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Abstract. The operations of expansion and refinement on nondeterministic matrices (Nmatrices)
are composed to form a new operation called rexpansion. Properties of this operation are investigated,
together with their effects on the induced consequence relations. Using rexpansions, a semantic
method for obtaining conservative extensions of (N)matrix-defined logics is introduced and applied
to fragments of the classical two-valued matrix, as well as to other many-valued matrices and
Nmatrices. The main application of this method is the construction and investigation of truth-
preserving ¬-paraconsistent conservative extensions of Gödel fuzzy logic, in which ¬ has several
desired properties. This is followed by some results regarding the relations between the constructed
logics.

§1. Introduction. Since its introduction in Avron & Lev (2005), the framework of
nondeterministic matrices1 (Nmatrices) has proven to be very useful, as it has almost
all the advantages of the framework of ordinary matrices, while capturing logics that are
practically left out by it. Accordingly, Nmatrices have been widely investigated and utilized
in various areas, like many-valued logics (Kulicki & Trypuz, 2012), paraconsistent logics
(Avron, 2007), and proof theory (Lahav, 2013).

Nmatrices differ from (ordinary) matrices in that the truth value of a compound formula
may not be uniquely determined by the truth values of its immediate subformulas, but
only constrained by those truth values. This means that truth values of compound formulas
are chosen nondeterministically from a set of options. The particular instance of ordinary
matrices is obtained when all these sets are singletons. For some logics, this generalization
provides an effective finite-valued semantics, where finite-valued matrices are beyond
reach (see, e.g., Avron & Zamansky (2011)).

In Arieli, Avron, & Zamansky (2011) and Avron (2007) two fundamental operations
which are peculiar to Nmatrices were introduced: expansion and refinement. Both of
them transform a given Nmatrix (that may be an ordinary matrix) to another one. The
former amounts to a simple duplication of the truth values that are employed in the given
Nmatrix, while the latter reduces the amount of nondeterminism, by taking out possible
values from the interpretations of the connectives. The two operations were shown useful
for the modular construction of families of paraconsistent logics (Avron, 2007), Avron,
Konikowska, & Zamansky (2012), as well as for studying maximality properties in the
constructed logics (Arieli et al., 2011).
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In this article we show that expansion and refinement are most useful when combined
into one operation, which we call rexpansion (refined expansion). We investigate
rexpansion as a powerful tool for generating new Nmatrices from existing ones. Properties
of this combined operation are presented, along with its effects on the consequence
relations which are induced by the operated Nmatrices. In particular, we identify a useful
sufficient criterion for a rexpansion of an Nmatrix to result in an equivalent Nmatrix, that
induces the same logic.

The main application of rexpansion in this article is for the problem of conservatively
extending a given logic L with new connectives which have some desirable properties.
The method is to apply appropriate rexpansion to a matrix (or an Nmatrix) that is known
to be characteristic for L, getting by this alternative semantics for it, for which the addition
of the desired connectives is an easier task. The relations between the original logic and
the extended one follow then from the general properties of rexpansions. We demonstrate
this method with several examples, including matrices (and Nmatrices) for classical logic,
paraconsistent logics, finite-valued logics and infinite-valued logics.

The most important demonstration of this technique provides a new (and as we show,
significantly better) solution for the problem of constructing paraconsistent fuzzy logics.
These are logics that are useful for modeling vague propositions, while avoiding the
explosion principle, according to which any proposition follows from a contradiction. A
first solution to this problem was given in Ertola, Esteva, Flaminio, Godo, & Noguera
(2015), using a completely different approach. However, we show that this solution has
some serious drawbacks, which are overcome in the solution proposed here. Our solution
is obtained by performing different rexpansions on the Gödel matrix, and then augmenting
the resulted Nmatrices with an involutive negation. We further investigate the connection
between the various constructed logics.

The rest of this article is organized as follows. We begin with a preliminaries section
(§2), in which we review existing definitions and results in the theory of Nmatrices,
including the operations of expansion and refinement. In §3 we combine these two
operations into a single operation that is called rexpansion, and prove several results
regarding this operation and its effects on consequence relations. §4 includes examples
for applications of rexpansions in well-known logics from the literature. §5 focuses
on paraconsistent conservative extensions of Gödel fuzzy logic that are obtained by
performing various rexpansions on the Gödel matrix. We conclude with §6, in which
several directions for further research are proposed.2

§2. Preliminaries.

2.1. Propositional logics and matrices. A propositional language L consists of a
countably infinite set of atomic variables At = {p1, p2, . . .} and a finite set ♦L of
propositional connectives. The set of all n-ary connectives of L is denoted by ♦n

L, and
its set of well-formed formulas by W(L). We sometimes identify L with its set of
connectives (e.g., when speaking about “the language {∧,∨,¬}”). A propositional logic

2 A preliminary, concise version of this article appears as Avron & Zohar (2017). Besides including
full proofs, in this full version we have also expanded the demonstration of our approach in
§4, and in particular included a detailed analysis of logics of formal inconsistency in §4.2. The
investigation of paraconsistent conservative extensions of Gödel logic was expanded as well. In
particular, the results in §5.3 are new.
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is a pair L = 〈L,�L〉 such that L is a propositional language and �L is a structural and
nontrivial3 (Tarskian) consequence relation for L. In what follows, L denotes an arbitrary
propositional language.

A notion that will be widely used in what follows, and especially when investigating
relations between different logics, is that of conservative extensions:

DEFINITION 2.1. A logic L2 = 〈
L2,�L2

〉
is conservative over a logic L1 = 〈

L1,�L1

〉
(or:

L2 is a conservative extension of L1) if W(L1) ⊆ W(L2), and for every T ⊆ W(L1) and
ϕ ∈ W(L1) it holds that T �L1ϕ iff T �L2ϕ.

The most standard way of defining logics semantically is by using matrices (Urquhart,
2001):

DEFINITION 2.2.

1. A matrix for L is a tuple 〈V,D,O〉 such that:

(a) V is a nonempty set (of truth values).
(b) D is a nonempty proper subset of V (of designated truth values).
(c) O : ♦L→⋃∞

i=0(V i→V) such that for every i ∈ N and  ∈ ♦i
L, O() : V i→V .

O() is often regarded as the “truth table” of .

2. Let M = 〈V,D,O〉 be a matrix for L. An M-valuation is a function v
from W(L) to V such that for every  ∈ ♦n

L and ψ1, . . . , ψn ∈ W(L),
v((ψ1, . . . , ψn)) = O()(v(ψ1), . . . , v(ψn)). An M-valuation v is an M-model
of a formula ψ (in symbols: v �M ψ) if v(ψ) ∈ D. It is an M-model of a set T
of formulas (in symbols: v �M T ) if v �M ψ for every ψ ∈ T . A formula ψ is an
M-consequence of a set T of formulas (in symbols: T �Mψ) if every M-model of
T is an M-model of ψ . We say that M induces a logic L = 〈L,�L〉 (or that M is
characteristic for L) if �M = �L.

Many well-known nonclassical logics are characterized using matrices:

EXAMPLE 2.3. Asenjo–Priest’s three-valued logic of paradox LP (Asenjo, 1966; Priest,
1979) and Kleene’s three-valued logic KL (Kleene, 1938) are both defined by matrices
that differ only in the set of designated values. Consider the set V3 = {t, f, i}, and the
interpretation function O3 that is defined by the following tables:

LP is characterized by the matrix MLP = 〈V3, {t, i} ,O3〉, and KL by the matrix
MKL = 〈V3, {t} ,O3〉.

EXAMPLE 2.4. Gödel fuzzy logic G (Dummett, 1959) is characterized by the following
matrix MG = 〈VG,DG,OG〉 for {∧,∨,⊃,⊥}:

3 This requirement is not always demanded in the literature, but we find it convenient (and natural)
to include it here.
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1. VG = [0, 1]
2. DG = {1}
3. OG(⊥) = 0, OG(∨)(a, b) = max {a, b}, OG(∧)(a, b) = min {a, b}, and

OG(⊃)(a, b) =
{

1 a ≤ b

b a �≤ b
.

Łukasiewicz fuzzy logic Ł (Łukasiewicz, 1930) is characterized by a matrix that differs from

MG solely in the interpretation of ⊃, that is changed to: O(⊃)(a, b)

{
1 a ≤ b

1 − a + b a �≤ b
.

2.2. Nondeterministic matrices. Matrices are truth-functional, that is, the truth
value of a compound formula is uniquely determined by the truth values of its
immediate subformulas. In Avron & Zamansky (2011), matrices are generalized to allow
nondeterministic assignments of truth values to compound formulas.

DEFINITION 2.5.

1. A nondeterministic matrix (Nmatrix) for L is a tuple 〈V,D,O〉 such that:

(a) V is a nonempty set (of truth values).
(b) D is a nonempty proper subset of V (of designated truth values).
(c) O : ♦L→⋃∞

i=0(V i→P+(V)) such that for every i ∈ N and  ∈ ♦i
L,

O() : V i→P+(V) (where P+(V) = P(V) \ {∅}).
2. Let M = 〈V,D,O〉 be an Nmatrix for L. An M-valuation is a function v

from W(L) to V such that for every  ∈ ♦n
L and ψ1, . . . , ψn ∈ W(L),

v((ψ1, . . . , ψn)) ∈ O()(v(ψ1), . . . , v(ψn)). The definitions of M-models and
M-consequences are as in Definition 2.2, using the nondeterministic notion of an
M-valuation.

To be considered as a particular instance of Nmatrices, we take matrices to be Nmatrices
in which O()(x1, . . . , xn) is a singleton for every  ∈ ♦n

L and x1, . . . , xn ∈ V . In matrices
mentioned below we freely interchange truth values with their singletons, whenever there
is no danger of confusion.

Like matrices, Nmatrices provide an analytic semantic framework, in the sense that for
every Nmatrix M, every partial M-valuation can be extended to a full M-valuation.4

A useful consequence of this property is the modular character that the framework of
Nmatrices exhibits:

DEFINITION 2.6. Let L1 and L2 be propositional languages such that W(L1) ⊆ W(L2),
and M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L1 and L2,
respectively. M2 is an extension of M1 to L2 if V1 = V2, D1 = D2, and O1() = O2()
for every  ∈ ♦L1

.

PROPOSITION 2.7. Let L1 and L2 be propositional languages such that
W(L1) ⊆ W(L2), and M1 and M2 be Nmatrices for L1 and L2, respectively. If M1
is an extension of M2 to L2 then

〈
L2,�M2

〉
is conservative over

〈
L1,�M1

〉
.

2.3. Expansions and refinements. Next we present two basic operations from Arieli
et al. (2011) and Avron (2007), that can be performed on Nmatrices: expansions and
refinements. Loosely speaking, an expansion of an Nmatrix is obtained by making several
distinct copies of each truth value, so that the new designated values are the copies of the

4 Following Avron & Zamansky (2011), we use the term analytic for this property.
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original ones, and each value in the interpretation of the connectives is replaced by all of
its copies. This is formally defined as follows:

DEFINITION 2.8.

1. A function F is called an expansion function if for every x ∈ dom(F), F(x) is a
nonempty set, and F(x)∩ F(y) = ∅ whenever x �= y. We say that F is an expansion
function for an Nmatrix M = 〈V,D,O〉 for L if it is an expansion function and
dom(F) = V .

2. For every expansion function F and y ∈ ⋃
I m(F), we denote by F̃

[
y
]

the unique
element x ∈ dom(F) such that y ∈ F(x).

3. Let M = 〈V,D,O〉 be an Nmatrix for L and F an expansion function for M. The
F-expansion of M is the Nmatrix MF = 〈VF ,DF ,OF 〉, where:

(a) VF = ⋃
x∈V F(x).

(b) DF = ⋃
x∈D F(x).

(c) OF ()(y1, . . . , yn) = ⋃
z∈O()(F̃[y1],...,F̃[yn]) F(z) for every  ∈ ♦n

L and
y1, . . . , yn ∈ VF .

M2 is an expansion of M1 if it is the F-expansion of it for some F.

Nothing but uniformly duplicating all truth values is done in expansions, and hence the
consequence relation remains the same, as was shown in Arieli et al. (2011):

PROPOSITION 2.9. Let M2 be an expansion of M1. Then �M1 = �M2 .

EXAMPLE 2.10.

1. Two Nmatrices are isomorphic to one another if and only if one is the F-expansion
of the other for some expansion function F (in which F(x) is always a singleton).

2. Consider the usual matrix which is characteristic for classical logic, where the
truth values are t and f . By assigning {t,�} to t and { f } to f , we obtain an
expansion function. The outcome of this expansion would be a nondeterministic
matrix for classical logic, in which, for example, the interpretation of negation is
O(¬)(t) = O(¬)(�) = { f } and O(¬)( f ) = {t,�}.

3. The classical matrix can be further expanded by assigning [0, 1
2 ) to f and

[
1
2 , 1

]
to t . The outcome would be another nondeterministic matrix which is characteristic
for classical logic. The interpretation of negation would then be O(¬)(x) = [0, 1

2 )

whenever x ≥ 1
2 and O(¬)(x) =

[
1
2 , 1

]
whenever x < 1

2 .

Next, we define the refinement operation on Nmatrices. Loosely speaking, refining
an Nmatrix means deleting some of its truth values, and then reducing the amount of
nondeterminism (each of these steps is optional). This is formally defined as follows:

DEFINITION 2.11. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L.
M2 is a refinement of M1 if:

1. V2 ⊆ V1.
2. D2 = V2 ∩ D1.
3. O2()(x1, . . . , xn) ⊆ O1()(x1, . . . , xn) for every  ∈ ♦n

L and x1, . . . , xn ∈ V2.

M2 is a simple refinement of M1 if in addition, V2 = V1.

EXAMPLE 2.12. The infinite characteristic Nmatrix for classical logic from Example
2.10 can be (simply) refined by, e.g., redefining O(¬) in the following way: O(¬)(x) = {0}
whenever x ≥ 1

2 and O(¬)(x) = {1} whenever x < 1
2 .
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Clearly, refining an Nmatrix M can only reduce the set of M-valuations. Consequently,
we have the following proposition from Avron (2007):

PROPOSITION 2.13. Let M2 be a refinement of M1. Then �M1 ⊆ �M2 .

§3. Refined expansions. In this section we combine the two basic operations defined
above and obtain refined expansions (in short: rexpansions). In what follows, L continues
to denote a fixed propositional language, and by an Nmatrix we mean an Nmatrix for L,
unless stated otherwise.

3.1. Definition and properties. We start by explicitly defining the combined operation
and exploring its properties.

DEFINITION 3.1. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices and
F an expansion function for M1. We say that M2 is an F-rexpansion of M1 if it is a
refinement of the F-expansion of M1. It is called:

1. Simple if it is a simple refinement of the F-expansion of M1.
2. Preserving if F(x) ∩ V2 �= ∅ for every x ∈ V1.
3. Strongly preserving if it is preserving, and for every x1, . . . , xn ∈ V2,  ∈ ♦n

L, and
y ∈ O1()(F̃ [x1], . . . , F̃ [xn]), it holds that the set F(y) ∩ O2()(x1, . . . , xn) is not
empty.

M2 is called a rexpansion of M1 if it is an F-rexpansion of it for some expansion function
F for M1. If M2 is a rexpansion of M1, then we may call M2 “preserving”, “strongly
preserving” or “simple” (without the suffix “rexpansion of M1”) whenever that is clear
from the context.

Loosely speaking, being a preserving rexpansion amounts to keeping at least one “copy”
of every original truth value. Being strongly preserving means that this property holds not
only for the set of truth values, but also for the interpretation of the connectives.

EXAMPLE 3.2. The Nmatrix from Example 2.12 is a rexpansion of the classical matrix,
which is simple and strongly preserving.

First, let us elaborate on the connections between the different properties of rexpansions:

LEMMA 3.3. Every simple rexpansion is preserving, every expansion is a strongly
preserving rexpansion, and every preserving rexpansion of a matrix is strongly preserving.

Proof. We prove that every preserving rexpansion of a matrix is strongly
preserving. The other statements are trivial. Let M1 be a matrix, M2 an Nmatrix,
and F an expansion function such that M2 is a preserving F-rexpansion of M1.
Let x1, . . . , xn ∈ V2,  ∈ ♦n

L, and y ∈ O1()(F̃ [x1], . . . , F̃ [x1]). We prove
that F(y) ∩ O2()(x1, . . . , xn) �= ∅. O2()(x1, . . . , xn) ⊆ ⋃

z∈O1()(F̃[x1],...,F̃[x1]) F(z)
and M1 is a matrix. Therefore, O2()(x1, . . . , xn) ⊆ F(y), which means that
F(y) ∩ O2()(x1, . . . , xn) = O2()(x1, . . . , xn). This set cannot be empty, as M2 is an
Nmatrix. �

Next we provide a necessary and sufficient condition for an Nmatrix to be a rexpansion
of another Nmatrix.

PROPOSITION 3.4. M2 = 〈V2,D2,O2〉 is a rexpansion of M1 = 〈V1,D1,O1〉 iff there
is a function f : V2→V1 such that:
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1. For every x ∈ V2, x ∈ D2 iff f (x) ∈ D1.
2. For every x1, . . . , xn ∈ V2 and y ∈ O2()(x1, . . . , xn), it holds that

f (y) ∈ O1()( f (x1), . . . , f (xn)).

Proof.
(⇐): Suppose such a function f exists. For every subset Y of V1, denote the set
{x ∈ V2 | f (x) ∈ Y } by f −1 [Y ]. Let V be some set such that V ∩ V2 = ∅ and |V| = |V1|,
and let g : V1 → V be a bijection. We show that M2 is an F-rexpansion of M1 for

F = λx ∈ V1.

{
f −1 [{x}] x ∈ I m( f ),

{g(x)} otherwise.

F is clearly an expansion function for M1. Now, V2 is the domain of f , and thus it is
contained in (V1)F . Next, by property (1) of f , D2 = f −1 [D1], which, by the definition
of F is equal to (D1)F ∩ V2. Finally, by property (2) of f ,

O2()(x1, . . . , xn) ⊆ f −1 [
O1()( f (x1), . . . , f (xn))

] ⊆

⋃
z∈O1()( f (x1),..., f (xn))

F(z) =
⋃

z∈O1()(F̃[x1],...,F̃[xn ])

F(z) = (O1)F ()(x1, . . . , xn).

(⇒): If M2 is an F-rexpansion of M1 for some F , then the function λx ∈ V2. F̃ [x]
satisfies the required conditions. �

REMARK 3.5. In Avron & Zamansky (2011), the term ‘simple refinement’ was reserved
for what is called here ‘refinement’, while the term ‘refinement’ was related to the functions
from Proposition 3.4.

Another useful property of the rexpansion operation is that it induces some forms of
transitivity:

THEOREM 3.6.

1. If M2 is a preserving rexpansion of M1 and M3 is a (preserving) rexpansion of
M2, then M3 is a (preserving) rexpansion of M1.

2. If M2 is a strongly preserving rexpansion of M1 and M3 is a strongly preserving
rexpansion of M2, then M3 is a strongly preserving rexpansion of M1.

Proof. Let F and G be expansion functions such that M2 is a preserving F-rexpansion
of M1 and M3 is a G-rexpansion of M2. For every 1 ≤ i ≤ 3, assume that
Mi = 〈Vi ,Di ,Oi 〉. Define H = λx ∈ V1.

⋃
y∈F(x)∩V2

G(y). Using the fact that M2
is preserving, it can easily be shown that H is an expansion function for M1. We first
prove that M3 is a H -rexpansion of M1:

V3 ⊆ (V2)G =
⋃

y∈V2

G(y) =
⋃

y∈(V1)F ∩V2

G(y) =
⋃

y∈
(⋃

x∈V1
F(x)

)
∩V2

G(y) =

⋃
y∈⋃

x∈V1
(F(x)∩V2)

G(y) =
⋃

x∈V1

⎛⎝ ⋃
y∈F(x)∩V2

G(y)

⎞⎠ =
⋃

x∈V1

H(x) = (V1)H
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and

(D2)G =
⎛⎝ ⋃

y∈D2

G(y)

⎞⎠ =
⎛⎝ ⋃

y∈(D1)F ∩V2

G(y)

⎞⎠ =

⎛⎜⎜⎝ ⋃
y∈

(⋃
x∈D1

F(x)
)
∩V2

G(y)

⎞⎟⎟⎠ =

⎛⎝ ⋃
x∈D1

⋃
y∈F(x)∩V2

G(y)

⎞⎠ =
⎛⎝ ⋃

x∈D1

H(x)

⎞⎠ = (D1)H

which means that D3 = (D2)G ∩ V3 = (D1)H ∩ V3.
As for O3, let  ∈ ♦n

L, x1, . . . , xn ∈ V3, and w ∈ O3()(x1, . . . , xn). We
show that w ∈ (O1)H ()(x1, . . . , xn). M3 is a refinement of (M2)G , and hence
w ∈ (O2)G()(x1, . . . , xn). Now, there must exists z ∈ O2()(G̃ [x1], . . . , G̃ [xn])
such that w ∈ G(z), and since M2 is a refinement of (M1)F ,
we have z ∈ (O1)F ()(G̃ [x1], . . . , G̃ [xn]). Similarly, there exists
u ∈ O1()(F̃

[
G̃ [x1]

]
, . . . , F̃

[
G̃ [x1]

]
) such that z ∈ F(u). So we have that there

exists z ∈ F(u) ∩ V2 such that w ∈ G(z). Hence w ∈ H(u). To prove that
w ∈ (O1)H ()(x1, . . . , xn), we show that u ∈ O1()(H̃ [x1], . . . , H̃ [xn]). That is,
we show that for every 1 ≤ i ≤ n, H̃ [xi ] = F̃

[
G̃ [xi ]

]
. For every 1 ≤ i ≤ n let

yi = H̃ [xi ], zi = G̃ [xi ], and wi = F̃ [zi ]. We prove that yi = wi : xi ∈ H(yi ), and hence
there exists y ∈ F(yi )∩V2 such that xi ∈ G(y). Since G is an expansion function, y = zi .
Hence y ∈ F(wi ). Similarly, F is an expansion function, and hence yi = wi .

Next, we show that if M3 is a preserving G-rexpansion of M2 then it is a preserving
H -rexpansion of M1, that is, H(x)∩V3 �= ∅ for every x ∈ V1. Since M2 is a preserving F-
rexpansion of M1, there exists y ∈ F(x)∩V2. And since M3 is a preserving G-rexpansion
of M2, there exists z ∈ G(y) ∩ V3 ⊆ H(x) ∩ V3.

Finally, we show that if M2 is a strongly preserving F-rexpansion of M1 and M3 is a
strongly preserving G-rexpansion of M2, then M3 is a strongly preserving H -rexpansion
of M1. Let z1, . . . , zn ∈ V3 and  ∈ ♦n

L. We show that H(x) ∩ O3()(z1, . . . , zn) �= ∅
for every x ∈ O1()(H̃ [z1], . . . , H̃ [zn]). Let x ∈ O1()(H̃ [z1], . . . , H̃ [zn]). For
every 1 ≤ i ≤ n let xi = H̃ [zi ]. Then there exists yi ∈ F(xi ) ∩ V2 such that
zi ∈ G(yi ). Since M2 is a strongly preserving F-rexpansion of M1, there exists
y0 ∈ F(x) ∩ O2()(y1, . . . , yn). Since M3 is a strongly preserving G-rexpansion of M2,
there also exists z0 ∈ G(y0) ∩ O3()(z1, . . . , zn) ⊆ H(x) ∩ O3()(z1, . . . , zn). �

COROLLARY 3.7. For every sequence M1, . . . ,Mn of Nmatrices such that Mi+1 is
an expansion or a simple refinement of Mi , we have that Mn is a preserving rexpansion
of M1.

3.2. Consequence relations. In this section we investigate the effect rexpansions
induce on semantically defined consequence relations. Our main theorem is the following:

THEOREM 3.8. If M2 is a rexpansion of M1 then �M1 ⊆ �M2 . Moreover, if M2 is
strongly preserving then �M1 = �M2 .

Proof. The first part follows directly from Propositions 2.9 and 2.13 above. Suppose
M2 is a strongly preserving F-rexpansion of M1. We prove that �M2 ⊆ �M1 . For this,
it obviously suffices to prove that for every M1-valuation v there exists an M2-valuation
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v ′ such that v �M1 ψ iff v ′ �M2 ψ for every ψ ∈ W(L). Let c : P(V2) \ {∅}→V2 and
suppose that for every X ∈ P(V2) \ {∅}, c(X) ∈ X .5 Let ψ1, ψ2, . . . be an enumeration of
W(L) such that if ψi is a subformula of ψ j then i < j . Now let v be an M1-valuation.
For the construction of v ′, we first define a sequence v0, v1, . . . of partial functions from
W(L) to V2: v0 is the empty function, and for every i > 0, vi is defined as follows. For
every ψ ∈ dom(vi−1), vi (ψ) = vi−1(ψ). If ψi /∈ dom(vi−1), then:

1. If ψi is atomic and F(v(ψi )) ∩ V2 is not empty, vi (ψi ) = c(F(v(ψi )) ∩ V2).
2. If ψi has the form (ϕ1, . . . , ϕn) for ϕ1, . . . , ϕn ∈ dom(vi−1)

and F(v(ψi )) ∩ O2()(vi−1(ϕ1), . . . , vi−1(ϕn)) is not empty,
vi (ψi ) = c(F(v(ψi )) ∩ O2()(vi−1(ϕ1), . . . , vi−1(ϕn))).

We prove by induction on i that:

1. vi (ψ) ∈ F(v(ψ)) for every ψ ∈ dom(vi );
2. dom(vi ) = {ψ1, . . . , ψi }; and
3. vi satisfies the conditions induced by M2, that is:
vi ((ϕ1, . . . , ϕn)) ∈ O2()(vi (ϕ1), . . . , vi (ϕn)) whenever ϕ1, . . . , ϕn and
(ϕ1, . . . , ϕn) are in dom(vi ).

For i = 0, this trivially holds. Let i > 0.

1. Let ψ ∈ dom(vi ). If ψ ∈ dom(vi−1) then this holds by the induction hypothesis.
Otherwise, ψ = ψi , and then this holds by definition.

2. By the induction hypothesis, dom(vi−1) = {ψ1, . . . , ψi−1}, and therefore we have
to prove that ψi ∈ dom(vi ). If ψi is atomic, this amounts to showing that the set
F(v(ψi ))∩V2 is not empty, which holds as M2 is a preserving F-rexpansion of M1.
Otherwise, ψi has the form (ϕ1, . . . , ϕn). By our enumeration and the induction
hypothesis, ϕ1, . . . , ϕn ∈ dom(vi−1), and therefore this amounts to showing
that F(v(ψi )) ∩ O2()(vi−1(ϕ1), . . . , vi−1(ϕn)) is not empty. By the induction
hypothesis, we have that vi−1(ϕ j ) ∈ F(v(ϕ j )) for every 1 ≤ j ≤ n. In other words,
v(ϕ j ) = F̃

[
vi−1(ϕ j )

]
for every 1 ≤ j ≤ n. By the fact that v is an M1-valuation,

v(ψi ) ∈ O1()(v(ϕ1), . . . , v(ϕn)) = O1()(F̃
[
vi−1(ϕ1)

]
, . . . , F̃

[
vi−1(ϕn)

]
), and

hence F(v(ψi )) ∩ O2()(vi−1(ϕ1), . . . , vi−1(ϕn)) �= ∅, as M2 is strongly preserv-
ing.

3. Let (ϕ1, . . . , ϕn), ϕ1, . . . , ϕn ∈ dom(vi ). We prove that
vi ((ϕ1, . . . , ϕn)) ∈ O2()(vi (ϕ1), . . . , vi (ϕn)). If (ϕ1, . . . , ϕn) ∈ dom(vi−1),
then this holds by the induction hypothesis and our enumeration. Otherwise,
ψi = (ϕ1, . . . , ϕn), and then this holds by the induction hypothesis and the
definition of vi .

For every ψ ∈ W(L), let iψ = ιi ∈ N.ψ = ψi .6 v ′ is defined by v ′(ψ) = viψ (ψ).
First, we show that v ′ is an M2-valuation. Let  ∈ ♦n

L and ϕ1, . . . , ϕn ∈ W(L).
Let k = i(ϕ1,...,ϕn). v

′((ϕ1, . . . , ϕn)) = vk((ϕ1, . . . , ϕn)), which belongs to
O2()(vk(ϕ1), . . . , vk(ϕn)) = O2()(v ′(ϕ1), . . . , v

′(ϕn)). Second, we show that v �M1 ψ
iff v ′ �M2 ψ . Suppose v �M1 ψ . Then v(ψ) ∈ D1. Now, by the construction of v ′,
v ′(ψ) ∈ F(v(ψ)) ⊆ (

⋃
x∈D1

F(x)) ∩ V2 = D2, which means that v ′ �M2 ψ . For the

converse, suppose v ′ �M2 ψ . Then v ′(ψ) ∈ D2 ⊆ (
⋃

x∈D1
F(x)). Hence there exists

5 The existence of such a function relies on the axiom of choice in case V2 is infinite.
6 That is, iψ is the index of ψ in the enumeration.
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x ∈ D1 such that v ′(ψ) ∈ F(x). Now, by the construction of v ′, v ′(ψ) ∈ F(v(ψ)). Since
F is an expansion function, v(ψ) = x ∈ D1, which means that v �M1 ψ . �

The following corollary immediately follows as a consequence of Lemma 3.3 and
Theorem 3.8:

COROLLARY 3.9. Let M2 be a preserving rexpansion of M1. If M1 is a matrix then
�M2 = �M1 .

An important consequence of Corollary 3.9 and Proposition 2.7 (the usefulness of which
is demonstrated in §4 and §5) is a general method for providing a given logic with an
alternative new semantics, and then use it for conservatively augmenting it with new
connectives. This is established in the following corollary:

COROLLARY 3.10. Let L1 and L2 be propositional languages such that
W(L1) ⊆ W(L2), M1 a matrix for L1, and M2 an extension to L2 of some preserving
rexpansion of M1. Then

〈
L2,�M2

〉
is conservative over

〈
L1,�M1

〉
.

We conclude this section with a stronger instance of Corollary 3.10, that applies only for
two-valued matrices:

COROLLARY 3.11. Let L1 and L2 be propositional languages such that
W(L1) ⊆ W(L2), M1 = 〈{t, f } , {t} ,O1〉 a matrix for L1, and M2 an extension to L2
of some rexpansion of M1. Then

〈
L2,�M2

〉
is conservative over

〈
L1,�M1

〉
.

Proof. By Definition 2.5, for every F-rexpansion M′ = 〈
V ′,D′,O′〉 of M1 we must

have F(t) ∩ V ′ �= ∅ (as otherwise D′ = ∅) and F( f ) ∩ V ′ �= ∅ (as otherwise D′ = V ′).
The result then follows from Corollary 3.10. �

§4. Some basic applications. In this section we present some examples of
applications of rexpansion in nonclassical logics. This is done by performing it on
fragments of well-known matrices and Nmatrices, and thus obtaining conservative
extensions of their induced logics.

Let C L = {¬,∨,∧,⊃,⊥}. Denote the (propositional) language whose set of
connectives is C L by CL, classical logic (over CL) by CL, and the classical two-valued
matrix for CL by MCL. For any C ⊆ C L , we denote the C-fragment of CL by CLC ,
the C-fragment of classical logic by CLC , and the C-fragment of the classical matrix by
MC

CL. We start with a direct consequence of Corollary 3.11:

LEMMA 4.1. Let C ⊆ C L. If L is a language such that W(CLC ) ⊆ W(L), and M is
an extension to L of some rexpansion of MC

CL, then 〈L,�M〉 is conservative over CLC .

We shall use Lemma 4.1 to present conservative extensions of fragments of classical
logic. Some of the resulting logics are paraconsistent, that is: unlike classical logic,
they tolerate contradictions. Here is a formal definition, based on properties that were
investigated in Carnielli, Coniglio, & Marcos (2007), Marcos (2005), Arieli et al., (2011),
Arieli & Avron (2015):

DEFINITION 4.2. Let L be a logic in CL. ¬ is a weak negation in L if p ��L ¬p and
¬p ��L p. ¬ is a negation in L if L is subclassical, that is, T �Lϕ only if T �CLϕ. L is
paraconsistent if ¬ is a weak negation in L and ¬p, p ��Lq. It is strictly paraconsistent if it
is paraconsistent and ¬ is a negation in L. It is boldly paraconsistent if it is paraconsistent,
and ¬p, p ��Lϕ whenever ��Lϕ and p /∈ At(ϕ).
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REMARK 4.3. Inspired by Marcos (2005), the requirement for being a weak negation
is regarded in Arieli et al. (2011) as a minimal condition that is expected from a unary
connective to be called a negation. This is hardly enough, though, to characterize negation.
Therefore, Arieli & Avron (2015) generalizes it to the requirement of subclassicality,
leading to what is called here “strict paraconsistency”. (Note that in practice, almost
all nonclassical logics in CL that have ever been studied are subclassical.) Finally, the
requirement of bold paraconsistency connects paraconsistency to (and justifies it by) the
broader principle of relevance: the inconsistency of p should not be a reason for inferring
a formula that is completely irrelevant to p.

4.1. Rexpansion of matrices. We start with finite-valued conservative extensions of
classical logic.

EXAMPLE 4.4. The {∧,∨}-fragments of MLP and MKL (see Example 2.3) are
simple rexpansions of M{∧,∨}

CL , as can be witnessed by the expansion functions

λx ∈ {t, f } .
{

{t, i} x = t

{ f } x = f
and λx ∈ {t, f } .

{
{t} x = t

{ f, i} x = f
, respectively. By Lemma

4.1, LP and KL are both conservative over CL{∧,∨}. Note that neither of the matrices is
a preserving rexpansion of the other: suppose for contradiction that MLP is a preserving
F-rexpansion of MKL. Then we must have that {t, i} ⊆ F(t), and so f ∈ F(i) ∪ F( f ). If
f ∈ F(i) then F( f )∩{t, f, i} = ∅, and if f ∈ F( f ) then F(i)∩{t, f, i} = ∅. Either way,
MLP is not preserving. Clearly, MKL cannot be a preserving F-rexpansion of MLP, as
if this were the case, it would have two designated values.

Next, we consider the three-valued paraconsistent logics from Arieli & Avron (2015):

EXAMPLE 4.5. Theorem 42 of Arieli & Avron (2015) characterizes all three-valued
strictly paraconsistent logics in the language {¬,∧,∨,⊃} that admit some natural
properties. These logics coincide with the {¬,∧,∨,⊃}-fragments of the family of 8K
conservative extensions of positive classical logic studied in Carnielli et al., (2007) and
Carnielli & Marcos (2002). The three-valued matrices that induce these logics are all
simple refinements of the following Nmatrix M = 〈{t,�, f } , {t,�} ,O〉, where O is given
by

Now, every simple refinement of M is an extension to {∧,∨,⊃,¬} of some rexpansion of
M{∧,∨,⊃}

CL . Indeed, for F(t) = {t,�} and F( f ) = { f }, it is easy to see that the {∧,∨,⊃}-
fragment of M is a simple refinement of (M{∧,∨,⊃}

CL )F = 〈{t,�, f } , {t,�} ,O′〉, where O′
is defined by
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The fact that all these logics are conservative over positive classical logic is then
obtained as a consequence of Lemma 4.1. Actually, by Corollary 3.11, all extensions of
simple refinements of (M{∧,∨,⊃}

CL )F have this property. In addition, they have many of the
natural properties demanded in Arieli & Avron (2015).

EXAMPLE 4.6. The {∧,∨,⊃,¬}-fragment of the four-valued logic of bilattices from
Arieli & Avron (1998) is characterized by the matrix M4 = 〈{t, f,�,⊥} , {�,⊥} ,O4〉,
where O4 is given by

By dismissing ⊃, we obtain a matrix for the logic of first-degree entailment (fde)
from Anderson & Belnap (1975). Define an expansion function F for M{∧,∨,⊃}

CL by
F( f ) = { f,⊥} and F(t) = {t,�}. It is easy to see that M4 is an extension to {∧,∨,⊃,¬}
of a simple refinement of (M{∧,∨,⊃}

CL )F = 〈{t,�, f,⊥} , {t,�} ,O〉, where

Arieli & Avron (1998) provided an analytic sequent calculus for �M4 , and used it to
prove that it is conservative over CL{∧,∨,⊃} (and that fde is conservative over CL{∧,∨}).
Here we obtain this result as a simple consequence of Lemma 4.1, by identifying the
{∧,∨,⊃}-fragment of M4 as a rexpansion of M{∧,∨,⊃}

CL .

The next example concerns Gödel fuzzy logic G and its relation to classical logic.

EXAMPLE 4.7. It is routine to verify that MG (Example 2.4) is an extension to
{∧,∨,⊃,⊥} of a simple refinement of the F-expansion of M{∧,∨,⊥}

CL , for F( f ) = [0, 1)
and F(t) = {1}. Consider ∧, for example, and denote its classical interpretation by O(∧).
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Let x, y ∈ [0, 1] and z = min(x, y), and suppose x ′ = F̃ [x] and y′ = F̃
[
y
]
. We show

that z ∈ F(O(∧)(x ′, y′)) (recall that in matrices we identify singletons with their unique
elements). If z < 1, then either x < 1 or y < 1, and so either x ′ = f or y′ = f , which
means that O(∧)(x ′, y′) = f . In this case, we get z ∈ [0, 1) = F( f ) = F(O(∧)(x ′, y′)).
Otherwise, z = 1, which means that x = y = 1, and so x ′ = y′ = t . In this case,
O(x ′, y′) = t , and so we have z ∈ {1} = F(t) = F(O(∧)(x ′, y′)). By Lemma 4.1, MG is
conservative over CL{∧,∨,⊥}.

Note that this argument does not survive the addition of implication: OG(⊃)
(0.5, 0.25) = 0.25, while OCL(⊃)(0, 0) = 1 and 0.25 /∈ F(1). And indeed, G is not
conservative over positive classical logic, as, for example, the classical tautology ((p ⊃ q)
⊃ p)) ⊃ p is not valid in it (as can be seen, e.g., by assigning 0.5 to p and 0.25 to q).

The process described in the above examples need not start with classical logic, as can
be seen by the following example:

EXAMPLE 4.8. Consider the following matrix M = 〈V,D,O〉, defined by
V = {t, f,�,⊥}, D = {t}, and O is given by

Its conjunction and disjunction are interpreted as minimum and maximum (respectively)
over the ordering f ≤ ⊥ ≤ � ≤ t . Its {∧,∨}-fragment is a simple F-rexpansion of the
{∧,∨}-fragment of MKL (Example 2.3), for F(t) = {t}, F( f ) = { f,⊥} and F(i) = {�}.
By Corollary 3.10, the logic it induces is conservative over the {∧,∨}-fragment of KL. It
is a different logic than KL, as it has tautologies (e.g., p∨¬p).

4.2. Rexpansion of Nmatrices. In all the examples above, rexpansions were
performed on matrices. In this section, Nmatrices are taken as the starting points.

Avron et al. (2012) provided cut-free sequent calculi for many paraconsistent logics of
the family called Logics of Formal Inconsistency (LFIs) (Carnielli et al., 2007; Carnielli &
Marcos, 2002). This is done uniformly, by first finding a characteristic Nmatrix, and then
extracting a sequent calculus from it. The underlying language is CL◦ = CL \ {⊥} ∪ {◦},
where ◦ is a unary connective which is intended to classify a given proposition as
consistent (that is, ◦ϕ should be read as “ϕ is consistent”). We show how rexpansions
can be incorporated into this investigation in a useful way, that naturally uncovers relations
between the different Nmatrices involved, as well as their induced logics.

The most basic logic that is investigated in Avron et al. (2012) is called BK . It is proven
there to be characterized by the Nmatrix MBK , which is the extension to CL◦ of the
Nmatrix (M{∧,∨,⊃}

CL )F from Example 4.5, given by
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While BK serves as a basis for the modular construction of more powerful
paraconsistent logics, its negation lacks some fundamental properties. For example, the
following principles are not valid in it:

• Double negation: (c) ¬¬ϕ ⊃ ϕ and (e) ϕ ⊃ ¬¬ϕ.
• De Morgan laws: e.g., (nr∧) (¬ϕ∨¬ψ) ⊃ ¬(ϕ∧ψ) and (nl∧)¬(ϕ∧ψ) ⊃ (¬ϕ∨¬ψ).

Some basic properties that could be expected from the consistency operator are missing as
well. Examples include the following:

• Inconsistency: (i) ¬ ◦ ϕ ⊃ (ϕ∧¬ϕ).
• Propagation laws: (a) (◦ϕ�◦ψ) ⊃ ◦(ϕ�ψ) for � ∈ {∧,∨,⊃}.

Accordingly, a set A0 of well-known axioms for LFIs is considered (that includes,
among others, the aforementioned formulas), and is modularly incorporated into this
Nmatrix: each subset of A0 induces a simple refinement of MBK . For example, the
addition of the axiom (c) above amounts to setting O(¬)( f ) to {t} (instead of {t,�}).
Furthermore, the addition of (a) amounts to ensuring that ϕ�ψ is given a value from
{t, f } whenever both ϕ and ψ are given values from {t, f }, for each � ∈ {∧,∨,⊃}.
The Nmatrix that corresponds to the logic BK ca, obtained by the addition of (c) and
(a) to BK , turns out to be the extension to CL◦ of the Nmatrix M from Example 4.5,
obtained by including the truth table for ◦ above. We denote the resulting Nmatrix by
MBK ca = 〈{t,�, f } , {t,�} ,OBK ca〉.

Things become more complicated when the following two well-known axioms for LFIs
are added to A0:

(l) ¬(ϕ∧¬ϕ) ⊃ ◦ϕ and (d) ¬(¬ϕ∧ϕ) ⊃ ◦ϕ.
It was shown in Avron (2007) that most of the systems in the family induced by

A0 ∪ {(l), (d)} that include at least one of {(l), (d)} cannot be characterized by a finite
Nmatrix. This means that they go beyond the reach of MBK and its refinements.

For this reason, an infinite Nmatrix, that we denote by M∞
BK = 〈

V∞
BK ,D∞

BK ,O∞
BK

〉
,

is introduced, which utilizes the following three (disjoint) sets: T =
{

t j
i | i ≥ 0, j ≥ 0

}
,

I =
{
� j

i | i ≥ 0, j ≥ 0
}

, and F = { f }. M∞
BK is then defined by V∞

BK = T ∪ I ∪ F ,

D∞
BK = T ∪ I, and:

O∞
B K (∧)(a, b) =

{
F a ∈ F or b ∈ F,
D∞

B K otherwise.
O∞

B K (∨)(a, b) =
{
D∞

B K a ∈ D∞
B K or b ∈ D∞

B K ,

F otherwise.

O∞
BK (¬)(a) =

⎧⎪⎪⎨⎪⎪⎩
F a ∈ T ,
D∞

BK a ∈ F,{
� j+1

i , t j+1
i

}
a = � j

i .

O∞
BK (◦)(a) =

{
D∞

BK a ∈ F ∪ T ,
F otherwise.

O∞
BK (⊃)(a, b) =

{
D∞

BK a ∈ F or b ∈ D∞
BK ,

F otherwise.
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Now, M∞
BK is a strongly preserving F-rexpansion of MBK , for

F = λx ∈ {t, f,�} .

⎧⎪⎨⎪⎩
T t

F f

I �
Moreover, every subset A of A0 induces a simple refinement of M∞

BK , that is a strongly
preserving F-rexpansion of the simple refinement of MBK that is associated with A.
In particular, without (l) and (d), we obtain an infinite characteristic Nmatrix for each
system, equivalent to the three-valued one. For example, going back to BK ca, we obtain
the Nmatrix M∞

BK ca = 〈
V∞

BK ,D∞
BK ,O∞

BK ca

〉
, where O∞

BK ca is obtained from O∞
BK by

setting O∞
BK ca(¬)( f ) = T , and ensuring that ϕ�ψ is given a value from T ∪F , whenever

both ϕ and ψ are given values from T ∪ F , for every � ∈ {∧,∨,⊃}:

O∞
BK ca(∧)(a, b) =

⎧⎪⎨⎪⎩
F a ∈ F or b ∈ F,
T a, b ∈ T ,
D∞

BK otherwise.

O∞
BK ca(∨)(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T a ∈ T and b ∈ T ∪ F,
T a ∈ T ∪ F and b ∈ T ,
F a, b ∈ F,
D∞

BK otherwise.

O∞
BK ca(¬)(a) =

⎧⎪⎪⎨⎪⎪⎩
F a ∈ T ,
T a ∈ F,{
� j+1

i , t j+1
i

}
a = � j

i .

O∞
BK ca(◦)(a) =

{
D∞

BK a ∈ F ∪ T ,
F otherwise.

O∞
BK ca(⊃)(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T a ∈ F and b ∈ T ∪ F,
T a ∈ T ∪ F and b ∈ T ,
F a ∈ D∞

BK and b ∈ F,
D∞

BK otherwise.

It is routine to verify that M∞
BK ca is a strongly preserving F-rexpansion MBK ca . By

Theorem 3.8, �MBK ca = �M∞
BK ca

.
When either (l) or (d) are included, however, what is obtained is again a preserving

rexpansion of the corresponding three-valued Nmatrix, but not a strongly preserving one.
For example, the refinement that is associated with (l) amounts to the requirement that
ϕ∧ψ is assigned a value from T whenever ϕ is assigned � j

i and ψ is assigned either

� j+1
i or t j+1

i . Thus, the logic BK cal (obtained from BK ca by the addition of (l)) is
characterized by the Nmatrix M∞

BK cal = 〈
V∞

BK ,D∞
BK ,O∞

BK cal

〉
, which is obtained from

M∞
BK ca by setting

O∞
BK cal(∧) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F a ∈ F or b ∈ F,
T a, b ∈ T ,
T a = � j

i and b ∈
{
� j+1

i , t j+1
i

}
,

D∞
BK otherwise.

M∞
BK cal is indeed a preserving F-rexpansion of MBK ca , but not a strongly preserving

one. For example, F(�) ∩ O∞
BK cal(∧)(� j

i ,� j+1
i ) = ∅, although � ∈ OBK ca(∧)(�,�).
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As was shown in Avron et al. (2012), the ◦-free fragment of M∞
BK cal is characteristic

for da Costa’s historical paraconsistent logic C1 (da Costa, 1974), thus providing this logic
with an effective semantics.

§5. Negations for Gödel logic. The goal of this section is to develop reasonable logics
in the language CL that simultaneously have two properties that were discussed in §4:
paraconsistency and fuzziness.

The main problem we face in achieving the above goal is that the ordinary fuzzy logics
(like the two described in Example 2.4) are defined via matrices with a single designated
value. However, it is well known (Arieli & Avron, 2015) that a logic which is induced
by such a matrix cannot be paraconsistent. Therefore none of the standard fuzzy logics
is paraconsistent. In order to develop logics that are both paraconsistent and fuzzy, it is
necessary to replace the standard method of defining a fuzzy consequence relation by a
weaker one. An additional step that can be made is to take ¬ as a primitive connective,
and use new semantic interpretations for it. (In the standard fuzzy logics ¬ψ is defined as
ψ ⊃ ⊥.)

The first attempt to achieve the goal of this section according to the above lines was made
by Ertola et al. (2015). Their main idea was to follow a recent approach (Bou, Esteva, Font,
Gil, Godo, Torrens, & Verdú, 2009) to defining fuzzy consequence relations, that instead of
preserving absolute truth (i.e., the truth value 1), preserves degrees of truth. Given a fuzzy
matrix M, which induces the ordinary (i.e., truth-preserving) fuzzy logic L, this means that
a formula ψ follows from a set of formulas T if there is a finite subset {ϕ1, . . . , ϕn} ⊆ T
such that the truth value which is assigned to ψ by some M-valuation v is always greater
than or equal to the minimal truth value that v assigns to ϕ1, . . . , ϕn . For the standard
matrices used in fuzzy logics, the latter condition is equivalent to demanding the formula
(ϕ1∧ · · · ∧ϕn) ⊃ ψ to be valid in the corresponding truth-preserving logic L (cf. Bou et
al., (2009)). This fact implies that L≤, the degree-preservation logic induced by M, has
the same set of valid formulas as the truth-preserving logic L which is induced by M. This
makes L≤ a natural variant of L.

A good example of the method of Ertola et al. (2015) is provided by Łukasiewicz
logic Ł (Example 2.4). The interpretation of ¬ there (where ¬ is taken as a defined
connective, as explained above) is: O(¬)(a) = 1 − a. As said above, Ł itself cannot be
paraconsistent. However, its degree-preserving variant Ł≤ is paraconsistent, as can be seen
by any valuation v such that v(p) = v(¬p) = 1

2 and v(q) = 1
4 . Ł≤ is also subclassical

(as it is contained in Ł, which is subclassical), and thus it is even strictly (though not
boldly) paraconsistent. Moreover, it validates some basic classical equivalences connected
with negation, like De Morgan’s laws and the double negation laws. Unfortunately, Ł≤ has
some very serious drawbacks as well. The main (but definitely not the only) one is that
M.P. for ⊃ is not valid in it. (This is exemplified by any valuation v in which v(ϕ) = 0.5,
v(ψ) = 0.4 and v(ϕ ⊃ ψ) = 0.9.) Thus ⊃ cannot be regarded in Ł≤ as an implication
connective of any sort.

Is there a standard fuzzy logic L such that M.P. for ⊃ is valid in L≤? Of the three basic
fuzzy logics (Łukasiewicz logic, Gödel logic and product logic), only in Gödel logic ⊃ has
this property (see, e.g., Hájek (1998)). Hence it seems better to try to use G≤ instead of Ł≤.
However, in its original language (of {∧,∨,⊃,⊥}) G≤ is identical to G. In particular, G≤
is not paraconsistent with respect to the official negation of G. To obtain a paraconsistent
variant of G, one should employ also the second idea mentioned above (and used in Ertola
et al. 2015): to augment the language with a new negation connective. A particularly
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appealing choice is to augment G≤ with the involutive Łukasiewicz negation. Denote the
resulting logic by G≤

¬. As a fuzzy paraconsistent logic, G≤
¬ has all the nice properties of

Ł≤ that were mentioned above. On the other hand it does not have its main shortcoming,
because ⊃ is in it a true implication connective: ϕ ⊃ ψ follows in G≤

¬ from T iffψ follows
in it from T ∪ {ϕ}. What is more: G≤

¬ is a conservative extension to a richer language of
the basic fuzzy logic G. However, even G≤

¬ still has some serious drawbacks. Thus like
Ł≤ it is not boldly paraconsistent.7 Even more significant is the fact that (again like Ł≤)
ϕ∨¬ϕ is not valid in it. This is very important, since classical negation is determined by a
combination of two principles: the law of contradiction (that implies that ψ follows from
ϕ and ¬ϕ), and the law of excluded middle (validity of ϕ∨¬ϕ). Since we are seeking
here paraconsistency, we are giving up the first of these two principles. So in order to
justify viewing ¬ as a sort of negation (and in order to recover as much as possible from
classical logic, while still being paraconsistent), we should keep intact at least the other
basic principle of classical negation: the law of excluded middle.

In this section we use rexpansions of the Gödel matrix MG for constructing even better
paraconsistent fuzzy logics which are based on G. Before describing our method, here
is the list of properties that we would like a paraconsistent fuzzy logic L to have the
following:

(i) L should be boldly paraconsistent;
(ii) L should be subclassical (and so, by (i), strictly paraconsistent);

(iii) L should be conservative over G;
(iv) ⊃, ∧, and ∨ should respectively be an implication, a conjunction, and a disjunction

for L. This means that for every T , ϕ, ψ , and σ we should have the following:

(iv).A T ∪ {ϕ} �L ψ iff T �L ϕ ⊃ ψ ;
(iv).B T �L ϕ∧ψ iff T �L ϕ and T �L ψ ;
(iv).C T ∪ {ϕ ∨ ψ} �L σ iff T ∪ {ϕ} �L σ and T ∪ {ψ} �L σ ;

(v) L should validate ϕ∨¬ϕ;
(vi) L should validate the basic classical equivalence concerning ¬, ∨, and ∧: ϕ ≡ ¬¬ϕ,

¬(ϕ∨ψ) ≡ (¬ϕ∧¬ψ), and ¬(ϕ∧ψ) ≡ (¬ϕ∨¬ψ);
(vii) L should validate the following connections between negation and implication:

(vii).A ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ))
(vii).B ¬(ϕ ⊃ ψ) ⊃ ¬ψ
(vii).C (ϕ ⊃ ψ) ⊃ (¬(ϕ ⊃ ψ) ⊃ ϕ).

A word of explanation is needed for the last item in this list. Ideally, we would have
liked to add to item (vi) of the list above also the classical equivalence that connects ¬ and
⊃: ¬(ϕ ⊃ ψ) ≡ (ϕ∧¬ψ). This, in turn, is equivalent to the validity of (vii).A, (vii).B and

(vii).C’ ¬(ϕ ⊃ ψ) ⊃ ϕ.

Unfortunately, we cannot include (vii).C’ in our list, since together with items (iv) and (v),
it immediately entails the validity of ϕ∨(ϕ ⊃ ψ), contradicting item (iii) of our list. So
instead of (vii).C’ we include in the list a weaker version, which is valid in G≤

¬, as well as
in all the standard fuzzy logics (in which ¬ψ is taken as ψ ⊃ ⊥).

5.1. The Nmatrix MG
t¬ and its refinements. The method of rexpansions allows us

to present a better approach to the construction of paraconsistent conservative extensions

7 In both logics q∨¬q is not valid, but it follows from {p,¬p}, as the minimum value assigned to
{p,¬p} is at most 1

2 , while the value assigned to q∨¬q is at least 1
2 .
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of Gödel logic, which stays within the framework of truth-preservation. This is achieved
by relaxing the principle of truth-functionality, and the preservation of absolute truth.
The former is done by basing our construction on Nmatrices, and the latter by replacing
“completely true” with “true enough”, that is, taking a larger set of designated truth values.
Formally:

DEFINITION 5.1. Let 0 < t ≤ 1. MG
t is the Nmatrix for {∧,∨,⊃,⊥} obtained from MG

by:

1. Taking [t, 1] as the designated values.

2. Changing O (⊃) to O (⊃) (a, b) =
{

[t, 1] a ≤ b or b ≥ t

{b} a > b and b < t
.

MG
t¬ is the extension of MG

t to {∧,∨,⊃,⊥,¬}, in which O(¬)(a) = 1 − a.

The next theorem shows that MG
t¬ provides a satisfactory basis for constructing

paraconsistent fuzzy logics.

THEOREM 5.2. Let 0 < t ≤ 1 and let M = 〈V,D,O〉 be a simple refinement of MG
t¬.

Then:

1. �M satisfies (iii), (iv).B, (iv).C, and (vi) (that is, it is conservative over G, ∧ is
a conjunction, ∨ is a disjunction, and De Morgan and double negation laws are
valid).8

2. If 1 ∈ O(⊃)(x, y) whenever either x = 0 or y = 1 then �M satisfies (ii).
3. If t > 1

2 then �M satisfies neither of (i), (iv), and (v).
4. If t ≤ 1

2 then �M satisfies (i) and (v).

Proof. Suppose M = 〈V,D,O〉 and MG
t¬ = 〈

V t ,Dt ,Ot
〉
.

1. It is straightforward to verify (iv).B, (iv).C and (vi). As for (iii), one verifies that

MG
t is a simple F-rexpansion of MG, for F = λx ∈ [0, 1] .

{
[t, 1] x = 1

{t · x} x < 1
. By

Corollary 3.10, every simple refinement of MG
t¬ induces a logic that is conservative

over G.
2. Suppose that T ��CL ϕ. Then there exists a classical valuation v such that v(ψ) = 1

for every ψ ∈ T and v(ϕ) = 0. v is also an M-valuation, and thus T ��M ϕ.
3. If v �M p and v �M ¬p, we must have v(p), 1 − v(p) ≥ t , which is impossible

for t > 1
2 . Therefore, p,¬p �Mq and (i) fails. Moreover, ��M (p∧¬p) ⊃ q (by

assigning 1
2 to p and 0 to q), and thus also (iv) fails. Finally, v ��M p∨¬p for

v(p) = v(¬p) = v(p∨¬p) = 1
2 .

4. We start with (i): First we show that ¬ is a weak negation in �M. Since 0 < t ≤ 1
2

there exists a < t such that 1 − a ≥ t . Any M-valuation v in which v(p) = 1 − a
satisfies p but not ¬p, and any M-valuation v in which v(p) = a satisfies ¬p
but not p. Thus p ��M ¬p and ¬p ��M p. Second, in any M-valuation v in which
v(p) = v(¬p) = 1

2 and v(q) = 0, we have v �M {p,¬p} and v ��M q. Therefore
p,¬p ��M q. Next, we show that �M is boldly paraconsistent. Suppose ��M ϕ

8 While the left-to-right direction of (iv).A may not hold, its right-to-left direction (namely M.P.)
does hold.
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and p /∈ At (ϕ). Then there exists an M-valuation v such that v(ϕ) < t . Define
a function v ′ as follows: v ′(ψ) = v(ψ) for every subformula ψ of ϕ (including ϕ
itself), and v ′(p) = v ′(¬p) = 1

2 . Now extend v ′ to an M-valuation, and obtain that
p,¬p ��M ϕ. As for (v), for every M-valuation v , if v(ϕ) < t then v(¬ϕ) > t and
vice versa, and hence �M¬ϕ∨ϕ. �

The proof of Theorem 5.2 actually provides another interesting result regarding the
Gödel matrix: the same logic would result if the designated values were taken to be any
interval of the form [t, 1] for any 0 < t < 1.

PROPOSITION 5.3. Let 0 < t < 1 and Mt = 〈
V t ,Dt ,Ot

〉
, where V t = [0, 1],

Dt = [t, 1], and Ot = OG. Then �MG = �Mt .

Proof. Mt is a simple refinement of MG
t , which is a simple rexpansion of MG. By

Corollary 3.9, we have �MG = �Mt . �
Other negations can be considered for G, and rexpansions (and in particular Corollary

3.9) can be used in order to prove that the result is conservative over G.

LEMMA 5.4. Let A be a set of axioms in CL. If A is valid in MG
t¬ then GA, the

axiomatic extension of G with A, is conservative over G.

Proof. Clearly, �G ⊆ �GA . Now let T ⊆ CL \ {¬} and ϕ ∈ CL \ {¬}. If T �GAϕ, then
T �MG

t¬ϕ. And since �MG
t¬ is conservative over G, we must have T �Gϕ. �

Note that finding a new semantics for the augmented logic is not required, as only
soundness is needed for the proof.

EXAMPLE 5.5. Let A be a set consisting of the axioms from property (vi) above. Then
G A is an axiomatic extension of G with a negation that satisfies the usual double negation
and De Morgan rules, and is conservative over G.

5.2. Two particular refinements of MG

1
2¬. Theorem 5.2 shows that simple

refinements of MG

1
2¬ enjoy many desirable properties one would expect from a

paraconsistent fuzzy logic. However, they may lack some of the properties mentioned

above. In particular, the formulas in (vii) are not valid in the logic that is induced by MG

1
2¬

itself (for example, if v(ϕ) = 0.7, v(ψ) = 0.8, and v(ϕ ⊃ ψ) = 0.7, then v does not

satisfy (vii).B). Moreover, (iv) does not hold in the simple refinement M0.7−0.8 of MG

1
2¬,

obtained by setting O(⊃)(a, b) = 0.7 whenever b ≥ 1
2 or a = b, and O(⊃)(a, b) = 0.8

whenever b < 1
2 and a < b. Indeed, v(¬(ϕ ⊃ ϕ)) = 0.3 < 1

2 for every M0.7−0.8-valuation
v , which means that ¬(ϕ ⊃ ϕ) �M0.7−0.8ψ . However, the M0.7−0.8-valuation u in which
u(ϕ) = u(ψ) = 0 and u(ϕ ⊃ ϕ) = 0.7, shows that ��M0.7−0.8 ¬(ϕ ⊃ ϕ) ⊃ ψ . Property
(ii) also does not hold in �M0.7−0.8 , as q follows from ¬(p ⊃ p) ⊃ ¬(⊥ ⊃ ¬(p ⊃ p)) in
it, but not in classical logic.

We present two particularly interesting simple refinements of MG

1
2¬. The first is obtained

by refining the interpretation of ⊃ back to its original interpretation in MG. The second is
a reconstruction of a well-known semi-relevant logic (Anderson & Belnap, 1975; Dunn &
Restall, 2002), in which all properties (i)–(vii) hold.

5.2.1. Closest to the original: det (MG

1
2¬). If we refine the interpretation of ⊃ in

MG

1
2¬ to its original interpretation in MG, we obtain a matrix for a paraconsistent fuzzy
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logic (denoted det (MG

1
2¬)), whose {∧,∨,⊃,⊥}-fragment differs from MG solely in the

choice of designated values. This seems as close as one can get to adding a paraconsistent
involutive negation to MG. Moreover, �

det (MG

1
2¬ )

strictly extends �
MG

1
2¬

, and satisfies

all properties listed above, except for (vii).A. The only property whose verification is not
routine is (iv).A, which we now prove.

PROPOSITION 5.6 (Deduction Theorem for �
det (MG

1
2¬ )

). T �
det (MG

1
2¬ )
ϕ1 ⊃ ϕ2 iff

T , ϕ1 �
det (MG

1
2¬ )
ϕ2.

Proof. The fact that T �
det (MG

1
2¬ )
ϕ1 ⊃ ϕ2 implies T , ϕ1 �

det (MG

1
2¬ )
ϕ2 is easily

verified using the interpretation of ⊃. For the converse, suppose T ��
det (MG

1
2¬ )
ϕ1 ⊃ ϕ2.

We prove that T , ϕ1 ��
det (MG

1
2¬ )
ϕ2. By our assumption, there exists a det (MG

1
2¬)-

valuation v such that v(ψ) ≥ 1
2 for every ψ ∈ T , and v(ϕ1 ⊃ ϕ2) <

1
2 . Let r1 = v(ϕ1)

and r2 = v(ϕ2). Then: v(ϕ1 ⊃ ϕ2) = r2 <
1
2 , 1 − r2 >

1
2 , and r1 > r2. If r1 ≥ 1

2 then

v �det (MG

1
2¬ ) ϕ1 and v ��det (MG

1
2¬ ) ϕ2, and thus T , ϕ1 ��

det (MG

1
2¬ )
ϕ2. Hence we assume in

addition that r1 <
1
2 . We construct an appropriate countermodel by “fixing” v so that it

satisfies T and ϕ1, but still does not satisfy ϕ2. This is done by replacing r1 by 1
2 , and

then making other necessary adjustments to keep the resulting valuation a det (MG

1
2¬)-

valuation. Let

f = λx ∈ [0, 1] .

⎧⎪⎨⎪⎩
1

2r1
x x < r1

1
2 r1 ≤ x ≤ 1 − r1
x−1+2r1

2r1
x > 1 − r1

and let v ′(ϕ) = f (v(ϕ)) for every ϕ. f is clearly an increasing function from [0, 1] to
[0, 1]. Now, v ′(ψ) ≥ 1

2 for every ψ ∈ T , as v(ψ) ≥ 1
2 > r1 for every such ψ . Also,

v ′(ϕ1) = 1
2 , and v ′(ϕ2) <

1
2 , as v(ϕ2) = r2 < r1. It is left to prove that v ′ is a det (MG

1
2¬)-

valuation. Suppose det (MG

1
2¬) = 〈V,D,O〉.

1. v ′(ϕ∧ψ) = f (v(ϕ∧ψ)) = f (min {v(ϕ), v(ψ)}) = min
{
v ′(ϕ), v ′(ψ)

}
, as f is

increasing.
2. Disjunction is shown similarly.
3. If v ′(ϕ) ≤ v ′(ψ) then v(ϕ) ≤ v(ψ), and then
v ′(ϕ ⊃ ψ) = f (v(ϕ ⊃ ψ)) = f (1) = 1.
v ′(ϕ ⊃ ψ) = f (v(ϕ ⊃ ψ)) = f (v(ψ)) = v ′(ψ).

4. We show that v ′(¬ϕ) = 1 − v ′(ϕ). If v(ϕ) < r1, then v(¬ϕ) > 1 − r1.
In such a case, v ′(ϕ) = 1

2r1
v(ϕ) and v ′(¬ϕ) = v(¬ϕ)−1+2r1

2r1
= 2r1−v(ϕ)

2r1
. In

particular, v ′(ϕ) + v ′(¬ϕ) = v(ϕ)+2r1−v(ϕ)
2r1

= 1. If r1 ≤ v(ϕ) ≤ 1 − r1, then

v ′(ϕ) = v ′(¬ϕ) = 1
2 . And if v(ϕ) > 1 − r1, then this case is symmetric to the first

case.
5. v ′(⊥) = f (v(⊥)) = f (0) = 0.

�
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5.2.2. A semi-relevant refinement: MRM⊃ . The matrix for the logic RM⊃ (Avron,

1986), that we denote by MRM⊃ is a simple refinement of MG

1
2¬ in which implication is

interpreted by: O(⊃)(a, b) =
{

{1 − a} a ≤ b ≤ 1 − a,

{b} otherwise.
Note that RM⊃ is shown in Avron (1986) to be equivalent to the famous Dunn-

Meyer semi-relevant logic RM (Anderson & Belnap, 1975). RM⊃ satisfies all of
the properties listed above. (All properties but (iv).A and (vii) follow from Theorem
5.2. (iv).A and (vii) were proved in Avron 1986.) In particular, it strictly extends
�
MG

1
2¬

.9 Moreover, we show that RM⊃ is unique with respect to the properties

above:

PROPOSITION 5.7. RM⊃ is the only finitary10 logic that satisfies all properties (i)–(vii)
above.

Proof. Let L be such a logic. Denote by H the Hilbert calculus for G from Dummett
(1959), and by HRM⊃ the Hilbert calculus obtained from H by the addition of the axiom
schemes of (v), (vi) and (vii). Note that the only rule of inference in H and HRM⊃ is
M.P. It was shown in Avron (1986) that the set of theorems of HRM⊃ is the same as the
set of formulas that are valid in RM⊃. Since RM⊃ is finitary11 and admits the deduction
theorem, it follows that HRM⊃ is sound and complete for RM⊃, that is, ϕ is derivable from
T in HRM⊃ iff T � RM⊃ϕ. Now, to satisfy (iii), all axiom schemes from H must be valid
in L, as otherwise, it would not be conservative over G. To satisfy (v), (vi) and (vii), the
axioms they include must be valid in L also. For (iv), M.P. must be valid in L. Thus HRM⊃
is sound for L, and in particular, RM⊃ is contained in L. Now, if L strictly contains RM⊃,
then since M.P. is valid in RM⊃ and L is both finitary and admits the deduction theorem
(by (iv)), there exists a formula ϕ that is valid in L but not in RM⊃. It is then a corollary of
Avron (1986) that L has a finite characteristic matrix, and in particular, so does its ¬-free
fragment. Since G cannot be finitely characterized by a matrix (Dummett, 1959), L is not a
conservative extension of G, and thus (iii) fails. Therefore, we must have that L and RM⊃
are identical. �

Table 1 summarizes the various logics and properties discussed in this section, and in
particular, specifies the properties that hold in each logic. In the table, “t” means that the
property holds, and “ f ” means that it does not. The column in the middle (titled “Simple

Refinements of MG

1
2¬”) includes some cells with the symbol “�”. For the corresponding

properties, the meaning is that some simple refinements of MG

1
2¬ satisfy them, and some

do not. By contrast, property (iii) is not relevant for Ł≤, as it does not include any new
connective. Thus it is marked with “⊥”.

9 The axiomatic extension of RM⊃ with (vii).C’, that we did not include in our list of requirements,
is also considered in Avron (1986), and is proven to be equivalent to the 3-valued logic PAC
(Arieli & Avron, 2015), that is also known as RM3.

10 A logic L is called finitary if the compactness theorem holds for it, that is: T �Lϕ iff � �L ϕ for
some finite � ⊆ T .

11 This follows from the equivalence between RM⊃ and RM shown in Avron (1986), together with
the fact that RM itself is finitary. The latter follows from the (strong) soundness and completeness
theorem that was proven for RM in Avron (2016).
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Table 1. Summary of Properties

5.3. What is the cardinality of
{
�MG

t¬ | 0 < t ≤ 1
}

? We conclude by investigating

the relation between the different logics that are induced by the Nmatrices MG
t¬ (see

Definition 5.1) themselves. These logics are minimal in the family of logics that are studied
in Theorem 5.2, as different refinements of them may induce different extensions.

The main result of this concluding section can be summarized as follows:

1. All the Nmatrices MG
t¬ for 0 < t ≤ 1

2 induce the same logic;

2. There are exactly two logics that are induced for t > 1
2 ;

3. All together, the answer to the above question is: three.12

The rest of this section is devoted to the proof of this result. We start by introducing the
notion of 〈t1, t2〉-expanding functions in Definition 5.8, and prove that they characterize all
strongly preserving rexpansions between elements of

{
MG

t¬ | 0 < t ≤ 1
}

in Lemma 5.9.
This fact is then used in Lemma 5.10, where the logics that are induced by these Nmatrices
are identified, thus obtaining the aforementioned result in Corollary 5.11.

DEFINITION 5.8. Let 0 < t1 < t2 ≤ 1. An expansion function F : [0, 1] →P([0, 1]) is
called 〈t1, t2〉-expanding if:

(1)
⋃

x∈[0,1] F(x) = [0, 1] and
⋃

x∈[t2,1] F(x) = [t1, 1].
(2) F is increasing: if x < y then x ′ < y′ for every x ′ ∈ F(x) and y′ ∈ F(y).
(3) F(1 − x) = {1 − y | y ∈ F(x)} for every x ∈ [0, 1] (that is, y ∈ F(x) iff

1 − y ∈ F(1 − x)).
(4) F(x) is a singleton whenever x < t2 (and so because of (3), also when x > 1 − t2).

LEMMA 5.9. Let F : [0, 1] →P([0, 1]) and 0 < t1 < t2 ≤ 1. Then the following
statements are equivalent:

1. F is 〈t1, t2〉-expanding.
2. MG

t1¬ is an F-rexpansion of MG
t2¬.

3. MG
t1¬ is a strongly preserving F-rexpansion of MG

t2¬.

12 We stress that the logics that are considered here are those that are induced by the Nmatrices
MG

t¬ themselves, not their refinements.
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Proof. Suppose MG
t1¬ = 〈[0, 1] , [t1, 1] ,O1〉, MG

t2¬ = 〈[0, 1] , [t2, 1] ,O2〉 and
(MG

t2¬)F = 〈VF ,DF ,OF 〉.
(1 ⇒ 3) : Let us calculate (MG

t2¬)F : VF = [0, 1] and DF = D1 = [t1, 1],
because of property (1). As for OF : Using property (2), we have that
OF (∧)(x, y) = F(min

{
F̃ [x], F̃

[
y
]}
) and OF (∨)(x, y) = F(max

{
F̃ [x], F̃

[
y
]}
). By

property (3), we have OF (¬)(x) = F(1 − F̃ [x]). Combining properties (2) and (4) gives

us OF (⊃)(x, y) =
{

[t1, 1] x ≤ y or y ≥ t1
{y} x > y and y < t1

.

Finally, OF (⊥) = F(0).
We show that MG

t1¬ is a (simple) refinement of (MG
t2¬)F :

1. O1(∧)(x, y) ⊆ OF (∧)(x, y): Assume w.l.g. that x ≤ y.
Since F is increasing, F̃ [x] ≤ F̃

[
y
]
, which means that

O1(∧)(x, y) = {x} ⊆ F(F̃ [x]) = F(min
{

F̃ [x], F̃
[
y
]}
) = OF (∧)(x, y).

2. O1(∨)(x, y) ⊆ OF (∨)(x, y): this is shown similarly.
3. O1(¬)(x) ⊆ OF (¬)(x): using property (3), we have that

O1(¬)(x) = {1 − x} ⊆ {
1 − y | y ∈ F(F̃ [x])

} = F(1 − F̃ [x]) = OF (¬)(x).
4. O1(⊃)(x, y) ⊆ OF (⊃)(x, y): If x ≤ y or y ∈ [t1, 1] then

O1(⊃)(x, y) = [t1, 1] = OF (⊃)(x, y). Otherwise, O1(⊃)(x, y) = {y}, which
conforms with the calculation of OF (⊃) above.

5. O1(⊥) ⊆ OF (⊥): We show that 0 ∈ F(0) (= OF (⊥)). Since I m(F) = [0, 1],
0 ∈ F(x) for some x . Assume for contradiction that x > 0. Since F is an
expansion function, there exists some y ∈ F(0). By property (2), 0 > y, which
is a contradiction.

Next, we prove that MG
t1¬ is a strongly preserving F-rexpansion of MG

t2¬. Clearly, it
is preserving (as it is simple). The interpretations of all the connectives in MG

t1¬ are
deterministic, with the exception of ⊃. Therefore, the only thing that needs to be verified
is that F(z) ∩ O1(⊃)(x, y) �= ∅ whenever z ∈ O2(⊃)(F̃ [x], F̃

[
y
]
) and either x ≤ y

or y ∈ [t1, 1]. Let z ∈ O2(⊃)(F̃ [x], F̃
[
y
]
). Since x ≤ y or y ∈ [t1, 1], we have

F̃ [x] ≤ F̃
[
y
]

or F̃
[
y
] ∈ [t2, 1]. Therefore, z ∈ [t2, 1], and so F(z) ⊆ [t1, 1]. Since

in this case, O1(⊃)(x, y) = [t1, 1], we have F(z) ∩ O1(⊃)(x, y) = F(z) �= ∅.

(3 ⇒ 2) : Clearly, every strongly preserving F-rexpansion is an F-rexpansion.
(2 ⇒ 1) : Suppose MG

t1¬ is an F-rexpansion of MG
t2¬. We prove that F is 〈t1, t2〉-

expanding, by verifying the four properties:

1. The correctness of property (1) is trivial.
2. If F is not increasing, then there exist x, x ′, y, y′ ∈ [0, 1] such that x < y,

x ′ ∈ F(x), y′ ∈ F(y) and x ′ ≥ y′. Since F is an expansion function,
x ′ �= y′, thus x ′ > y′. Now, since MG

t1¬ is an F-rexpansion of MG
t2¬,

y′ ∈ O1(∧)(x ′, y′) ⊆ OF (∧)(x ′, y′) = F(x). This is impossible, as x �= y,
y′ ∈ F(y), and F is a rexpansion function.

3. Let x ∈ [0, 1]. We prove that F(1 − x) = {1 − y | y ∈ F(x)}.
For every z ∈ F(1 − x), since MG

t1¬ is an F-rexpansion of MG
t2¬,

1 − z ∈ O1(¬)(z) ⊆ ⋃
z′∈O2(¬)(1−x) F(z′) = F(x), and therefore

z ∈ {1 − y | y ∈ F(x)}. And for every z ∈ {1 − y | y ∈ F(x)}, 1 − z ∈ F(x), and
therefore z ∈ O1(¬)(1 − z) ⊆ ⋃

z′∈O2(¬)(x) F(z′) = F(1 − x).
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4. If F(x) is not a singleton for some x < t2, then let y1, y2 ∈ F(x) such that y1 < y2.
In particular, y1, y2 < t1. Therefore, since MG

t1¬ is an F-rexpansion of MG
t2¬,

y1 ∈ O1(⊃)(y2, y1) ⊆ ⋃
z∈O2(⊃)(x,x) F(z) = [t1, 1], which is a contradiction.

�
Now we apply Lemma 5.9 and Theorem 3.8 to the matrices MG

t¬ for various values
of t .

LEMMA 5.10.

1. �MG
t¬ = �

MG

1
2¬

for every 0 < t < 1
2 .

2. �MG
t1¬

= �MG
t2¬

for every 1
2 < t1 < t2 < 1.

3. �MG
t¬ � �MG

1¬
for every 1

2 < t < 1.

4. �
MG

1
2¬

�⊆ �MG
t¬ and �MG

t¬ �⊆ �
MG

1
2¬

for every 1
2 < t ≤ 1.

Proof.

1. We construct an expansion function F that maps [0, 1
2 ) to [0, t) and ( 1

2 , 1] to
(1 − t, 1]. The remaining value 1

2 is duplicated to the remaining segment [t, 1 − t].
Namely:

F = λx ∈ [0, 1] .

⎧⎪⎨⎪⎩
{2t x} x < 1

2

[t, 1 − t] x = 1
2

{2t x + 1 − 2t} x > 1
2

F : [0, 1] →P([0, 1]) since t < 1
2 . By Lemma 5.9 and Theorem 3.8,

it suffices to prove that F is
〈
t, 1

2

〉
-expanding. F is clearly an increasing

expansion function with
⋃

I m(F) = [0, 1] and
⋃

x∈
[

1
2 ,1

] F(x) = [t, 1].

To see that property (3) is satisfied, we distinguish three cases: If x < 1
2 ,

1 − x > 1
2 , and then F(1 − x) = {1 − 2t x} = {1 − y | y ∈ F(x)}.

If x = 1
2 , 1 − x = 1

2 and then F(1 − x) = [t, 1 − t]. Note that
for every y, y ∈ [t, 1 − t] iff 1 − y ∈ [t, 1 − t]. Hence in this case,
F(1 − x) = {1 − y | y ∈ [t, 1 − t]} = {1 − y | y ∈ F(x)}. If x > 1

2 , 1 − x < 1
2 , and

then F(1−x) = {2t (1 − x)} = {1 − y | y ∈ {2t x + 1 − 2t}} = {1 − y | y ∈ F(x)}.
Finally, property (4) clearly holds, as F(x) is a singleton whenever x < 1

2 .
2. We construct a rexpansion function that maps [t2, 1] to [t1, 1], [0, 1−t2) to [0, 1−t1),

and [1 − t2, t2) to [1 − t1, t1). Consider the following function:

f = λx ∈ [0, 1] .

⎧⎪⎨⎪⎩
1−t1
1−t2

· x x < 1 − t2
2t1−1
2t2−1 · x + t2−t1

2t2−1 1 − t2 ≤ x < t2
1−t1
1−t2

· x + t1−t2
1−t2

x ≥ t2.

Let F = λx ∈ [0, 1] . { f (x)}. By Lemma 5.9 and Theorem 3.8, it suffices
to show that F is 〈t1, t2〉-expanding. F is clearly an increasing expansion
function,

⋃
I m(F) = [0, 1], and F(x) is always a singleton. In addition,⋃

x∈[t2,1] F(x) = f ([t2, 1]) = [t1, 1]. Finally, F(1 − x) = {1 − y | y ∈ F(x)},
as f (1 − x) = 1 − f (x) for every x ∈ [0, 1].
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3. To show that �MG
t¬ ⊆ �MG

1¬
, we prove that for every MG

1¬-valuation v

there exists a MG
t¬-valuation v ′ such that for every formula ϕ, v �MG

1¬ ϕ iff

v ′ �MG
t¬ ϕ.13 Let v be a MG

1¬-valuation. We construct v ′ by mapping the values
that are strictly below 1 to being strictly below t , in a way that conforms with the
interpretation of ¬. By making this mapping an increasing one, we conform with the
interpretation of the other connectives. This is defined as follows: Let f be defined
by

f = λx ∈ [0, 1] .

⎧⎪⎨⎪⎩
0 x = 0

(2t − 1)x + 1 − t 0 < x < 1

1 x = 1

f : [0, 1] → [0, 1] is strongly increasing and f (1 − x) = 1 − f (x) for every
x ∈ [0, 1].
Define v ′(ψ) = f (v(ψ)) for every ψ . First, we
prove that v ′ is a MG

t¬-valuation: For ∧, we have
v ′(ϕ∧ψ) = f (v(ϕ∧ψ)) = f (min {v(ϕ), v(ψ)}) = min

{
v ′(ϕ), v ′(ψ)

}
,

as f is increasing. ∨ is shown similarly. In addition,
v ′(¬ψ) = f (v(¬ψ)) = f (1 − v(ψ)) = 1 − f (v(ψ)) = 1 − v ′(ψ) and
v ′(⊥) = f (v(⊥)) = f (0) = 0. Next, we show that the implication constraints
are satisfied: If v ′(ϕ) ≤ v ′(ψ), then since f is increasing, v(ϕ) ≤ v(ψ). Since
v is a MG

1¬-valuation, v(ϕ ⊃ ψ) = 1, and hence v ′(ϕ ⊃ ψ) = 1 > t . If
v ′(ψ) ≥ t , then by the definition of f , v ′(ψ) = 1, which means that v(ψ) = 1,
and again, v ′(ϕ ⊃ ψ) = 1 > t . Finally, if v ′(ϕ) > v ′(ψ) and v ′(ψ) < t
then we have v(ϕ) > v(ψ) and v(ψ) < 1. Since v is a MG

1¬-valuation,
v(ϕ ⊃ ψ) = v(ψ) < 1, and hence v ′(ϕ ⊃ ψ) = f (v(ψ)) = v ′(ψ). Second,
we prove that v �MG

1¬ ψ iff v ′ �MG
t¬ ψ , for every formula ψ . If v �MG

1¬ ψ
then v(ψ) = 1. In this case, v ′(ψ) = 1 as well, and in particular, v ′ �MG

t¬ ψ . In
addition, if v ′ �MG

t¬ ψ , then v ′(ψ) ≥ t , that is, f (v(ψ)) ≥ t . By f ’s definition,
we must have v ′(ψ) = f (v(ψ)) = 1, which means that v(ψ) = 1. Therefore,
v �MG

1¬ ψ .
To show that �MG

t¬ �= �MG
1¬

, note that p ⊃ q �MG
1¬
¬q ⊃ ¬p, as for

every MG
1¬-valuation v such that v(p ⊃ q) = 1, we must have that

v(p) ≤ v(q). In particular, v(¬q) ≤ v(¬p), and thus v(¬q ⊃ ¬p) = 1.
However, p ⊃ q ��MG

t¬ ¬q ⊃ ¬p, as can be seen by the following MG
t¬-valuation:

v(p) = 1, v(q) = t, v(¬p) = 0, v(¬q) = 1 − t, v(p ⊃ q) = t, v(¬q ⊃ ¬p) = 0.
4. By Theorem 5.2, we have that p,¬p �MG

t¬q but p,¬p ��
MG

1
2¬

q, and

�
MG

1
2¬
¬ϕ∨ϕ but ��MG

t¬ ¬ϕ∨ϕ.

�

13 The proof of this item does not use rexpansions: by Proposition 3.4, MG
1¬ is not a rexpansion of

MG
t¬, as there is no function f : [0, 1] → [0, 1] satisfying x ∈ {1} iff f (x) ∈ [t, 1].
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COROLLARY 5.11.
{
�MG

t¬ | 0 < t ≤ 1
}

=
{

�
MG

1
2¬
,�

MG

3
4¬
,�MG

1¬

}
, and its

cardinality is 3.

§6. Conclusion and further research. We have investigated rexpansions –
compositions of expansions and refinements on Nmatrices. Properties of this operation
were proved, as well as their effects on consequence relations. Examples of applications
of these results were also given, including the construction of conservative extensions for
many logics from the literature, and in particular, paraconsistent conservative extensions
of Gödel logic, that were investigated further.

Theorem 3.8 provides a sufficient condition for two Nmatrices to induce the same
consequence relation. However, Example 4.4 shows that this condition is not necessary,
since the {∧,∨}-fragments of MLP and MKL induce the same logic, but neither is a
strongly preserving rexpansion of the other. An interesting direction for further research
is to characterize general cases in which the condition it suggests is also necessary. An
intermediate goal in this direction is to further generalize the sufficient condition, so that
it uniformly covers examples that are currently left out (like MLP and MKL). Future
work would also include more applications of rexpansions, in the spirit of §4 and §5. Such
applications can simplify known results from the literature of nonclassical logics, and also
the construction of new conservative extensions with certain properties. We have started
to advance this line of work in Chapter 6 of Zohar (2018), where rexpansions are used
to describe the modular construction of proof systems for nonclassical logics, and plan to
describe other modular constructions via rexpansions. §5 should be extended beyond Gödel
logic, to provide a general method for the construction of paraconsistent fuzzy logics, based
on rexpansions. Among the logics that are induced by refinements of MG

t¬, only RM⊃ has
a known axiomatization. We leave it for future research to axiomatize other such logics,

and in particular, the logic that is induced by MG

1
2¬ itself. The decidability and complexity

of these logics is also left for further research.
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