curtain’s velocity and
the relative velocity (ûl, ûτ ). To find the former, recall that, since the coordinates (x, z)
are associated with the curtain, its velocity can be approximated by v= (∂x/∂t, ∂z/∂t)
– as seen later, v changes weakly in the cross-stream direction and, thus, can be
identified with the velocity of the centreline. Using the standard expressions for the
unit vectors corresponding to l and τ , one can separate in v the streamwise and
cross-stream components, and then set

ul =
1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)
+ ûl, (3.3)

uτ =
1
hτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)
+ ûτ . (3.4)

As shown later, the two terms on the right-hand side of (3.3) are comparable, making
this substitution optional – but it makes the forthcoming asymptotic equations simpler.
Substitution (3.4), in turn, is crucial, as the first term on its right-hand side will be
shown to exceed the second term by an order of magnitude.

The following non-dimensional variables (marked with the subscript nd) will be
used:

l= L lnd, τ =H τnd, t= T tnd, (3.5a−c)

ul =U(ul)nd, ûl =U(ûl)nd, uτ =U(uτ )nd, ûτ =
UH
L
(ûτ )nd, (3.6a−d)

p= P pnd, f± =H( f±)nd, c± =
1
L
(c±)nd, (3.7a−c)

x= L xnd, z= L znd, hl = (hl)nd, hτ = (hτ )nd, (3.8a−d)(
Du
Dt

)
l

=
U
T

[(
∂u
∂t

)
l

]
nd

,

(
Du
Dt

)
τ

=
U
T

[(
∂u
∂t

)
τ

]
nd

, (3.9a,b)
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(∇2u)l =
U
H2

[
(∇2u)l

]
nd , (∇2u)τ =

U
HL
[(∇2u)τ ]nd, (3.10a,b)

where L is defined by (3.1) and the time and pressure scales are, respectively,
kinematic and hydrostatic, i.e.

T =
L
U
, P= ρgH. (3.11a,b)

Substituting (3.5)–(3.11), (3.1) into (2.2)–(2.13), (3.3)–(3.4) and omitting the subscript
nd, one obtains

∂x
∂l
∂x
∂τ
+
∂z
∂l
∂z
∂τ
= 0,

∂x
∂l
∂z
∂τ
−
∂x
∂τ

∂z
∂l
= ε, (3.12a,b)

hl =

√(
∂x
∂l

)2

+

(
∂z
∂l

)2

, hτ =
1
ε

√(
∂x
∂τ

)2

+

(
∂z
∂τ

)2

, (3.13a,b)(
Du
Dt

)
l

+
ε

hl

∂p
∂l
=µ(∇2u)l −

1
hl

∂z
∂l
,(

Du
Dt

)
τ

+
1
hτ

∂p
∂τ
= εµ(∇2u)τ −

1
εhτ

∂z
∂τ
,

 (3.14)

∂(ulhτ )
∂l
+

1
ε

∂(uτhl)

∂τ
= 0, (3.15)

(
Du
Dt

)
l

=
∂ul

∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)](
∂ul

∂l
+

uτ
εhτ

∂hl

∂τ

)
+

1
εhτ

[
uτ −

1
εhτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)]
∂ul

∂τ
−

u2
τ

hlhτ

∂hτ
∂l

+
uτ

hlhτ

[
1
ε

(
∂x
∂l

∂2x
∂t ∂τ

+
∂z
∂l

∂2z
∂t ∂τ

)
−

1
ε3h2

τ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)
×

(
∂x
∂l
∂2x
∂τ 2
+
∂z
∂l
∂2z
∂τ 2

)]
, (3.16)

(
Du
Dt

)
τ

=
∂uτ
∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)]
∂uτ
∂l

+
1
hτ

[
uτ −

1
εhτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)](
1
ε

∂uτ
∂τ
+

ul

hl

∂hτ
∂l

)
−

u2
l

εhlhτ

∂hl

∂τ

+

[
1
ε

(
∂x
∂τ

∂2x
∂t ∂l
+
∂z
∂τ

∂2z
∂t ∂l

)
−

1
εh2

l

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)
×

(
∂x
∂τ

∂2x
∂l2
+
∂z
∂τ

∂2z
∂l2

)]
, (3.17)

(∇2u)l=
1
hl

∂

∂l

{
1

hlhτ

[
ε2 ∂(ulhτ )

∂l
+ ε

∂(uτhl)

∂τ

]}
+

1
hτ

∂

∂τ

{
1

hlhτ

[
∂(ulhl)

∂τ
− ε

∂(uτhτ )
∂l

]}
,

(3.18)
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(∇2u)τ =
1
hτ

∂

∂τ

{
1

hτhl

[
∂(ulhτ )
∂l
+

1
ε

∂(uτhl)

∂τ

]}
+

1
hl

∂

∂l

{
1

hτhl

[
ε
∂(uτhτ )
∂l

−
∂(ulhl)

∂τ

]}
,

(3.19)

∂f±
∂t
+

1
hl

[
ul −

1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)]
∂f±
∂l

+
1
εhτ

[
uτ −

1
εhτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)]
∂f±
∂τ
= 0 if f± = 0, (3.20)

ε

[
ε

(
1
hl

∂ul

∂l
+

uτ
hlhτ

∂hl

∂τ

)
−

p− γ c±
µ

]
1
hl

∂f±
∂l

+

[
hl

hτ

∂

∂τ

(
ul

hl

)
+
ε2hτ

hl

∂

∂l

(
uτ
hτ

)]
1
hτ

∂f±
∂τ
= 0 if f± = 0, (3.21)

ε

[
hl

hτ

∂

∂τ

(
ul

hl

)
+
ε2hτ

hl

∂

∂l

(
uτ
hτ

)]
1
hl

∂f±
∂l

+

[
ε

(
1
hτ

∂uτ
∂τ
+

ul

hlhτ

∂hτ
∂l

)
−

p− γ c±
µ

]
1
hτ

∂f±
∂τ
= 0 if f± = 0, (3.22)

εc± =
ε2

hlhτ

∂

∂l


hτ
hl

∂f±
∂l√

ε2

(
1
hl

∂f±
∂l

)2

+

(
1
hτ

∂f±
∂τ

)2



+
1

hlhτ

∂

∂τ


hl

hτ

∂f±
∂τ√

ε2

(
1
hl

∂f±
∂l

)2

+

(
1
hτ

∂f±
∂τ

)2

 , (3.23)

ul =
1
hl

(
∂x
∂l
∂x
∂t
+
∂z
∂l
∂z
∂t

)
+ ûl, uτ =

1
εhτ

(
∂x
∂τ

∂x
∂t
+
∂z
∂τ

∂z
∂t

)
+ εûτ , (3.24a,b)

where ε is defined by (3.2) and

µ=
νU
gH2

, γ =
σ

ρHU2
. (3.25a,b)

Note that γ is the reciprocal of the Weber number and µ is the reciprocal of the
reduced Reynolds number (the latter is discussed in detail in § 3.5).

It turns out that the most general characteristic limit is

γ =O(1), µ=O(1) as ε→ 0. (3.26a,b)

The cases where γ and/or µ are large and/or small result in asymptotic equations that
can be obtained by adapting the general case to the corresponding limit.
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3.2. How should the curvilinear coordinates be chosen?
The approximation of a slender curtain corresponds to expanding the solution of (3.12)
in powers of the cross-stream variable, i.e.

x=
∞∑

n=0

(ετ )nx(n)(l, t), z=
∞∑

n=0

(ετ )nz(n)(l, t). (3.27a,b)

Observe that the leading terms of these expansions satisfy (3.12) identically – hence,
x(0)(l, t) and x(0)(l, t) can be chosen at will. In the next two orders, equations (3.12)
yield equations for x(1), z(1), x(2) and z(2):

∂x(0)

∂l
x(1) +

∂z(0)

∂l
z(1) = 0,

∂x(0)

∂l
z(1) −

∂z(0)

∂l
x(1) = 1,

 (3.28)

∂x(0)

∂l
x(2) +

∂z(0)

∂l
z(2) =−

∂x(1)

∂l
x(1)

2
−
∂z(1)

∂l
z(1)

2
,

∂x(0)

∂l
z(2) −

∂z(0)

∂l
x(2) =−

∂x(1)

∂l
z(1)

2
+
∂z(1)

∂l
x(1)

2
.

 (3.29)

It turns out that the most convenient choice for x(0) and z(0) is such that

∂x(0)

∂l
= cos α,

∂z(0)

∂l
= sin α, (3.30a,b)

where, physically, α(l, t) is the local angle between the curtain’s centreline and the
horizontal.

Given (3.31), equations (3.28)–(3.29) yield

x(1) =−sinα, z(1) = cos α, (3.31a,b)

x(2) =−
1
2
∂α

∂l
sin α, z(2) =

1
2
∂α

∂l
cos α, (3.32a,b)

and expressions (3.2) yield

hl = 1− ετ
∂α

∂l
+O(ε2), hτ = 1+ ετ

∂α

∂l
+O(ε2). (3.33a,b)

3.3. The asymptotic equations
The simplest choice for f± – such that it satisfies requirement (2.14) – is

f±(l, τ , t)=±[τ − τ±(l, t)], (3.34)

where τ±(l, t) are the new unknowns.
Now, substitute expansions (3.27) into (3.14)–(3.24), take into account (3.31)–(3.34)

and take the limit ε→ 0. After straightforward algebra, one obtains (small terms, hats
and the superscript (0) omitted)

∂ul

∂t
+ ul

∂ul

∂l
+ uτ

∂ul

∂τ
=µ

∂2ul

∂τ 2
− sin α −

∂2x
∂t2

cos α −
∂2z
∂t2

sin α, (3.35)
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2
∂α

∂t
ul +

∂α

∂l
u2

l +
∂p
∂τ
=− cos α +

∂2x
∂t2

sin α −
∂2z
∂t2

cos α, (3.36)

∂ul

∂l
+
∂uτ
∂τ
= 0, (3.37)

∂τ±

∂t
+ ul

∂τ±

∂l
− uτ = 0 if τ = τ±, (3.38)

∂ul

∂τ
= 0 if τ = τ±, (3.39)

p=∓γ
∂α

∂l
if τ = τ±. (3.40)

Finally, omit the superscript (0) from (3.31):

∂x
∂l
= cos α,

∂z
∂l
= sin α. (3.41a,b)

Equations (3.35)–(3.41) form the desired asymptotic set.

3.4. Discussion
(1) To better understand the effects governing slender curtains, one needs to identify

the physical meaning of the terms in the equations derived. While doing so, keep
in mind that the coordinate system (l, τ ) depends on t and, thus, is non-inertial.

(i) The terms involving ∂2x/∂2t and ∂2z/∂2t in (3.35)–(3.36) describe the force
of inertia due to the curtain’s linear acceleration as a whole.

(ii) The first term in (3.36) describes the Coriolis force, with ∂α/∂t being the
local angular velocity of the curtain’s rotation as a whole. Note that a similar
Coriolis term does not appear in (3.35) because the cross-stream velocity is
much smaller than the streamwise one.

(iii) The second term in (3.36) describes the centripetal acceleration of liquid
particles, with ∂α/∂l being the curtain’s local curvature.

(iv) The terms involving sin α in (3.35) and cos α in (3.36) describe gravity.
(v) As follows from the boundary condition (3.40), the capillary force depends

only on the centreline’s curvature – as the approximation of a slender curtain
makes the curvature of its boundaries be negligible.

(2) Observe that the pressure has dropped out from the streamwise equation (3.36).
This allows one to eliminate it altogether – by integrating (3.36) with respect
to τ over (τ−, τ+) and taking into account the boundary condition (3.40), which
yields

2
∂α

∂t

∫ τ+

τ−

ul dτ +
∂α

∂l

(∫ τ+

τ−

u2
l dτ − 2γ

)
= (τ+ − τ−)

(
−cosα +

∂2x
∂t2

sin α −
∂2z
∂t2

cos α
)
. (3.42)

This equation governs α(l, t), and it will be used instead of (3.36) and (3.40).

The physical meaning of the terms in (3.42) indicates that the curtain’s trajectory is
determined by the Coriolis force, centripetal acceleration, surface tension, gravity and
force of inertia.
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3.5. The boundary conditions at the outlet
Note that the asymptotic set (3.35)–(3.41) is inapplicable to the small region near
the outlet, where the streamwise and cross-stream scales are both comparable to H.
The solution in this region is, generally, difficult to find due to the absence of small
parameters – which is unfortunate, as the flow ‘exiting’ from it supplies the ‘entrance’
boundary condition for the asymptotic set.

One can safely assume, however, that, once the flow has emerged from the outlet,
it begins to homogenise in the cross-stream direction due to viscosity – and, after
a certain distance Lh, turns into a plug flow. This implies the following boundary
condition for the asymptotic set:

ul = 1, uτ = 0 at τ ∈ [−1, 1]. (3.43a,b)

This condition is applicable only if the homogenisation occurs faster than the
dynamics described by the asymptotic model derived, i.e. if Lh is much smaller
than the asymptotic scale L. Estimating that Lh ∼ H Re (Tillett 1968), with the
Reynolds number given by

Re=
UH
ν
, (3.44)

and recalling definition (3.1) of L, one can see that (3.43) is applicable if

µ� 1, (3.45)

where µ is defined by (3.25).
Next, consider the limit of high Reynolds number, Re � 1, in which case the

emerging flow is very close to the Poiseuille profile and remains so within a long
distance from the outlet (Tillett 1968; Khayat 2014). This implies the following
boundary condition for the asymptotic set:

ul =
3
2(1− τ

2), uτ = 0 at τ ∈ [−1, 1], (3.46a,b)

where the coefficient 3/2 was included to make the non-dimensional flow rate equal
that for the plug flow (3.43).

To clarify when (3.46) applies, note that µ= 1/(ε Re), so that the condition Re� 1
corresponds to

µ� ε−1. (3.47)

Observe that the applicability conditions (3.45) and (3.47) overlap in the region

1�µ� ε−1. (3.48)

This seems to suggest that, for range (3.48), two different boundary conditions can
be used – and, in a sense, they can. Since µ is large in this range, the viscosity
term dominates the asymptotic equation (3.35) – hence, for any boundary condition
whatsoever, the flow homogenises within a short distance from the outlet. One
can just as well assume that the flow was homogeneous from the start, i.e. use
condition (3.43).
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4. Steady curtains: the high-viscosity limit
Consider steady curtains with µ� 1, which will be referred to as the high-viscosity

limit. Due to the homogeneity of the boundary condition (3.43), the whole flow is
homogeneous in the cross-stream direction – which suggests the following substitution:

ul(l, τ , t)= u(l), uτ (l, τ , t)=w(l)− τ
∂u(l)
∂l

,

x(l, t)= x(l), z(l, t)= z(l).

 (4.1)

Observe that this ansatz eliminates the viscous term in (3.35) – i.e. once the flow
was homogenised in the near-outlet region, viscosity has no effect on the solution
elsewhere.

Substituting (4.1) into (3.35), (3.37)–(3.39), (3.41)–(3.42), eliminating w(l) by
subtracting (3.38)− from (3.38)+ and omitting the subscript l, one obtains

u
du
dl
=− sin α, (4.2)

d(uW)
dl
= 0, (4.3)

dx
dl
= cos α, (4.4)

dz
dl
= sin α, (4.5)

(2γ −Wu2)
dα
dl
=W cos α, (4.6)

where W = τ+ − τ− is the curtain’s thickness.
Let the origin of the Cartesian coordinates be the middle point of the outlet, and

the outlet’s boundaries be at τ± =±1, i.e.

x= 0, z= 0 at l= 0, (4.7a,b)

W = 2 at l= 0, (4.8)

and assume that the curtain is ejected from the outlet at an angle α0,

α = α0 at l= 0, (4.9)

where α0 > 0 corresponds to an initially upward flow.
Equations (4.2)–(4.6) and boundary conditions (3.43), (4.7)–(4.9) fully determine u,

W, x, z and α.

4.1. Upwards-bending curtains
The above boundary-value problem has a highly counterintuitive property: if

γ > 1
2 Wu2, (4.10)

it follows from (4.6) that
dα
dl
> 0, (4.11)

i.e. the curtain bends upwards (against the effect of gravity)!
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Furthermore, disregarding the trivial case of vertical curtains, one can show that
the dynamics of an oblique curtain depends on whether (4.10) holds at the outlet.
Substituting thus the boundary conditions (3.43), (4.8) into (4.10), one obtains

γ > 1. (4.12)

If (4.12) holds, the right-hand side of (4.6) always remains positive (see appendix B),
and the curtain bends upwards. (Here and hereinafter, the word ‘bend’ is used
when referring to the curtain’s curvature, with the word ‘turn’ implying a change
of direction (up to down and vice versa).) In fact, even if it is initially ejected
downwards (α0 ∈ (−1/2π, 0)), it will eventually turn upwards.

To find out what happens after that, one should use (4.5) to replace sin α with
dz/dl in (4.2), integrate this equation, as well as (4.3), with respect to l, and use the
boundary conditions (4.7)–(4.8) to obtain

u=
√

1− 2z, W =
2

√
1− 2z

. (4.13a,b)

Thus,
(a) at zmax = 1/2, the velocity of the curtain vanishes, so it ‘stops’;
(b) as z→ zmax, the curtain’s thickness tends to infinity.
To interpret result (a) physically, recall that, in the case under consideration, the

flow is not sheared – hence, viscosity is not a factor, and the energy is conserved.
This makes zmax the height to which the liquid particles can climb given their initial
supply of (non-dimensional) kinetic energy.

Result (b), in turn, violates the approximation of slender curtains – hence, the
solution obtained cannot be trusted near the stoppage point. Still, the general tendency
of a rising curtain to become thicker can be trusted; one can also assume that, having
reached zmax, the curtain breaks up and splashes down (similar to a jet directed
vertically upwards).

To illustrate the above conclusions, use (4.12) to reduce (4.6) to

dα
dl
=

cos α
(γ −

√
1− 2z)

√
1− 2z

. (4.14)

Equations (4.4)–(4.5), (4.14) were solved numerically with the boundary conditions
(4.7), (4.9), for various values of γ and α0. Some of these solutions are shown
in figure 2: one can see that, as γ → 1−, the curtain bends increasingly steeply
downwards and, in the limit γ → 1+, upwards.

4.2. Discussion
Given the highly counterintuitive nature of upwards-bending curtains, the reader may
not help but think that they arise due to a sign error in the equations derived. To this
end, it should be reassuring to show that these equations also admit solutions with
a clear physical interpretation – and even more so, since they happen to clarify the
physics of the upwards-bending curtains.

(1) Without surface tension, the trajectory of a curtain should coincide with that of
a free-falling object launched with a unit velocity, at an angle α0.

To show this, set γ = 0 in (4.6) and use (4.3) to rewrite it in terms of x instead
of l. Doing the same with (4.5) and taking into account (4.13a,b), one obtains

dz
dx
= tan α,

dα
dx
=

1
2z− 1

. (4.15a,b)
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FIGURE 2. Steady curtains under high viscosity. The curves are marked with the
corresponding value of the capillary parameter γ (the threshold value of γ separating
upwards- and downwards-bending curtains is γ = 1). In all cases, α0 =−(1/4)π.

It can be verified by substitution that these equations and the boundary conditions
(4.7), (4.9) are satisfied if

z= x tan α0 −
x2

2 cos2 α0
, cos α =

cos α0
√

1− 2z
. (4.16a,b)

These equalities do describe the trajectory of a free-falling object.
(2) For curtains falling vertically (α =−1/2π), equation (4.2) becomes

u
du
dl
= 1. (4.17)

To compare this equation with that of G. I. Taylor (see the appendix in Brown (1961)),
rewrite the latter in terms of the present paper’s variables, which yields

u
du
dl
− 1= 4µε2u

d
dl

(
1
u

du
dl

)
. (4.18)

This equation and (4.17) agree if ε� 1 (which is indeed the applicability condition
of the latter).

(3) Our asymptotic equations admit a solution describing a free-falling liquid sheet.
It is described by a modification of ansatz (4.1), where the expression for z is replaced
by

z(l, t)= z(l)− 1
2 t2. (4.19)

Substituting the modified ansatz into (3.35), (3.37)–(3.39), (3.41)–(3.42) and
disregarding the boundary conditions at the outlet, one obtains

u
du
dl
= 0,

d(Wu)
dl
= 0, (2γ −Wu2)

dα
dl
= 0. (4.20a−c)

Thus, u and W are constants and, if dα/dl 6= 0 (non-zero curvature), then

Wu2
= 2γ . (4.21)
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This equation shows that the centripetal acceleration associated with the flow’s
curvature matches the capillary pressure difference between the sheet’s convex
and concave boundaries (the latter pressure is sub-atmospheric, the former is
super-atmospheric). Since the centripetal acceleration and pressure difference are
both proportional to the curvature, dα/dl cancels from condition (4.21) of their
balance.

As α is not restricted by the leading-order equations, one should assume that it is
determined by higher-order effects. There is one particular case, however, where a two-
dimensional non-sheared flow bounded by capillary surfaces can be safely conjectured
to be steady in all orders: when these surfaces are circular, i.e.

α(l)=
l
R

(4.22)

(in a three-dimensional case, the steady shape would be spherical). Substitution of
(4.22) into (4.4)–(4.5) yields a circular trajectory of radius R,

x(l)= R sin
l
R
, z(l)=−R cos

l
R
. (4.23a,b)

Together with (4.19), these equalities describe a two-dimensional free-falling ‘liquid
ring’. It is probably unstable with respect to three-dimensional (axial) perturbations,
but this is unimportant. What matters is that the convex/concave capillary pressure
difference can support a steady curved flow.

The same pressure difference can support upwards-bending curtains (if it is
sufficiently strong, of course).

(4) Perhaps the most convincing argument supporting the present results follows
from the fact that similar solutions have been also found for slender jets with a nearly
circular cross-section by Wallwork (2001). It was shown that, under the assumption
of a plug flow, the condition of existence of steady upwards-bending jets is

γ > Ru2, (4.24)

where R(l) is the jet’s radius. Unfortunately, this condition also makes the Plateau–
Rayleigh instability so strong that the jet breaks up just outside the outlet, at a distance
comparable to the jet’s radius. This is probably why upwards-bending jets have never
been observed in experiments.

Note that the Plateau–Rayleigh instability affects only flows with cylindrical
geometry, so liquid curtains are not subject to this kind of instability.

5. Steady curtains: the low-viscosity limit
Assume that µ � 1, so that the viscosity term in (3.35) can be omitted. This

assumption will be referred to as the low-viscosity limit.
Even though the flow’s cross-stream profile is not homogeneous in this case (due to

the sheared boundary condition (3.46) at the outlet), the governing equation can still
be reduced to a simple set of ordinary differential equations in l.

To do so, one should use the so-called semi-Lagrangian variables. They were
put forward by Odulo (1979) in his study of shallow-water equations with rotation,
and later used for various shallow-water/slender-flow problems (e.g. Zakharov 1981;
Benilov 1995, 2015). These variables are called ‘semi’ because only the cross-stream
Eulerian coordinate is replaced with a Lagrangian marker, whereas the streamwise
coordinate remains Eulerian.
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5.1. A semi-Lagrangian form of the asymptotic equations
Introduce new variables (lnew, ξ , tnew) related to the Eulerian coordinates (l, τ , t) by

l= lnew, τ = τ(lnew, ξ , tnew), t= tnew, (5.1a−c)

where τ(lnew, ξ , tnew) satisfies (the subscript new omitted)

∂τ

∂t
+ ul

∂τ

∂x
− uτ = 0, (5.2)

τ = τ± if ξ =±1. (5.3)

Physically, ξ is the Lagrangian marker corresponding to the Eulerian coordinate τ .
Note that conditions (5.3) map the curtain’s free boundaries onto fixed straight lines
ξ =±1, and that (3.38) follows from (5.2) evaluated at ξ =±1 – so the former can
be omitted.

Introduce also
η=

∂τ

∂ξ
, (5.4)

which describes the liquid’s stretching in the cross-stream direction.
Further technical details will be skipped (but can be looked up in Benilov 2015).

Omitting the subscripts new and l, one can rewrite (3.35), (3.37), (3.39) and (3.41)–
(3.42) in the form

∂u
∂t
+ u

∂u
∂l
=
µ

η

∂

∂ξ

(
1
η

∂u
∂ξ

)
− sin α −

∂2x
∂t2

cos α −
∂2z
∂t2

sin α, (5.5)

∂η

∂t
+
∂ (uη)
∂l
= 0, (5.6)

∂u
∂ξ
= 0 if ξ =±1, (5.7)

∂x
∂l
= cos α,

∂z
∂l
= sin α, (5.8a,b)

2
∂α

∂t

∫ 1

−1
uη dξ +

∂α

∂l

(∫ 1

−1
u2η dξ − 2γ

)
=W

(
−cosα +

∂2x
∂t2

sin α −
∂2z
∂t2

cos α
)
,

(5.9)
where

W =
∫ 1

−1
η dξ (5.10)

is, as before, the curtain’s thickness. Observe that the cross-stream velocity uτ has
been eliminated, or rather replaced with η.

Note that set (5.5)–(5.10) can only be used if the flow does not have stagnation
points (where the Jacobian of the Eulerian-to-semi-Lagrangian transformation becomes
infinite).

To formulate a boundary condition for η, let the Lagrangian markers of the particles
passing through the outlet coincide with their cross-stream coordinates, i.e. ξ = τ at
l= 0, so definition (5.4) of η yields

η= 1 at l= 0. (5.11)

The boundary conditions for x, z and α remain as given by (4.7) and (4.9), whereas
that for u is given by (3.46) with subscript l omitted and τ changed to ξ , i.e.

u= 3
2(1− ξ

2) at l= 0. (5.12)
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FIGURE 3. Comparison of steady curtains under high (solid line) and low (dotted line)
viscosity. The downwards- and upwards-bending curtains correspond to γ = 0 and γ = 2,
respectively. In all cases, α0 =−(1/4)π.

5.2. Steady curtains
With the viscous term omitted, equations (5.5)–(5.10), (4.7)–(4.9), (5.11)–(5.12) admit
the following steady solution:

u=
√

9
4(1− ξ

2)2 − 2z, η=

3
2(1− ξ

2)

u
, (5.13a,b)

and α(l) satisfies
dα
dl
= F(z) cos α, (5.14)

where

F(z)=

∫ 1

−1

3
2(1− ξ

2)√
9
4(1− ξ

2)2 − 2z
dξ

2γ −
∫ 1

−1

3
2(1− ξ

2)

√
9
4(1− ξ

2)2 − 2z dξ
. (5.15)

The downwards-bending curtains described by the low-viscosity set (5.8), (5.14)–(5.15)
are qualitatively similar to their high-viscosity counterparts, except that the latter bend
steeper, and thus fall shorter, than the former (see figure 3).

If γ > 6/5, low-viscosity curtains bend upwards. Unlike their high-viscosity
counterparts, they all ‘terminate’ at z = 0 (see figure 3). This is due to the fact
that low-viscosity curtains are sheared, with the slowest particles (at the curtain’s
boundaries) having zero velocity at the point of ejection. As a result, these particles
cannot climb to a greater height than that of the outlet, and the corresponding
streamlines end with stagnation points located at z= 0.

Mathematically, expression (5.15) for F(z) becomes complex for z > 0, as the
semi-Lagrangian variables fail due to the stagnation points at z = 0. This failure is
of little importance, however, as stagnation points make the flow locally unstable
(e.g. Friedlander & Vishik 1991; Lifschitz 1991; Leblanc 1997). As a result, inviscid
upwards-bending curtains break up at z= 0 and do not reach higher.
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5.3. Discussion
(1) Thus, curtains with high and low viscosity differ only by the cross-sectional
profile of the velocity: a plug flow for the former and Poiseuille flow for the latter.
Interestingly, neither kind of curtains is affected by viscosity: due to the (almost
homogeneous) velocity field in the former and the (weak) viscosity in the latter –
different reasons, but the same result.

Given the above, it may be sensible to rename the high- and low-viscosity limits
as the plug-flow and Poiseuille-flow limits, respectively.

(2) Note that, even though the analysis of Tillett (1968) suggests that the
homogenisation length Lh is proportional to H Re, the coefficient of proportionality can
be small. For jets, for example, the surface velocity reaches 50 % of the centreline
velocity after a distance of only Lh ∼ 0.04 H Re (see Goren 1966; Sevilla 2011,
figure 2b).

If the same is true for curtains, this would severely reduce the region of applicability
of the Poiseuille-flow limit and, at the same time, expand that of the plug-flow one.

6. Summary and concluding remarks
The two main results of this paper are as follows. First, an asymptotic set (3.35),

(3.37)–(3.39), (3.41a,b)–(3.42) has been derived for two-dimensional liquid curtains
with a large Froude number. It was shown that, depending on how strong is the
viscosity, the set is to be solved with either the plug-flow or Poiseuille-flow boundary
conditions (see § 3.5).

Second, the equations derived were used to examine steady curtains in the limits of
high and low viscosity. For both cases, similar results were obtained: if the reciprocal
of the Weber number exceeds a certain threshold, the curtain bends upwards, i.e.
against gravity. In dimensional terms, this occurs when the surface tension exceeds
half of the momentum flux passing through the outlet, i.e.

σ >
ρ

2

∫ H

−H
u2(z) dz. (6.1)

For any given σ , one can force (6.1) to hold by reducing the outlet width and keeping
the ejection velocity fixed. This way, one can also ensure that the Froude number is
large (which is the condition under which (6.1) was derived).

A possible experimental setup for testing the existence of upwards-bending curtains
may consist of a rectangular tank with a thin horizontal slot cut through one of its
walls. Once the tank is filled with water, a liquid curtain will emerge through the slot
(outlet). Assuming the plug-flow velocity profile at the outlet and using the Bernoulli
expression for the ejection velocity,

u≈
√

2gD, (6.2)

where D is the outlet’s depth, one obtains

ρ

2

∫ H

−H
u2(z) dz≈ ρgDH. (6.3)

Let the outlet’s depth and width be D= 1 cm and 2H= 1 mm, respectively, in which
case

ρ

2

∫ H

−H
u2(z) dz≈ 49 mN m−1. (6.4)
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With the surface tension of water at room temperature being σ ≈ 72.5 mN m−1,
condition (6.1) holds – hence, curtains with such parameters should bend upwards.
Note also that the corresponding Froude number is indeed large:

U2

gH
≈

2D
H
= 40. (6.5)

Still, to make sure that upwards-bending curtains can be observed in an experiment,
one should verify that they are stable. The simplest way to do this is to employ the
three-dimensional extension of the asymptotic model proposed here.

Note, however, that vertical curtains have been shown to be stable with respect
to small perturbations – both experimentally (Finnicum et al. 1993; Li 1993, 1994;
Roche et al. 2006; Lhuissier et al. 2016) and theoretically (Benilov et al. 2016). This
implies that at least near-vertical curtains are also stable, so the effect predicted in this
paper could be observed for these. Upwards-bending curtains can also be observed if
γ − 1� 1 (i.e. criterion (6.1) holds, but only just): such curtains are almost flat and,
thus, stable.
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Appendix A. Material derivatives in terms of time-dependent curvilinear
coordinates

To derive formulae (2.6)–(2.7), let

Du
Dt
=
∂u
∂t
+ (u · ∇)u. (A 1)

The second term on the right-hand side of (A 1) is not affected by the dependence of
the curvilinear coordinates on t and, thus, can be found in any text of fluid dynamics
(e.g. Kochin et al. 1964):

[(u · ∇)u]l =
ul

hl

∂ul

∂l
+

uτ
hτ

∂ul

∂τ
+

uluτ
hlhτ

∂hl

∂τ
−

u2
τ

hlhτ

∂hτ
∂l
, (A 2)

[(u · ∇)u]τ =
ul

hl

∂uτ
∂l
+

uτ
hτ

∂uτ
∂τ
+

uluτ
hlhτ

∂hτ
∂l
−

u2
l

hlhτ

∂hl

∂τ
. (A 3)

To calculate the first term in (A 1), re-denote

(x, z)= (x1, x2), (l, τ )= (q1, q2). (A 4a,b)

It is convenient to use two different notations for the time variable: if used with xi
(or qi), it will be denoted by t (or t′), e.g.

x1 = x1(q1, q2, t′), x1 = x1(q1, q2, t′), t= t′. (A 5a−c)

Let the matrix ∂xk/∂qi be orthogonal, i.e.∑
k

∂xk

∂qi

∂xk

∂qj
= h2

i δij, (A 6)
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where hi are the Lamé coefficients, δij is the Kronecker delta and the summation with
respect to repeated indices is not implied unless stated explicitly. It can be readily
shown that (A 6) entails

∂qj

∂xi
= h−2

j
∂xi

∂qj
. (A 7)

Now, denoting the Cartesian components of the velocity by ui, one obtains

∂ui

∂t
=
∂ui

∂t′
−

∑
k

∑
n

∂ui

∂qn

∂qn

∂xk

∂xk

∂t′
, (A 8)

which can be rearranged using (A 7),

∂ui

∂t
=
∂ui

∂t′
−

∑
k

∑
n

∂ui

∂qn
h−2

n
∂xk

∂qn

∂xk

∂t′
. (A 9)

The Navier–Stokes equations need to be rewritten in terms of the velocity components
with respect to the curvilinear coordinates, i.e.

vj = q̂j · u, (A 10)

where q̂j is the unit vector corresponding to the coordinate qj. Its Cartesian coordinates
are

(q̂j)i = h−1
j
∂xi

∂qj
, (A 11)

so (A 9) yields

q̂j ·
∂u
∂t
= h−1

j

∑
i

∂xi

∂qj

∂ui

∂t′
− h−1

j

∑
i

∂xi

∂qj

∑
k

∑
n

∂ui

∂qn
h−2

n
∂xk

∂qn

∂xk

∂t′
. (A 12)

Expressing the Cartesian components of the velocity through vj,

ui =
∑

n

∂xi

∂qn
h−1

n vn, (A 13)

one can rewrite (A 12) in the form

q̂j ·
∂u
∂t
= hj

∂(h−1
j vj)

∂t′
+ h−1

j

∑
m

ajmh−1
m vm −

∑
n

h−2
n bn

[
hj
∂(h−1

j vj)

∂qn
+ h−1

j

∑
m

cjnmh−1
m vm

]
,

(A 14)
where

ajm =
∑

i

∂xi

∂qj

∂2xi

∂t′∂qm
, bn =

∑
k

∂xk

∂qn

∂xk

∂t′
, cjnm =

∑
i

∂xi

∂qj

∂2xi

∂qn∂qm
. (A 15a−c)

Expressions (A 14)–(A 15) are written in dimension-independent form. Adapting them
to the two-dimensional problem at hand and returning to the (l, τ ) notation, one
obtains, after routine algebra,(

∂u
∂t

)
l

=
∂ul

∂t′
+

us

hlhs

(
∂x
∂l

∂2x
∂t′∂s

+
∂z
∂l

∂2z
∂t′∂s

)
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−
1
h2

l

(
∂x
∂l
∂x
∂t′
+
∂z
∂l
∂z
∂t′

)(
∂ul

∂l
+

us

hs

∂hl

∂s

)
−

1
h2

s

(
∂x
∂s
∂x
∂t′
+
∂z
∂s
∂z
∂t′

) [
∂ul

∂s
+

us

hlhs

(
∂x
∂l
∂2x
∂s2
+
∂z
∂l
∂2z
∂s2

)]
, (A 16)(

∂u
∂t

)
s

=
∂us

∂t′
+

ul

hlhs

(
∂x
∂s

∂2x
∂t′∂l
+
∂z
∂s

∂2z
∂t′∂l

)
−

1
h2

l

(
∂x
∂l
∂x
∂t′
+
∂z
∂l
∂z
∂t′

) [
∂us

∂l
+

ul

hlhs

(
∂x
∂s
∂2x
∂l2
+
∂z
∂s
∂2z
∂l2

)]
−

1
h2

s

(
∂x
∂s
∂x
∂t′
+
∂z
∂s
∂z
∂t′

)(
∂us

∂s
+

ul

hl

∂hs

∂l

)
. (A 17)

Substituting these expressions and (A 2)–(A 3) into (A 1) and omitting the prime
from t′, one can obtain formulae (2.6)–(2.7) as required.

Appendix B. Can steady oblique curtains change curvature?
In mathematical terms, the title question of this appendix amounts to whether or

not dα/dl can change sign for α0 6= ±(1/2)π. When answering it, one can confine
oneself to the case γ > 1 (if γ < 1, it can be readily shown that the curtain bends
with gravity, which is not an interesting scenario).

As follows from (4.14), dα/dl can change sign only if γ −
√

1− 2z changes sign,
which happens only if z assumes the value of

z0 =−
1
2(γ

2
− 1). (B 1)

Considering (4.5) and (4.14) as a set for z(l) and α(l), one can readily verify that they
admit a first integral of the form

F(z) cos α = const., (B 2)

where F(z) satisfies
dF
dz
=

F
(γ −

√
1− 2z)

√
1− 2z

. (B 3)

In principle, this equation can be integrated exactly, but one only needs to observe
that

F= (z− z0)+O[(z− z0)
2
] as z→ z0. (B 4)

Since vertical curtains have been excluded (hence, cos α > 0) and since the curtain
‘comes’ from the region where z> z0, it follows from (B 2)–(B 4) that

const. > 0. (B 5)

Subject to this inequality, equations (B 2)–(B 4) imply that z never equals z0 – hence,
γ −
√

1− 2z never changes sign – hence, the right-hand side of (4.14) is always
positive, and so is dα/dl.
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