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SIMPLE MODEL OF ASYMMETRICAL
BUSINESS CYCLES: INTERACTIVE
DYNAMICS OF A LARGE
NUMBER OF AGENTS WITH
DISCRETE CHOICES

MASANAO AOKI
University of California, Los Angeles

A (jump) Markov process (generalized birth-and-death process) is used to model
interactions of a large number of agents subject to field-type externalities. Transition
rates are (nonlinear) functions of the composition of the population of agents classified
by the choices they make. The model state randomly moves from one equilibrium
to another, and exhibits asymmetrical oscillations (business cycles). It is shown that
the processes can have several locally stable equilibria, depending on the degree of
uncertainty associated with consequences of alternative choices. There is a positive
probability of transition between any pair of such basins of attraction, and mean
first-passage times between equilibria can be different when different pairs of basins
are calculated.

Keywords: Business Cycles, Hysteresis, Multiple Equilibria, Uncertain Choices,
Mean-Field Effects, Mean First-Passage Times

1. INTRODUCTION

In a macroeconomic model with several locally stable equilibria, the set of states
of the model is partitioned into several subsets, each of which serves as a basin
of attractions.1 Once the state falls into one particular basin, it converges to the
locally stable equilibrium state in the basin until it is disturbed out of the particular
basin into another for some reason.

We construct a continuous-time model of a finite but large number of interacting
agents in which the number of locally stable equilibria varies with the degree of
uncertainty or ignorance when agents make their decisions. Multiple equilibria
are produced by uncertainty associated with consequences of alternative choices.
Depending on the degree of uncertainty associated with relative advantages of
alternative choices, the model can produce one or more than one equilibrium state.
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Perceived relative advantage of alternative choices as the function of the fraction
of agents of particular choice is crucial in determining macroeconomic behavior
of such models.

We discuss a simple example by assuming that each agent has a binary choice,
and that his choice is affected by the aggregate choices of all the agents which
are represented by the fraction or proportion of agents having a given choice.
We thus describe the aggregate state of the agents by the fraction or percentage
of agents making the same decision. Becker (1974) calls these aggregate effects
social influences or social demand. Group sentiments, group pressure, or field
effects of Aoki and Miyahara (1993) and Aoki (1995a,b; 1996) also refer to this
type of externalities in decision-making processes.

When the model possesses several locally stable equilibria, the equilibrium
distribution assigns generally unequal probabilities to the basins. Hence, mean
first-passage times between equilibria also will be different in general between
different pairs of equilibria. With two basins of attraction the model will stay
longer on average in one basin of attraction than in the other.2

Section 2 develops a generalized birth-and-death process with transition rates
that depend on the population composition. We model how transition rates are
affected by perceived relative advantages of alternative choices. Section 3 discusses
asymmetrical cycles. After a short example in Section 4, the paper concludes with
Section 5. In the Appendix, we discuss a simple two-state continous-time Markov
process to highlight the role of a potential barrier in causing asymmetrical dynamic
behavior.

2. MODEL AND MACRODYNAMICS

2.1. Master Equation

This section shows that a large collection of interacting agents, each with binary
choices, can produce multiple locally stable stationary states, called equilibria. This
model is the same as the one in Aoki (1995b; 1996, Ch. 5) in its basic specification.
This paper focuses on the relationship between the degree of uncertainty associated
with alternative choices and the number of equilibria.

We fix the numberN of agents, each of whom has two choices at any time.3

We classify agents by their choices. There are thus two types of agents. Letn(t)
be the number of agents who have chosen decision (algorithm or alternative) 1 at
timet . Consequently, the remainingN − n(t) of agents are using the other decision
or alternative. The fraction of the population with choice 1 is thereforen/N. (We
drop the time argument when convenient.) The population ofN agents thus is parti-
tioned into two subsets of agents.4 In general, the number of choices may depend on
N. Again, we do not discuss this more general cases for simpler exposition. A cer-
tain limiting case in which bothN andK go to infinity is discussed in Aoki (1997).

Dynamics of continuous-time Markov processes are specified once we specify
transition rates between states. The process is assumed to be time homogeneous,
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and it does not execute an infinite number of jumps in an arbitrarily small interval of
time. BecauseN is fixed, the numbern of type-1 agents can be used as a scalar state
variable. Here we allow transitions fromn only ton±1 to keep our model simple.5

Given the composition of the population, we can describe only probabilities of
a state switching to another state in a small interval of time, namely, we specify
transition rates for the population. No statement on specific agents can be made
in deterministic terms. In this sense, behavior of the collection of agents is de-
scribed statistically, or probabilistically. Labels of agents, such as agent 1, 2, are
mere convenience and have no intrinsic meanings. Permutations of labels of agents
should have no effects on the analysis. Agents therefore are treated as exchange-
able in the sense of probability theory. See Galambos (1988) or Kingman (1978).
Only patterns of random partitions ofN into two subsets matter. Representative
agents are identical. States of exchangeable agents are conditionally independently
and identically distributed (i.i.d.). See R´enyi (1970, p. 315), Kingman (1978), or
Galambos (1988, p. 306).

Imagine a situation in which merit, desirability, or cost of each choice is affected
by the fraction of agents with the same choice in the population. This means that
probabilities of agents switching their choices depend on the fraction or more gen-
erally on population composition by types or categories. We assume that the transi-
tion rates of agents between two choices depend (nonlinearly) on the fraction; i.e.,
we assume that the transition rates are functions of the fraction in addition to some
of the more traditional macroeconomic variables such as prices, quantities, and/or
interest rates. This is a straightforward way of incorporating into analysis nonprice
variables that affects choices, such as congestion, fads, or information contagion.

Our process is therefore a generalized birth-and-death process in which the birth
and death rates are some nonlinear functions of the fractionx = n/N.

We useln for the transition rate from staten to n − 1, andrn from n to n + 1.
The symboll is for a left move on a line with 0, 1, 2, . . . N marked on it, andr is
a rightward move. The former means that one agent of type 1 changes his mind
and becomes type 2, and the latter is the converse.

Using this notation,pn(t), the probability ofn agents using choice 1 at timet ,
is governed by an ordinary deterministic differential equation,

dpn

dt
= ln+1 pn+1(t) + rn−1 pn−1(t) − (rn + ln)pn(t), (1)

for n = 1, 2, . . . , N − 1, and

dp0/dt = −r0 p0 + l1 p1

and

dpN/dt = −l N pN + r N−1 pN−1

as the boundary conditions. This is called the master equation. It is the differential
equation for the probability flux as described by Kelly (1979, Ch. 1). See Aoki
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(1996, p. 116) for further references on master equations. Basically, it is a backward
Chapman-Kolmogorov equation as in Cox and Miller (1965).

Setting the right-hand side of (1) to zero, we see that two pairs of two terms
individually vanish, i.e., the detailed balance condition holds [see Kelly (1979,
Ch. 1)], that is,

lk+1 pe
k+1 = rk pe

k

for all k = 0, . . . , N−1, wherepe
k now denotes equilibrium (stationary) probability

for statek. By regarding this as the first-order difference equation forpe
k, the

stationary or equilibrium probabilities are given by

pe(n) = pe(0)

n∏
k=1

rk−1

lk
. (2)

To proceed further we specify the transition rates more explicitly.

2.2. Transition Rates

The process of a collection of agents changing their minds asynchronously is
modeled probabilistically in a manner similar to that of hazard functions introduced
in reliability; see, for example, Cox and Miller (1965).

In the generalized birth-and-death process of this paper, we specify the transition
rates to be

ln = f (N)µxη2(x)

and
rn = f (N)λ(1 − x)η1(x).

The birth rate isλ and the death rate isµ. In the classical model usually described
in probability textbooks,f (N) = N, andη’s are one because agents are assumed
to act independently, i.e, over a small interval of time, agents independently decide
to switch their choices. The scale factorf (N) does not really matter because it
can be absorbed into choice of unit of time. To simplify the equation, we takeλ

andµ to be the same.
Dependence among agents is represented by nonconstantη’s. Because we pos-

tulate pervasive and some (intrinsic or extrinsic) sources of uncertainty in the eco-
nomic or other environment surrounding the decision-making processes, nobody
knows for certain if choice 1 is superior to choice 2.6

We thus set
η1(x) = Z−1 eβg(x)

and
η2(x) = 1 − η1(x)

with Z = eβg(x) +e−βg(x), and whereβ is a parameter introduced to reflect degree
of uncertainty, as we explain next.
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To see heuristically thatη1(x) is the probability that choice 1 is better than
choice 2, suppose that relative advantage conditional on the fractionx is a random
variable,ξ , normally distributed with meang(x) and varianceσ 2. Thus,

Pr(ξ ≥ 0) = 1
2{1 + erf(u)},

with u = g(x)/
√

2σ(x) where erf is the error function

erf(u) = 2√
π

∫ u

0
e−y2

dy.

Using the approximate formula of Ingber (1982), the error function is approx-
imated by tanh(κu) whereκ = 2/

√
π . This approximation is surprisingly good,

especially in the interval [0 1]. For example, erf(x) = κ(x − x3/3+ x5/10−· · ·),
while tanh(κx) = κ(x − x3/2.36+ x5/4.63− · · ·). The above probability thus is
given approximately by

(1 + e−2κu)−1 = eκu

eκu + e−κu
.

If we define the parameter

β−1 =
√

2πσ,

then we have the expression

Pr(ξ ≥ 0) ≈ eβg(x)
/

Z = η1(x),

whereZ is the normalizing constant. Thus, if normal approximation to the differ-
ences in the return or utility is valid,β is inversely proportional to the standard
deviation of the conditional mean of the difference. More generally, we may say
that the smaller the values ofβ, the larger is the degree of uncertainty about the
consequences of a particular choice. On the other hand, the larger the values of
β, the smaller is the degree of uncertainty about consequences or implications of
particular choices.

Alternatively, we may think of a logarithmic odds ratio, because

ln

[
η1(x)

η2(x)

]
= 2βg(x).

This ties the expression to those in the discrete-choice-model literature as in
Anderson et al. (1993), even though this literature does not deal with dynamics.

Next, we express the right-hand side of (2) by introducing the potential,U ,
defined by

pe(n) = Z−1 exp[−βNU(n/N)],

whereZ is the normalizing factor,
∑

k exp[−βNU(k/N)], assumed to be finite.
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The functionU is called potential because it depends only on the current state
variable,n(t), i.e.,n/N becauseN is fixed, and is independent of the path from
the initial state to the current state. Equating the logarithms, we see that

−βNU(n/N) = ln Z + ln pe(0) +
n∑

k=1

ln

(
rk−1

lk

)
.

Substitute the expressions for the transition rates involvingη’s and use the
approximation

ln(NCn) = N H(n/N) + O(1/N),

whereH(p) = −p ln p− (1− p) ln(1− p) is the Shannon entropy of the distri-
bution(p, 1 − p) obtained by approximating factorials by Stirling’s formula [see
Aoki (1996, pp. 56, 248)] to obtain the expression that ties the potential tog(x),
which refers to relative advantage of choice 1 over 2, and to the binomial coeffi-
cient, which represents the effects of random combinatorial struture embedded in
the process. That is, how many ways canN agents be partitioned into two groups
such that the fraction is fixed atx?

U

(
n

N

)
= 2

N

∑
k

g

(
k

N

)
− 1

β
H

(
n

N

)
+ O

(
1

N

)
.

WhenN is large, we treatx as continuous and write the above as

U (x) = −2
∫ x

g(z) dz− 1

β
H(x),

noting thatdz ≈ 1/N.

2.3. Macrodynamics

It has been shown by Aoki (1995a,b; 1996, p. 127) that macrobehavior of this
model can be described by the equation for the mean ofx,7

dφ/dt = (1 − φ)η1(φ) − φη2(φ) = (1 − φ)η2

(
η1

η2
− φ

1 − φ

)
. (3)

This is the macrodynamic equation for this model. The critical points of the dy-
namics are the zeros of the right-hand side,

η1(φ)

η2(φ)
= φ

1 − φ
,

or substituting the expressions forη’s given above,

2βg(φ) = ln[φ/(1 − φ)]. (4)
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Local equilibrium points are asymptotically stable if

2φ(1 − φ)βg′(φ) ≤ 1. (5)

Therefore, ifg′ is positive at a local equilibrium, then too large a value ofβ will
cause it to become unstable.

Equations (4) and (5) clearly show the importance ofβ andg in determing the
number of critical points.

This set of critical points is exactly those points at which the potential is sta-
tionary, or the equilibrium probabilities are stationary, because

dU(x)

dx
= −2g(x) − 1

β

d H(x)

dx
. (6)

After substituting the expression for the derivative of the entropy term, we note
that the zeros of (6) are the same as those of (4).

Equation (6) shows that, for large values ofβ, the minimum of the potential
is nearly the same as the zeros ofg, i.e., atx where the conditional mean of
the differences of alternative choices are zero. However, for smaller values ofβ

(largerσ values under normal-distribution approximation), then the potential may
be minimized at points quite different from the zeros ofg, because of entropy
effects; i.e., random combinatorial effects represented by the binomial coefficient
in the potential will cause the potential to be minimal atx at which the integral of
g(x) is not minimal.

Next, we describe a situation in which the functiong has two locally stable
states and one locally unstable state in (0 1).

3. MEAN FIRST-PASSAGE TIMES AND ASYMMETRICAL CYCLES

Suppose that three critical points exist between 0 and 1, arranged asa ≤ b ≤ c of
which the middle point is locally unstable, where we usea for short-hand notation
for φa and so on.

The method for calculating first-passage probabilities or mean first-passage time
is well known, and is discussed by Cox and Miller (1965, Sect. 3.4), Parzen (1962,
Ch. 6), Grimmett and Stirzaker (1992, Sect. 6.2), or van Kampen (1992, Ch. XII)
to mention a few textbooks. From now on, we examine the solutions with the initial
probability concentrated at statem.

To calculate the probability distribution of the random time to reach statec for
the first time from the initial positionm, we treat statec as an absorbing state.
Defineτm be the mean first-passage time from statem to statec. It is governed by

τm − 1t = (rm1t)τm+1 + (lm1t)τm−1 + {1 − (lm + rm)1t}τm,

for any m in {a + 1, a + 2, . . . , c − 1}, and where1t is a small positive time
interval.
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This equation gives rise to the next second-order difference equation,

−1 = rm(τm+1 − τm) − lm(τm − τm−1).

This equation can be conveniently solved by converting it into two first-order
difference equations. The first one is defined by

δm = τm+1 − τm,

and the second one by

δm = lm
rm

δm−1 − 1

rm
.

The two conditions needed to fix the solution of the second-order difference
equation are

raδa = −1,

becausela is zero by the boundary condition, and

τc = 0.

It is easy to verify by the mathematical induction on the index that

δk = − 1

rk pe
k

(
pe

a + · · · + pe
k

)
, (7)

for k = a, a + 1, . . . , after we rewrite the ratiolk/rk−1 as pe
k−1/pe

k by using the
detailed balance condition displayed just before equation (2).

Summing the expression forδk, we obtain the expression for the mean first-
passage time from statem to statec, which we now denote asτ(m→ c), m≤ c−1,

τ(m → c) = −
c−1∑
µ=m

δµ.

By selectinga as the initial condition, we arrive at the expression for the mean
first-passage time from statea to statec as

τ(a → c) =
c−1∑
k=a

1

rk pe
k

k∑
µ=a

pe
µ. (8)

Reasoning analogously in the case in which statea is treated as absorbing
instead ofc, we obtain the expression forτ(c→ a) as well. In this case we solve
the difference equation backward fromc with the boundary conditionτa = 0 and
lcδc−1 = 1. The resulting expression is

τ(c → a) =
c−1∑
k=a

1

rk pe
k

c∑
µ=k+1

pe
µ.
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Because these expressions are not transparent, we approximate (8) by recalling
the expression forpe

k in terms of the potentialU (k/N), and approximating sums
by their maximum terms. See Aoki (1996, Sect. 2.2.3) on this approximation. For
example, because the inner sum in the numerator

∑
pe

µ ≈ pe
a and the denominator∑ 1

rk pe
k

≈ 1
rb pe

b
, we have an approximate expression for the mean first-passage time

from statea to statec as

τ(a → c) ≈ consteβN[U (b)−U (a)] .

Note thatU (b) − U (a) is the height of the potential barrier in going from state
a to statec. Similarly

τ(c → a) ≈ consteβN[U (b)−U (c)] .

In going from statec to statea, the barrier has heightU (b) − U (c) which is
generally different from the barrier in the other direction.

Figure 1 is a diagram for a potential with two local minima at statesa andc
separated by a barrier at stateb. It takes less time on the average to go from state
c to statea than the other transition from statea to statec, because the latter
transition must overcome a higer barrier. See Appendix.

FIGURE 1. Schematic diagram of potential with two local equilibria at statesa and c.
The height of barrier isV in going from statec to statea, but is V + v in the opposite
direction.
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4. MULTIPLICITY AND UNCERTAINTY

To illustrate the effects of decision uncertainty on the equilibrium distribution,
consider an example with

g(x) = −89/3 − 72x + 400x2 − 800x3/3,

where 0≤ x ≤ 1.
With a finite N, x takes on values on a discrete set and the values ofβ for

which the potential has two locally stable minima change somewhat withN.
Numerical experiments show that, even for small values ofN = 20, the potential
exhibits unique minimum, or two locally stable minima or an unstable maximum
depending on values ofβ. Whenβ is too large, the condition of stability (5) is
violated.

With N = 100,U (x) has two local minima and one local maximum in(0 1)
for the range ofβ values approximately between 0.017 and 0.05. For values of
β larger than 0.05, the minima are located atx = 1 or atx = 0. These minima at
x = 0 or atx = 1 indicate that all agents choose the same decision.

What is essential to realize is that the part of the potential independent ofβ does
not have two local minima in the range of (0 1) and that the entropy term by itself
has only one maximum in this range as well. It is the combination of these two
monotone functions that produce two locally stable minima for the right range of
large uncertainty.

The four panels of Figure 2 plot potentialU (n) asn ranges from 1 to 99, for
β = 0.01, 0.017, 0.03, and 0.07. For a small value ofβ, there is no clear-cut superior
choice, and roughly equal numbers of agents change their minds from choice 1 to
2, and conversely. Hence an equilibrium nearx = 0.5 is locally stable. This is panel
A. A much larger value ofβ means that one choice is perceived to be decidedly
superior. Consequently, a large number of agents change their minds, responding
even to tiny changes making the critical point in (0 1) locally unstable, andx = 0
andx = 1 minimal points of the potential. This is shown in panel D. For values ofβ

between these two extremes, just a right fraction of agents change their minds, and
a small fraction and a large fraction of the population of agents are locally stably
maintained in equilibrium. Panel B shows that two locally minimal equilibria are
just developing. Panel C shows two local minima clearly.

In a pioneering paper, Kirman (1993) used a generalized birth-and-death process
with transition rates

η1(x) = ε + (1 − δ)x

and

η2(x) = ε + (1 − δ)(1 − x)

in the notation of this paper. He choseε to beα/N andδ as 2α/N.8 In other words,

βg(x) = ln

[
x + α

N
(1 − 2x)

]
.
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A)

B)

FIGURE 2. Plot of potentialU (n/N) with N = 100: (A) β = 0.01 with one local miminum
nearn = 50; (B) β = 0.017 with two local minima slightly developed; (C)β = 0.03 with
two well-defined local minima; (D)β = 0.07 with minima at the end of the interval.
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C)

D)

FIGURE 2. (Continued.)
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His specification is such thatβ plays no role and there is only one critical point.
His model thus does not exhibit the interplay of multiple equilibria and uncertainty
cum degeneracy. In his Figure 1, panels A and C correspond to the equilibrium
distribution with stable and unstable equilibrium, respectively, and panel C is a
special case in which the equilibrium distribution is constant.

5. CONCLUDING DISCUSSION

To explain asymmetrical fluctuations in macroeconomic phenomena we have pro-
posed a model with many agents who are partitioned into several types or cate-
gories, and the categorical composition of the population influences transition rates.

We have illustrated that, with uncertain benefits or costs of alternative choices
facing agents, there may be zero, one, two, or more locally stable equilibria, de-
pending on the mean of the distribution of the difference of the two alternative
benefits, conditional on the composition of the population of the agents expressed
as the fraction favoring a particular choice.

The model states are divided into several basins of attraction, each with lo-
cally stable attracting stationary state. In general, there is positive probability of
transition from any one basin to another.

The role of uncertainty in the model is crucial. If there is too much uncertainty,
the model may be stuck in one equilibrium for a long time. In this sense an al-
ternative title of this paper could be “Uncertainty and Multiple Equilibria” or “A
Prototype Model for Hysteresis in Macroeconomics” because removal of a shock
that moved the model state from one basin to another does not mean that the model
will return to the original state. We have shown that the heights of (potential) bar-
riers in moving from one equilibrium to the other and in the opposite direction are
generally different, and this is the reason for ratchet effects or hysteresis associated
with asymmetrical fluctuations.

This prototype model can explain, for example, the type of persistence in the
labor market discussed by Moene et al. (1997) in which firms have two employment
policies and the composition of the firms by the policies affects the hiring costs,
hence the possibility of two basins of attractions. The explanations of the hysteresis
of this paper are thus different from those in the economic literature, for example,
Blanchard and Summers (1986).

NOTES

1. In discrete-time models, random maps of a set of finite points studied by Katz (1955) or Derrida
and Flyvbjerg (1987) are of this type.

2. The model of this paper endogenously produces stationary or equilibrium probabilities. It is dif-
ferent from the models of Hamilton (1989) or Neftci (1984) which empirically fit time series associated
with business cycles by estimating transition probabilities of associated Markov chains. For one thing,
our model is of continuous-time Markov processes. For another, we model underlying agent interaction
processes explicitly.

3. This assumption can be removed. We keep it to simplify our presentation.
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4. In general, the number of choices may depend onN. Again, for simpler exposition, we do not
discuss this more general case. A certain limiting case in which bothN andK go to infinity is discussed
by Aoki (1997).

5. More general transitions can be handled with no conceptual difficulty. See, for example, Karlin
and Taylor (1975, p. 135).

6. Think, for example, of a proposal to undertake a large public work such as a reservoir, air-
port, or highway. No amount of feasibility, environmental impact, or economic multiplier studies will
completely eliminate uncertainty associated with choices.

7. Briefly put, expand (1) in the inverse power of
√

N after substitutingn = Nφ + √
Nξ , whereφ

is the mean of the random variablex = n/N. The equation forφ, which is (3), separates from the rest.
8. Use ofN − 1 rather thanN is immaterial in the limit asN goes to infinity.
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APPENDIX

This appendix illustrates the role of potential barriers that are responsible for asymmetrical
behavior in a simple model.

Let X(t) be a scalar-valued state variable of a model which is eithers1 or s2, or simply
1 or 2. To shorten the notation, we writePr{X(t) = 1} as p1(t) and, similarly,p2(t).

Becausep1(t)+ p2(t) = 1 for all t ≥ 0, we examine only probabilityp2(t). The dynamic
equation for it can be immediately written as a backward Chapman-Kolmogorov equation,

dp2(t)/dt = w1,2 p1(t) − w2,1 p2(t), (A.1)

wherew1,2 is the transition rate from state 1 to state 2. It is the derivative ofPr [X(t) =
2 | X(0) =1] with respect to timet ; i.e., the probability of moving from state 1 to state 2
in a small positive time interval1t is equal tow1,21t + o(1t), and similarly forw2,1. We
assume that the process is time homogenous and does not execute an infinite number of
jumps in a small time interval.

In this example, we assume thatw1,2 = e−β(V+v), and thatw2,1 = e−βV , where the param-
eterβ is taken to be nonnegative. Even though we treatβ simply as a parameter, we think
of it as something that reflects the level of economic activity in models, or the level of un-
certainty that pervades the model. We may think roughly that the level of economic activity
and that of this pervasive uncertainty are inversely related. This form of specification for
transition rates here is merely a convenient device. These transition rates reflect or model
the fact that, to go from state 1 to 2, there is a barrier of heightV + v, and from state 2 to
state 1, the height of the barrier isV . We assume thatv is (much) smaller thanV . This form
of specification for transition rates here is merely a convenient device. The assumed form
of the transition rates implies that we measure the potential in the exponent of the Gibbs
distribution from that of state 1, and assume that the value of the potential function at state 2
differs only slightly from the first by the amountv, but that these two stable equilibria are
separated by a barrier of heightV , as shown in Figure 1.

The stationary or equilibrium probability that the state variableX(t) lies in state 1, or
in state 2, is obtained simply by setting the right-hand side to zero to define equilibrium
probabilities in (A.1). Denote them byπ1 andπ2, respectively. Notice that they satisfy the
relation

π1w1,2 = π2w2,1,

which states that the probability flux of jumping from state 1 to state 2 and the reverse
balance out in equilibrium. This relationship is an especially simple example of the detailed
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balance condition. The detailed balance condition implies that the equilibrium distribution
is a Gibbs distribution. See Kelly (1979) or Aoki (1996, Ch. 3) for example. The equilibrium
probability is given by

π2 = (1 + eβv)−1.

Note that these equilibrium probabilities are independent of the height of the barrier,V . In
equilibrium, the model is more likely to be in state 1 than in state 2, asβ becomes larger.

Dropping the subscript 2, we rewrite the differential equation as

dp/dt = e−β(V+v) − γ p = −γ (p − π2), (A.2)

whereγ = e−βV + e−β(V+v). This probability monotonically approaches its equilibrium
value. Although these equilibrium probabilities are independent of the height of the barrier,
V , the time constant 1/γ does depend onV . Lowering the value ofβ increases the probability
of moving from one state to the other. This may be interpreted as a reflection of a higher
level of economic activity or a lower degree of uncertainty in the model.

Now consider varying this parameterβ over time so that the path to an equilibrium is
the quickest possible. The value of the parameterβ may be influenced by a policy maker
to reduce economywide uncertainty, for example. Put differently, if the value ofβ can be
manipulated, we ask how we are to hasten convergence to an equilibrium state. Such aβ

can be obtained by maximizing the rate of change ofp, i.e., the right-hand side of (A.2)
with respect toβ,

∂

∂β
[e−β(V+v) − γ p] = 0. (A.3)

For a simpler explanation, let us set the initial condition to zero,p(0) = 0. Then,

p(t) = π2(1 − e−γ t ),

and the right-hand side of (A.2) becomes exp{−β(V + v) − γ t}. Minimizing the exponent
of this expression yields

V + v = −∂γ

∂β
t

as a necessary and sufficient condition for maximizing the right-hand side of (A.2), i.e.,
(A.3). This expression becomes

t = eβV

e−βv + V/(V + v)

or

βV ≈ ln t

by noting thatβ becomes large ast increases. This result is interesting because of the
similarity with the optimal annealing schedule in the simulated-annealing literature; see
Kirkpatrick et al. (1983) and Kabashima and Shinomoto (1991).

One interpretation we make of this example is that under the best of circumstances, the
approach to an equilibrium is sluggish, i.e., at most at a rate lnt , and not exponential for
stochastic dynamics with multiple equilibria.
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