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Abstract

We prove that a Kummer surface defined over a complete strictly Henselian discretely
valued field K of residue characteristic different from 2 admits a strict Kulikov model after
finite base change. The Kulikov models we construct will be schemes, so our results imply
that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in
the category of schemes. Our construction of Kulikov models is closely related to an earlier
construction of Künnemann, which produces semistable models of Abelian varieties. It is
well known that the special fibre of a strict Kulikov model belongs to one of three types, and
we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface
and the toric rank of a corresponding Abelian surface are determined by each other. We also
study the relationship between this invariant and the Galois representation on the second �-
adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier
work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces
in equal characteristic zero.

2010 Mathematics Subject Classification: 14G20

1. Introduction

Let OK be a complete discrete valuation ring with maximal ideal mK and algebraically
closed residue field k of characteristic p �= 2. Let K be the field of fractions of OK . Let A be
an Abelian surface over K , and let X be the associated Kummer surface. In other words, let
X be the quotient the blow-up of A in A[2] by the action of Z /2 Z given by the involution
[−1]. Then X is a smooth surface over K which turns out to be a K3 surface. (See [1,
chapter 10, theorem 10·6], for this particular result, and [13] for a more general introduction
to K3 surfaces). This surface is called the Kummer surface associated with A. The purpose of
this paper is to study the existence and properties of (strict) Kulikov models of the Kummer
surface X . By definition, a strict Kulikov model of X (or a more general K3 surface) is a
regular algebraic space X which is proper and flat over OK , is a model of X , which has
the property that its special fibre is a reduced divisor with strict normal crossings (see the
definition below) on X , and such that the relative dualizing sheaf ωX /OK is trivial. Models
of this kind were originally studied by Kulikov ([17]) and Persson-Pinkham ([26, 27]) in
the context of complex-analytic geometry. It can be shown that the special fibre of such
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a model, if it exists, is a combinatorial K3 surface (which we shall define later), and that
every combinatorial K3 surface belongs to one of three types. One can also show that the
type only depends upon the �-adic Galois representation H 2

ét(X K ,Q�), and hence only upon
the generic fibre of X . Our first main result is

THEOREM 1·1 (Theorem 3·12). Let A be an Abelian surface over K and let X be the
associated Kummer surface. Then there exists a finite extension F of K such that there
exists a strict Kulikov model X → Spec OF of X F := X ×K Spec F. Moreover, the Kulikov
model X which we construct is a scheme.

This implies in particular that Kummer surfaces admit potentially semistable reduction
in the category of schemes. For the proof of this result it is clearly harmless to assume
from the beginning that A has semiabelian reduction, and that the K -group scheme A[2] is
constant. The strategy for proving this result is as follows: First, we shall recall some of the
results from Künnemann’s celebrated paper [18]. Among other things, Künnemann shows
that there exists a finite extension F of K and a regular projective model P of AF which
has strict semistable reduction, and such that the involution [−1] extends uniquely to P .
Furthermore, the model P of AF will contain the Néron model AF of AF over Spec OF .
The main step of our proof will consist in showing that the fixed locus of the involution of P
extending [−1] coincides with the étale group scheme AF [2] ⊆ P. From this it will follow
that the singularities of the quotient of P by the involution are mild enough to be resolved by
blowing up a regular centre once, and that this blow-up will be our desired semistable model
X of X F . We shall also see that the model P of AF is a strict Kulikov model of A. From
this, we shall deduce that the model X of X F is, in fact, a strict Kulikov model. We shall
then go on to studying the relationship between the degeneration behaviour of A and that
of X . In particular, we shall see that the type of the strict Kulikov model of X F can be read
off from the toric rank of AF (which is a numerical invariant that will be introduced later).
We shall also see that there is a close relationship between the dual complexes of the strict
Kulikov models of AF and X F . Kulikov models have been applied to the study of motivic
zeta functions of K3 surfaces and the monodromy conjecture ([12, definition 2·3·5]), and
our results will provide a new class of K3 surfaces which satisfy the monodromy property.

Remark. Our first main theorem strengthens the following previously known result:
Suppose that the residue characteristic of K is at least 5 and that X is a K3 surface over
K with Picard rank 12≤ ρ ≤ 20. This applies in particular to many Kummer surfaces, at
least after a finite extension of the ground field. Then there exists a finite extension L/K
and a proper algebraic space Y → Spec OK which is a strict Kulikov model of X L (see [19,
proposition 3·1] together with [14, propositions 2·3 and 2·4]). In general, these algebraic
spaces cannot be guaranteed to be schemes (see [19, proof of proposition 3·1]), so this does
not imply potential semistable reduction for Kummer surfaces in the category of schemes.
Furthermore, the proof of this result in loc. cit. relies on the (semistable) minimal model pro-
gram and provides no control over the Kulikov models’ special fibre. On the other hand, our
construction is completely explicit, and also allows us to deal with Galois-equivariant (and
non-strict) Kulikov models, which are essential for our applications to motivic Zeta func-
tions. Such models do not seem to be accessible using the current methods. Furthermore,
our method also applies in the case p= 3. The author is grateful to Professor C. Liedtke for
bringing the paper [14] to his attention.
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2. Preliminaries

To avoid confusion, let us recall the definition of the notions of semistable reduction,
divisor with normal crossings, and divisor with strict normal crossings which we shall use
in this paper:

Definition 2·1. Let S be a Noetherian scheme and let D be an effective Cartier divisor on
S. Let D1, ..., Dr be the irreducible components of D endowed with the structure of reduced
closed subschemes of S. For each subset J ⊆ {1, ..., r}, denote by DJ the scheme-theoretic
intersection ∩ j∈J D j , defining D∅ := S.

(i) We say that the divisor D has strict normal crossings if D is reduced, for each point s
of S contained in D, the local ring OS,s is regular, and if for each ∅ �= J ⊆ {1, ..., r},
the scheme DJ is regular and of codimension #J in S.

(ii) We say that the divisor D has normal crossings if D has strict normal crossings
locally in the étale topology.

(iii) Suppose R is a discrete valuation ring with fraction field K and perfect residue field.
Let X be a proper, smooth algebraic variety over K , and suppose that X → Spec R
is a model of X. In particular, we fix an isomorphism between X and X ×R Spec K .
We say that X is a strictly semistable model of X if it is flat, regular, and proper over
OK , and if the special fibre of X is a divisor with strict normal crossings on X .

(iv) We say that X is a semistable model of X if the special fibre of X has normal
crossings, i.e., if X looks as in (iii) locally in the étale topology.

This definition is the same as [18, (1·9)]. Observe that a divisor D on S which has nor-
mal crossings and whose irreducible components are regular has strict normal crossings. In
particular, we can adapt this definition to the case where the model X is an algebraic space
rather than a scheme: we say that X has semistable reduction if it admits an atlas whose
special fibre is a divisor with normal crossings as in (ii), and we say that X has strictly
semistable reduction if, in addition, the irreducible components of the special fibre of X are
smooth over the residue field. Furthermore, we shall say that X has strict semistable reduc-
tion (resp. semistable reduction) if X admits a strictly semistable model (resp. a semistable
model) which is a proper scheme over R.

In this chapter, we shall recall some basic material, mainly from [18] and [6] (throughout,
we shall follow the notation of [18]).

2·1. Projective models of Abelian surfaces after Künnemann

2·1·1. Various categories
This section is devoted to recalling some basic material from [18], and adapting it for our

purposes. For more details, the reader should consult [18]. Let G be a semiabelian scheme
over OK . By definition, this means that G is a smooth separated group scheme of finite type
over OK whose geometric fibres are extensions of Abelian varieties by algebraic tori. We
shall always assume that G is a model of our Abelian surface A. First recall the Raynaud
extension

0−→ T −→ G̃
π−→ E −→ 0 (1)

associated with G, whose precise construction is explained in [18, 2·1]. Here, T is an alge-
braic torus, E an Abelian scheme, and G̃ a semiabelian scheme over OK .Note that, in order
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to construct this extension, we need to choose a line bundle L on G whose restriction Lη

to A=Gη is ample. The extension itself, however, is independent of the choice of L . The
group scheme G̃ has the property that the formal completions of G̃ and of G with respect
to their special fibres are canonically isomorphic. The line bundle L induces a line bundle
L̃ on G̃. From now on, we shall assume that all our line bundles have cubical structures
([18, (1·7)]). Since the base scheme Spec OK over which we are working is normal, choos-
ing a cubical structure on a line bundle over a group scheme is equivalent to choosing a
rigidification of this line bundle along the identity section.

We shall use the categories DEGsplit
ample and DDsplit

ample from [18]. We refer the reader to [18] for

the precise definitions of these categories. Objects of the category DEGsplit
ample of split ample

degenerations are triples (G,L ,M ), where G→ Spec OK is a semiabelian scheme over
OK ,L a cubical invertible sheaf on G with ample restriction to A=Gη, and M a cubical
ample invertible sheaf on E such that L̃ = π∗M .We shall also use the category DDsplit

ample of
split ample degeneration data, the objects of which are tuples

(E, X, Y, φ, c, ct , G̃, ι, τ, L̃ ,M , λE , ψ, a, b).

In this notation, E stands for an Abelian scheme over OK . Furthermore, X and Y denote free
Abelian groups of the same finite rank r , and φ : Y → X is an injective homomorphism. Let
T be the torus Hom(X,Gm). Then there is a canonical isomorphism X∗(T )= X. Similarly,
define T ′ to be Hom(Y,Gm). Next, c and ct denote homomorphisms c : X→ E∨(OK ) and
ct : Y → E(OK ). The morphism c encodes an extension

0−→ T −→ G̃
π−→ E −→ 0,

for some semiabelian scheme G̃ over OK . Now ι is a homomorphism ι : Y → G̃(K ) such
that π ◦ ι= ct . This ι is determined by a unique trivialisation τ : 1(X×Y )η→ (c× ct)∗P−1

Eη of
biextensions. Here PE denotes a rigidified Poincaré bundle on E ×OK E∨. Next we choose
a cubical ample invertible sheaf M on E and put L̃ := π∗M . We let λE be the polarisa-
tion E→ E∨ associated with M , and let ψ : 1Yη→ ι∗L̃η be a trivialisation of Gm-torsors.
Finally, we let a and b be a function a : Y →Z and a bilinear pairing b : Y × X→Z which
are determined by ψ and τ , respectively. These data are subject to several compatibility
requirements which we have not mentioned at this point; the missing details can be found in
[18, (2·2)].

There is a natural functor

F : DEGsplit
ample −→DDsplit

ample,

which turns out to be an equivalence of categories ([18, (2·8)]). If (G,L ,M ) is an object
of DEGsplit

ample, then E , G̃, and L̃ (which appear in F((G,L ,M ))) come from the Raynaud
extension described at the beginning of this paragraph. Furthermore, X is defined to be
X∗(T ), and ct encodes the Raynaud extension.

There is one further category which will be important in what follows, namely the cate-
gory C. Objects of this category are tuples (X, Y, φ, a, b), where X and Y are free Abelian
groups of the same finite rank, φ : Y → X is an injective morphism, a : Y →Z is a function
with a(0)= 0, and b : Y × X→Z a bilinear pairing such that b(−, φ(−)) is symmetric,
positive definite, and satisfies

a(y + y′)− a(y)− a(y′)= b(y, φ(y′)).
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A morphism (X ′, Y ′, φ′, a′, b′)→ (X, Y, φ, a, b) is a pair of morphisms hX : X→ X ′ and
hY : Y ′ → Y such that a′ = a ◦ hY , b′(−, hX (−))= b(hY (−),−), and φ′ = hX ◦ φ ◦ hY . It
follows from [18, (2·4)] that the association

(E, X, Y, φ, c, ct , G̃, ι, τ, L̃ ,M , λE , ψ, a, b) �−→ (X, Y, φ, a, b)

defines a functor

For : DDsplit
ample −→ C.

One should note that the categories DEGsplit
ample and DDsplit

ample depend on the ground field K
whereas C is independent of the ground field. Just for the moment, we shall include the
ground field in our notation, in order to state some results about the behaviour of the functor
For under base change. Thereafter, we shall omit any reference to the ground field, as we
have done before. Let F/K be a finite extension of ramification index ν. We obtain a base
change functor

−×K Spec F : DDsplit
ample,K −→DDsplit

ample,F ,

and similarly for DEGsplit
ample. For any object D of DEGsplit

ample,K , if For(D)= (X, Y, φ, a, b),
then For(D ×K Spec F) is canonically isomorphic to (X, Y, φ, ν · a, ν · b) (see [18, (2·9)]).
Now let G :=A 0, where A is the Néron model of the Abelian surface A. It follows from
[6, chapter I, proposition 2·5] and [29, chapter XI, théorème 1·13] that the forgetful functor
from DEGsplit

ample into the category of semiabelian schemes with proper generic fibre over

OK is essentially surjective. Suppose that we have an object (G,L ,M ) of DEGsplit
ample with

G =A 0.

2·1·2. Group actions on degenerations
Now let H be a finite group which acts (from the left) on OK . By an action of H on

(G,L ,M ) over the action on OK we mean a system of homomorphisms

h∗(G,L ,M )−→ (G,L ,M ),

for each h ∈ H, such that the obvious compatibilities are satisfied (see [18, (2·10)]). If the
finite group H acts on G in a way compatible with the action on OK , we may replace L
by

⊗
h∈H h∗L (and similarly for M ) and assume that H acts on the object (G,L ,M ) of

DEGsplit
ample over the action on OK . From now on, we shall always assume that a pre-image

(G,L ,M ) of A 0 has been chosen on which H := {Id, [−1]} acts. If d > 0 is an integer
invertible in OK , we let K (d) be the unique extension of K of degree d, and identify the
Galois group (which will act from the left) with µd . Only in the last chapter will we be
interested in actions of the group H = {Id, [−1]} ×µd on (G,L ,M )×K Spec K (d) over
the action of H (via the second factor) on OK (d) . If H = {Id, [−1]}, then we shall always
assume that H acts trivially on the base ring.

2·1·3. Künnemann’s construction
Given an object (X, Y, φ, a, b) of C on which the finite group H acts, we obtain an action

(from the left) of H on Y , and an action (from the right) of H on X . Put 
 := Y � H. Then

 acts on the free Z-module X∨ ⊕Z as

S(y,h)((l, s)) := (l ◦ h + sb(y,−), s),
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as in [18, p.181]. In X∨R ⊕R, we have the cone C := (X∨R ×R>0)∪ {0}. We shall con-
sider a smooth 
-admissible rational polyhedral cone decomposition {σα}α∈I which admits
a 
-admissible κ-twisted polarisation function φ : C =⋃

α∈I σα→R for some κ ∈N, as in
[18, p.181]. The following result can be assembled from various theorems and propositions
in [18]:

THEOREM 2·2. Let the finite group H act on OK from the left. Let (G,L ,M ) ∈
DEGsplit

ample and assume that H acts on this object over the action on OK . Let
(X, Y, φ, a, b) := For(F((G,L ,M ))) and suppose we have a smooth 
-admissible ratio-
nal polyhedral cone decomposition {σα}α∈I of C ⊆ X∨R ⊕R. Assume further that this cone
decomposition has the following properties:

(a) there exists a 
-admissible κ-twisted polarisation function φ for this decomposition;
(b) the cone decomposition is semistable in the sense that the primitive element of any

one-dimensional cone contained in this decomposition is of the form (�, 1) for some
� ∈ X∨;

(c) the cone σT = {0} ×R≥0 is contained in this decomposition; and
(d) for all y ∈ Y\{0} and α ∈ I , we have

σα ∩ S(y,Id)(σα)= {0}.
Then there exists a regular irreducible scheme P which is projective and flat over OK

(depending on {σα}α∈I ) and a line bundle LP (depending on the polarisation function φ)
such that the following holds:

(i) there is an isomorphism P ×OK Spec K → A (which we shall keep fixed from now
on), and the canonical morphism

P sm −→A

is an isomorphism
(ii) the action of H on G =A 0 over the action of H on OK extends uniquely to P, and

the restriction of LP to G is isomorphic to L ⊗κ ;
(iii) let I+ be the set of orbits I+ := (I\{{0}})/Y . Then the reduced special fibre of P has

a stratification indexed by I+. This stratification is preserved by the action of H, and
the induced action of H on the set of strata is given by the action of H on I+;

(iv) the strata associated with one-dimensional cones are smooth over k;
(v) the special fibre of P is a reduced divisor with strict normal crossings on P.

Proof. By [18, theorem 3·5], there exists a scheme P→ Spec OK (depending on the cone
decomposition) which is regular as well as projective and flat over OK , which contains A 0

as an open subscheme, and which satisfies conditions (ii), (iii) and (v). The scheme P is
irreducible by [6, chapter III, proposition 4·11]. It follows in particular that P is a model of
A. By [18, (4·4)], we know that P contains the Néron model A of A as an open subscheme.
The open immersion A → P must factor through P sm, and we have a canonical morphism
P sm→A from the universal property of the Néron model. Both compositions A → P sm→
A and P sm→A → P sm are equal to the identity because this holds generically. Hence
part (i) follows. For part (iv), note that strata associated with one dimensional cones whose
primitive element has the form (�, 1) for some � ∈ X∨ are torsors for the group scheme A 0

k .
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This follows from the construction of P explained in [18]. Since A 0
k is smooth over k, the

claim follows.

In general, we cannot expect a smooth rational polyhedral cone decomposition having
properties (a),...,(d) to exist. We have, however, the following:

PROPOSITION 2·3. Let (G,L ,M ) ∈DEGsplit
ample, and assume that the finite group H

acts on this object (we assume in this Proposition that H acts trivially on OK ). Let
(X, Y, φ, a, b) := For(F((G,L ,M ))). After replacing K by a finite extension if neces-
sary, there exists a smooth rational polyhedral cone decomposition {σα}α∈I which has the
properties (a),..., (d) listed in Theorem 2·2.

Proof. It follows from [18, theorem 4·7], that there is a smooth rational polyhedral cone
decomposition {σα}α∈I which is 
-admissible, admits a 
-admissible κ-twisted polarisation
function (for some κ ∈N), and is semistable with respect to the integral structure given by
X∨ ⊕ (ν Z) for some positive integer ν. Furthermore, we know that this cone decomposi-
tion is constructed as a subdivision of one that has properties (c) and (d), which implies that
{σα}α∈I will have those properties as well. Now choose any finite extension L of K with ram-
ification index equal to ν. Letting (X ′, Y ′, φ′, a′, b′) := For(F((G,L ,M )×K Spec L)),
we see that the map

(X ′)∨ ⊕Z−→ X∨ ⊕Z

(l, s) �−→ (l ◦ hX , ν · s)
is 
-equivariant, where hX : X→ X ′ is the canonical isomorphism (via the canonical iso-
morphism Y ′ → Y we can identify Y ′ � H with Y � H , and we refer to both of them as 
).
Hence we obtain our desired cone decomposition by transport of structure.

Informally speaking, Künnemann’s construction proceeds as follows: Given a 
-admissible
cone decomposition {σα}α∈I of C which admits a 1-twisted 
-admissible polarisation func-
tion, we construct a scheme Z = Z({σα}α∈I ), which is regular and locally of finite type over
OK , on which T acts, and which contains T as an open orbit (the action of T on Z extends
the action of T on itself by translation). This similar to the construction of a toric variety
from a fan, and the existence of a cone decomposition satisfying our requirements follows
after replacing (G,L ,M ) by (G,L ⊗n,M ⊗n) for n sufficiently large. Since there is a 
-
admissible polarisation function, we obtain a T -linearized ample line bundle N on Z . We
let P̃ be the contracted product G̃ ×T Z , where G̃ comes from the Raynaud extension asso-
ciated with A (P̃ will be a relatively complete model for the object F((G,L ⊗n,M ⊗n));
see [18, definition 2·12], or [6, chapter III, definition 3·1]). Note that G̃ is naturally a T -
torsor over E . There is an induced morphism π̃ : P̃→ E which is locally of finite type,
and P̃ contains G̃. We let L̃P̃ := L̃ ×T N . One now checks that the action of 
 on G̃η

extends to P̃ and L̃P̃ , for which we use the definition of the action of Y on X∨ ⊕Z (see
[18, proof of lemma 3·7]). Intuitively, we want to form the quotient P̃/Y (where Y acts via
Y → 
) to obtain P . This is possible in the world of formal schemes: For each n, the quo-
tient (P̃ ×OK Spec OK /m

n+1)/Y exists, is of finite type over Spec OK /m
n+1, and carries

a natural ample line bundle. These schemes define a formal scheme over Spf OK , which
algebraises uniquely. This algebraisation turns out to be a model of A with all the desired
properties. Note in particular that we have an action of H on P .
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Remark. From now on, until the last chapter, we shall assume that the finite group H which
acts on G is equal to {Id, [−1]} and that H acts trivially on OK .

2·2. Kulikov models

In this subsection, let X be a smooth, projective, and geometrically integral algebraic
surface over K such that ωX/K

∼=OX . This is the case if and only if X is an Abelian surface
or a K3 surface.

Definition 2·4. Let X be a geometrically integral smooth projective algebraic surface over
K with trivial canonical bundle. A Kulikov model of X is a regular algebraic space X
which is proper and flat over OK with the following properties:

(i) the algebraic space X is a model of X;
(ii) the reduced special fibre (Xk)red of X is a divisor with normal crossings on X ;

(iii) we have

ωX /OK ((Xk)red)∼=OX ;

We say that X is a strict Kulikov model (called a minimal model in [4]) of X if in addition
to (i), (ii), (iii) above, the following conditions are satisfied:

(i’) the special fibre of X is a scheme;
(ii’) the special fibre of X is reduced and its irreducible components are smooth over k.

In this case, ωX /OK is trivial.

The possible special fibres of strict Kulikov models of K 3 surfaces can be classified as
follows:

PROPOSITION 2·5. Let X → Spec OK be a strict Kulikov model of the K3-surface X over
K . Then the special fibre Xk (which is a scheme by assumption) belongs to one of the
following types:

Type I: The scheme Xk is a smooth K3-surface over k.
Type II: We have

Xk = Y1 ∪ · · · ∪ YN

(where N ∈N), such that Y1 and YN are rational surfaces and Y2, ..., YN−1 are
elliptic ruled surfaces, and where all double curves are rulings. The dual complex
of Xk is a chain with endpoints Y1 and YN .

Type III: We have

Xk = Y1 ∪ · · · ∪ YN ,

such that all Y j are rational surfaces whose intersections form a chain of rational
curves, and such that the dual complex of Xk is a triangulation of the 2-sphere.

Proof. See [4, corollary 6·3 and definition 5·4.]
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Let ρ : Gal(K/K )→AutQ�
(V ) be a finite-dimensional continuous Q�-adic representa-

tion of Gal(K/K ). Suppose that ρ is unipotent, i.e., that the operator on V induced by
any σ ∈Gal(K/K ) has characteristic polynomial (x − 1)dim V . If P ⊆Gal(K/K ) denotes
the wild inertia subgroup, it follows that the Galois representation on V factors through
Gal(K/K )/P since the operator induced by any g ∈ P must both have finite order and be
unipotent, so it must be trivial. In particular, the monodromy group im ρ is pro-cyclic. As
usual, we define the monodromy operator on V to be

N := log σ =
∞∑

m=1

(−1)m+1

m
(σ − 1)m,

where σ is a topological generator of im ρ. Since σ − 1 is nilpotent, so is N . In general, if
N is a nilpotent operator on a vector space V, we define the nilpotency index of N to be
the natural number m such that N m = 0 but N m−1 �= 0.We follow the convention which puts
N 0 = Id.

PROPOSITION 2·6. Let X be a K3 surface over K and assume that X admits a strict Kulikov
model X → Spec OK . Then the special fibre of Xk is of type I (resp. type II, type III) if and
only if the nilpotency index of the monodromy operator NX on H 2

ét(X K ,Q�) is equal to 1
(resp. 2,3).

Proof. This is [4, theorem 6·4.]

There is an analogous classification of the possible special fibres of strict Kulikov models of
Abelian surfaces, and also an analogue of the previous Proposition for Abelian surfaces; see
[4, definition 5·6, corollary 8·2 and theorem 8·3] for more details. In this paper, the following
criterion will play an important role:

PROPOSITION 2·7. Let X be a geometrically integral smooth projective algebraic surface
over K with trivial canonical bundle. Let X → Spec OK be a flat projective model of X,
where X is a regular scheme. Suppose further that X has strictly semistable reduction,
and that there is an open subscheme U of X which is smooth over OK , whose complement
has codimension ≥ 2 in X , and which admits a nowhere vanishing global 2-form. Then X
is a strict Kulikov model of X.

Proof. First note that properties (i) and (ii), as well as (i’) and (ii’), of Definition 2·4 are
satisfied by assumption, so all we need to show is that ωX /OK

∼=OX . It follows also from
our assumptions that the morphism X → Spec OK is an l.c.i. morphism, which implies
that ωX /OK is indeed a line bundle, rather than a complex. The restriction of ωX /OK to U
is isomorphic to

∧2
�1

U/OK
because U is smooth over OK , and by assumption there is a

nowhere vanishing global section of
∧2

�1
U/OK

, so
∧2

�1
U/OK

∼=OU . Now let j : U→X
denote the open immersion. Because the complement of U in X has codimension ≥ 2, it
follows that

ωX /OK
∼= j∗ωU/OK

∼= j∗OU
∼=OX

using [11, proposition 1·6], together with the observation that line bundles are always
reflexive sheaves.
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This criterion can, for example, be used to deduce:

COROLLARY 2·8. (Compare [12, theorem 5·1·6]) Let A be the Abelian surface we intro-
duced at the beginning, and let (G,L ,M ) ∈DEGsplit

ample with G =A 0. Suppose further that
(X, Y, φ, a, b)= For(F((G,L ,M ))) and that we have a smooth 
-admissible rational
polyhedral cone decomposition of C ⊆ X∨R ⊕R which satisfies the conditions (a),· · · , (d)
from Theorem 2·2. Then the model P of A constructed in that Theorem is a strict Kulikov
model of A. In particular, Abelian surfaces potentially admit strict Kulikov models which
are schemes.

Proof. Because the special fibre of P is a reduced divisor with strict normal crossings,
we know that the complement of the open subscheme P sm in P has codimension ≥ 2. By
Theorem 2·2 (i), we know that P sm is isomorphic to the Néron model A of A. By [2, chap-
ter 4·2, corollary 3], we know that there exists a global nowhere vanishing 2-form on A .

Hence the claim follows from Proposition 2·7. The second claim follows because after a
finite extension, a rational polyhedral cone decomposition with the properties required for
the first part of this Corollary can always be constructed by Proposition 2·3.

Suppose A is an (arbitrary) Abelian variety over K . Let A → Spec OK denote its Néron
model, and let A 0 be the identity component of the Néron model. Then there exist
nonnegative integers r1, r2 and an exact sequence

0−→U ×k Gr2
m −→A 0

k −→ B −→ 0,

where U us a unipotent algebraic group of dimension r1, and B is an Abelian variety over
k. At this point we use that k is algebraically closed, and hence perfect. We say that A has
semiabelian reduction if r1 = 0, and we call r2 the toric rank of A, which will sometimes
also be denoted by t or t (A).

3. Models of Kummer surfaces

As before, let A be an Abelian surface over K , and let X be the Kummer surface asso-
ciated with A. In this section, we shall prove that, after replacing K by one of its finite
extensions if necessary, X admits a strict Kulikov model X →OK . For this purpose we
may assume without loss of generality that A has semiabelian reduction over K and that
the K -group scheme A[2] is constant. Let (G,L ,M ) ∈DEGsplit

ample with G =A 0 and sup-
pose that the finite group H := {Id, [−1]} acts on (G,L ,M ) in such a way that the action
of [−1] on G is multiplication by −1. Letting (X, Y, φ, a, b)= For(F((G,L ,M ))), we
obtain an action of H on (X, Y, φ, a, b). Let 
 := Y � H. By Proposition 2·3, we may also
assume without loss of generality that there exists a smooth 
-admissible rational poly-
hedral cone decomposition of C ⊆ X∨R ⊕R which has properties (a),...,(d) from Theorem
2·2. Then that Theorem provides us with a regular model P of A over OK which is pro-
jective and flat over OK and which has the property that the action of H on A extends
uniquely to P . We shall now study the fixed locus of this action. We already know that
A ⊆ P , and because A[2] is constant, it extends to the closed subscheme A [2] of P .
The main technical result of this section will be the observation that the fixed locus of the
action of H on P is, in fact, equal to A [2]. This will allow us to perform the Kummer
construction on P , and we shall see that the resulting scheme X is a strict Kulikov
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model of X . As indicated in the introduction, the functor F associates to (G,L ,M ) a
tuple (E, X, Y, φ, c, ct , G̃, ι, τ, L̃ ,M , λE , ψ, a, b) ∈DDsplit

ample, on which the finite group
H acts. We shall have to look at some of these objects more closely; all the details can be
found in [18, (2·2)-(2·8)]. In this tuple, E is an Abelian scheme (of relative dimension 0,1,
or 2) over OK . Let PE be the rigidified Poincaré bundle on E ×OK E∨, where E∨ denotes
the dual Abelian variety. Then c and ct denote homomorphisms c : X→ E∨(OK ) and
ct : Y → E(OK ) which encode the Raynaud extension (1) and its dual. Note that PE comes
with a natural structure of a Gm-biextension of E ×OK E∨. We can view both X × Y and Y
as group schemes over K , which we shall denote by (Y × X)η and Yη, respectively. Then

τ : 1(Y×X)η

∼=−→ (c× ct)∗P−1
E,η

is a trivialisation (where 1(Y×X)η stands for the trivial Gm-biextension of (Y × X)η). Such
a trivialisation determines (and is determined by) an embedding ι : Y → G̃(K ) such that
π ◦ ι= ct (see [18, p. 173, (10)]). Furthermore,

ψ : 1Yη

∼=−→ ι∗L̃ −1
η

is a trivialisation of cubical line bundles, where 1Yη denotes the trivial cubical line bundle on
Yη. For each (y, ξ) ∈ Y × X , the trivialisation τ identifies (c(y), ct(ξ))∗P−1

E,η with a frac-

tional ideal of OK , which is equal to m
b(y,ξ)
K by the definition of b. The function a : Y →Z

is constructed similarly using the trivialisation ψ. As a first step towards understanding the
fixed locus of the action of H on P , we have the following:

LEMMA 3·1. Let A be an Abelian surface over K with semiabelian reduction and such
that A[2] is constant over K . Let (G,L ,M ) ∈DEGsplit

ample with G =A 0 and such that the

finite group H acts on this object as before. Then the embedding Y → G̃(K ) coming from
the object F((G,L ,M )) ∈DDsplit

ample has the following property: for each y ∈ Y, there exists

an x ∈ G̃(K ) such that ι(y)= x2.

Proof. It follows from [6, chapter III, theorem 5·9] that A[2] =Gη[2] can be described as
follows: For each y ∈ Y, let Z y be the pre-image of the point ι(y) ∈ G̃(K ) under the map
G̃→ G̃ given by multiplication by 2. The schemes Z y and Z y+2z are canonically isomorphic
for any z ∈ Y , and we obtain an isomorphism of schemes

Gη[2] ∼=
∐

[y]∈Y/2Y

Z y.

For Gη[2] to be a constant K -group scheme, it is therefore necessary that for each y ∈ Y ,
there exist x ∈ G̃(K ) such that ι(y)= x2.

3·1. Evaluating points of G̃ at characters of T

We have already seen that the group H preserves the stratification of the special fibre of
the model P from Theorem 2·2, and that the action on the set of strata is given in terms of
the pairing b : Y × X→Z .What will enable us to deduce that A [2] ⊆ P is already the full
fixed locus of the action of H on P is the observation that for all (y, ξ) ∈ Y × X, the integer
b(y, ξ) is even. In order to deduce this from the previous Lemma, we will need a way of
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evaluating points of G̃(K ) at characters of T . More precisely, we shall construct, for each
ξ ∈ X = X∗(T ), a homomorphism

evξ : G̃(K )−→Z,

which has the property that for all (y, ξ) ∈ Y × X, we have

b(y,−ξ)= evξ (ι(y)).

This, together with Lemma 3·1, will imply the claim. Let x ∈ G̃(K ). Then the image jη of
x under the morphism π : G̃→ E extends uniquely to a section j of E over OK . Now let
ξ ∈ X , and consider the morphism of extensions

0 −−−−→ T −−−−→ G̃ −−−−→ E −−−−→ 0

ξ

⏐⏐� ξ̃

⏐⏐� ⏐⏐�Id

0 −−−−→ Gm −−−−→ O−ξ −−−−→ E −−−−→ 0.

(2)

We shall continue passing freely between line bundles and their associated Gm-torsors as
usual. However, the distinction will play more of a role in this chapter, so the reader is
advised always to keep in mind which of the two objects is being referred to. We shall try
and keep the notation as clear as possible so that no confusion can arise. The fact that the
diagram above is a homomorphism of extensions follows from [6, p. 43]. The point x gives
rise to a point in the fibre of O−ξ above jη, which we shall also denote by x . This point, in
turn, gives rise to an isomorphism of line bundles

j∗η O−ξ,η −→Oη

on Spec K , defined by x �→ 1. This isomorphism identifies the OK -module 
(Spec OK ,

j∗O−ξ ) with a fractional ideal of OK , which is equal to m
evξ (x)
K for some evξ (x) ∈Z .

LEMMA 3·2. Let ξ ∈ X. Then the map

evξ : G̃(K )−→Z

is a homomorphism.

Proof. Let x1, x2 ∈ G̃(K ). Note that the scheme underlying the Gm-torsor O−ξ comes with
a natural structure of a group scheme over OK such that the map ξ̃ is a homomorphism of
group schemes. This follows from the fact that the Gm-torsor O−ξ fits into the diagram (2).
Denote the images of xi in O−ξ also by xi . For i = 1, 2, let ji,η be the image of xi under
π : G̃→ E . The morphisms ji,η extend uniquely to OK -sections ji of E . For each i = 1, 2
choose a nowhere vanishing section εi of the line bundle j∗i O−ξ on Spec OK . Also recall
that the line bundle O−ξ comes with a natural rigidification, that is a nowhere vanishing
section 1−ξ of e∗O−ξ , where e : Spec OK → E denotes the identity section. For any global
section j ∈ E(OK ), denote by Tj : E→ E the morphism given by translation by j . Let us
first prove that there is an isomorphism

� : T ∗j1+ j2
O−ξ ⊗O−ξ −→ T ∗j1 O−ξ ⊗T ∗j2 O−ξ (3)
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sending T ∗j1+ j2
(ε1ε2)⊗ 1ξ to T ∗j1(ε1)⊗ T ∗j2(ε2). The existence of an isomorphism as in (3)

(not necessarily satisfying the second condition) follows from the theorem of the cube ([6,
chapter I, theorem 1·3]). Because the sections εi were chosen to be nowhere vanishing, the
elements T ∗j1+ j2

(ε1ε2)⊗ 1−ξ and T ∗j1(ε1)⊗ T ∗j2(ε2) of 
(Spec OK , ( j1 + j2)∗O−ξ ⊗e∗O−ξ )
and 
(Spec OK , j∗1 O−ξ ⊗ j∗2 O−ξ ) are generators of their respective modules. This implies
that any such isomorphism will satisfy the second condition after scaling by a unit of OK .

Now choose, for i = 1, 2, elements λi ∈ K× such that xi = λiεi,η. We shall use the fact that
the λi can be seen both as elements of K× and as K -points of O−ξ via the embedding
Gm→O−ξ from the diagram (2), and that multiplying the element εi,η ∈O−ξ (K ) by λi

using the OK -group structure of O−ξ and multiplying the global section εi,η of j∗i,η O−ξ,η by
λi using the K -vector space structure of 
(Spec K , j∗i,η O−ξ,η) has the same effect. Indeed,
using this last observation, we find that under the isomorphism �η,

T ∗j1,η+ j2,η
(x1x2)⊗ 1−ξ,η = λ1λ2T ∗j1,η+ j2,η

(ε1,ηε2,η)⊗ 1−ξ,η

�−→ λ1λ2T ∗j1,η (ε1,η)⊗ T ∗j2,η (ε2,η)

= T ∗j1,η (x1)⊗ T ∗j2,η (x2).

This implies in particular that the diagram

( j1,η + j2,η)∗O−ξ,η ⊗e∗η O−ξ,η
e∗η�η−−−−→ j∗1,η O−ξ,η ⊗ j∗2,η O−ξ,η

x1x2

⏐⏐� 1−ξ,η

⏐⏐� x1

⏐⏐� ⏐⏐�x2

Oη ⊗ Oη −−−−→ Oη ⊗ Oη

commutes. Since the isomorphism e∗η�η extends to the pullback of the isomorphism (3)
along e : Spec OK → E, and the section 1−ξ,η extends to 1−ξ , we find that the morphism
given by x1x2 identifies 
(Spec OK , ( j1 + j2)∗O−ξ )with the product of the fractional ideals
of OK given by


(Spec OK , j∗i O−ξ )→ 
(Spec K , j∗i,η O−ξ,η) xi �→1−−→ K

for i = 1, 2. In particular, evξ (x1x2)= evξ (x1)+ evξ (x2), so the claim follows.

Now we must prove that for all ξ ∈ X and y ∈ Y the equality

b(y,−ξ)= evξ (ι(y))

holds. We shall need the following:

LEMMA 3·3. Let T1, T2 be algebraic tori, and let E be an Abelian variety over K . Let
G1, G2 be commutative algebraic groups over K such that we have a commutative diagram

0 −−−−→ T1
i1−−−−→ G1

π1−−−−→ E −−−−→ 0

ξ

⏐⏐� ⏐⏐�ξ̃ ⏐⏐�Id

0 −−−−→ T2 −−−−→
i2

G2 −−−−→
π2

E −−−−→ 0

(4)
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with exact rows. Suppose that γ : G1→G2 is a homomorphism of torsors on E with respect
to ξ (i.e., that γ is a morphism of schemes compatible with the actions of T1 and T2 on G1

and G2 in the sense that γ (t · g)= ξ(t) · γ (g) for t ∈ T1 and g ∈G1) which fits into diagram
(4) instead of ξ̃ . Then γ = ξ̃ .
Proof. We shall use multiplicative notation for the Tj and G j , and additive notation
for E . First notice that γ ξ̃−1 factors through i2 since π2 ◦ (γ ξ̃−1)= π2 ◦ γ − π2 ◦ ξ̃ =
0, where we used the commutativity of diagram (4) and the final assumption for the
last equality. Also observe that γ ξ̃−1 is constant on the fibres of π1 since γ ξ̃−1(tg)=
i2(ξ(t))γ (g)i2(ξ(t))−1ξ̃ (g)−1 = γ ξ̃−1(g) for t ∈ T1 and g ∈G1. In particular, we find that
there must exist a map of schemes λ : E→ T2 such that γ ξ̃−1 = i2 ◦ λ ◦ π1. To conclude, all
we have to show is that λ is constant with value 1. Since E is connected and proper over K
and T2 is affine, λ must be constant. Suppose e is the neutral element of E . Then the value
i2(λ(e)) is equal to γ ξ̃−1(i1(t)), for any t ∈ T1. We find γ ξ̃−1(i1(t))= γ (i1(t))ξ̃ (i1(t))−1 =
i2(ξ(t))i2(ξ(t))−1 = 1. Hence the claim follows.

We are now ready to prove:

PROPOSITION 3·4. For all ξ ∈ X and y ∈ Y we have

b(y,−ξ)= evξ (ι(y)).

Proof. Observe that, for all ξ ∈ X, there is a perfect pairing Oξ ⊗O−ξ→OE . We shall
first show that the image of a local section χ of π : G̃→ E under ξ̃ : G̃→O−ξ acts on a
local section f of Oξ as f �→ χ∗ f. By the Lemma preceding this Proposition, all we have
to show is that the map G̃→O−ξ given by χ �→ ( f �→ χ∗ f ) fits into diagram (2) instead
of ξ̃ . This will follow if we can show that it induces the map ξ : T →Gm on the fibre above
the identity of E . But this is the case, because the image of 1 under the closed immersion
Gm→O−ξ acts on a local section f of Oξ (on an open set of E which contains the identity
e ∈ E) as f �→ f (1), and we have e∗χ∗ f = f (χ(e))= ξ(χ(e)) f (1).

Now suppose we have a point x ∈ G̃(K ). Denote the image of x under G̃(K )→ E(K )
by jη. The point x determines (and is determined by) a homomorphism of quasi-coherent
OEη -algebras

π∗OG̃η
=

⊕
ξ∈X

Oξ,η −→ jη∗Oη,

which, in turn, is given by a compatible system of non-zero elements δξ ∈ j∗η O∨ξ,η . As a

next step, we shall show that the image of x under the map ξ̃ : G̃→O−ξ from diagram (2)
is precisely δξ . To see this, suppose we have a local section χ of π : G̃η→ Eη such that
χ( jη)= x . Suppose also that we have a ξ -eigenfunction f above the open set on which χ is
defined. We have

( j∗η ξ̃ (χ))( j∗η f )= j∗η (ξ̃ (χ)( f ))

= j∗η χ
∗ f

= x∗ f

= δξ ( j∗η f ).

https://doi.org/10.1017/S0305004120000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004120000067


Degeneration of Kummer surfaces 79

Hence j∗η ξ̃ (χ)= δξ , as desired. We can now proceed to proving our claim. Let y ∈ Y. By
[18, p. 173 (10)], the point ι(y) is given as follows: the trivialisation

τ : 1(Y×X)η −→ (ct × c)∗P−1
Eη

is given by a compatible system of sections τ(y, ξ) ∈ 
(η, (ct(y), c(ξ))∗P−1
E,η), which, in

turn, defines a morphism of quasicoherent OEη -algebras

π∗OG̃η
=

⊕
ξ∈X

Oξ,η =
⊕
ξ

(Id× c(ξ))∗PE,η
τ (y,ξ)−−−→ ct(y)∗Oη .

In particular, we see that, if x = ι(y), we have

δξ = τ(y, ξ)
for all ξ ∈ X. Now let ξ ∈ X. By the definition of the pairing b(−,−), ([18, p.174, 2·3]),
the number b(y,−ξ) is the unique integer such that the fractional ideal of OK given by the
image of


(Spec OK , (c
t(y), c(−ξ))∗PE)⊆ 
(η, (ct(y), c(−ξ))∗PE,η)

∼=−→K , (5)

where the last isomorphism is τ(y,−ξ)= δ−ξ , is equal to m
b(y,−ξ)
K . However, we have

a canonical isomorphism (ct(y), c(−ξ))∗PE = ct(y)∗(Id× c(−ξ))∗PE = ct(y)∗O−ξ . By
what we have done in the first part of this proof, we know that the isomorphism in (5)
is the same as the isomorphism 
(η, ct(y)∗O−ξ,η)→ K given by ι(y) �→ 1 (it follows
from the compatibility between the various δξ that, modulo the canonical isomorphism
j∗η O−ξ = j∗η O∨ξ , we have δ−ξ (δξ )= 1). By definition, evξ (ι(y)) is the unique integer such
that the fractional of OK given by the image of


(Spec OK , ct(y)∗O−ξ )⊆ 
(η, ct(y)∗O−ξ,η)
∼=−→K ,

where the last isomorphism is given by ι(y), is equal to m
evξ (y)
K . Hence we find m

b(y,−ξ)
K =

m
evξ (ι(y))
K , so the claim follows.

We have now arrived at:

PROPOSITION 3·5. The assumption that A[2] be constant implies that, for all ξ ∈ X and
y ∈ Y, the integer b(y, ξ) is even.

Proof. Let ξ ∈ X and y ∈ Y. By Lemma 3·1, there exists a point x ∈ G̃(K ) such that ι(y)=
x2. By Proposition 3·4, we have b(y, ξ)=− evξ (ι(y))=−2 evξ (x).

3·2. The final step

We have now assembled all the technical tools which we need to prove our main result.
Let A be an Abelian surface over K . We may assume without loss of generality that A has
semiabelian reduction over K and that A[2] is constant. Choose an object

(G,L ,M ) ∈DEGsplit
ample,

where G =A 0, on which the finite group H = {Id, [−1]} acts. As before, A denotes the
Néron model of A. Using the functor F : DEGsplit

ample→DDsplit
ample, we associate to (G,L ,M )
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split ample degeneration data. In particular, we obtain the object (X, Y, φ, a, b) ∈ C intro-
duced before. One easily convinces oneself that the induced action of [−1] on X is
given by multiplication by −1. After passing to a finite extension of K if necessary, we
may assume that there is a smooth rational polyhedral cone decomposition {σα}α∈I of
C := (X∨R ×R>0)∪ {0} ⊆ X∨R ⊕R which has the properties (a),..., (d) listed in Corollary
2·2; this follows from Proposition 2·3. As in the previous sections, P will denote the model
of A from Theorem 2·2. What follows now is a central step in our argument:

LEMMA 3·6. Let {σα}α∈I be a smooth 
-admissible rational polyhedral cone decompo-
sition of C . Let α ∈ I such that σα is either two-dimensional or three-dimensional, or that it
is one-dimensional with primitive element (�, s), where s > 1. Then there does not exist an
element y ∈ Y such that

S(y,Id)(σα)= S(0,[−1])(σα).

In other words, the group H = {Id, [−1]} acts freely on the set of equivalence classes J/Y ,
where J ⊂ I is the set of indices β such that σβ is two-dimensional or three-dimensional, or
one-dimensional with primitive element (�, s), s > 1.

Proof. Let α ∈ I , and assume that σα =R≥0(�, s), where � ∈ X∨, s ∈N . We may assume
that there does not exist any integer different from ±1 which divides both � and s. Suppose
there is y ∈ Y such that S(y,Id)(σα)= S(0,[−1])(σα). Then (�+ sb(y,−), s)= (−�, s), so 2�=
−sb(y,−). By Proposition 3·5, we can find f ∈ X∨ such that b(y,−)=−2 f. This implies
that �= s f, so s = 1.

Suppose now that σα is two-dimensional. We can find �1, �2 ∈ X∨ such that σα =
R≥0(�1, s1)+R≥0(�2, s2), where the � j ∈ X∨ and s j ∈N have been chosen such that
(�1, s1), (�2, s2) generate a submodule of X∨ ⊕Z of rank 2, and such that the quotient is
torsion-free. Now suppose that S(y,Id)(σα)= S(0,[−1])(σα) for some y ∈ Y. This happens if
and only if either

� j + s j b(y,−)=−� j (6)

for j = 1, 2, or

� j + s j b(y,−)=−�3− j (7)

and s1 = s2, for j = 1, 2. For case (6), we may again choose f ∈ X∨ such that b(y,−)=
−2 f . We find, for j = 1, 2, that � j = s j f. But then the submodule of X∨ ⊕Z generated by
(�1, s1)= s1( f, 1) and (�2, s2)= s2( f, 1) has rank 1, a contradiction. In case (7), we write s
for both s1 and s2 and find

sb(y,−)=−�1 − �2.

Again, we pick f ∈ X∨ such that b(y,−)=−2 f. Then �1 + �2 = 2s f, so

(�1, s)+ (�2, s)= 2(s f, s).

Since the Z-module X∨ ⊕Z /〈(�1, s), (�2, s)〉 is torsion-free, this implies that there exist
λ1, λ2 ∈Z such that

λ1�1 + λ2�2 = s f
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and λ1 + λ2 = 1. This implies that

2λ1�1 + 2(1− λ1)�2 = �1 + �2,

and hence

(2λ1 − 1)�1 + (1− 2λ1)�2 = 0.

Since 2λ1 − 1 can never vanish, this implies that �1 = �2, so that (�1, s1)= (�2, s2), another
contradiction. Finally, assume that σα is three-dimensional, such that there are �1, �2, �3 with
the property that

σα =R≥0(�1, s1)+R≥0(�2, s2)+R≥0(�3, s3),

and such that (�1, s1), (�2, s2), (�3, s3) form a basis of X∨ ⊕Z . In order for S(y,Id)(σα)=
S(0,[−1])(σα) to be satisfied for some y ∈ Y , there must be a permutation γ ∈ S3 such that

� j + s j b(y,−)=−�γ ( j)

and s j = sγ ( j) for j = 1, 2, 3. If γ is the identity, we derive a contradiction as in case (6)
above. If γ swaps two of the indices, then the third must be kept fixed, and the other two
generate a face of σα. In this case, we can derive a contradiction as in case (7) above. If γ
has no fixed points, we obtain s1 = s2 = s3 and

�1 + �2 = �1 + �3 = �2 + �3,

which implies �1 = �2 = �3. Hence the claim follows in general.

We are now in a position to prove the following result:

THEOREM 3·7. Let P be the regular projective model of A from Theorem 2·2, and let
[−1] denote the action of P which extends the action of [−1] on the open subscheme G
of P. Recall that P contains the Néron model A of A. Then the fixed locus of [−1] on P
coincides with the closed subscheme A [2] ⊆ P.

Proof. If there were any fixed points of [−1] not contained in A [2], they would have to lie
on the special fibre of P . We know that the special fibre of P has a stratification indexed
by I+ as described in Theorem 2·2. By Lemma 3·6, we know that the fixed points cannot
lie on strata associated with two-dimensional or three-dimensional cones. However, we also
know from Theorem 2·2 that the strata associated with one-dimensional cones are contained
in P sm, which is precisely the image of the open immersion A → P. Hence the fixed points
are contained in A , and hence in A [2].
We are now in a position to prove the main result of the first part. We need the following
lemma about quotients by finite groups:

LEMMA 3·8. Let U be a scheme which is flat and quasi-projective over OK . Suppose
that the finite group H acts on U (respecting the OK -structure). Assume further that #H is
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invertible in OK . Then taking the quotient of U by H commutes with base change along the
morphism Spec k→ Spec OK .

Proof. It is well-known that U can be covered by finitely many H -stable affine open sub-
schemes U1, ...,Um , and that the quotient U/H is given by gluing the schemes U j/H . Hence
we may assume, without loss of generality, that U is affine, and equal to Spec B, say. In this
case, all we have to prove is that the canonical morphism

B H ⊗OK k −→ (B ⊗OK k)H

is an isomorphism. Observe that all elements of B ⊗OK k are of the form b⊗ 1 for some
b ∈ B because OK → k is surjective; the same holds for B H . To see that this morphism
is injective, suppose b ∈ B H such that b⊗ 1 is equal to zero in B ⊗OK k. This means that
b= πK b′ for some b′ ∈ B. Let h ∈ H . Then πK (b′ − h(b′))= 0, so b′ = h(b′) since B is flat
over OK , and has therefore no πK -torsion. Since h was chosen arbitrarily, this implies that
b′ ∈ B H , so b⊗ 1= 0 in B H ⊗OK k. That proves injectivity. To prove surjectivity, let b ∈ B
such that b⊗ 1 is H -invariant. For each h ∈ H , we have b≡ h(b) mod πK , so∑

h∈H

h(b)≡ #H · b mod πK .

Since #H ∈O×K , this can be re-written as(
(#H)−1

∑
h∈H

h(b)

)
⊗ 1= b⊗ 1

in B ⊗OK k. Because (#H)−1
∑

h∈H h(b) is visibly H -invariant, the claim follows.

LEMMA 3·9. Let X be a two-dimensional smooth (but not necessarily connected) alge-
braic variety over a field of characteristic different from 2. Let ι be an involution of X whose
scheme-theoretic fixed locus consists of finitely many geometrically reduced points, and such
that if x ∈ X is a fixed point, the action of dιx on the Zariski tangent space Tx X is given by
multiplication by −1. If Y denotes the fixed locus of ι, then the quotient (BlY X)/ι is smooth
over the ground field.

Proof. Since taking geometric quotients and blow-ups commutes with flat base change, and
since smoothness is local in the fpqc-topology on the target, we may assume without loss of
generality that the ground field is algebraically closed. In this situation, the first part of the
proof of [1, chapter 10, theorem 10·6], can be taken mutatis mutandis to show that (BlY X)/ι
is regular, and hence smooth over the ground field. In fact, only the case where X is an
Abelian variety and ι= [−1] is considered in loc. cit. However, the only facts used about the
behaviour of the involution are those listed in the Lemma, so the claim follows.

We need one more Lemma:

LEMMA 3·10. Let P be the projective model of A from Theorem 2·2, and let P ′ be an
open subscheme of P containing A [2]. Then the special fibre of BlA [2]P ′ is BlAk [2]P ′k . In
other words, the blow-up of P ′ in A [2] commutes with base change along the morphism
Spec k→ Spec OK .
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Proof. We can cover P ′ by open affine subschemes such that the intersection of A [2] with
any one of our open affine subschemes is given by an ideal generated by a regular sequence
of length 2. Pick such an affine open subscheme, equal to Spec R, say. Suppose A [2] ∩
Spec R is cut out by the ideal I ⊆ R. Then the R/I -module I n/I n+1 is free for all n ∈N, so
it is in particular flat as an OK -module. By induction, we deduce that, for all n ∈N, R/I n

is flat as an OK -module. This, in turn, implies that the induced map I n ⊗OK k→ R ⊗OK k
is injective for all n, and that its image is the n-th power of the image of I ⊗OK k→ R ⊗OK

k. However, this last image is precisely the ideal defining (A [2] ∩ Spec R)k := (A [2] ∩
Spec R)×OK Spec k ⊆ Spec R ⊗OK k. Hence we find

Bl(A [2]∩Spec R)k (Spec R ×OK Spec k)= Proj
⊕
n≥0

(I ⊗OK k)n =
(

Proj
⊕
n≥0

I n
)
×OK Spec k,

where the right-hand side clearly equals the special fibre of BlA [2]∩Spec R Spec R. Our claim
now follows from a gluing argument.

PROPOSITION 3·11. Let U be the blow-up of the Néron model A of A in the closed sub-
scheme A [2]. Then the action of [−1] extends to U, and the quotient U/[−1] is smooth
over OK .

Proof. The scheme U/[−1] is certainly flat and of finite type over OK , so it suffices to prove
that the generic fibre and the special fibre of U/[−1] are smooth over K and k, respectively.
This follows if we can show that both fibres of U/[−1]→ Spec OK are smooth. By Lemma
3·8, we know that the special fibre of U/[−1] is the quotient of the k-scheme BlAk [2]Ak by
[−1] (here we use that the special fibre of U is the blow-up BlAk [2]Ak, which follows from
Lemma 3·10). We also know that the generic fibre of U is the quotient of BlA[2]A by [−1],
since geometric quotients and blow-ups commute with flat base change. It follows from
general theory of group schemes that the conditions of Lemma 3·9 are satisfied for both the
generic and the special fibre of U . The claim now follows from Lemma 3·9.

We can now prove:

THEOREM 3·12. Let A be an Abelian surface over K . Let X be the Kummer surface
associated with A. Then, after passing to a finite extension of K if necessary, there exists a
strict Kulikov model X → Spec OK of X. Moreover, X is a scheme.

Proof. Without loss of generality, we may assume that A has semiabelian reduction already
over K , and that A[2] is constant over K . Assume for the moment that the identity com-
ponent A 0

k of the special fibre of the Néron model of A is either isomorphic to G2
m,k or an

extension of an elliptic curve by Gm, so that our previous results become applicable. We
know from Theorem 2·2 and Proposition 2·3 that, after passing to a finite extension of K if
necessary, there exists a projective regular model P of A which contains the Néron model
A of A and such that the action of H on G =A 0 extends to P . Define

X̃ :=BlA [2]P.
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Then H acts on X̃ and, in fact, X̃ admits an open covering of H -stable open subsets, one
given by U0 :=BlA [2]A , and the other one given by U1 := P\A [2]. Let us define

X := X̃ /H.

We shall now show that X has all the desired properties. First of all, it is indeed a model of
X , because geometric quotients commute with flat base change. We also note that X̃ /H is
a scheme since X̃ is projective over OK . Now observe that X admits an open cover by the
subschemes U0/H and U1/H . It follows from Lemma 3·11 that U0/H is smooth over OK .
On the other hand, the action of H on U1 is free by Theorem 3·7. In particular, the morphism
U1→U1/H is étale, which implies that the scheme X is regular (since regularity is local
in the étale topology and U0/H , U1 are regular) and that the special fibre of X is a divisor
with normal crossings. In the case where A 0

k is an Abelian variety, A has good reduction.
In other words, the Néron model A of A is projective over OK . Define P :=A . Then we
obtain an action of H on P as above, and the quotient X of X̃ :=BlA [2]P by the action
induced by [−1] is smooth over K , so it is in particular semistable. This last case has already
been observed by Ito [21, lemma 4·2]. It follows from [30, lemma 3·2] that the morphism
X → Spec OK is indeed projective. Now we must prove that the irreducible components of
the special fibre of X → Spec OK are smooth over k. Note that any singular points of the
Xk must be contained in U1/H because U0/H is smooth over OK . Also observe that the
special fibre U1,k of U1 still has a stratification indexed by I+/Y which is preserved by the
action of H . Here, as before, I denotes the index set of the semistable rational polyhedral
cone decomposition {σα}α∈I which we used to construct P , and I+ denotes the set of indices
belonging to non-zero cones. Observe also that the pre-image of a non-regular irreducible
component of the special fibre of U1/H in U1,k must be the union of two irreducible com-
ponents of U1,k which intersect non-trivially. This can be seen as follows: The pre-image
cannot consist of more than two irreducible components because #H = 2. However, if the
pre-image either consisted of one irreducible component of U1,k or the union of two disjoint
irreducible components of U1,k , then its quotient by H would be smooth over k (since the
action of H is free), contradicting our choice of irreducible component of U1,k/H. Let σ1

and σ2 be one-dimensional cones in our cone decomposition whose classes in I+/Y corre-
spond to the two irreducible components of U1,k of the pre-image. If (�, 1) ∈ X∨ ⊕Z is a
primitive element of σ1, we may without loss of generality assume that (−�, 1) is a primitive
element of σ2. Because the intersection of the two irreducible components of the pre-image
is non-trivial, it follows that

τ :=R≥0(�, 1)+R≥0(−�+ b(y,−), 1)

is contained in the cone decomposition {σα}α∈I for some y ∈ Y. This is true because by [18,
theorem 3·5(iv)], there must be a cone τ in the cone decomposition such that both R≥0(�, 1)
and R≥0(−�+ b(y,−), 1) (for some y ∈ Y ) are faces of τ. Since the cone decomposition is
smooth, the claim follows. A simple calculation shows that

S(−y,Id)(τ )= S(0,[−1])(τ ).

However, we already know from Lemma 3·6 that this is impossible. Hence all irreducible
components of U1,k/H are smooth over k, which implies the last claim. All that remains to
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be shown is that X satisfies condition (iii) of Definition 2·4. By Proposition 2·7, it suffices
to exhibit a nowhere vanishing global 2-form on U0/H. Consider the diagram

BlA[2]A
ρη−−−−→ X

πη

⏐⏐�
A.

By [1, theorem chapter 10, theorem 10·6], we know that there exist nowhere vanishing
global 2-forms ω on A and β on X such that π∗ηω= ρ∗ηβ. After replacing ω and β by a
scalar multiple if necessary, we may assume that ω extends to A . Now let π : U0→A be
the canonical map, and let ρ : U0→U0/H be the quotient morphism. The 2-form π∗ω is
H -invariant since this holds generically. Furthermore, π∗ω vanishes along the ramification
locus of ρ. Since ρ is tamely ramified, we deduce that there is a global 2-form on U0/H
which pulls back to π∗ω via ρ and which restricts to β at the generic fibre. By abuse of
notation, we shall call this 2-form β as well. We shall now show that β vanishes nowhere
on U0/H. Indeed, we already know that β does not vanish at the generic fibre. Furthermore,
we know that β does not vanish away from the branch locus of ρ, since π∗ω does not vanish
away from the ramification locus of ρ. But the complement of the intersection of the branch
locus of ρ and the special fibre of U0/H has codimension ≥ 2 in U0/H , which implies that
β does not vanish anywhere.

Remark.

(i) This Theorem implies in particular that Kummer surfaces defined over strictly
Henselian complete discrete valuation fields of residue characteristic p> 2 poten-
tially admit strictly semistable reduction in the category of schemes.

(ii) The finite extension from the Theorem can be chosen to be separable: beginning
from an Abelian surface over an arbitrary K , we first pass to a finite extension of K
to ensure that A has semiabelian reduction and that A[2] is constant. It follows from
Grothendieck’s �-adic monodromy theorem, and the fact that the endomorphism [2]
of A is étale, that we can choose this extension to be separable. Finally, we pass to the
finite extension from Proposition 2·3. However, the proof of this Proposition shows
that we only need to make sure that this last extension is of ramification index ν,
and the extension K [X ]/〈X ν + πK X + πK 〉 is a separable extension of K with this
property.

(iii) Semistable reduction of K3 surfaces (away from characteristic zero) is also addressed
in [23, section 4], as well as in [19]. In the first paper, potential semistable reduction
of K3 surfaces is proved under the assumption that there exist a very ample line
bundle on the K3 surface with small self-intersection compared to the residue char-
acteristic. This condition seems difficult to establish for general Kummer surfaces,
so those results are not directly applicable to our situation.

(iv) There are various higher-dimensional analogues of Kummer surfaces, all of which
are normally called called Kummer varieties. The straightforward way of generalis-
ing Kummer surfaces to higher dimensions is to consider minimal desingularisations
of the quotients A/[−1] for general Abelian varieties A of dimension g ≥ 2. Their
arithmetic properties were studied, for example, in [31]. It seems reasonable to
expect that the construction of models of Kummer surfaces presented in this paper
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generalises to such Kummer varieties. However, these varieties are not Calabi–Yau if
g> 2, so our definition of Kulikov models (generalised to higher dimensions in the
obvious way) does not apply in this setup. Other generalisations of Kummer surfaces
are more intricate, often involving Hilbert schemes.

4. Comparing degenerations of Abelian surfaces and their associated Kummer surfaces

4·1. Reduction and Galois representations

Now that we have established the existence of strict Kulikov models of Kummer surfaces,
at least after replacing the ground field by one of its finite extensions, we shall proceed to
studying the relationship between the degeneration of Abelian surfaces and their associated
Kummer surfaces. As before, let A be an Abelian surface over K . For the moment, we make
no further assumptions on A. It is possible to relate the étale cohomology of A to the étale
cohomology of X as follows: Let � be a prime number invertible in K . Choose (and fix) a
separable closure K of K , and define a Galois representation

W� :=
⊕

α∈A[2](K )
Q�〈α〉,

where Gal(K/K ) operates by permuting the basis elements. The following Lemma is cer-
tainly well-known to the experts, but it seems to be difficult to find a complete proof in the
literature, so we provide one here for the sake of completeness:

LEMMA 4·1. There is an isomorphism

H 2
ét(X K ,Q�)=

∧2
H 1

ét(AK ,Q�)⊕W�(−1), (8)

which is Gal(K/K )-equivariant.

Proof. Let Ã :=BlA[2] A, and let π : Ã→ A be the canonical morphism. Because π is sur-
jective, the induced homomorphism of Q�-vector spaces H 2

ét(AK ,Q�)→ H 2
ét( ÃK ,Q�) is

injective ([16, proposition 1·2·4]). We also have the Chern class map

c̃1 : Pic ÃK ⊗Z Z�(−1)−→ H 2
ét( ÃK ,Z�),

which we shall now study in more detail. First recall that there is a canonical isomorphism
Pic ÃK = Pic AK ⊕

⊕
α∈A[2](K ) Z〈α〉. The Kummer sequence 0→µ�n →Gm→Gm→ 0 of

étale sheaves on AK and ÃK gives rise to a commutative diagram

with exact rows. The second map in the bottom row induces c̃1 ⊗ IdQ�
, and the map on

the right is an isomorphism because the cohomological Brauer group is a birational invari-
ant for smooth projective surfaces (see, for example, [8, proposition 7·5]). We find in
particular that W�(−1) is contained in H 2

ét( ÃK ,Q�). A diagram chasing argument shows
that W�(−1) and H 2

ét(AK ,Q�) intersect trivially in H 2
ét( ÃK ,Q�). We also deduce that the
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cokernel of H 2
ét(AK ,Q�)→ H 2

ét( ÃK ,Q�) is isomorphic to W�(−1), which implies that
dimQ�

H 2
ét( ÃK ,Q�)= 22. Since Ã→ X is surjective, the map H 2

ét(X K ,Q�)→ H 2
ét( ÃK ,Q�)

is injective (again by [16, proposition 1·2·4]), and because X is a K3 surface it must be an
isomorphism. Since we already know that H 2

ét( ÃK ,Q�)⊇ H 2
ét(AK ,Q�)⊕W�(−1), and the

space on the right also has dimension 22, this implies that

H 2
ét(X K ,Q�)= H 2

ét(AK ,Q�)⊕W�(−1).

Together with the well-known fact that H 2
ét(AK ,Q�)=

∧2 H 1
ét(AK ,Q�), the claim of the

Lemma follows.

This calculation in étale cohomology immediately leads to the following partial converse to
some of our previous results, for which we shall use the following (well-known) Lemma,
the proof of which is a combination of results of C. Nakayama [25], and ideas going back to
Grothendieck [10] and Rapoport–Zink [28]:

LEMMA 4·2. Let � �= p be a prime number.

(i) Let X → Spec OK be a proper flat morphism from a regular scheme X . Suppose
further that the special fibre of this morphism is a reduced divisor with normal
crossings on X . Let X be the generic fibre of X . Then the wild inertia group
P ⊆Gal(K/K ) acts trivially on H i

ét(X K ,Q�) for all i ≥ 0. Moreover, the opera-
tor on H i

ét(X K ,Q�) induced by any σ ∈Gal(K/K ) is unipotent. The same is true if
X → Spec OK is a strict Kulikov model of a smooth, projective, and geometrically
integral surface X over K with trivial canonical bundle.

(ii) Let A be an Abelian variety over K . Then A has semiabelian reduction if and only if
all σ ∈Gal(K/K ) act unipotently on H 1

ét(AK ,Q�).

Proof. Because of our assumptions on the reduction of X modulo mK , the first two claims
of (i) follow from [25, corollary 0·1·1 and corollary 3·7]. The third claim of (i) follows
because by [22, proposition 2·3], there exists a weight spectral sequence for strict Kulikov
models, so unipotence of the representation follows. Since the wild inertia subgroup P ⊆
Gal(K/K ) is a pro-p group, the operator induced by any g ∈ P on H i

ét(X K ,Q�) is both
unipotent and of finite order, hence trivial. Part (ii) follows from [10, IX, corollaire 3·8].
Note that the inertia subgroup I of Gal(K/K ) coincides with all of Gal(K/K ) since OK is
strictly Henselian.

PROPOSITION 4·3. Let A be an Abelian surface over K and let X be the associated
Kummer surface. Assume that there exists a (not necessarily strictly) semistable model
X → Spec OK of X which is a scheme. Then A[2] is a constant K -group scheme. The
same is true if X → Spec OK is a strict Kulikov model of X.

Proof. Since X has semistable reduction and since OK is strictly Henselian, all σ ∈
Gal(K/K ) act unipotently on H 2

ét(X K ,Q�) (see Lemma 4·2 (i)) and hence on W� (since
K is strictly Henselian and � �= p, the �-adic cyclotomic character is trivial). We must show
that the action of any σ ∈Gal(K/K ) on W� is trivial. Fix such a σ . Then the operator on W�

induced by σ both has finite order and is unipotent, so by looking at the minimal polynomial
of σ on W� one sees easily that σ must act trivially.
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It is not in general true that A has semiabelian reduction if X has strictly semistable reduc-
tion. However, this statement is true up to quadratic twist. For the proof of this result we will
need the following:

LEMMA 4·4. Let V be a 4-dimensional vector space over a field k of characteristic 0 and
let f be a linear operator on V .

(i) Assume that the induced operator ∧2 f on
∧2 V is unipotent. If f is not unipotent,

then − f is.
(ii) Suppose that ∧2 f equals the identity. Then f =±IdV .

Proof. (i) Since being unipotent is a condition on the characteristic polynomial of an opera-
tor, which is invariant under extensions of the ground field, we may assume without loss of
generality that k is algebraically closed. Suppose first that f is diagonalisable with eigen-
values λ1, ..., λ4. Then, for all 1≤ i, j ≤ 4, i < j , λiλ j is an eigenvalue of ∧2 f. But since
∧2 f is unipotent, we deduce that all λ j must be equal, and that their common value must
be either 1 or −1, so f =±IdV . The case where f has two Jordan blocks of size 1 and
one Jordan block of size 2 can be dealt with analogously. Suppose now that f has precisely
two Jordan blocks, with eigenvalues λ1 and λ2. Then there is a basis e1, ..., e4 of V such
that f (e1)= λ1e1, f (e2)= λ1e2 + e1, and f (e3)= λ2e3. A simple calculation shows that λ2

1

and λ1λ2 are eigenvalues of ∧2 f. Again because ∧2 f is unipotent, it follows that λ1 = λ2,
and that these numbers must be either equal to 1 or to −1. Finally suppose that f only has
one Jordan block with eigenvalue λ. Let e1, ..., e4 be a basis of V such that f (e1)= λe1 and
f (e2)= λe2 + e1. Clearly, λ2 is an eigenvalue of∧2 f, so λ=±1. Putting all pieces together,
the claim follows. Statement (ii) can be proved in a way entirely analogous to part (i) and
will be left to the reader.

For the next proposition, recall that, given a continuous homomorphism Gal(K/K )→
{1,−1}, we can construct the quadratic twist of A by q as follows: We define an action
of Gal(K/K ) AK by declaring that σ ∈Gal(K/K ) act on a functorial point x of A as
x �→ q(σ )xσ . Here −σ refers to the Galois action on AK = A×K Spec K on the second
factor. The quotient of this action is an Abelian variety over K , which we shall denote by
Aq . Clearly, AK and Aq

K
are canonically isomorphic, and we obtain an isomorphism between

their associated Kummer surfaces. It follows immediately from the definitions that the iso-
morphism between the Kummer surfaces is Galois equivariant, and hence descends to K .
Therefore A and Aq define the same Kummer surface.

PROPOSITION 4·5. Let A be an Abelian surface over K and assume that the Kummer sur-
face X associated with A has semistable reduction or admits a strict Kulikov model. Then
there exists a continuous homomorphism q : Gal(K/K )→{1,−1} such that the quadratic
twist Aq of A by q has semiabelian reduction.

Proof. Denote by

ρ : Gal(K/K )−→AutQ�
(H 1

ét(AK ,Q�))

the Galois representation attached to A. By Lemma 4·2 (i), we know that the action of
any σ ∈Gal(K/K ) on H 2

ét(X K ,Q�) is unipotent. It follows from Formula (8) (Lemma 4·1)
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that all σ ∈Gal(K/K ) operate unipotently on
∧2 H 1

ét(AK ,Q�). From the Lemma preceding
this Proposition we may deduce that, for σ ∈Gal(K/K ), either ρ(σ) or−ρ(σ) is unipotent.
Using Lemma 4·2 (i), we further deduce that ρ(g)=±Id if g lies in the wild inertia subgroup
P ⊆Gal(K/K ). We shall first prove that the image of ρ is Abelian. Let σ, τ ∈Gal(K/K ).
Since Gal(K/K )/P is Abelian, there exists g ∈ P such that στ = gτσ. If ρ(g) were equal
to −Id, we would have

ρ(σ)ρ(τ)=−ρ(τ)ρ(σ ).
This, however, would mean that ρ(σ)ρ(τ)ρ(σ )−1 =−ρ(τ), so

trace ρ(τ)= trace(−ρ(τ)).
But this is impossible since trace ρ(τ)=±4. Hence we must have ρ(g)= Id, which implies
ρ(σ)ρ(τ)= ρ(τ)ρ(σ ). Using the preceding Lemma, we now define, for all σ ∈Gal(K/K ),

q(σ ) :=
⎧⎨
⎩1 if σ acts unipotently on H 1

ét(AK ,Q�)

−1 if −σ acts unipotently on H 1
ét(AK ,Q�).

First observe that q is indeed a homomorphism. This can be seen as follows: By what we
have just proved, the operators defined by any σ, τ ∈Gal(K/K ) on H 1

ét(AK ,Q�) commute.
Hence, we can find a basis of H 1

ét(AK ,Q�) with respect to which both these operators have
upper triangular form, and such that all entries on the diagonal are q(σ ), q(τ ), respectively.
The product of these two matrices will also have upper triangular form, with all diagonal
entries equal to q(σ )q(τ ). Hence q is a homomorphism. Let us now show that q is continu-
ous. Let Q�[x](4) be the vector space of polynomials of degree ≤ 4 over Q�, endowed with
the topology inherited from Q� . Then the map

EndQ�
(H 1

ét(AK ,Q�))−→Q�[x](4)

which maps an operator to its characteristic polynomial is continuous. Since Galois
representations on étale cohomology spaces are always continuous, we see that the homo-
morphism Gal(K/K )→Q�[x](4) sending σ ∈Gal(K/K ) to the characteristic polynomial
of the operator ρ(σ) on H 1

ét(AK ,Q�) is also continuous. However, we know from the Lemma
preceding this Proposition that the characteristic polynomial of the operator on H 1

ét(AK ,Q�)

defined by σ ∈Gal(K/K ) will be either (x − 1)4 (if σ acts unipotently) or (x + 1)4 (if
−σ acts unipotently). This implies that q is continuous. In particular, we can construct
the quadratic twist Aq of A by q. By construction, the Q�-vector spaces H 1

ét(AK ,Q�) and
H 1

ét(A
q

K
,Q�) are canonically identified, and the action of σ ∈Gal(K/K ) on H 1

ét(A
q

K
,Q�) is

equal to q(σ ) times the action of σ on H 1
ét(AK ,Q�). Hence Gal(K/K ) acts unipotently on

H 1
ét(A

q

K
,Q�). By Lemma 4·2 (ii), it follows that Aq has semiabelian reduction.

Remark.

(i) The Abelian surface A will always be tamely ramified (i.e., the wild inertia group
will act trivially on H 1

ét(AK ,Q�)) provided that p= 0 or p> 5 (see [20, theorem
3·9], for the case where p> 0). Hence one can give a shorter proof of the fact that
im ρ is Abelian in these cases.
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(ii) In the situation above (i.e., if the Kummer surface associated with A has semistable
reduction), it follows in particular that there is a unique quadratic twist of A
which has semiabelian reduction. Indeed, if A1 and A2 are both quadratic twists
of A with semiabelian reduction, then A2 is a quadratic twist of A1 by some con-
tinuous character q : Gal(K/K )→{1,−1}. The Q�-vector spaces H 1

ét(A1,K ,Q�)

and H 1
ét(A2,K ,Q�) are canonically identified, and the Gal(K/K )-actions differ by

precisely q. Hence, in order for both Galois representations to be unipotent, it is nec-
essary that q be trivial, so A1 = A2. This is no longer true if we remove the hypothesis
that OK be strictly Henselian. If K admits non-trivial unramified quadratic exten-
sions, we could twist by a non-trivial unramified quadratic character without affecting
the Abelian surfaces’ reduction behaviour.

Let A be an Abelian variety over K with semiabelian reduction. As indicated above, the Q�-
vector space H 1

ét(AK ,Q�) comes with a nilpotent monodromy operator N . The following
(well-known) Proposition shows that N contains much information about the reduction of A:

PROPOSITION 4·6. Let A be an Abelian variety over K with semiabelian reduction and
let A → Spec OK be its Néron model. Let N be the monodromy operator on H 1

ét(AK ,Q�).
Then we have

t (A)= r2 = rankQ�
N .

Proof. This follows from Grothendieck’s orthogonality theorem. More precisely, let A∨

denote the dual Abelian variety of A and recall that, if σ is a topological generator of the
image of the Galois representation on T�(A)⊗Z� Q�, we have (σ − 1)2 = 0 (by [10, IX,
corollaire 3·5·2]), so N = σ − 1. Consider the filtration

0⊆ T�(A)
t ⊆ T�(A)

I ⊆ T�(A),

where T�(A)I stands for the Z�-sublattice of Gal(K/K )-invariant elements (which therefore,
modulo �n , extend to sections of the Néron model A of A), and T�(A)t stands for the sublat-
tice of T�(A)I consisting of all elements which, modulo �n , restrict to the toric part of A 0

k .
We shall employ analogous notation for T�(A∨). By [10, IX, théorème 5·2], T�(A∨)I is the
orthogonal complement of T�(A)t with respect to the Weil pairing. In particular, we see that
the image of the monodromy operator N on T�(A)⊗Z� Q� is contained in T�(A)t ⊗Z� Q�,

and we have ker N = T�(A)I . Furthermore, the Weil pairing induces a surjection

T�(A)⊗Z� Q�

∼=−→HomQ�
(T�(A

∨)⊗Z� Q�,Q�(1))−→HomQ�
(T�(A

∨)t ⊗Z� Q�,Q�(1))

whose kernel is precisely T�(A)I ⊗Z� Q�. But since t (A)= rkZ� T�(A)t = rkZ� T�(A∨)t , a
dimension counting argument implies the claim.

4·2. Relations between the degenerations

Let A be an Abelian surface over K and let X be the associated Kummer surface. Assume
that X admits a strict Kulikov model X → Spec OK . The aim of the present subsection is to
prove that the degeneration behaviour of the Kummer surface of X is completely governed
by the degeneration behaviour of A. Let A be the Néron model of A over OK and recall
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that there is a nonnegative integer r = r2 such that we have an exact sequence

0−→Gr
m −→A 0

k −→ B→ 0,

where B is an Abelian variety over k. We have the following

THEOREM 4·7. Let A be an Abelian surface over K with semiabelian reduction. Let X
be the associated Kummer surface. Assume that X admits a strict Kulikov model X →
Spec OK . Then the special fibre Xk is of type I (resp. type II, type III) if and only if the toric
rank r = t (A) of A is equal to 0 (resp. 1, 2).

Proof. Since A has semiabelian reduction, we know that H 2
ét(AK ,Q�) is a unipotent

representation. By Formula (8) from Lemma 4·1, we have

H 2
ét(X K ,Q�)=

∧2
H 1

ét(AK ,Q�)⊕W�(−1),

on which the monodromy operator NX is given by

NX = (N ∧ Id+ Id∧ N )⊕ 0, (9)

where N denotes the monodromy operator on H 1
ét(AK ,Q�). This can be seen as follows:

Form the proof of Proposition 4·3, we know that the Galois representation on W�(−1) is
trivial, which means that the restriction of NX to W�(−1) vanishes. One also sees easily that,
on H 1

ét(AK ,Q�)
⊗2, we have log(σ ⊗ σ)= log((σ ⊗ 1)(1⊗ σ))= (log σ)⊗ 1+ 1⊗ log σ.

Hence formula (9) follows by considering the surjection H 1
ét(AK ,Q�)

⊗2→∧2 H 1
ét(AK ,Q�).

Let e1, ..., e4 be a basis of H 1
ét(AK ,Q�)⊗Q�

Q� with respect to which N has Jordan nor-
mal form. Clearly, if N = 0 then NX = 0. Now suppose that d = rankQ�

N = 1. Then we
may assume without loss of generality that N (e1)= N (e3)= N (e4)= 0 and N (e2)= e1. In
this case, direct calculation shows that NX (e2 ∧ e3)= e1 ∧ e3 and NX (e2 ∧ e4)= e1 ∧ e4 (so
NX �= 0), but that NX (ei ∧ e j )= 0 in all other cases (i < j), so that N 2

X = 0. Finally, assume
that d = rankQ�

N = 2. In this case, N has two Jordan blocks of size 2 (since N = σ − 1 for
some topological generator σ of the monodromy group, and (σ − 1)2 = 0). Again, we can
write down NX explicitly in terms of the induced basis of

∧2 H 1
ét(AK ,Q�) and conclude that

N 2
X �= 0 but N 3

X = 0. The calculations will be left to the reader.

We can now proceed to studying the relationship between the dual complex of a strict
Kulikov model of an Abelian surface A and that of the strict Kulikov model of the associated
Kummer surface X . Suppose that A has semi-Abelian reduction and that A[2] is a constant
group scheme over K . Let (G,L ,M ) ∈DEGsplit

ample with G =A 0, and suppose that the
finite group H = {Id, [−1]} operates on this object. Suppose further that (X, Y, φ, a, b) is
the object of C associated with (G,L ,M ), and assume that there is a smooth 
-admissible
rational polyhedral cone decomposition {σα}α∈I of C ⊆ X∨R ⊕R which satisfies properties
(a),· · · , (d) of Theorem 2·2. By Theorem 2·2 and Corollary 2·8, we know that A admits
a strict Kulikov model P which is a scheme and which contains the Néron model A of
A as an open subscheme. Furthermore, we know from Theorem 3·12 and its proof that
X = (BlA [2]P)/[−1] is a strict Kulikov model of X. This implies that there is a close rela-
tionship between the dual complexes of P and X (and in particular between the numbers
of irreducible components of the special fibres of P and X ) :
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THEOREM 4·8. Let A be an Abelian surface with strict Kulikov model P, as at the begin-
ning of this section. Let X be the associated strict Kulikov model of the Kummer surface X.
Let �A, �X be the dual complexes of the special fibres of P and X , respectively. Then the
finite group H = {Id, [−1]} acts on �A, and the quotient is canonically isomorphic to �X .

Proof. This is an immediate consequence of the construction of X , and the fact that the
canonical map BlA [2]P→ P induces an isomorphism of dual complexes of special fibres.

Now we would like to understand the relationship between the number of irreducible
components of special fibres of Néron models and strict Kulikov models.

LEMMA 4·9. Let A be an Abelian surface over K with semiabelian reduction and such
that the K -group scheme A[2] is constant. Then the group � of connected components of
the special fibre Ak of the Néron model A of A can be written as

�∼=
t⊕

i=1

Z /di Z

such that the integers d j are even. Here, t = t (A) denotes the toric rank of A.

Proof. Choose a split ample degeneration (G,L ,M ) with G =A 0 as before, and let
(X, Y, φ, a, b)= For(F((G,L ,M ))). The pairing b : Y × X→Z induces an injective
map Y → X∨. By [6, chapter III, corollary 8·2], we know that � is isomorphic to the coker-
nel of this map. Now choose a basis e1, ..., et of X∨ such that there exist non-zero integers
λ1, ..., λt with the property that λ1e1, ..., λt et is a basis of the image of Y → X∨. We know
from Proposition 3·5 that the image of any element y ∈ Y in X is of the form 2 f for some
f ∈ X∨. In particular, the λ j e j are of this form, which implies that the integers λ j are even.

Remark. This Lemma, together with Proposition 4·3, implies that requiring the existence of
a semistable model X → Spec OK of the Kummer surface X associated with an Abelian
surface A is a stronger condition on A than one might initially think. For example, suppose
that, for i = 1, 2, Ei is an elliptic curve over K which has either good reduction or is of type
I1 (in Kodaira’s notation), and such that at least one of the E j has bad reduction. Then, if
A := E1 ×K E2, X does not admit a semistable model.

PROPOSITION 4·10. Let � denote the group of irreducible components of Ak . Then the
number NX of irreducible components of the special fibre of X is equal to

NX = #�[2] + 1

2
#(�\�[2])= 1

2
#�+ 2t−1,

where t = t (A) is the toric rank of A.

Proof. This follows because the morphism BlA [2]P→ P induces a bijection between the
sets of irreducible components of the special fibres of those schemes (this follows from
Lemma 3·10 together with the fact that the centre of the blow-up is contained in the smooth
locus of P) which is equivariant with respect to the operations of H on both schemes.
Furthermore, we use the fact that the open immersion A → P also induces an H -equivariant
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bijection between sets of irreducible components of special fibres. By the Lemma preceding
this Proposition, we find that #�[2] = 2t , so the claim follows.

5. Strict Kulikov models and base change

Let L/K be a finite extension and let OL be the ring of integers of L . Then OL is a
strictly Henselian discrete valuation ring, and if mL denotes its maximal ideal, the canonical
morphism k→OL /mL is an isomorphism. Suppose that A is an Abelian surface over
K with Néron model A and associated Kummer surface X . Assume (as always) that A
has semiabelian reduction and that A[2] is a constant K -group scheme. Let (G,L ,M )

be a split ample degeneration over K with G =A 0 as before. Further suppose that
(X, Y, φ, a, b) := For(F((G,L ,M ))) as in Section 2 and that there exists a smooth ratio-
nal polyhedral cone decomposition of C ⊆ X∨ ⊕Z satisfying properties (a),· · · , (d) from
Theorem 2·2. As in the case of Néron models, taking (strict) Kulikov models does not in gen-
eral commute with base change. If AL denotes the Néron model of AL := A×K Spec L over
OL then the morphism A 0 ×OK Spec OL→A 0

L is an isomorphism (because A has semia-
belian reduction), but the morphism A ×OK Spec OL→AL is not in general surjective. In
other words, extending the ground field from K to L leads to a Néron model over OL whose
special fibre has more irreducible components than the special fibre of that over K . If �
denotes the group of connected components of (the special fibre of) A and�L that of L , then

#�L = et
L/K #�,

where t = t (A) denotes the toric rank of A and eL/K denotes the index of ramification of
the extension L/K . This follows, for example, from [6, chapter III, corollary 8·2]. Now
let X be the strict Kulikov model of X from Theorem 3·12. The aim of two section is to
understand how the number of irreducible components of strict Kulikov models of Kummer
surfaces changes under base change. More precisely, assume that there exists a smooth
rational polyhedral cone decomposition of C ′ ⊆ (X ′)∨R ⊕R which satisfies the conditions
(a),· · · , (d) from Theorem 2·2. Here, we denote For(F((G,L ,M )×K Spec L)) by
(X ′, Y ′, ϕ′, a′, b′). This will always be the case after replacing L by one of its finite
extensions by Proposition 2·3. We can now prove:

THEOREM 5·1. Keep the notation from the beginning of this section. Assume that there
exists a smooth rational polyhedral cone decomposition of C ′ ⊆ (X ′)∨R ⊕R which satisfies
the conditions (a),· · · , (d) from Theorem 2·2, so that the Kummer surface X L admits a strict
Kulikov model XL over OL , as constructed in Theorem 3·12. If N and NL denote the number
of irreducible components of Xk and XL ,k , respectively, the formula

NL = et
L/K N − 2t−1(et

L/K − 1)

holds.

Proof. Let�L be the group of connected components of the special fibre of the Néron model
of A×K Spec L . By Proposition 4·10, we know that

NL = 1

2
#�L + 2t−1

= 1

2
et

L/K #�+ 2t−1

https://doi.org/10.1017/S0305004120000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004120000067


94 OTTO OVERKAMP

= et
L/K

(
1

2
#�+ 2t−1

)
− 2t−1(et

L/K − 1)

= et
L/K N − 2t−1(et

L/K − 1).

6. Equivariant Kulikov models of Kummer surfaces, and the monodromy conjecture

In this section, we shall prove that Kummer surfaces in equal characteristic zero admit
equivariant Kulikov models. Together with previous work of Halle–Nicaise ([12, corol-
lary 5·3·3]), this will imply that the monodromy conjecture is true for Kummer surfaces.
Throughout this section (except for the final corollary), we shall assume that the residue
field k of OK is of characteristic zero. Recall that, for a positive integer d invertible in OK ,

K (d) denotes the unique extension of K of degree d; we identify the Galois group of this
extension with µd .

Definition 6·1. Let X be a smooth, projective, geometrically integral surface over K with
trivial canonical bundle, and let d be a positive integer. An equivariant Kulikov model of X
over OK (d) is a Kulikov model X (d)→ Spec OK (d) of X (d) := X ×K Spec K (d) with the
property that the action of Gal(K (d)/K )=µd on X (d) extends to X (d).

For a precise statement of the monodromy conjecture (or rather a refined version thereof),
see [12, definition 2·3·5]. Roughly speaking, it can be summarised as follows: If X is a
smooth, projective, geometrically integral algebraic variety over K with trivial canonical
bundle (generated by a global top-form which we call ω), we can consider the motivic Zeta
function Z X,ω(t), which is an element of the ring Mµ̂

k [[t]], where Mµ̂
k := K µ̂

0 (Vark)[L−1].
Here, K µ̂

0 (Vark) denotes the µ̂−equivariant Grothendieck ring of varieties; see [12, (2·2·1)]
and definition 2·3·1 of loc. cit. for more details. We shall always use the notation

µ̂ := lim←−
d∈N

µd =Gal(K/K ),

with the indices d ordered by divisibility. Let σ be a topological generator of this group.
Then σ acts on the Q�-vector space H i

ét(X K ,Q�). The monodromy conjecture now asserts
that Z X,ω(t) can be written as a polynomial in t, (1/1−Latb)(a,b)∈S⊆Z×Z>0 with S finite and
such that for all (a, b) ∈ S, there is some i ≥ 0 such that exp(2π

√−1 a
b ) is an eigenvalue of

the action of σ on H i(AK ,Q�) with respect to any embedding Q�→C.

THEOREM 6·2. Let A be an Abelian surface over K with associated Kummer surface X.
Then there exists d0 ∈N such that X admits an equivariant Kulikov model over OK (d) for all
d0 | d.
Proof. Since the residue field k is of characteristic zero, all finite extensions of K are of
the form K (d) for some positive integer d. Choose d > 0 with the property that A(d) :=
A×K Spec K (d) has semiabelian reduction and that its 2-torsion is constant over K (d).
Let us identify Gal(K (d)/K ) with µd . The action of µd on K (d) induces an action on
OK (d). Furthermore, the canonical action of µd on A(d) extends uniquely to an action of
µd on the identity component A (d)0 of the Néron model A (d) of A(d) over the action
of µd on OK (d) . This follows from the universal property of the Néron model. Observe
also that the actions of H = {Id, [−1]} and µd on A (d)0 commute (this holds generically
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since the action of H is defined over K , so it must hold globally). In particular, we obtain
an action of H ×µd on A (d)0. We also obtain an action of H ×µd on Spec OK (d) (via
the second factor), and the two actions are compatible in the obvious way. Now choose
a split ample degeneration (G,L ,M ) over K (d) with G =A (d)0. Replacing L by
⊗(h,τ )∈H×µd

(h, τ )∗L (and similarly for M ), we may assume that H ×µd acts on the object
(G,L ,M ) ∈DEGsplit

ample over the action of H ×µd on Spec OK (d) . Using [18, proposition
3·3], we may deduce from [18, theorem 3·5] that there exists a projective regular model
P of A (depending on the choice of a suitable polyhedral cone decomposition {σα}α∈I as
before) on which H ×µd acts in a way compatible with the action of µd on Spec OK (d) .

Furthermore, we know that the special fibre of P is a (not necessarily reduced) divisor
whose associated reduced divisor has strict normal crossings, and that the reduced special
fibre (Pk)red of P has a stratification indexed by I+/Y , where I+ is the set of indices whose
associated cone is positive-dimensional, and such that the action of H ×µd on P preserves
the stratification. Furthermore, the action of H ×µd on the set of strata is given by the action
of this group on I+/Y. From Lemma 3·6, we know that H cannot fix any points on the spe-
cial fibre which are not contained in a stratum associated with a cone of the form R≥0(�, 1)
for some � ∈ X∨. But those strata are contained in the smooth locus of P→ Spec OK (d) .

By [18, 4·4], we know that the Néron model A of A is contained in P , and by the argu-
ment from the proof of Theorem 2·2, we know that the induced morphism A → P sm is an
isomorphism. It now follows (from the same arguments as in the proof of Theorem 3·12)
that Y := (BlA [2]P)/H is a regular projective model of X (d)= (BlA(d)[2]A(d))/H , and it
is clear that the action of µd on X (d) extends to Y . Furthermore, we see (as in the proof
of Theorem 3·12) that the reduced special fibre (Yk)red is a divisor with normal crossings on
Y . In order to see that Y really is an equivariant Kulikov model, all we have to show is that
ωY /OK (d) ((Yk)red) is trivial. Let U0 :=BlA [2]A ⊆BlA [2]P , and let U1 := P\A [2]. Then
U0/H, U1/H form an open cover of Y . Let π : U0→A be the morphism given by blow-
ing up, and let ρ : U0→U0/H be the quotient map. As in the proof of Theorem 3·12, we
can find nowhere vanishing global 2-forms ω and β on A and U0/H , respectively, such that
π∗ω= ρ∗β. By [12, remark 5·1·7], we know that the line bundle ωP/OK ((Pk)red) is trivial. If
we choose a nowhere vanishing global section η of ωP/OK (d) ((Pk)red), we may assume, with-
out loss of generality, that η |A=ω. We shall denote the morphism BlA [2]P→ P also by π
by abuse of notation. Then the 2-form π∗η is invariant under the action of H on BlA [2]P ,
because π∗η |BlA [2]A= π∗ω, which is equal to ρ∗β, so it must be H -invariant. It follows in
particular that π∗η and [−1]∗π∗η coincide on a dense open subscheme of BlA [2]P , so they
must coincide everywhere. Hence π∗η descends to a global section (which we shall also
call β) of ωY /OK (d) ((Yk)red) (at this point we use that the map U1→U1/H is étale, that
U0→U0/H is tamely ramified, and that π∗η vanishes along the exceptional divisor). We
already know from the arguments presented in the proof of Theorem 3·12 that β does not
vanish on U0/H. It is clear that η does not vanish on U1 = P\A [2], so β vanishes nowhere.
Hence ωY /OK (d) ((Yk)red)∼=OY . Note that there exists d0 ∈N which is minimal with the
property that A acquires semistable reduction and A[2] becomes constant over K (d0).Hence
the Theorem follows.

COROLLARY 6·3. Let X be a Kummer surface over K (recall that the residue field k of
OK has characteristic 0). Then X satisfies the monodromy property ([12, definition 2·3·5]).

Proof. This follows from [12, corollary 5·3·3] together with Theorem 6·2.
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Using a similar method, we may also deduce the following corollary, for which we shall only
assume that the residue field k of OK have characteristic different from 2 (in other words,
p= char k > 2 as well as char k = 0 are allowed).

COROLLARY 6·4. Let A be an Abelian surface over K and let X be the associated
Kummer surface. Assume that Gal(K/K ) acts unipotently on H 2

ét(X K ,Q�) for some � �= p.
Then X admits a Kulikov model X → Spec OK which is a scheme. Note that we do not
make any assumptions about the reduction of A over OK . In particular, X admits a Kulikov
model over K which is a scheme as soon as X has semistable reduction.

Proof. By Proposition 4·5, we may assume without loss of generality that A has semiabelian
reduction already over K . Furthermore, Proposition 4·3 implies that A[2] is a constant K -
group scheme. (In both propositions, although we assumed that X have semistable reduction,
the only fact we used in their proofs was that the Galois action on H 2

ét(X K ,Q�) is unipotent.
Hence one sees easily that the conditions of both propositions can be replaced by those of the
corollary). In the proof of the preceding theorem, we had to extend the ground field in order
to be able to make these assumptions on A, and the assumption that k have characteristic 0
was only used during this first step, to ensure that all finite extensions of K are of a particular
form. Hence we may proceed as in the proof of the previous theorem, using the trivial group
instead of µd .

Remark. In the preceding corollary, we do not claim that the Kulikov model X → Spec OK

is a strict Kulikov model. In other words, the corollary does not state that the special fibre of
X → Spec OK is reduced.
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