
Math. Struct. in Comp. Science (2017), vol. 27, pp. 123–142. c© Cambridge University Press 2015

doi:10.1017/S0960129515000043 First published online 28 May 2015

Structure and properties of strong prefix

codes of pictures

MARCELLA ANSELMO†, DORA GIAMMARRESI‡

and MARIA MADONIA§

†Dipartimento di Informatica, Università di Salerno,
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A set X ⊆ Σ∗∗ of pictures is a code if every picture over Σ is tilable in at most one way with

pictures in X. The definition of strong prefix code is introduced. The family of finite strong

prefix codes is decidable and it has a polynomial time decoding algorithm. Maximality for

finite strong prefix codes is also studied and related to the notion of completeness. We prove

that any finite strong prefix code can be embedded in a unique maximal strong prefix code

that has minimal size and cardinality. A complete characterization of the structure of

maximal finite strong prefix codes completes the paper.

1. Introduction

Two-dimensional codes are an interesting research subject both from theoretical and

application side due to the important role that images have nowadays in human

communications. The aim is to generalize to 2D the well-established theory of string

codes (Berstel et al. 2009).

In the last two decades, two-dimensional codes were studied in different contexts and

polyomino codes, picture codes and brick codes were defined. A set C of polyominoes (con-

nected two-dimensional figures, not necessarily rectangular) is a code if every polyomino

that is tilable with (copies of) elements of C , it is so in a unique way. Most of the

results show that in the 2D context we lose important properties. A major result due to

Beauquier and Nivat states that the problem whether a finite set of polyominoes is a code

is undecidable, and the same result holds also for dominoes (Beauquier and Nivat 2003).

Related particular cases were also studied (Aigrain and Beauquier 1995). In Kolarz and

Moczurad (2012), codes of directed polyominoes equipped with catenation operations are

considered, and some special decidable cases are detected. Codes of labelled polyominoes,
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called bricks, are studied and further undecidability results are proved (Moczurad and

Moczurad 2004).

As a major observation, note that all mentioned results consider 2D codes independently

from a theory of 2D languages. The first attempt to connect these two sides was presented

in Bozapalidis and Grammatikopoulou (2006). The paper considers codes of pictures, i.e.

rectangular arrays of symbols. Two partial concatenation operations between pictures,

usually referred to as row and column concatenation, can be defined as follows: pictures

to be concatenated need to have the same number of rows or columns, respectively. Using

these operations, doubly-ranked monoids are introduced and picture codes are studied in

order to extend syntactic properties to two dimensions. Unfortunately many results are

again negative and involve undecidability issues. In the same framework, a definition of

prefix picture codes was also given, but still it does not lead to any wide enough class

(Grammatikopoulou 2005).

Recently, a new definition for picture codes was introduced (Anselmo et al. 2013a) in

relation to the family REC of picture languages recognized by tiling systems (Giammarresi

and Restivo 1992, 1997). Instead of referring to row and column concatenation, the

operation of tiling star is considered: the tiling star of a set of pictures X is the set X∗∗

of all pictures that are tilable (in the polyominoes style) by elements of X (Simplot 1991).

Then X is a code if any picture in X∗∗ is tilable in one way. It can be observed that if X ∈
REC, then X∗∗ is also in REC. By analogy to the string case, it holds that if X is a finite

picture code, then, starting from pictures in X, we can easily construct an unambiguous

tiling system for X∗∗ (Anselmo et al. 2006). Unfortunately, despite this nice connection

to the word code theory, it is proved that it is still undecidable whether a given set of

pictures is a code. This is actually coherent with the known result of undecidability for

unambiguity inside REC.

Looking for decidable subclasses of picture codes, the definition of prefix set is

proposed (Anselmo et al. 2013a; Anselmo et al. 2014). Pictures are then considered

with a preferred scanning direction: from the top-left corner to the bottom-right one.

Then, in the same way as a prefix of a string is defined as some of its left factor,

a picture p is a prefix of a picture q, if p coincides with the ‘top-left portion’ of q.

Observe that it is not possible to define a set X to be prefix by merely imposing that

its pictures are not mutually prefixes. This would not automatically imply that X is

a code. The property that is maintained going from strings to pictures is then the

following: if X is a prefix set, when decoding a picture p starting from the top-left

corner, it should be univocally decided which element in X we can start with. The formal

definition of prefix sets involves a special kind of polyominoes; in fact, ‘pieces’ of pictures

obtained in the intermediate steps of a decoding process are not in general pictures

itself. And this is actually what makes the major difference when passing from strings to

pictures.

In Anselmo et al. (2013a), it is proved that it is decidable whether a finite set of pictures

is a prefix set and that, as in the string case, every prefix set of pictures is a code, called

prefix code. Moreover, a polynomial time decoding algorithm for finite prefix codes is

presented (Anselmo et al. 2013a). Prefix codes for pictures inherit several properties from

the original family of prefix string codes and several nontrivial examples can be exhibited.
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Nevertheless, it is worth to say that the definition is sometimes difficult to manage, since

the presence of a specific picture in the prefix set depends on a tiling combination of

(possibly) many other pictures in the same set. Moreover, some of the important properties

of string prefix codes cannot be proved for prefix codes of pictures.

In this paper, we reconsider the definition of the prefix set for strings and generalize it

to 2D in a different way. We introduce the notion of overlap for pairs of pictures. Such

notion better captures the essence of the one-dimensional notion of a string that is a prefix

of another string because it includes the cases when the two pictures have relative different

shapes (for example, the case when the first picture has more rows than the second one,

while the second picture has more columns than the first one). More specifically, two

pictures x and y overlap if they coincide in the common part of their domains. Then a

set of pictures X will be said strong prefix if no pairs of pictures in X overlap. Trivially,

any strong prefix set is also a prefix set. Strong prefix sets are again a decidable family of

picture codes with a simple polynomial decoding algorithm. Maximality with respect to

the set inclusion is considered and maximal strong prefix sets are defined. The maximality

of a given finite strong prefix set is shown to be decidable. The embedding of a finite

strong prefix set in a maximal one can be realized by a polynomial algorithm. Moreover,

it is proved that, given a finite strong prefix set X, there exists a unique maximal strong

prefix set containing X that has minimal size and cardinality. This result is quite surprising

since a picture can be generated in several ways, following the horizontal or the vertical

direction. Furthermore, it is shown that maximal finite strong prefix sets have a structure

that can be defined recursively. This allows us to better understand all relations among

the classes of prefix codes. Some results concerning completeness and its relations with

maximality for strong prefix sets are also investigated and the subclass of strong prefix

sets for which maximality and completeness coincide is fully characterized.

All the definitions given throughout the paper apply to both finite and infinite sets

of pictures, while some of the proved results hold only in the finite case. Then in the

following we assume that the considered sets can be both finite or infinite, unless explicitly

declared.

2. Preliminaries

We introduce some definitions about pictures and two-dimensional languages (see Giam-

marresi and Restivo (1997) for a complete reference).

A picture over a finite alphabet Σ is a two-dimensional rectangular array of elements of

Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns, respectively;

size(p) =
(
|p|row, |p|col

)
denotes the picture size. Differently from the one-dimensional case,

we can define an infinite number of empty pictures, namely pictures of size (m, 0) and of

size (0, n), for all m, n � 0, will be called empty columns and empty rows, and denoted by

λm,0 and λ0,n, respectively.

The set of all pictures over Σ of fixed size (m, n) is denoted by Σm,n, while Σm∗ and Σ∗n

denote the set of all pictures over Σ with m rows and n columns, respectively. The set of

all pictures over Σ is denoted by Σ∗∗. A two-dimensional language (or picture language)

over Σ is a subset of Σ∗∗.

https://doi.org/10.1017/S0960129515000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000043


M. Anselmo, D. Giammarresi and M. Madonia 126

The domain of a picture p is the set of coordinates dom(p) = {1, 2, . . . , |p|row} ×
{1, 2, . . . , |p|col}. We let p(i, j) denote the symbol in p at coordinates (i, j). Positions in

dom(p) are ordered according to the lexicographic order: (i, j) < (i′, j ′) if either i < i′ or

i = i′ and j < j ′. Moreover, to easily detect border positions of pictures, we use initials

of words ‘top,’ ‘bottom,’ ‘left’ and ‘right.’ Then, for example the tl-corner of p refers to

position (1, 1). A subdomain of dom(p) is a set d of the form {i, i+1, . . . , i′}×{j, j+1, . . . , j ′},
where 1 � i � i′ � |p|row, 1 � j � j ′ � |p|col , also specified by the pair [(i, j), (i′, j ′)]. The

subpicture of p associated with [(i, j), (i′, j ′)] is the portion of p corresponding to positions

in the subdomain and is denoted by p[(i, j), (i′, j ′)]. Using the notion of subpicture, the

following definition can be given.

Definition 2.1 Given two pictures x, p ∈ Σ∗∗, picture x is a prefix of p, denoted by x �

p, if dom(x) ⊆ dom(p) and for any (i, j) ∈ dom(x), x(i, j) = p(i, j), i.e. x = p[(1, 1),

(|x|row, |x|col)].

Dealing with pictures, two ‘classical’ concatenation products are defined. Let p, q ∈ Σ∗∗

be pictures of sizes (m, n) and (m′, n′), respectively. The column concatenation of p and q

(denoted by p � q) and the row concatenation of p and q (denoted by p � q) are partial

operations, defined only if m = m′ and if n = n′, respectively, as

p � q = p q p � q =

p

q

.

These definitions can be extended to define row and column concatenations for two-

dimensional languages and row and column stars. If X ⊆ Σ∗∗ is a set of pictures, then the

row and column star of X will be denoted by X�∗ and X�∗, respectively (Giammarresi

and Restivo 1997).

We also consider another interesting star operation for picture languages introduced

by Simplot (1991). The idea is to compose pictures in a way to cover a rectangu-

lar area without the restriction that each single concatenation must be a � or �

operation.

Definition 2.2 The tiling star of a set of pictures X, denoted by X∗∗, is the set that contains

all empty pictures and all non-empty pictures p whose domain can be partitioned in disjoint

subdomains {d1, d2, . . . , dk} such that any subpicture ph of p associated with the subdomain

dh belongs to X, for all h = 1, . . . , k.

To point out the differences with other operations on pictures, the following figure

sketches a possible kind of composition that is not allowed applying only � or �

operations.
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Remark that the notation Σ∗∗, introduced to denote the set of all possible pictures over

the alphabet Σ, becomes related to the operation of tiling star when the alphabet Σ is

considered as a set of pictures of size (1, 1). The language X∗∗ is called the set of all

tilings by X in Simplot (1991). In the following, if p ∈ X∗∗, the partition t = {d1, d2, . . . , dk}
of dom(p), together with the corresponding pictures {p1, p2, . . . , pk}, is called a tiling

decomposition of p in X.

In this paper, while dealing with the tiling star of a set X, we will need to manage

also non-rectangular ‘portions’ of pictures composed of elements of X. Those are actually

labelled polyominoes, that we will call polyominoes, for the sake of simplicity. Moreover,

throughout the paper, polyominoes will always be assumed to be simply connected.

Given a polyomino p, whose domain contains position (1, 1), and a picture x we say that

x is prefix a of p if x corresponds to the top-left portion of p. We extend to polyominoes

the notion of tiling decomposition in a set of pictures X. We also define a sort of tiling

star that, applied to a set of pictures X, produces the set of all polyominoes that have a

tiling decomposition in X. If a polyomino p belongs to the polyomino star of X, we say

that p is tilable in X.

2.1. One-dimensional codes

We briefly recall some notions on string codes: refer to Berstel et al. (2009) for formal

notations, definitions and properties. Let Σ be a finite alphabet.

Definition 2.3 A set of strings S ⊆ Σ∗ is a code if every string w ∈ Σ∗ can be obtained in

at most one way as concatenation of strings in S .

An interesting family of string codes are the so-called prefix sets. Recall that given two

strings u, s ∈ Σ∗, u is a prefix of s if there exists a string v such that s = uv.

Definition 2.4 A set of strings S is a prefix set if for any u, v ∈ S , neither u is a prefix of v

nor v is a prefix of u.

It holds that any prefix set of non-empty strings is a code. For example, the set

S = {ab, aab, b} is a prefix set and hence it is a string code over the alphabet Σ = {a, b}.
One of the major advantage of prefix codes is that each string in Σ∗ can ‘start’ with at

most one of the strings in S .

The structure of the prefix codes of strings is completely known. Indeed, there exists

a one-to-one correspondence between prefix codes over a k-symbols alphabet and k-ary
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trees: each node of the tree corresponds to a string obtained by concatenating one letter

to the string of its father node. Then the set of strings corresponding to the leaf nodes is

a prefix set. The binary tree corresponding to S = {ab, aab, b} is given on the left of the

figure below.

Since any subset of a prefix code is a prefix code, an important role is played by maximal

prefix codes, i.e. prefix codes that are not properly contained in other prefix codes on the

same alphabet. A maximal code which is prefix is always maximal prefix. The converse

does not hold in general: there exist maximal prefix codes which are not maximal as

codes. However, under some assumptions (as, for example, finiteness) also maximal prefix

codes are maximal codes. Note that maximal prefix codes are in correspondence with

k-ary full (sometimes named complete) trees, i.e. trees such that each non-leaf node has

exactly k children. Each prefix code S can be embedded into a maximal one; the smallest

maximal code Y containing it is unique and can be easily constructed by exploiting the

tree representation. For example the smallest maximal prefix code containing the example

set S is the one corresponding to the tree below on the right. Note that in particular, Y

can be chosen so that the maximal length of a string in Y is equal to the maximal length

of a string in S .

.

a b

aa ab

aab

.

a b

aa ab

aaa aab

Another interesting notion for sets of strings is the right-completeness.

Right-completeness coincides with maximality for prefix string codes.

Definition 2.5 A set of strings S over an alphabet Σ is right-complete if any string w ∈ Σ∗

is a prefix of some string s ∈ S∗.

2.2. Two-dimensional codes

In this paper we refer to the definition of a code given in Anselmo et al. (2013a)

where two-dimensional codes are introduced in the setting of the theory of recognizable

two-dimensional languages and coherently to the notion of language unambiguity as in

Anselmo et al. (2006, 2010).

Definition 2.6 Let Σ be a finite alphabet. X ⊆ Σ∗∗ is a code iff any p ∈ Σ∗∗ has at most

one tiling decomposition in X.

We show some simple examples. Let Σ = {a, b} be the alphabet.
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Example 2.1 Let X =

{
a b ,

a

b
,
a a

a a

}
. It is easy to see that X is a code. Any picture

p ∈ X∗∗ can be decomposed starting at the tl-corner and checking the size (2, 2) subpicture

p[(1, 1), (2, 2)]. It can be univocally decomposed in X. Then, proceed similarly for the next

contiguous size (2, 2) subpictures.

Example 2.2 Let X =

{
a b , b a ,

a

a

}
. Notice that no picture in X is a prefix of another

picture in X; nevertheless X is not a code. Indeed picture
a b a

a b a
has the two following

different tiling decompositions in X: t1 =
a b a

a b a
and t2 =

a b a

a b a
.

For the rest of the section, we summarize the main results in Anselmo et al. (2013a). First

the problem to decide whether a given set of pictures is a code is in general undecidable.

With the aim of defining a subclass of codes that is decidable, two-dimensional prefix

codes are then introduced as a generalization to two dimensions of the family of string

prefix codes.

The basic idea in defining a prefix code is to prevent the possibility to start decoding a

picture in two different ways (as it is for the prefix codes of strings). One major difference

going from 1D to 2D case is that, while any initial part of a decomposition of a string

is still a string, the initial part of a decomposition of a picture has not necessarily a

rectangular shape; it is in general a (labelled) polyomino. Hence, a notion related to tiling

and referred to as covering is introduced. Informally, a picture p is covered by pictures in

a set X, if p can be tiled with pictures that possibly exceed p throughout the bottom and

the right border.

Definition 2.7 A picture p is covered by a set of pictures X, if there exists a polyomino

c such that dom(c) contains position (1, 1), p is a prefix of c and the domain of c can be

partitioned in rectangular subdomains {d1, . . . , dh} such that each di corresponds to a picture

in X and the tl-corner of each di belongs to the domain of p.

Moreover, p is properly covered by a set of pictures X, if it is covered by X and the

subdomain of dom(c) containing position (1, 1) corresponds to a picture different from p itself.

For example, in the figure below, the picture with thick borders is (properly) covered

by the others.

Then the definition of prefix set given in Anselmo et al. (2013a) is equivalent to the

following one.
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Definition 2.8 A set of non-empty pictures X is prefix if every x ∈ X cannot be properly

covered by pictures in X.

Note that the word prefix referred to a set of pictures has a different meaning from the

word prefix referred to a picture but this is coherent with the corresponding terminology

in the one-dimensional case.

It is easy to verify that the set X of Example 2.1 is a prefix set. On the contrary, the set

X of Example 2.2 is not a prefix set: picture
a

a
, can be covered by two copies of a b .

We remark that Definition 2.8 reduces to the definition of prefix sets of strings in the

case of one-row pictures. Moreover, it is a good generalization to two dimensions. Indeed

it is proved that a prefix set is a code referred to as prefix code. Contrary to the case of

all other known classes of 2D codes, the family of finite prefix codes has the important

property to be decidable. Furthermore, a polynomial decoding algorithm for a finite prefix

code of pictures is given.

Maximality is a central notion in the theory of (string) codes. Any subset of a code is a

code, and then the investigation may restrict to maximal codes. The notions of maximality

extends easily to picture codes. In 2D, a prefix code X ⊆ Σ∗∗ is said maximal prefix over

Σ if it is not properly contained in any other prefix code over Σ. It is also proved that

maximality of finite prefix codes is decidable. An example of a maximal prefix code is

given below.

Example 2.3 Let Σ = {a, b} and X =

{
a b ,

a

b
,
a a

a a
,
a a

a b

}
. It is easy to see that X is

a prefix code. Moreover X is a maximal prefix code over Σ, as can be shown applying the

decidability algorithm in Anselmo et al. (2013a).

3. Strong prefix codes

We now introduce the definition of strong prefix sets of pictures. It is a generalization of

the notion of prefix sets of strings, in a more direct way than for prefix sets of pictures

(see Section 2.2). This new notion will correspond to a smaller family of picture codes

with many remarkable properties that we will discuss in the following.

To get in the formal definition, let us introduce the notion of overlapping of pictures.

Definition 3.1 Let p, q ∈ Σ∗∗. Pictures p and q overlap if for any (i, j) ∈ dom(p) ∩ dom(q),

p(i, j) = q(i, j). Moreover pictures p and q strictly overlap if they overlap, but neither p� q

nor q � p.

For example, in the following figure, picture p and q strictly overlap

a b

a a
a b a a

a b a a

a a

p q p and q overlap

In the rest of the paper, it will be useful to distinguish the following relationships between

two pictures p and q that overlap:
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• p is a prefix of q, denoted p� q;

• p is a horizontal prefix of q, denoted p�h q, when p� q and |p|row = |q|row;

• p is a vertical prefix of q, denoted p�v q, when p� q and |p|col = |q|col;
• p and q strictly overlap.

The next definition extends to two dimensions the notion of prefix sets of strings, as

recalled in Section 2.1. Given a strong prefix set of pictures X ⊂ Σ∗∗, each picture in Σ∗∗

can ‘start’ with at most one of the pictures in X.

Definition 3.2 Let X ⊆ Σ∗∗. X is strong prefix if for any pictures p, q in X, p and q do not

overlap.

Let us give some examples.

Example 3.1 The following language X is strong prefix. No two pictures in X overlap.

X =

{
a b a , a b b ,

b

b
,
a a

a a
,
a a

a b
,
b a

a a
,
b a

a b
,
b b

a a
,
b b

a b

}
.

Example 3.2 Let Σ = {a, b} and X ⊆ Σ3∗ be the following language

X =

⎧⎨
⎩

a a

b b

b b

,

a b a

a b a

b b b

,

a b a b

a b a a

b b a b

,

b a b b

a a b b

b a a b

⎫⎬
⎭.

The language X is strong prefix.

Strong prefix sets of pictures are trivially prefix sets. Therefore, strong prefix sets of

pictures have the desired property of being picture codes. Nevertheless, we present the

proof of this result for the sake of a self-contained paper. Moreover, the proof becomes

simpler than the original one in Anselmo et al. (2013a) when strong prefix sets are

considered instead of generic prefix sets.

Proposition 3.1 If X ⊆ Σ∗∗ is strong prefix then X is a code.

Proof. Suppose by contradiction that there exists a picture u ∈ Σ∗∗ that admits two

different tiling decompositions in X, say t1 and t2. Now, let (i0, j0) the smallest position (in

lexicographic order) of u, where t1 and t2 differ (i.e. the smallest position that corresponds

to (1, 1) in different pictures). Position (i0, j0) corresponds in t1 to position (1, 1) of some

x1 ∈ X, and in t2 to position (1, 1) of some x2 ∈ X, with x1 
= x2. Consider now the

size of x1 and x2. If |x1|row = |x2|row , then the picture with fewer columns is a horizontal

prefix of the other one. If, instead, |x1|row 
= |x2|row , suppose without loss of generality that

|x1|row � |x2|row . This implies that either x2 is a prefix of x1, (in the case |x1|col � |x2|col)
or x1 and x2 strictly overlap (in the case |x1|col < |x2|col). This is a contradiction to X

strong prefix.

From the previous proposition, it follows that we can use interchangeably the terms ‘prefix

set’ and ‘prefix code.’ Applying directly the definition, it can be shown that, given a finite

set of pictures X, one can decide whether X is strong prefix in time polynomial with
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respect to the total area of pictures in X (just compare every pair of pictures). Hence,

finite strong prefix sets are a decidable family of picture codes.

Remark 3.1 Strong prefix sets are in particular prefix sets (as in Definition 2.8). They

are a proper subclass of prefix sets (see Example 2.1) that is simpler to deal with. The

definitions of ‘prefix set’ and of ‘strong prefix set’ both reduce to the definition of ‘prefix set’

of strings, when restricted to one-row pictures (identifiable with strings). Moreover observe

that they also coincide on a more general kind of languages: languages X ⊆ Σm∗ or X ⊆ Σ∗n

(see Example 3.2). Such languages can be viewed as ‘one-dimensional’ languages, over the

alphabet Σm,1 or Σ1,n and then considered as ‘thick strings.’ In particular, if X ⊆ Σm∗ (and

analogously for X ⊆ Σ∗n), setting Γ = Σm,1, X ⊆ Σ∗∗ is a strong prefix set of pictures if and

only if X ⊆ Γ∗ is a prefix set of strings. Their properties will be considered in the following.

Strong prefix codes inherit some properties from the prefix codes family. For example,

in Anselmo et al. (2013a) a polynomial algorithm is presented that, given a finite prefix

code X ⊆ Σ∗∗ and a picture p ∈ Σ∗∗, finds, if it exists, a tiling decomposition of p in X.

The idea is to scan the picture p, following a top-left to bottom-right strategy, looking

at each step for a picture in X that is a prefix of the not yet decomposed part of p.

The algorithm works also for strong prefix codes. Moreover, in this case, it becomes even

simpler since it is not necessary to consider pictures in X following a special order.

4. Maximal strong prefix codes

In this section we present the main results concerning maximality of strong prefix codes

introduced in the previous section. Some of the proof techniques are borrowed from

theorems in Anselmo et al. (2013a).

Definition 4.1 A strong prefix set X ⊆ Σ∗∗ is maximal strong prefix over Σ if it is not

properly contained in any other strong prefix set over Σ; that is, if X ⊆ Y ⊆ Σ∗∗ and Y is

a strong prefix set, then X = Y .

The following lemma gives a general tool to decide whether a finite strong prefix set

is maximal strong prefix. It shows that if a finite strong prefix set is not maximal strong

prefix, then there is always a ‘small’ picture that witnesses it. As a consequence, one

can check whether a finite strong prefix set is maximal strong prefix by restricting the

test to a finite number of pictures. First, given a finite set X of pictures, let us define

rX = max{|x|row, x ∈ X} and cX = max{|x|col , x ∈ X}.

Lemma 4.1 Let X ⊆ Σ∗∗ be a finite strong prefix set. If X is not maximal strong prefix,

then there exists p′ ∈ Σ∗∗, p′ /∈ X, with |p′|row � rX , |p′|col � cX such that X ∪ {p′} is still

strong prefix.

Proof. Assume that X is not a maximal strong prefix set and let p ∈ Σ∗∗, p /∈ X, such

that X ∪ {p} is still a strong prefix set. If |p|row � rX , |p|col � cX , then set p′ = p. Otherwise,

let h = min{|p|row, rX}, k = min {|p|col , cX} and let p′ = p[(1, 1), (h, k)]. Note that p′ /∈ X,
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since p′ � p, and X ∪ {p} is strong prefix. Let us show that X ∪ {p′} is strong prefix. For

any x ∈ X, the set D = dom(x) ∩ dom(p′) is equal to dom(x) ∩ dom(p), and p(i, j) = p′(i, j)

for any (i, j) ∈ D. Hence, since x and p do not agree on D, x and p′ do not either. This

shows that X ∪ {p′} is strong prefix.

The following proposition is a direct consequence of Lemma 4.1.

Proposition 4.1 It is decidable whether a finite strong prefix set X is maximal strong prefix.

In Section 4.3, we will show the relationship between the class of maximal prefix codes

and the class of maximal strong prefix codes.

4.1. Embedding of strong prefix codes

Any finite strong prefix code can be embedded into a maximal finite one. The proof is

constructive and it uses again Lemma 4.1.

Proposition 4.2 Let X ⊆ Σ∗∗ be a finite strong prefix set. Then it is possible to construct a

finite set Y ⊆ Σ∗∗ such that Y is maximal strong prefix and X ⊆ Y .

Proof. Let Z be the finite set of pictures over Σ of size (m, n) with m � rX and n � cX .

Language Y can be incrementally obtained starting from X, and adding one by one all

pictures in Z that do not overlap any picture of the current Y . Let us show that Y is

maximal strong prefix. By contradiction, suppose that Y is not maximal strong prefix.

Then, from Lemma 4.1, there exists p ∈ Σ∗∗, p /∈ Y , such that Y ∪ {p} is still strong prefix

and |p|row � max{|y|row, y ∈ Y } = rX , |p|col � max{|y|col , y ∈ Y } = cX . But this is not

possible since all pictures with a number of rows less than rX and a number of columns

less than cX have already been considered by the procedure. In particular, at the point

where p was considered in the procedure, p was added to the current Y , since it did not

overlap any picture in the current Y (that is a subset of the final Y ).

The proof of the previous proposition shows the correctness of an algorithm that

constructs a maximal strong prefix code containing a given finite strong prefix code X.

The procedure can output different sets depending on the order in which it processes the

candidate pictures to be added as shown in the next example.

Example 4.1 Let X =

{
a b a , a b b ,

b

b

}
. Following Proposition 4.2, we can construct

the following two sets, that are both maximal strong prefix sets and contain X:

Y = X ∪
{
a a

a a
,
a a

a b
,
a a

b a
,
a a

b b
,
b a

a a
,
b a

a b
,
b b

a a
,
b b

a b

}
and

Y ′ = X ∪
{

a a ,
b

a

}
.

In 1D, given a finite prefix code, there exists a unique maximal finite code that contains

it, and that is minimum both in cardinality and in the total length of its strings. We ask
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whether a similar situation holds in 2D. The setting seems to be more involved, since

pictures can ‘extend’ both horizontally and vertically. Surprisingly, an analogous result

can be proved for finite strong prefix codes.

First, we define the area of a picture p of size (m, n), denoted area(p), as m × n, and

the size of a finite picture language X as the sum of the areas of its pictures. Let us

introduce the following order ≺ on pictures p and p′. If area(p) < area(p′), then p ≺ p′;

if area(p) = area(p′) and size(p) is lexicographically smaller than size(p′), then p ≺ p′;

if area(p) = area(p′), size(p) = size(p′) and the string obtained reading p row by row is

lexicographically smaller than the string obtained reading p′ row by row, then p ≺ p′.

Theorem 4.1 Let X ⊆ Σ∗∗ be a finite strong prefix set. There exists a unique maximal finite

strong prefix set Y ⊆ Σ∗∗ that contains X and has minimum size and cardinality among all

finite strong prefix sets containing X.

Proof. We specialize the algorithm provided by the proof of Proposition 4.2, by choosing

pictures from the finite set Z of pictures of size (m, n) with m � rX and n � cX , following

the order on pictures defined above. To this end, we first show that this algorithm provides

a solution of minimal size. Let A = {p1, . . . , ph} be the maximal strong prefix set returned

by the execution of the algorithm on X, and O = {q1, . . . , qk} be a maximal strong prefix

set of minimal size. Suppose that pictures in both A and O are in increasing order, i.e.

p1 ≺ p2 ≺ · · · ≺ ph and q1 ≺ q2 ≺ · · · ≺ qk . The goal is to prove that A = O. Suppose

to the contrary that A 
= O. If p1 ∈ O then p1 = q1, since p1 is the smallest picture in

Z that does not overlap any picture in X, and repeat the considerations for p2. Suppose

without loss of generality that p1 /∈ O. Since O is maximal strong prefix then p1 overlaps

some qi ∈ O. Let x be the ‘intersection’ of p1 with qi; more formally x is the prefix of p1

and qi with dom(x) = dom(p)1 ∩ dom(q)i. One could replace in O, picture qi with x (x is

‘compatible’ with all the other pictures in O). Then the minimality of O with respect to

the size implies that size(x) = size(qi), that is qi �h p1, or qi �v p1. Now qi cannot be a

proper prefix of p1 (for the minimality of p1) then qi = p1. This contradicts the assumption

p1 /∈ O. Therefore, A = O. Then, given two maximal strong prefix sets of minimal size, say

O1 and O2, they are both equal to A, and then O1 = O2. Finally observe that the proof

also holds when minimality with respect to the cardinality of sets is considered.

Example 4.2 Referring to the set X in Example 4.1, and using the algorithm provided by

the proof of Theorem 4.1, one can prove that the set Y ′ is the maximal strong prefix set of

minimum size that contains X.

Let us consider again prefix languages of pictures of fixed number of rows (or columns)

mentioned in Remark 3.1. They form a special family of strong prefix codes that warrants

many properties. The following proposition regards the embedding of such languages.

It states that among all possible embeddings there is always one (not necessarily the

minimal one) preserving the fixed number of rows or columns. Despite the fact that such

languages are somehow ‘one-dimensional’ languages, the result is not straightforward,

since they have to be compared with languages of pictures with an arbitrary number of

rows or columns.
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Proposition 4.3 Let X ⊆ Σm∗ (X ⊆ Σ∗n, resp.) be a finite (strong) prefix set. Then it is

possible to construct a finite set Y ⊆ Σm∗ (Y ⊆ Σ∗n, resp.) such that Y is maximal strong

prefix and X ⊆ Y .

Proof. Setting Γ = Σm,1, X can be considered as a set of strings over Γ and, in

particular, X is a prefix set of strings. From classical theory of codes (see Section 2.1),

we know that there exists Y ⊆ Γ∗ such that X ⊆ Y and Y is a maximal finite prefix set

(of strings). Moreover, Y can be chosen so that the maximal length of a string in Y is

equal to the maximal length of a string in X. Language Y , viewed as a set of pictures,

Y ⊆ Σm∗, is strong prefix (see Remark 3.1). Let us show that Y is maximal strong prefix.

By contradiction, suppose that there exists p ∈ Σ∗∗, p /∈ Y , such that Y ∪ {p} is still strong

prefix. Clearly |p|row 
= m.

If |p|row > m, let cY = max{|y|col , y ∈ Y } and consider the prefix p′ of p, p′ =

p[(1, 1), (m, n′)] with n′ = min{|p|col , cY }. Note that for any y ∈ Y we have dom(p′) ∩
dom(y) = dom(p) ∩ dom(y). Hence, since p and y do not overlap, p′ and y do not either.

Then p′ ∈ Γ∗ could be added to Y ⊆ Γ∗ yielding a prefix set (of strings): this contradicts

the fact that Y is a maximal finite prefix set of strings.

If |p|row < m, consider any picture q ∈ Σ∗∗ such that p′ = p � q ∈ Σm∗. Picture p′ can be

considered as a string over Γ and, since Y considered as a set of strings is right-complete

(see Section 2.1), there exist y1, . . . , yk ∈ Y and r ∈ Σm∗ such that p′
� r = y1 � · · · � yk .

But this implies that either p is a prefix of y1 or p and y1 strictly overlap. This contradicts

Y ∪ {p} strong prefix.

4.2. Maximality and completeness

In 1D, for prefix codes, the notion of maximality coincides with that of right-completeness

as we recalled in Section 2.1. A definition that corresponds to right-completeness in two

dimensions refers to the notion of covering recalled in Section 2.2 and was first given in

Anselmo et al. (2013a).

Definition 4.2 A set X ⊆ Σ∗∗ is br-complete if every picture p ∈ Σ∗∗ can be covered by

pictures in X.

Note that the notion of br-complete reduces to right-complete when applied to one-row

pictures.

Proposition 4.4 Let X be a strong prefix code. If X is br-complete then it is maximal strong

prefix.

Proof. By contradiction, suppose that there exists p ∈ Σ∗∗, p /∈ X such that X ∪ {p} is

still strong prefix. Since X is br-complete, p can be properly covered by pictures in X and

let x ∈ X be the picture that covers position (1, 1) of p. Then x and p overlap and this

contradicts X ∪ {p} strong prefix.

Note that an analogous result about prefix codes is given in Anselmo et al. (2013a).
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The reverse of the statement of Proposition 4.4 does not hold, as shown by the following

example (Anselmo et al. 2013a).

Example 4.3 Let Y ⊆ Σ∗∗ as in Example 4.1. Y is a maximal strong prefix set. Let us show

that Y is not br-complete. Consider the picture p =

b b a b

b b b a

a b a a

and show that p cannot be

covered with pictures in Y .

Indeed, by a careful analysis of possible compositions of pictures in Y , it can be shown

that, when trying to cover p with pictures in Y , starting from the tl-corner of p and following

the top-left to bottom-right direction, there is always a position in dom(p) that cannot be

tiled. For example, if we use
b

b
,
b

b
, a b a ,

b a

a a
then the symbols a and b in position

(3, 1) and (3, 2) of p cannot be tiled by any picture in Y .

In the previous example, one notices that the ‘non-completeness’ of set Y is ascribed to

the different sizes of pictures in Y that do not allow all possible concatenations among

the elements or, from a different point of view, that cause ‘holes’ in any decomposition.

More generally, we prove that a strong prefix set is br-complete only if it contains pictures

with the same number of rows (columns, resp.).

Proposition 4.5 Let X ⊆ Σ∗∗ be a strong prefix set. If X is br-complete then X ⊆ Σm∗ or

X ⊆ Σ∗n, for some n, m ∈ N.

Proof. Suppose that, for every m ∈ N, X � Σm∗. Then there exists x1, x2 ∈ X, of size

(m1, n1) and (m2, n2), respectively, with m1 > m2. We claim that in this case, n1 = n2. Indeed

if n1 
= n2, then two cases are possible: n1 > n2 or n1 < n2. Define y = x1[(1, 1), (m2, n1)].

In the first case, picture p1 in the figure, with t, z ∈ Σ∗∗, cannot be covered by X and this

contradicts the hypothesis X br-complete. Indeed, let us look for an eventual polyomino

c tilable in X and such that p1 is a prefix of c. Starting from the position (1, 1), since

p1[(1, 1), (m1, n1)] = x1, the only picture of X that can occur in this position in c is the

picture x1 (recall that X is a strong prefix set). Considering the position (1, n1 + 1), since

p1[(1, n1 + 1), (m2, n1 + n2)] = x2, the only picture of X that can occur in this position

in c is the picture x2; moreover, the only picture of X that can occur in the position

(m2 + 1, n1 + 1) is the picture x1. Now let us consider the position (1, n1 + n2 + 1). The

picture x1 cannot occur in this position in c1 (x1 has too many rows) and, moreover, if a

picture x ∈ X could occur in this position in c, then we would have that x is a prefix of

x1 (recall that y �v x1). This contradicts the assumption that X is a strong prefix set. In

the second case it would be picture p2 in the figure, with t ∈ Σ∗∗, that cannot be covered

by X.

Now, let x be any picture in X of size (m, n). Since m1 
= m2, m 
= m1 or m 
= m2 holds.

Assume m 
= m1 and apply the same argument as above. It implies that n = n1 = n2. Then

X ⊆ Σ∗n, for some n.
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p1 =
x1

x1

x2 y

z

t p2 = x1

x2 y

x2

t

The previous proposition says that the strong prefix sets that are br-complete, are the

sets of pictures with the same number of rows (or columns), already mentioned in Remark

3.1. For those sets, we can also exploit their one-dimensional behaviour and prove further

interesting properties as in the next proposition.

Proposition 4.6 Let X ⊆ Σm∗ or X ⊆ Σ∗n be a (strong) prefix set. X is a maximal strong

prefix set if and only if X is br-complete.

Proof. The if-direction of the statement follows from Proposition 4.4. For the converse,

suppose that X ⊆ Σm∗ is maximal strong prefix. Setting Γ = Σm,1, X can be considered

as a set of strings over Γ and, in particular, X is a maximal prefix set of strings over Γ.

Then X ⊆ Γ∗ is right-complete. Let us show that X ⊆ Σ∗∗ is br-complete. Let p ∈ Σ∗∗. If

|p|row = m then, obviously, p can be covered by pictures of X, since X is right-complete.

If |p|row < m then consider a picture p′, |p′|row = m obtained by adding some rows to p.

We have that p′ ∈ Γ∗ and, since X is right-complete, it can be ‘covered’ by strings in X.

But this implies that picture p can be covered by pictures of X. If |p|row > m then p can

be considered as the row concatenation of some pictures in Σm∗, and a picture with a

number of rows less than or equal to m. Applying previous considerations, each of these

pictures can be ‘covered’ by pictures of X and, therefore p too can be covered by pictures

of X. The case X ⊆ Σ∗n is analogous.

Let us summarize the results of Propositions 4.5 and 4.6 in the following theorem. Note

that the same result holds for prefix codes of pictures (Anselmo et al. 2013a).

Theorem 4.2 Let X ⊆ Σ∗∗ be a maximal strong prefix set. X is br-complete if and only if

X ⊆ Σm∗ or X ⊆ Σ∗n.

Putting together results of previous propositions, we obtain that maximality and

completeness, that do not coincide in general for strong prefix codes, are equivalent

for the family of languages of pictures with fixed number of rows (or columns). Moreover,

we can conclude that indeed such languages are all and only the prefix sets for which

maximality and br-completeness coincide.

As additional final remark, notice that it can be shown that if X is a br-complete prefix

set then X is also strong prefix. Therefore the strong prefix thick strings are the only

possible br-complete sets also inside the bigger family of prefix sets.
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4.3. Structure of maximal strong prefix codes

The structure of (maximal) prefix codes of strings over an alphabet of k symbols is

easily understood by considering the correspondence with k-ary full trees (see again

Section 2.1). Any maximal prefix code can be top-down constructed starting from the

tree containing only the root, by repeated arbitrary replacements of a leaf node with

an internal node with k children that are leaf nodes. In other terms, the construction

starts from the alphabet, and replaces a string with all possible extensions obtained

concatenating a symbol to its right. In this section, we present a parallel of this

construction into the two-dimensional world. The replacements of picture p will be

accomplished with the set of pictures that extend p to a fixed greater size in all possible

ways.

Definition 4.3 Let Σ be an alphabet, p ∈ Σ∗∗, m, n � 0 be integers such that m � |p|row ,

n � |p|col and (m, n) 
= size(p). The set of extensions of p to size (m, n) is E(m,n)(p) = {q ∈
Σm,n | q[(1, 1), (|p|row, |p|col)] = p}.

Proposition 4.7 Let X ⊆ Σ∗∗ be a maximal finite strong prefix code, X 
= Σ1,1. Then there

exist p ∈ Σ∗∗ and integers m, n � 0 such that E(m,n)(p) ⊆ X.

Proof. Let X ⊆ Σ∗∗ be a maximal finite strong prefix code. Consider a picture x̄ ∈ X

with rX rows and a maximal number c̄ of columns. Suppose that |x̄|row 
= 1 and |x̄|col 
= 1.

The goal is to show that there exists a prefix p of x̄ such that E(rX ,c̄)(p) ⊆ X. Suppose by

contradiction that this is not the case. Consider the prefix x̄r obtained by deleting the last

row of x̄. By contradiction there exists t ∈ Σ1,c̄ such that t̄r = x̄r � t /∈ X. Furthermore

the maximality of X implies that X ∪ {̄tr} is no longer strong prefix. Since t̄r cannot be

the prefix of another picture in X (for the maximality of its size), and cannot strictly

overlap another picture in X (since otherwise the overlapping holds also for x̄), the unique

possibility is that there exists y ∈ X that is a prefix of t̄r; more precisely y�h t̄r (otherwise

y would be a prefix of x̄ too). In a dual way, considering the picture x̄c obtained from

x̄ by deleting its last column, one can show that there exists y′ ∈ X such that y′ �v t̄r .

Then y and y′ are two overlapping pictures in X and this is a contradiction. The cases

|x̄|row = 1 or |x̄|col = 1 can be similarly handled.

Observe that the proof of Proposition 4.7 identifies a set E(m,n)(p) of pictures in X such

that m is the maximum number of rows of a picture in X and n is the maximum number

of columns of a picture with m rows in X. Note that some other sets E(m′ ,n′)(p
′), with

m′ � m and n′ � n, can be found as subsets of X.

Let us come back to the 1D framework. Consider the tree corresponding to a maximal

prefix code of strings on an alphabet Σ with k elements. This time we act in a bottom-up

way. In the tree it is possible to locate an internal node x with k children that are all

leaf nodes. Deleting the children of x (in such a way that x becomes leaf) the tree will

correspond to another maximal prefix code. Then the process can be repeatedly iterated

on this tree, until the tree contains only the root. The following proposition translates this

idea in two dimensions.
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Proposition 4.8 Let X ⊆ Σ∗∗ be a maximal finite strong prefix code, X 
= Σ1,1, and let Y ⊆ X

with Y = E(m,n)(p) ⊆ X, for some p ∈ Σ∗∗ and integers m, n � 0. Then Xred = (X \ Y ) ∪ {p}
is a maximal strong prefix code.

Proof. Let us prove that Xred is a maximal strong prefix code. The key observation is

that for any picture q ∈ Σ∗∗, q and p overlap if and only if q and some picture in y ∈ Y

overlap. Picture y is chosen in the set Y of all extensions of p in such a way that for any

(i, j) ∈ dom(q) ∩ dom(y), y(i, j) = q(i, j).

The observation proves also that Xred is maximal. If, by contradiction, we can add a

picture to Xred without violating the strong prefix property of Xred, then the same picture

could be added to X without violating the strong prefix property of X and this contradicts

the assumption of X maximal strong prefix code.

Propositions 4.7 and 4.8 provide the following recursive characterization of maximal

finite strong prefix codes of pictures. Just note that the language Σ1,1 is a maximal strong

prefix code.

Theorem 4.3 Let X ⊆ Σ∗∗ be a maximal finite strong prefix code. Then there exists a finite

sequence of picture languages over Σ, X1, X2, . . . , Xk , such that X1 = Σ1,1, X = Xk , and for

i = 1, . . . , k − 1, Xi+1 = (Xi \ {pi}) ∪ E(mi,ni)(pi), for some pi ∈ Xi, mi, ni � 0.

Proof. The proof is by induction on the size of X. If X = Σ1,1, then the statement is

trivially true. Suppose now that X 
= Σ1,1. Since X is a maximal finite strong prefix code,

then, from Proposition 4.7, there exist p ∈ Σ∗∗, and integers m, n � 0 such that E(m,n)(p) ⊆ X.

Let us set pk−1 = p, mk−1 = m, nk−1 = n and Xk−1 = (X\E(mk−1 ,nk−1)(pk−1))∪{pk−1}. Trivially

X = (Xk−1 \ {pk−1}) ∪ E(mk−1 ,nk−1)(pk−1) = Xk . Moreover, from Proposition 4.8, Xk−1 is a

maximal finite strong prefix code. Since the size of Xk−1 is smaller than the size of X, the

inductive hypothesis applies on Xk−1, providing the sequence of languages Xk−2, . . . , X1.

The family of strong prefix codes is included in the one of prefix codes. The charac-

terization of maximal finite strong prefix codes also helps in better understanding the

relationship between the class of maximal strong prefix codes and the class of maximal

prefix codes. Indeed, the next proposition shows that any maximal finite strong prefix code

is also maximal as a prefix code. Note that the result is quite surprising: it is somehow

counter-intuitive to figure that when a strong prefix language is maximal as strong prefix

code, it is also impossible to add any other picture without affecting its prefixness.

Theorem 4.4 Let X ⊆ Σ∗∗ be a finite strong prefix code. X is maximal strong prefix code if

and only if it is a maximal prefix code.

Proof. One can show that if X is maximal prefix, then it is maximal strong prefix, by

applying the definitions of maximality.

Vice versa suppose by contradiction that X is a maximal strong prefix code, but not

maximal as prefix code. Hence, there exists y ∈ Σ∗∗, y /∈ X, such that X ∪ {y} is still

prefix. Since X is a finite maximal strong prefix code, from the Theorem 4.3, we have that

X = Xk , for some k ∈ N, where the sequence X1, X2, . . . , Xk is defined as in the statement
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of the theorem. Consider the prefix y1 of y, y1 ∈ Σ1,1 (i.e. y1 = y[(1, 1), (1, 1)]). Since X∪{y}
is prefix, we have that y1 /∈ X. From Theorem 4.3, it follows that y1 = p̄ı for 1 � ı̄ � k − 1

and that y1 = p̄ı was replaced with Emı̄,n̄ı (p̄ı) for some mı̄ � |y1|row = 1, n̄ı � |y1|col = 1

and (mı̄, n̄ı) 
= (1, 1). If mı̄ � |y|row and n̄ı � |y|col , consider y2 = y[(1, 1), (mı̄, n̄ı)] and apply

the same reasoning to y2, and then to other prefixes of y with increasing size till you find

a prefix of y, say yt, such that yt = pj̄ and yt = pj̄ was replaced with Emj̄ ,nj̄ (pj̄), where

mj̄ > |y|row or nj̄ > |y|col (we remark that we cannot have both mj̄ > |y|row and nj̄ > |y|col).
In the first case, mj̄ > |y|row , consider p ∈ Σ∗∗ such that p�h y and |p|col = nj̄ . Then in

Emj̄ ,nj̄ (pj̄) there is a picture s = p � p � · · · � p � p′
v , for some p′

v �v p. If s is still in X we

have that s is covered by y � y � · · · � y and this contradicts the hypothesis that X ∪ {y}
is prefix. If instead s was replaced with Em,n(s), for some m, n � 0 with n < |y|col , an

analogous contradiction can be found: an element in Em,n(s) is covered by y � y � · · · � y.

In the second case, nj̄ > |y|col , a similar reasoning can be used to show that a picture

in X is covered by y � y � · · · � y.

Theorem 4.4 can be restated as follows: the class of maximal strong prefix codes is the

intersection of the class of strong prefix codes with the class of maximal prefix codes. Let

us conclude the section pointing out that the inclusion of the class of maximal strong

prefix codes in the class of maximal prefix codes is proper.

Example 4.4 The language X =

{
a b ,

a

b
,
a a

a a
,
a a

a b

}
in Example 2.3 is a maximal

prefix code, while it is not a (maximal) strong prefix code.

5. Conclusions

This paper introduces strong prefix codes and investigates the finite case. Finite strong

prefix codes are a decidable class of picture codes. They generalize to two dimensions the

definition of a prefix string code, and inherit many of its properties. In particular, any

finite strong prefix code can be embedded in a unique way into a maximal finite strong

prefix code, that also has a minimal size. Then, in analogy with the one-dimensional case,

maximality is compared with completeness, but unfortunately they do no more coincide in

this case. The two notions are equivalent on the special family of languages of pictures of

fixed number of rows or columns, that behave as ‘one-dimensional’ languages. Moreover,

a complete characterization of the recursive structure of maximal finite strong prefix codes

is here presented. It allows to complete the investigation on the relationship among all

concerned classes. The following diagram summarizes the results. Languages X1, X2, X3

that separate the classes can be chosen as the following:

X1 =

{
a b ,

a

b

}
,

X2 =

{
a b ,

a

b
,
a a

a a
,
a a

a b

}
,

X3 =

{
a b a , a b b ,

b

b

}
.

https://doi.org/10.1017/S0960129515000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000043


Structure and properties of strong prefix codes of pictures 141

As future research, we will try to remove the finiteness condition and consider prefix

sets in sub-classes of REC (the family of tiling system recognizable languages), such as

deterministic ones (Anselmo et al. 2010; Anselmo and Madonia 2009).

Prefix codes

Strong prefix codesMaximal prefix codes

Maximal

strong prefix codes

.X2 .X3

.X1
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