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SMALL DRIFT LIMIT THEOREMS
FOR RANDOM WALKS
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Abstract

We show analogs of the classical arcsine theorem for the occupation time of a random
walk in (−∞, 0) in the case of a small positive drift. To study the asymptotic behavior
of the total time spent in (−∞, 0) we consider parametrized classes of random walks,
where the convergence of the parameter to 0 implies the convergence of the drift to 0.
We begin with shift families, generated by a centered random walk by adding to each
step a shift constant a > 0 and then letting a tend to 0. Then we study families of
associated distributions. In all cases we arrive at the same limiting distribution, which is
the distribution of the time spent below 0 of a standard Brownian motion with drift 1. For
shift families this is explained by a functional limit theorem. Using fluctuation-theoretic
formulae we derive the generating function of the occupation time in closed form, which
provides an alternative approach. We also present a new form of the first arcsine law for
the Brownian motion with drift.

Keywords: Random walk; transient; occupation time; arcsine law; small drift; limit
distribution
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1. Introduction

For the classical symmetric random walk with ±1 steps it is well known that the three random
variables ‘time spent on the positive axis’, ‘position of the first maximum’, and ‘last exit from
zero’ are identically distributed and (suitably normalized) asymptotically arcsine-distributed.
Here the norming factor is the length of the time interval the random walk has been observed,
so that the limiting statements refer to ‘relative’ times.

Consider now a classical random walk with drift δ �= 0. Clearly the same ‘relative’variables
can be studied. The asymptotic distribution of the random variable (fraction of) time spent in
(−∞, α] has been determined by Takács [20], by applying a functional limit theorem.

But if δ �= 0 there is also another, ‘absolute’perspective. If, for example, δ > 0 for a general
random walk, it is clear that Z(δ) = ‘number of visits in (−∞, 0)’ is almost surely finite, and
that Z(δ) → ∞ in probability as δ ↘ 0. One may ask if Z(δ), after multiplication with some
deterministic function a(δ), has a nondegenerate limit distribution. In this paper we aim to
answer these and related questions for random walks in the heavy-traffic regime, i.e. when the
drift converges to 0. In all cases the limiting distribution for the occupation time in (−∞, 0),
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200 E. SCHULTE-GEERS AND W. STADJE

properly rescaled, turns out to have the density

p(t) = 2
φ(

√
2t)√

2t
− 2�(−√

2t), t > 0, (1.1)

where φ and � are the density and the distribution function of N(0, 1), respectively.
The distribution of the occupation time in (−∞, 0) of Brownian motion with positive drift

also has density (1.1), and in Section 2 we begin with related results for Brownian motion. We
show, for example, that the distribution of the time of the last exit from 0 of Brownian motion
with drift during a finite-time interval is composed of the arcsine and a truncated exponential
distribution. In Section 2 we derive the limiting occupation time distribution for shift families
generated from a centered random walk by adding to each step a shift constant a > 0 and
then letting a tend to 0. The proof that (1.1) gives the asymptotic distribution is based on
Donsker’s invariance principle. In Section 4 we give the key fluctuation-theoretic formulae for
the distribution for the occupation time in (−∞, 0) for general random walks.

The arcsine law and its ramifications are a classical topic but there are always recent
contributions, for example, some new explicit distributions [14], new proofs [8], or asymptotic
considerations [15]. Interesting results on the number of visits to one point by skipfree random
walks and related questions can be found in [4]. The problem considered in this paper is
also connected to the heavy traffic approximation problem in queueing theory, in which the
growth of the all-time maximum of Sn − na (where Sn is the nth partial sum of independent
and identically distributed (i.i.d.) random variables with mean 0) is studied as a ↘ 0. In the
queueing context this is equivalent to the growth of the steady-state waiting time in a GI/G/1
system when the traffic load tends to 1. This question was first posed by Kingman (see [12])
and was investigated by many authors (see, e.g. [3], [13], [16], [17], [19].)

2. Occupation times and last exit from 0 for Brownian motion with drift

We start by presenting two results on occupation times for Brownian motion with positive
drift δ > 0 and variance σ 2, one known and one new. Let Bt be a standard Brownian motion
and Xt = σBt + δt .

Lemma 2.1. (i) Let z > 0 and Tz = inf{t ≥ 0 : Xt ≥ z} be the first time when Xt reaches
level z. Then Tz has the Laplace transform

�Tz(s) = E exp(−sTz) = exp

(
− z

σ 2 (
√

δ2 + 2σ 2s − δ)

)
.

(ii) Let V0 = V0(δ) = ∫ ∞
0 1(−∞,0)(Xt ) dt be the total time that Xt spends below 0. Then V0

has the Laplace transform

�V0(s) = Ee−sV0 = 2δ

δ + √
δ2 + 2σ 2s

.

Proof. Proofs for (i) and (ii) (for σ 2 = 1) can be found in [11] and [9], respectively. Note
that (δ2/2σ 2)V0 has the Laplace transform 2/(1 + √

1 + s). We call A a generic random
variable with this Laplace transform. �

The density of A is given by (1.1). To see this, note that 1/
√

1 + s is the Laplace transform
of the gamma distribution �1,1/2, which has density

γ1,1/2(t) = 1(0,∞)(t)
e−t

√
πt

.
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Small drift limit theorems 201

Therefore, [1 − (1/
√

1 + s)]/s is the Laplace transform of 1 − �1,1/2(t) = ∫ ∞
t

γ1,1/2(x) dx.
The equality

1

1 + √
1 + s

= 1√
1 + s

− 1

s

(
1 − 1√

1 + s

)

now yields density (1.1).
For z ≥ 0, let Vz = ∫ ∞

0 1(−∞,z)(Xt ) dt the total time the process spends below z. Then
the obvious decomposition (obtained by conditioning on TZ) Vz = Tz + V ′

0 (where V ′
0 is

independent of Tz) yields the following lemma.

Lemma 2.2. It holds that Vz has the Laplace transform

�Vz(s) = E(e−sVz ) = �Tz(s)�V0(s).

The density and distribution function are given in [9].
We focus in the sequel on the time spent on the negative axis, but it is also of interest

to look at the other classical arcsine variable, i.e. the time of the last exit from 0. Here we
determine its distribution. Let δ ∈ R \ {0}, σ 2 = 1, so that Xt = Bt + δt , and consider
W = sup{t ∈ [0, 1] : Xt = 0}, the last time Xt visits 0 in [0, 1].

Recall that for δ = 0, i.e. for the standard Brownian motion, the standard arcsine distribution
(which has density 1(0,1)(t)(1/π

√
t (1 − t)) and distribution function (2/π) arcsin(

√
t) on

[0, 1]) is the distribution of the last exit time from 0 in the interval [0, 1].
The distribution of W turns out to have a nice representation in terms of the standard arcsine

distribution and a truncated exponential distribution. As this result seems new, we provide a
proof.

Theorem 2.1. We have W
d= C · min{1, Dδ}, where C and Dδ are independent, C is arcsine-

distributed, and Dδ is exp(δ2/2)-distributed. We denote by ‘
d=’ equality in distribution. The

moments of W are given by

EWk =
(

2k

k

)
1

22k

∫ 1

0
kyk−1e−δ2y/2 dy, k ≥ 1.

Proof. We use a random walk approximation in the style of Takács [20]. Let Y1, Y2, . . . be
i.i.d. with

P(Yi = 1) = p = 1

2
+ δ

2
√

n
, P(Yi = −1) = q = 1 − p

(p and q depend on n, but this is suppressed in the notation), and partial sums S0 = 0, Sk =∑k
i=1Yi .
It it easy to see that the processes X(n) defined by

X(n)(t) = 1√
n

S�nt�, 0 ≤ t ≤ 1,

converge in distribution to X = (Xt )t∈[0,1] in D[0, 1].
Furthermore, the last-exit time from 0 is continuous in the Skorokhod topology on D[0, 1]

on a set of PX-measure 1, and

Tn = sup{t ∈ [0, 1] : X(n)(t) = 0} = 1

n
max{0 ≤ k ≤ n : Sk = 0} =: Mn

n
.

Then it suffices to show that MN/N → C · min{1, Dδ} as N → ∞.
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202 E. SCHULTE-GEERS AND W. STADJE

Since 1/
√

1 − 4pqz2 and (
√

1 − 4pqz2)/(1 − z) are the generating functions for the seq-
uences of probabilities P(Sn = 0) and P(S1 �= 0, . . . , Sn �= 0), respectively, the generating
function of MN is

EtMN =
N∑

k=0

tkP(Sk = 0, Sk+1 �= 0, . . . , SN �= 0)

=
N∑

k=0

tkP(Sk = 0)P(S1 �= 0, . . . , SN−k �= 0)

= [zN ] 1√
1 − 4pqt2z2

√
1 − 4pqz2

1 − z

= [zN ] 1√
1 − 4pqt2z2

√
1 − 4pqz2

1 − z2 (1 + z).

Here and in what follows [zN ]f (z) denotes the coefficient of [zN ] in the Taylor expansion of
the function f (z) around 0. Thus, the generating functions for N = 2n + 1 and N = 2n

are identical and it is enough to consider even N . Let N = 2n be even (and n > δ2) and
Un = MN/2. Then the generating function of Un is

EtUn = [z2n] 1√
1 − 4pqtz2

√
1 − 4pqz2

1 − z2 = [zn] 1√
1 − 4pqtz

√
1 − 4pqz

1 − z

so that the kth factorial moment uk,n = E(Un(Un − 1) · · · (Un − k + 1)) of Un is given by

uk,n = k! (−1)k
(−1/2

k

)
(4pq)k[zn−k] 1

(1 − 4pqz)k(1 − z)

= k(−1)k
(−1/2

k

)
(4pq)k[zn−k] 1

(1 − z)

∫ ∞

0
xk−1e−(1−4pqz)x dx

= (−1)k
(−1/2

k

)
(4pq)k

∫ ∞

0
kxk−1e−x

(n−k∑
j=0

(4pqx)j

j !
)

dx.

Now denote by Po(λ) a random variable having the Poisson distribution with parameter λ. As
4pq = 1 − (δ2/2n), we obtain

∫ ∞

0
kxk−1e−x

(n−k∑
j=0

(4pqx)j

j !
)

dx =
∫ ∞

0
kxk−1e−x(1−4pq)

P(Po(4pqx) ≤ n − k) dx

= nk

∫ ∞

0
kyk−1e−δ2y/2

P
(
Po

((
n − 1

2δ2)y) ≤ n − k
)

dy.

By the central limit theorem,

P
(
Po

((
n − 1

2δ2)y) ≤ n − k
) →

⎧⎪⎨
⎪⎩

1 for 0 ≤ y < 1,
1
2 for y = 1,

0 for y > 1,
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so that, for every k, we have

un,k

nk
→ (−1)k

(−1/2

k

) ∫ 1

0
kyk−1e−yδ2/2 dy.

Hence, ET k
N/Nk tends to the same limit. Finally,

ECk = (−1)k
(−1/2

k

)
=

(
2k

k

)
1

22k

and integration by parts shows that
∫ 1

0 kyk−1e−yδ2/2 dy = E min{1, Dk
δ }. Thus, all moments

of TN/N converge to the corresponding moments of C · min{1, Dδ}. Since the distribution of
C · min{1, Dδ} is clearly determined by its moments, both assertions follow. �

Remark 2.1. As an immediate consequence of the scaling properties of Brownian motion, we
see that the distribution of

WT = sup{t ≤ T : σBt + δt = 0}
is the same as that of C ·min{T , Dδ/σ }. The time of the last 0 of σBt + δt in the interval [0, ∞)

is, thus, distributed as C ·Dδ/σ , which is the gamma distribution with parameters δ2/2σ 2 and 1
2 .

Remark 2.2. Clearly, V0 (the occupation time on the negative axis) is stochastically smaller
than W∞ (the last exit time from 0), and the results above quantify this precisely. For example,
we find that

E(V0) = σ 2

2δ2 = 1

2
E(W∞).

Remark 2.3. Last-exit times of Brownian motion from moving boundaries have been studied
intensively, and more complicated expressions for the density of the last-exit time from a linear
boundary were derived in [10] and [18]. The representation in (2.1) appears to be new, as it is
not mentioned in the encyclopedic monograph [2]. For the density of the sojourn time, found
by Takács, by a random walk limit, two ‘purely Brownian’ explanations were given in [6]. It is
natural to ask for such an explanation for the representation in (2.1).

3. Limit of occupation times for shifted random walks

In this section we consider a shifted random walk. Specifically, let (Xδ,1, Xδ,2, . . .) be a
parametrized sequence of i.i.d. random variables with E(Xδ,i) = 0 and var(Xδ,i) = σ 2(δ) ∈
(0, ∞). Let δ > 0 and

Y δ
i = Xδ,i + δ, Sδ,n =

n∑
i=1

Xδ,i, Sδ
n =

n∑
i=1

Y δ
i .

We are interested in the occupation time Zδ
0 = ∑∞

i=1 1(−∞,0)(S
δ
n).Throughout this section we

assume that σ 2(δ) → σ 2 > 0 as δ → 0 and that the following Lindeberg-type condition holds:
for every ε > 0,

lim
δ→0

∫
|δXδ,1|>ε

X2
δ,1 dP = 0. (3.1)
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204 E. SCHULTE-GEERS AND W. STADJE

These conditions are chosen such that for the triangular array with the variables

Zδ,k = δ

σ (δ)
Xδ,k, k = 1, . . . ,

⌊
1

δ2

⌋
,

the central limit theorem holds: indeed, var(Zδ,1) = δ2 and the Lindeberg condition for this
triangular array reads as

lim
δ→0

1

δ2

∫
|Zδ,1|>εδ2�1/δ2�

Z2
δ,1 dP = lim

δ→0

1

σ 2(δ))

∫
|δXδ,1|>εσ(δ)δ2�1/δ2�

X2
δ,1 dP

= 0 for every ε > 0,

which is clearly true under the conditions above.
We use similar ideas as Prohorov [16], who proved the following.

Theorem 3.1. (See Prohorov [16].) In the situation above, let Mδ = min{Sδ
n : n ≥ 0}. Then

P(δMδ > x) → e−2x/σ 2
for all x > 0.

In [16], the maximum in the case of negative drift was considered instead of Mδ . The
result had been proved earlier by Kingman [12] under the assumption of the existence of an
exponential moment.

The following lemma will be needed to obtain tightness bounds.

Lemma 3.1. In the situation above, let z ≥ 0 and let δk > 0 be a sequence of positive numbers
satisfying supk≥1 σ 2(δk) < ∞. Then, for every ε > 0, we can find a T such that, for all k,

P

(
sup

n≥T/δ2
k

(|Sδk,n| − nδk) ≥ − z

δk

)
< ε.

Proof. First consider a sequence Sn of partial sums of an arbitrary i.i.d. sequence (Xi)

with E(X1) = 0 and var(X1) = σ 2. Let a, b > 0, Na > b and consider the event EN =
{supn≥N(|Sn| − na) ≥ −b}. Clearly,

EN =
∞⋃

j=0

{
max

2j N≤n<2j+1N
(|Sn| − na) ≥ −b

}

⊆
∞⋃

j=0

{
max

2j N≤n<2j+1N
|Sn| ≥ 2jNa − b

}

⊆
∞⋃

j=0

{
max

n≤2j+1N
|Sn| ≥ 2jNa − b

}
.

By Kolmogorov’s inequality,

P

(
max

n≤2j+1N
|Sn| ≥ 2jNa − b

)
≤ 2j+1Nσ 2

(2jNa − b)2 .
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Now set N = T/δ2, a = δ, b = z/δ, and Xi = Xδ,i . It follows that

P

(
sup

n≥T/δ2
(|Sδ,n| − nδ) ≥ −z

δ

)
≤

∞∑
j=0

2j+1T σ 2(δ)

(2j T − z)2 .

The bound on the right-hand side depends on δ only via σ 2(δ) and can clearly be made arbitrarily
small (under the assumptions above). �
Corollary 3.1. In the situation above, let z ≥ 0 and let δk > 0 be a sequence of positive
numbers satisfying supk≥1 σ 2(δk) < ∞. Then, for every ε > 0, one can find a T such that, for
all k,

P

(
min

n≥T/δ2
k

δk(Sδk,n + nδk) ≤ z
)

< ε.

Theorem 3.2. We have

δ2

2σ 2(δ)
Zδ

0 → A in distribution as δ ↘ 0.

Proof. By the remark following Lemma 2.1 it suffices to show that δ2Zδ
0 → V0 in distribu-

tion, where V0 is the distribution of the time the process Xt = σBt + t spends below 0.
Let T > 0 and consider the sequence of processes

Uδ(t) = δ

�t/δ2�∑
i=1

Y δ
i , 0 ≤ t ≤ T .

By Donsker’s limit theorem (in the version for triangular arrays, see, e.g. [1, p. 147]), the
sequence Uδ → σB + id in distribution in D[0, T ], where σB + id denotes the Brownian
motion with variance σ 2 and drift 1, i.e. with coordinate variables σBt + t . For any bounded
Borel function v on [0, T ], the functional x �→ ∫ T

0 v(xt ) dt on D[0, T ] is Skorokhod-measurable
and continuous except on a set of B-measure 0 (see, e.g. [1, p. 247]). Thus,

δ2card

({
n : Sδ

n < 0, 1 ≤ n ≤ T

δ2

})
=

∫ δ2�T/δ2�

0
1(−∞,0)(U

δ(t)) dt

→
∫ T

0
1(−∞,0)(Xt ) dt as δ ↘ 0

in distribution and we will be done if we can justify the interchange of the limits T → ∞ and
δ ↘ 0. Let δk > 0 be a sequence decreasing to 0 and let ε > 0. By Corollary 3.1, we can find
an N such that P(minn≥N/δ2

k
S

δk
n ≤ 0) < ε for all k. Thus,

lim
T →∞ sup

k≥1
P

(
min

n≥T/δ2
k

Sδk
n ≤ 0

)
= 0 (3.2)

and the assertion follows since, by the monotone convergence theorem,

lim
T →∞

∫ T

0
1(−∞,0)(Xt ) dt =

∫ ∞

0
1(−∞,0)(Xt ) dt. �
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Remark 3.1. A related discussion can be found in [19]. In that paper, Shneer and Wachtel
derived an extension of Kolmogorov’s inequality and treated the maximum of random walks
with negative drift and step-size distributions attracted to a stable law of index α ∈ (1, 2]. In the
case of finite variance (α = 2) they already remarked that their results (including, in particular,
the crucial relation (3.2)) remain valid if the conditions assumed above hold.

Remark 3.2. Assume that the Xi are independent with E(Xi) = 0 and variances var(Xi) = σ 2
i

and satisfy Lindeberg’s condition. Let s2
i = ∑i

k=1 σ 2
k . Then the step processes Xn(t) which

jump to the value Si/sn at time s2
i /s2

n converge weakly to a standard Brownian in D[0, 1] (by
Prohorov’s extension of Donsker’s theorem). One may thus expect that they exhibit a similar
limiting behavior.

Finally, replacing 0 by z/δ and repeating the steps in the proof of 3.2 yields the following.

Theorem 3.3. In the situation above, let z > 0 and Zδ
z = ∑∞

n=1 1(−∞,z)(S
δ
n) . Then δ2Zδ

z/δ →
Vz in distribution, where the Laplace transform of Vz is given in Lemma 2.2 with δ = 1.

If z here depends on δ such that δz(δ) → 0 as δ → 0, we have the following proposition.

Proposition 3.1. In the situation above, let (z(δ)) be a sequence of positive numbers with
z(δ) = o(1/δ) and supδ z(δ) < ∞. Then

δ2Zδ
z(δ) → V0 = 2σ 2A as δ → 0.

Proof. Clearly V0 is stochastically smaller than any distributional limit of δ2Zδ
z(δ) (because

Zδ
0 is stochastically smaller than Zδ

y for y ≥ 0); furthermore, Vy = Ty + V0 is stochastically
smaller than Vz for y ≤ z. Let ε > 0 and C = supδ z(δ), then C < ∞ and δ2Zδ

εC/δ → VεC in
distribution as δ → 0 (by Theorem 3.3). Since Zδ

z(δ) = Zδ
εz(δ)/ε is stochastically smaller than

Zδ
εC/δ for δ ≤ ε, any distributional limit of δ2Zδ

z(δ) is stochastically smaller than VεC . Thus,
the distributional limit exists and is equal to V0. �

We close this section with an application of Theorem 3.2 in a frequently encountered
situation.

Example 3.1. (Expectation shift in exponential families.) Let U be a nonconstant real random
variable such that the moment generating function

m(s) = EesU

is finite in an open interval I around 0, and E(U) = m′(0) = 0, var(Y ) = σ 2.
For p ∈ I , let Up have the ‘associated’ distribution with moment generating function

mp(s) = m(p + s)/m(p), clearly Up has expectation E(Up) = m′(p)/m(p) and variance
σ 2(p) = (m′′(p)m(p) − (m′(p))2)/m(p)2.

Let Z0(p) denote the random variable ‘time spent in (−∞, 0)’by the random walk generated
by i.i.d. variables with distribution Up. Then

(E(Up))2

2σ 2(p)
Z0(p) → A in distribution for p ↘ 0.

Proof. It is well known that s �→ log m(s) is strictly convex on I , thus, p �→ m′(p)/m(p) =
E(Up) is strictly increasing. Thus, we may parameterize the distributions by δ(p) = E(Up).
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We have δ(p) ↘ 0 for p ↘ 0 and σ 2(p) → σ 2 as p ↘ 0. Let Xδ(p) = Up − E(Up)

and Y δ(p) = Xδ(p) + δ(p) = Up. Then the Lindeberg condition (3.1) is satisfied, since by
Chebyshev’s inequality

∫
|δ(p)Xδ(p)|>ε

X2
δ(p) dP ≤ δ2(p)σ 2(p)

ε2

and the claim follows from Theorem 3.2. �

4. The fluctuation theoretic approach

The topics investigated here belong to the fluctuation theory of random walks. We recall
some basic facts, which will be used in the sequel and can, for example, be found in [7,
Section XII.7].

We consider a random walk (Sn)n≥1, i.e. a sequence of partial sums of i.i.d. random variables
and let R = inf{n ≥ 1 : Sn < 0} and W = inf{n ≥ 1 : Sn ≥ 0} be the lengths of the first
strictly descending and weakly ascending ladder epochs of the random walk, respectively. We
denote by r(z) and a(z) the corresponding probability generating functions and set μ = EW .
The occupation time of interest is Z0 = ∑∞

n=1 1(−∞,0)(Sn).

Theorem 4.1. (Sparre Andersen.) For |z| < 1,

1

1 − r(z)
= exp

{ ∞∑
n=1

zn

n
P(Sn < 0)

}
,

1

1 − a(z)
= exp

{ ∞∑
n=1

zn

n
P(Sn ≥ 0)

}
.

An immediate consequence is the factorization theorem.

Theorem 4.2. (Duality.) For |z| < 1,

(1 − r(z))(1 − a(z)) = 1 − z.

It follows from the factorization theorem that W(R) has a finite expected value if and only
if R(W) is defective, and that the relations E(R)P(W = ∞) = 1 and E(W)P(R = ∞) = 1
hold.

At the combinatorial heart of fluctuation theory is the ‘Sparre Andersen transformation’
(made explicit by Feller and refined by Bizley and Joseph) given in [7, Section XII.8, Lemma 3].

Lemma 4.1. Let x1, . . . , xn be real numbers with exactly k ≥ 0 negative partial sums si1 , . . . ,

sik , where i1 > · · · > ik . Write xi1 , . . . , xik followed by the remaining xi in their original order.
(If k = 0, the sequence remains unchanged). The transformation thus defined is invertible, and
the first (absolute) minimum of the partial sums of the new arrangement occurs at the kth place.

Clearly this extends to infinite sequences with exactly k negative partial sums: just apply the
bijection above to an initial section large enough to contain all the negative partial sums, and
leave the rest unchanged.

In the following formulae we express the generating function of Z0 in terms of r(z) or a(z),
respectively.

Theorem 4.3. We have

EzZ0 = 1 − r(1)

1 − r(z)
= 1

μ

1 − a(z)

1 − z
= exp

{
−

∞∑
k=1

(1 − zk)
P(Sk < 0)

k

}
. (4.1)
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Proof. According to Lemma 4.1, for each sequence x1, x2, . . . with exactly k negative
partial sums there corresponds (by a finite reordering) a unique sequence with a first (absolute)
minimum at the kth place. The partial sums s0 = 0, s1, s2, . . . of the rearranged sequence
consist of a first part s0, s1, . . . , sk and a second part sk+1, sk+2, . . . such that the partial sums
satisfy si > sk for i ≤ k and si − sk ≥ 0 for i > k. For a random walk the joint distribution of
the Xi is invariant under finite permutations, and the two parts are independent. The first part
has probability

P(0 > Sk, S1 > Sk, . . . , Sk−1 > Sk) = P(S1 < 0, . . . , Sk < 0)

(by reversing the order of the variables), the second part has probability

P(Sk+1 − Sk ≥ 0, Sk+2 − Sk ≥ 0, . . .) = P(S1 ≥ 0, S2 ≥ 0, . . .) = 1 − r(1).

This yields the first equation of (4.1). The second equation follows immediately from the
factorization identity (1 − a(z))(1 − r(z)) = 1 − z (recall Theorem 4.2) and the third equation
from Sparre Andersen’s theorem. �

In some cases r(z) can be computed in closed form, and the asymptotics of Z0 can be
obtained from an explicit formula. An example is the normal random walk. Let the i.i.d.
steps Xi be N(δ, σ 2)-distributed. Here we only assume that δ �= 0, i.e. we consider the cases
of positive and negative δ simultaneously and let d := |δ|, q := δ2/2σ 2.

Example 4.1. For the normal random walk, we have the following:

(i) that

r(z) = 1 − (1 − z)1/2 exp

(
sign(δ)

d2

πσ 2

∫ 1

0

∫ ∞

0

e−d2(y2+x2)/2σ 2

1 − ze−d2(y2+x2)/2σ 2 dy dx

)
;

(ii) qZ0 → A in distribution as δ2/σ 2 ↘ 0, δ ↘ 0;

(iii) r(e−qs)1/
√

q → e−(
√

1+s−1) as q ↘ 0, δ ↗ 0.

Note that here σ 2 may vary with δ, it is only essential that δ/σ → 0.

Proof. Directly from Sparre Andersen’s theorem, we find that

log

(
1

1 − r(z)

)
=

∞∑
n=1

zn

n
P(Sn < 0)

=
∞∑

n=1

zn

n

∫ −nδ

−∞
1√

2nπσ 2
e−x2/2nσ 2

dx

=
∞∑

n=1

zn

n

(
1

2
− sign(δ)

∫ nd

0

1√
2nπσ 2

e−x2/2nσ 2
dx

)
.

Hence,
1 − r(z) = (1 − z)1/2 exp(sign(δ)G(z)),

where

G(z) =
∞∑

n=1

zn

n

∫ nd

0

1√
2nπσ 2

e−x2/2nσ 2
dx.

https://doi.org/10.1017/jpr.2016.95 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.95


Small drift limit theorems 209

We have ∫ nd

0

1√
2nπσ 2

e−x2/2nσ 2
dx =

∫ d

0

√
n

2πσ 2 e−ny2/2σ 2
dy

= n

πσ 2

∫ d

0

∫ ∞

0
e−n(y2+x2)/2σ 2

dy dx

= nd2

πσ 2

∫ 1

0

∫ ∞

0
e−nd2(y2+x2)/2σ 2

dy dx

and, therefore,

G(z) = d2

πσ 2

∫ 1

0

∫ ∞

0

e−d2(y2+x2)/2σ 2

1 − ze−d2(y2+x2)/2σ 2 dy dx,

proving (i). Note that G(z) depends only on the ratio q = d2/2σ 2. Fix s > 0. Setting
z = e−qs , we obtain, for q ↘ 0 (by dominated convergence),

G(e−qs) = 2

π

∫ 1

0

∫ ∞

0

qe−q(y2+x2)

1 − e−q(s+y2+x2)
dy dx

→ 2

π

∫ 1

0

∫ ∞

0

1

s + y2 + x2 dy dx

= log

(
1 + √

1 + s√
s

)
.

From this (ii) and (iii) follow easily. �

It is of methodological interest to have also a purely fluctuation-theoretic proof of Theo-
rem 3.2, i.e. a proof which does not rely on the ‘functional limit theorem’ approach used above.
The anonymous referee suggested the following alternative derivation of Theorem 3.2 based
on Theorem 4.3. Assume the conditions introduced in Section 3.

Theorem 4.4. (Equivalent to Theorem 3.3.) We have

δ2

2σ 2(δ)
Zδ

0 → A in distribution as δ ↘ 0.

Proof. In principle, we follow the line of argument used for a similar proof in [19] (after
Equation (11) there). Let ε > 0 and split the series in the exponent of the right-hand side
of (4.1) into three parts:

∞∑
k=1

=
ε/δ2∑
k=1

+
T/δ2∑
ε/δ2

+
∞∑

T/δ2

=
∑

1
+

∑
2
+

∑
3
.

Let s > 0 and set z = e−sδ2/2σ 2(δ). We consider the different sums separately, starting with∑
1:

ε/δ2∑
k=0

(1 − zk)
P(Sδ

k < 0)

k
≤ sδ2

2σ 2(δ)

ε/δ2∑
k=0

P(Sδ
k < 0) ≤ sε

2σ 2(δ)
.
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Furthermore, P(Sδ
k < 0) = P(

∑k
j=1Xδ,j < −kδ) ≤ σ 2(δ)/(kδ2) by Chebyshev’s inequality.

Therefore, we obtain, for ε > δ2,

∑
k≥ε/δ2

(1 − zk)

k
P(Sδ

k < 0) ≤ σ 2(δ)

δ2

∑
k≥ε/δ2

1

k2 ≤ σ 2(δ)

δ2

∫ ∞

ε/δ2

1

(x − 1)2 dx = σ 2(δ)

ε − δ2 .

Since σ(δ) → σ 2 ∈ (0, ∞) as δ → 0, there is a δ0 such that 2δ2
0 < ε and σ 2(δ) is bounded

for δ ≤ δ0. Without loss of generality, we assume in the sequel that δ ≤ δ0. Then
∑

3 can be
made arbitrarily small by a suitable choice of T , and

∑
2 ≤ 2C/ε for a suitable constant C.

For
∑

2 we use the asymptotic normality of δSδ
t/δ2 (which is implied by the Lindeberg

condition; see the beginning of Section 3), i.e.

P(δSd
k < 0) → P(N(t, σ 2t) < 0) = �

(
−

√
t

σ 2

)
as δ → 0, kδ2 → t

(uniformly for t ∈ [ε, T ]), and by the dominated convergence, we conclude that

∑
2

→
∫ T

ε

1 − e−t/2σ 2

t
�

(
−

√
t

σ 2

)
dt.

Letting ε → 0, T → ∞, we finally arrive at

E exp

(
−s

δ2

2σ 2

)
→ exp

{
−

∫ ∞

0

1 − exp(−su)

u
�(−√

2u) du

}
. (4.2)

Evaluating the integral completes the proof. Avoiding the calculation, it suffices to note that
the right-hand side of (4.2) is independent of the underlying distribution of the random walk so
that one can look at the example of the normal random walk computed above, which leads to
the conclusion that the right-hand side of (4.2) is equal to 2/(1 + √

1 + s). �
The advantage of this proof is that it is essentially unchanged when generalized to the α-

stable case (1 < α < 2)—the main difficulties (the corresponding estimates for these cases)
can be overcome using Equation (6) in [19].

We close this section with a few remarks on the simple random walk taking step +1 with
probability p > 1

2 and step −1 with probability q = 1−p. It is well known that in this example

r(z) = 1 − √
1 − 4pqz2

2pz
,

so that a quick calculation shows that

EzZ0 = 1 − r(1)

1 − r(z)
= (p − q)(1 + √

1 − 4pqz2)

p(1 − 2z2 + √
1 − 4pqz2)

and 2(p − 1
2 )2Z0 → A in distribution as p ↘ 1

2 .

Remark 4.1. Let T0(p) = sup{n ≥ 0 : S
(0)
n = 0} the time of the last return to the origin. In

the symmetric case p = 1
2 the walk is persistent and T0(

1
2 ) = ∞ almost surely. In the transient

case p > 1
2 , T0(p) has the generating function

h(z) = p − q√
1 − 4pqz2

.
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A short computation yields that 1
2 (p − q)2T0(p) converges in distribution as p ↘ 1

2 , the
limiting distribution having the Laplace transform 1/

√
1 + s, i.e. being the �1,1/2 distribution

with density γ1,1/2(t) as above.

Remark 4.2. Let N0(p) denote the number of 0s of the random walk. Then

P(N0(p) = r, T0(p) = 2n) = r

n − r

(
2n − r

n

)
2(pq)n

and (δN0(p), 1
2δ2T0(p)) converges weakly to the distribution with density

f (y, t) = 1(0,∞)(y) 1(0,∞)(t)
y

2t

1√
2πt

e−(y2/4t)−t .

In particular, δN0(p) is asymptotically exp(1). For the symmetric random walk, let N0,2n denote
the number of 0s up to time 2n. A classical theorem of Chung–Hunt [5] states that

√
2/nN0,2n

is asymptotically distributed as |N(0, 1)|. All these results show that deviations from the
symmetric random walk become clearly visible after n ≈ δ−2 steps. While characteristics such
as the positive sojourn time and the last-exit time from 0 are in both cases of approximately the
same size their distributions differ. For the last-exit time from 0 a precise description is given
in Theorem 2.1.

Apparently the distribution of A occurs naturally as a limit of occupation times for random
walks with drift. It is well known (see, e.g. Section XIV.3 in [7]) that the deeper reason for the
frequent occurrence of the (generalized) arcsine distributions lies in their intimate connection
to distribution functions with regularly varying tails. The same explanation applies here.
In the case of zero drift the distribution functions of the ladder epochs are attracted to the
standard positive stable distribution of index 1

2 and the positive (negative) sojourn times are
asymptotically arcsine-distributed. In the cases with small drift (and finite variance) the ladder
epochs are attracted to an associated distribution of this stable distribution, and, therefore, the
positive (negative) sojourn times have asymptotically the distribution of A.
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