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Bubble-type vortex breakdown in axial vortices is investigated numerically through
a model problem of flow inside a cylinder with a top rotating lid, referred to as
‘Vogel–Escuider flow’. The parameters of the flow are Reynolds number (Re), based
on the rotation speed of the top plate, and aspect ratio (Γ ), which is the ratio of
height to radius of the cylinder, depending on which the flow exhibits steady or
unsteady breakdown bubble topologies. The flow is analysed for Reynolds number
up to 5000 for Γ = 2.5 using helicity density. In the absence of vortex breakdown,
the helicity density does not change the sign in the bulk, while in the event of
a breakdown, it changes the sign from positive to negative in the vicinity of the
breakdown bubble. The three-dimensional flow is further represented as the sum of
a two-dimensional velocity field in the rz plane and an out-of-plane velocity vector
based on the respective energies, referred to as two-dimensional three-component
flow. Here r is the radial coordinate, z is the axial coordinate and θ is the azimuthal
coordinate. Helicity density of the flow is then decomposed into planar helicity
(hr,z) and out-of-plane helicity (hθ). We show that a correlation exists between
planar helicity and the vortex breakdown bubble. We also show that the topology
of the breakdown bubbles is described by the planar helicity. Using only this planar
helicity, the entire breakdown bubble is reconstructed for axisymmetric as well as
non-axisymmetric flows.

Key words: vortex breakdown

1. Introduction
Whether flow over delta wings or tornadoes, axial vortices are ubiquitous in

engineering and nature. Axial vortices are prone to a phenomenon called ‘vortex
breakdown’, first observed by Peckham & Atkinson (1957) in flow past delta wings.
It is characterized by the appearance of one or more stagnation points on or near
the axis of the vortex followed by a spiral (spiral-type vortex breakdown) or a
re-circulatory bubble (bubble-type vortex breakdown) or a double helix (helical-type
vortex breakdown) (Leibovich 1978; Escudier 1984, 1988; Delery 1994). Earliest
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known observations by Michaud (1787) documented schematics showing breakdowns
in tornadoes and waterspouts, which occur at different stages in the lifecycle (Pauley
& Snow 1988). In hurricanes the vortex breakdown appears as the ‘eye’ which is a
silent region, with little being known about the formation process and characterization
of the eye. Recently, Sharma & Sameen (2019) have shown that axisymmetric vortex
breakdown inhibits mixing by acting as a barrier to fluid transport. In this study we
note that the breakdown bubble (defined as uz = 0 surface) and planar helicity are
correlated.

Helicity is one of the important variables used in the study of rotating flows. It
has been used extensively to analyse the stability and the energy propagation in
atmospheric flows (Elting 1985). Lilly (1986) has shown that supercell thunderstorms
can be categorized with high helicity. Scheeler et al. (2017) have shown that
for vortex tubes total helicity can be determined by computing twist, writhe and
linking number. In the present analysis we use helicity density to understand vortex
breakdown. While helicity is an integral quantity, helicity density is a local quantity,
which is given by

h= u ·ω. (1.1)

Helicity density represents the orientation of the velocity vector u= (uθ ,ur,uz) and the
vorticity vector ω= (ωθ , ωr, ωz), and, hence, is directly related to the local topology of
the flow. Helicity density has been used to understand vortex breakdown in the past.
A possible correlation of helicity density with vortex breakdown was first discussed
briefly by Moffatt & Tsinober (1992), arguing that vortex breakdown is a result of
the change in the topology of the flow and helicity may be a suitable parameter to
characterize it. Spall & Gatski (1990) have used helicity density to analyse vortex
breakdown in rotating pipe flows while Yoshizawa et al. (2001) used helicity density
to show that the axial vorticity component plays a central role in flow reversal at
the axis for swirling pipe flow. The fact that helicity density changes sign across
a separation or reattachment line makes it a suitable parameter for predicting the
stagnation points which precede vortex breakdown.

To study the vortex breakdown phenomenon, we have used a model problem that
generates bubble-type vortex breakdown. Bubble-type vortex breakdown is generated
inside a circular cylinder with a rotating top lid, henceforth called Vogel–Escudier
flow (Vogel 1968; Escudier 1984; Shtern 2018). Two non-dimensional parameters that
govern the flow are: (i) aspect ratio, Γ = H/R, where H and R are the height and
radius of the cylinder, and (ii) Reynolds number, Re =ΩR2/ν, where Ω is the rate
at which the lid is rotated and ν is kinematic viscosity. The number of breakdown
bubbles depends on the aspect ratio of the cylinder and the Reynolds number of the
flow. Vogel (1968) presented a map of the number of vortex breakdown bubbles in
the Γ –Re plane. Escudier (1984) extended this map for several combinations of Γ
and Re suggesting steady and unsteady regimes in the map along with the number
of breakdown bubbles. Brown & Lopez (1990) discussed the conditions under which
vortex breakdown occurs and proposed that the generation of negative azimuthal
vorticity is an essential feature of vortex breakdown. Spall & Gatski (1990) have
shown that axial vorticity redistributes itself to the other two components of vorticity
in the event of vortex breakdown. Wang & Rusak (1997) and Shtern & Hussain (1999)
have explained vortex breakdown as a fold catastrophe that occurs in rotating pipe
flow. Paterson, Wang & Mao (2018) have conducted stability analysis of bubble-type
vortex breakdown of an unconfined vortex. Several proposed mechanisms of vortex
breakdown can be found elsewhere (Sarpkaya 1971; Leibovich 1978; Escudier &
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Keller 1983; Escudier 1988; Brown & Lopez 1990; Delery 1994; Goldshtik &
Hussain 1998; Shtern & Hussain 1999; Hiejima 2018). Vishnu & Sameen (2019)
have investigated thermally unstable stratified Vogel–Escudier flow and observed that
the large-scale circulation is affected by the breakdown bubble. The heat transfer
increases with an increase in the Reynolds number, which is the result of enhanced
upward flow at the bottom hot plate that assists the convection.

Helicity density can be decomposed as given in Biferale, Buzzicotti & Linkmann
(2017) to analyse the flow. When the physics of the flow is dominated by the
dynamics in the two-dimensional (2-D) plane it is shown that the three-dimensional
(3-D) flow can be written as the sum of the velocity vector in the 2-D plane
and an out-of-plane velocity vector. This kind of decomposition is common for
analysing transition from 2-D to 3-D turbulence. In this paper we have scenarios of
a similar transition from axisymmetric to non-axisymmetric flow and the flow field
is decomposed as two-dimensional three-component (2D3C) flow.

The paper is organized as follows. The numerical method is presented in § 2
along with the validation and streamline plots of the flow for various Reynolds
numbers in the rz plane. Helicity density of the flow and the change in its sign
associated with vortex breakdown are examined and discussed in § 3. Section 4
presents the decomposition of the 3-D velocity field into the sum of 2-D flow in
the rz plane and an out-of-plane component. An analytical expression for planar
helicity, using this decomposed 2D3C velocity field, is also presented in that section.
A correlation between planar helicity density and the breakdown bubble boundary is
shown by order-of-magnitude analysis. This concurrence between the planar helicity
and the vortex breakdown bubbles (axisymmetric as well as non-axisymmetric) is
also shown by plotting planar helicity alongside the breakdown bubble in that section.
Planar helicity is further used to reconstruct 3-D non-axisymmetric vortex breakdown
bubbles for Γ = 2.5 at Re= 5000. The paper concludes with a discussion about the
correlation of planar helicity with vortex breakdown in § 5.

2. Numerical method
A schematic of the computational domain for Vogel–Escudier flow is shown in

figure 1. The top wall of the cylinder is rotated at an angular speed Ω . Vogel–Escudier
flow is simulated numerically by solving 3-D incompressible Navier–Stokes equations
in cylindrical polar coordinate system (θ, r, z), which are written in an expanded form
(Verzicco & Orlandi 1996):

∂qr

∂r
+
∂qθ
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FIGURE 1. Schematic diagram of the computational domain. The schematic also shows
vortex breakdown bubbles represented by isosurface of uz= 0 and contours of uz in the rz
plane for Re= 2200 and Γ = 2.5. The radial, r, and axial, z, coordinates are also shown.
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Here (qθ , qr, qz) = (uθ , rur, uz) is velocity and p is pressure. All the lengths
are non-dimensionalized using radius, R, and all the velocity components are
non-dimensionalized using the maximum azimuthal velocity of the top lid, ΩR. These
two scales give time scale as 1/Ω and pressure scale as ρΩ2R2, which are used to
non-dimensionalize the respective variables. The density of the fluid is denoted by ρ.

A finite-difference method employing a fractional-step algorithm is used to solve
the above equations on a fully staggered arrangement. A fully staggered arrangement
of variables helps to achieve a better coupling between the pressure and the velocity
and reduces oscillations in the solution. It provides another advantage in that at the
axis (r = 0) only rur is available and is zero, which avoids a singularity at the axis.
Further details of the numerical method can be found in Verzicco & Orlandi (1996),
Orlandi (2000) and Sharma & Sameen (2019). The boundary conditions at the lower
wall and side wall are uθ = ur = uz = 0, and at upper wall are uθ = r/R, ur = uz =

0. Steady-state cases are started from zero initial conditions and take roughly 500
non-dimensional time units to settle down. For faster convergence, the high-Reynolds-
number (unsteady) cases are started using the converged lower Re steady-state solution
as the initial conditions.

When the top lid is rotated, the fluid adjacent to the lid is pushed outward under
the action of centrifuge. Upon reaching the radial wall, the flow descends down along
the wall. When the flow reaches the non-rotating bottom wall, it turns radially inward
and converges at the axis, where flow is forced to move up towards the top rotating
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Grid (θ × r× z) [uz,min, uz,max] [ur,min, ur,max]

Re= 2200
G0 : 97× 97× 97 [−0.100586, 0.0528627] [−0.0399716, 0.117822]
G2 : 257× 129× 257 [−0.131028, 0.0813592] [−0.0513423, 0.152632]
G3 : 385× 197× 385 [−0.128072, 0.0837642] [−0.0501255, 0.147946]

Re= 5000
G1 : 129× 97× 129 [0.152632, −0.0513423] [0.0815324, −0.131323]
G2 : 257× 129× 257 [0.152548, −0.0512985] [0.0813408, −0.131011]
G3 : 385× 197× 385 [0.152535, −0.0512922] [0.081340, −0.131003]

TABLE 1. Grid dependence study for Γ = 2.5 for Re= 2200 and Re= 5000. Maximum
and minimum contour values in the domain have been compared for three different grids
for axial and radial components of the velocity.

lid to satisfy mass conservation. This phenomenon is also known as Ekman pumping
or Ekman suction (Greenspan 1969; Serre & Bontoux 2002). This mechanism sets
up a re-circulatory flow in the rz plane (meridional plane) simultaneously rotating in
the θ direction (poloidal plane) driven by the top rotating lid and produces a slender
axial vortex at the axis. This axial vortex breaks down beyond some critical value of
Reynolds number forming what is known as bubble-type vortex breakdown.

2.1. Grid independence study and validation
A grid independence study is done for the cases that are considered in this study. For
this purpose solutions for Re = 2200 and 5000 for Γ = 2.5 are simulated for three
different grids. Maximum and minimum values of axial and radial components of the
velocity field in the domain are compared for these three grids. Grid dependency
for both the Reynolds numbers is shown in table 1. The results are checked
for consistency with both constant Courant–Friedrichs–Lewy number and constant
time-step (1t) calculations and the results in the table 1 are presented for 1t= 10−3.
Differences in the maximum and minimum values for G2 (257× 129× 257) and G3
(385× 197× 385) grids are within 5 % for both the Reynolds numbers. Hence, G2 is
used for all the results of Γ = 2.5 in this paper. Results presented in this study are
simulated for a fixed time step, 1t= 10−3.

Flow has been simulated for various aspect ratios but mainly the results for
Γ = 2.5 have been discussed and described in detail. This particular aspect ratio
has been examined experimentally (Escudier 1984; Fujimura et al. 2001) as well as
computationally (Lopez & Perry 1992; Stevens, Lopez & Cantwell 1999; Blackburn
& Lopez 2000). Results for Γ = 2.5 and Re = 2200 are compared quantitatively
with experimental data of Fujimura et al. (2001) in figure 2. Comparison of axial
variation of uz at the axis is shown in figure 2(a). Variation of uz and the locations
of four stagnation points, which are indicated by intersection of the uz profile with
the axis, match well with the experimental data. Figure 2(b) shows comparison of
radial variation of uz at two different axial locations (z∗ = z/H = 0.924 and 0.942).
Further, the streamline patterns in the rz plane for various aspect ratios at Re= 2000
are shown in figure 3. The number of breakdown bubbles matches well with the
existing literature (Escudier 1984; Lopez 1990); for higher aspect ratios Γ & 2.5 at
Re= 2000, there is no vortex breakdown.
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FIGURE 2. Present computational result for Γ = 2.5 and Re = 2200 compared against
experimental results of Fujimura et al. (2001). (a) Axial variation of uz at the axis (r= 0).
(b) Radial variation of uz at two different axial locations.

(c)

(b)

(a)

FIGURE 3. Streamlines in the rz plane at Re= 2000 for (a) Γ = 1.5, (b) Γ = 2.5 and (c)
Γ = 3. The flow is steady and axisymmetric for all cases.

2.2. Vortex breakdown topology for Γ = 2.5
The flow topology, for Γ = 2.5, represented by the streamlines in the rz plane are
shown in figure 4 for various Reynolds numbers. At low Re there is no vortex
breakdown bubble and the curvature of the streamlines is small near the axis as
can be seen in figure 4(a). The streamlines start to have noticeable curvature in the
vicinity of the axis of the cylinder near the top rotating lid at Re= 1500, even though
there is no vortex breakdown. This curvature is more pronounced at Re= 1800 and is
shifted near the bottom stationary lid as shown in figure 4(c). When breakdown occurs
and the flow is axisymmetric (figure 4d–h), the streamlines are closed at the axis and
breakdown bubbles are visible. The flow is steady and axisymmetric for figure 4(d–g)
and has two vortex breakdown bubbles. This result agrees qualitatively with the
experimental observations of Escudier (1984) in terms of the axisymmetric nature of
the flow and the number of breakdown bubbles. Similar plots are also presented by
Lopez & Perry (1992) from axisymmetric computations for Γ =2.5. At Re=2700, the
flow is unsteady and axisymmetric with a large breakdown bubble oscillating along
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4. Streamlines in the rz plane for Γ = 2.5 for various Reynolds numbers: (a)
Re= 1000, (b) Re= 1500, (c) Re= 1800, (d) Re= 1900, (e) Re= 2000, ( f ) Re= 2200,
(g) Re= 2494, (h) Re= 2700 and (i) Re= 5000. The flow is unsteady for the cases shown
in (h) and (i) and the streamlines are shown at an instant.

the axis periodically. The breakdown bubble at an instant is shown in figure 4(h). At
a higher Reynolds number such as Re= 5000, the flow is non-axisymmetric and from
the streamline pattern shown in figure 4(i) it is difficult to estimate the shape and
size of the breakdown bubble. To overcome this difficulty, uz = 0 isosurface is used
in this paper to represent the breakdown bubble as has been previously used by Serre
& Bontoux (2002). In figure 5(a), the difference in size of the bubbles represented
by streamlines and isosurface of uz = 0 is visible. Figure 5(b) shows the streamlines
at the same instant as in figure 4(i) along with breakdown bubbles represented by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.43


888 A6-8 M. Sharma and A. Sameen

(b)

(a)

FIGURE 5. (a) Two-dimensional streamlines in the rz plane and uz= 0 isosurface for Re=
2200. (b) Three-dimensional streamlines and uz= 0 isosurface for Re= 5000. Aspect ratio
for both plots is Γ = 2.5.

uz = 0 isosurface. The breakdown bubbles capturing the essential features such as
shape, size and stagnation points are well represented by isosurface of uz = 0.

Using the isosurface of uz = 0, the changes in the flow for Γ = 2.5 as Re
is increased are shown in figure 6. At Re = 2700 (figure 6b), flow exhibits
unsteady behaviour but remains axisymmetric and a large breakdown bubble starts
oscillating along the axis. This observation from 3-D simulation is in agreement with
axisymmetric computations by Lopez & Perry (1992). At higher Reynolds number,
flow becomes non-axisymmetric as a result of the appearance of multiple azimuthal
rotating waves. This case is shown in figure 6(c), where non-axisymmetry of the flow
can be seen in the uz contours plotted in the z plane for Re= 5000.

3. Helicity density of the flow

Brown & Lopez (1990) have shown that for axisymmetric vortex breakdowns in
Vogel–Escudier flow, the flow far away from the breakdown bubble and the walls
can be assumed inviscid. Under this assumption they have shown that in order to
have stagnation points on the axis and hence the breakdown bubble, generation of
the negative azimuthal vorticity is required in the vicinity of the axis. Contours
of azimuthal vorticity in the rz plane for Γ = 2.5, for two different Reynolds
numbers, are shown in figure 7. Contours for Re = 1600, which does not have a
vortex breakdown, are shown in figure 7(a). Negative azimuthal vorticity can be seen
concentrated near the axis. Figure 7(b) shows the contours for Re = 2200, which
exhibits two distinct vortex breakdown bubbles. For this case also, negative azimuthal
vorticity, stronger than that for Re= 1600, is concentrated in the vicinity of the axis.
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(a) (b) (c)

0.040.030.020.010-0.01-0.02

FIGURE 6. Contours of uz in the z plane at z = 0.1 and isosurface of uz = 0 for (a)
Re= 2200, (b) Re= 2700 and (c) Re= 5000 at an instant for Γ = 2.5.

0.3

(a) (b)

0.2
0.1
0
-0.1
-0.2
-0.3

1.00
0.75
0.50
0.25
0
-0.25
-0.50
-0.75
-1.00

FIGURE 7. Contours of azimuthal vorticity in the rz plane for Γ = 2.5 at (a) Re= 1600
and (b) Re= 2200.

This indicates that even though negative azimuthal vorticity generation is essential to
vortex breakdown, its mere presence does not guarantee vortex breakdown.

We analyse helicity density (1.1) of the flow with bubble-type vortex breakdown
in detail in the following discussion. Helicity density contours for Re = 1600 and
2200 are shown in figures 8(a) and 8(b), respectively. It can be seen that there is
no change in sign of helicity density in the vicinity of the axis in the absence of
vortex breakdown (i.e. for Re= 1600), while helicity density is negative in the region
where vortex breakdown has formed (Re= 2200) (Sarasija 2014). Figure 8(c) shows
the variation of h along the axis of the cylinder for Re = 1600 and 2200. In the
case of Re = 1600, since there is no stagnation point on the axis, helicity density
does not change sign along the axis. At Re= 2200, there are four stagnation points
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0 0.1 0.2
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0.3 0.4
0

0.2
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0.8

1.0(c)(b)(a)
Re = 1600
Re = 2200

82-4-10
(÷ 10-4)

FIGURE 8. Contours of helicity density, h, for Γ =2.5 at (a) Re=1600 and (b) Re=2200.
Variation of h along the axis for (a,b) is shown in (c). The inset shows a zoomed-in view
of the variation near the stagnation points. The grey region in (b) is the vortex breakdown
bubble represented by isosurface of uz = 0.
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FIGURE 9. Instantaneous contours of helicity density in the rz plane compared with the
vortex breakdown bubbles represented by uz= 0 (shown by grey region) for three different
cases: (a) Γ = 1.75 at Re= 1850, (b) Γ = 3 at Re= 2500 and (c) Γ = 4 at Re= 4000.

on the axis and figure 8(c) shows that helicity density changes sign exactly at these
four points. It has been observed that helicity density is negative inside as well as
in the near vicinity of the breakdown bubbles and is enveloped by positive helicity
density. The breakdown bubble is a surface (uz = 0) across which circulation of the
flow changes direction. The bulk clockwise circulation induces an upward flow outside
the breakdown bubble. Similarly, a counterclockwise circulation within the breakdown
bubble induces a downward flow within the breakdown bubble at the axis. Also note
in figure 8(b) that the negative region of helicity density does not match with the
vortex breakdown bubble shown by grey contours of uz = 0, except at the stagnation
points on the axis. This is true for others cases also, as seen in a sample set shown
in figure 9, for three different aspect ratios.

The negative helicity density is generated always near the top rotating wall and is
transported into the bulk by axial velocity which can be understood by examining the
helicity density evolution equation. The evolution equation of helicity density, h, in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.43


Correlation between breakdown bubble and planar helicity 888 A6-11

400030002000
Re

10000

10-4

10-8

10-12

10-16

¯u
zh

˘

4(a)

(b)

3

2

1

0

¯uzh˘b

¯uzh˘t

FIGURE 10. Variation of 〈uzh〉 at (a) the top plate and (b) the bottom plate with respect
to Re. Subscript ‘t’ refers to the top plate and subscript ‘b’ refers to the bottom plate.

Cartesian coordinates can be shown to be

∂h
∂t
+ uj

∂h
∂xj
=−ωi

∂p
∂xi
+ωj

∂

∂xj

(
u2

i

2

)
+

1
Re

(
∂2h
∂x2

j
− 2

∂ui

∂xj

∂ωi

∂xj

)
. (3.1)

This equation can be rewritten and integrated for the whole volume V– (applying Gauss
theorem for thetransport term) as
∂

∂t

∫
V–

hdV– =−
2

Re

∫
V–
∂ui

∂xj

∂ωi

∂xj
dV– +

∫
S

n̂ ·
[
−huj +

(
−p+

uiui

2

)
ωi +

1
Re
∂2h
∂x2

j

]
dS. (3.2)

Following Yoshizawa et al. (2001) for pipe flow, the second term on the right-hand
side for the Vogel–Escudier flow results in the following form near bottom and top
walls: ∫

S
n̂ · (−huj) dS≈

∫
S

uzh dS. (3.3)

Surface S is parallel to top and bottom walls. This term shows that helicity, which
is generated at the top rotating plate, is injected in the bulk flow by the axial
component of velocity. Figures 10(a) and 10(b) show the variation of 〈uzh〉 with
Reynolds number at the top and bottom plates, respectively. The angle brackets 〈·〉
indicate spatial average in the r–θ plane. The helicity density transport increases
with Reynolds number at both the plates but the contribution from the bottom plate
is negligibly small compared to the top plate. For low values of Reynolds number,
the correlation 〈uzh〉t is very small suggesting that from the top plate the helicity is
not transported into the bulk. At large Re, the correlation becomes strong enough to
inject the helicity generated at the top plate through axial velocity.

Presence of non-zero helicity has a significant effect on the dynamics of the
flow. As discussed by Moffatt & Tsinober (1992), helicity density and the Lamb
vector (u×ω) form an identity:

|u×ω|2

|u|2|ω|2
+
|u ·ω|2

|u|2|ω|2
= 1. (3.4)
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FIGURE 11. Contours of vortex breakdown bubble represented by uz= 0 and the relative
helicity density for Γ = 2.5, Re= 2200. Colour contours represent relative helicity density
and the line contours show uz = 0.

The identity (3.4) indicates that as the magnitude of helicity density increases in
the flow, the magnitude of the Lamb vector is bound to decrease. This reduction
in the magnitude of the Lamb vector results in the reduction of nonlinearity of the
flow (Lugt 1996). The second term of the identity (3.4), relative helicity density,
is associated with the local curvature of streamlines in the flow (Levy, Degani &
Seginer 1990), which is the cosine of the angle between the velocity and the vorticity
vectors indicating the degree of alignment of the two vectors.

Figure 11 shows contours of relative helicity density for Γ = 2.5 at Re= 2200. It
shows two distinct regions of negative helicity density in the vicinity of the breakdown
bubbles (solid curves). The regions of maximum helicity density have minimum local
curvature of the streamlines and vice versa. It can be observed from figure 11 that in
the vicinity of the breakdown bubble, relative helicity density is negative indicating
that the velocity vector and the vorticity vector are anti-correlated in these regions.
However, negative relative helicity density does not conform to the vortex breakdown
bubble as shown in the figure.

Decomposition of helicity density into planar helicity and out-of-plane helicity
indicates a strong correlation between the breakdown bubble and the negative planar
helicity, which is discussed in the next section.

4. Planar helicity density (hr,z)

A 2D3C decomposition is generally used to analyse 2-D turbulent flows (Biferale
et al. 2017). In a 2D3C flow, the velocity field can be thought of as an out-of-plane
component being advected in a 2-D in-plane flow, such that the 3-D velocity field is
decomposed as u= V2D

+ φ. In cylindrical polar coordinates V2D
= (0, ur, uz) is the

2-D in-plane (rz-plane) component and φ = (uθ , 0, 0) is the out-of-plane component.
Evolutions of these two velocity components are governed by the following equations:

∂V2D

∂t
+ (u · ∇)V2D

=−∇p+ ν∇2V2D, (4.1)
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FIGURE 12. Components of energy in the rz plane (E2D) and in the θ plane (Eθ ). The
values are scaled by total mean energy (E3D).

∂φ

∂t
+ (u · ∇)φ = ν∇2φ. (4.2)

The evolution equation for φ is coupled to (4.1) through the term uθur/r.
Equations (4.1) and (4.2) are shown here for completeness and are not used to
compute any quantity in the paper. The results presented in the discussion are
extracted from the velocity field obtained by solving (2.1)–(2.4). Volume-averaged
energies in the rz plane, 〈E2D

〉, and in the out-of-plane component, 〈Eθ 〉, are defined
as

〈E2D
〉 =

1
2V–

∫
V–

dx|V2D
|
2, 〈Eθ 〉 =

1
2V–

∫
V–

dx|φ|2. (4.3a,b)

These components of energy are shown in figure 12 as a function of Reynolds number
for Γ = 2.5, indicating the energy contents associated with the decomposed velocity
fields are well separated and hence the 2D3C decomposition is justified. Vorticity
fields associated with 2D3C flow are ω2D and ωφ , which can be shown as follows:

ω2D
=

〈
∂ur

∂z
−
∂uz

∂r
, 0, 0

〉
; ωφ =

〈
0,−

∂uθ
∂z
,

uθ
r
+
∂uθ
∂r

〉
. (4.4a,b)

Here, we are interested in decomposition of helicity density in the rz plane for the
2D3C flow defined above. Helicity density in the rz plane, hr,z (referred to as planar
helicity from now on), which is associated with V2D is then given by

hr,z =V2D
·ωφ =−ur

∂uθ
∂z
+

1
r

uzuθ + uz
∂uθ
∂r
. (4.5)

Similarly, out-of-plane helicity is given by hθ = φ · ω2D. In the following sections,
the planar helicity is shown to describe the bubble for both axisymmetric and non-
axisymmetric vortex breakdowns.
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4.1. Correlation between breakdown bubble and hr,z for axisymmetric flow

The planar helicity hr,z represents the alignment of V2D vector with respect to ωφ

vector in the rz plane. It also indicates intuitively that planar helicity can capture the
topology of the breakdown bubble. A simple order-of-magnitude analysis presented
in this section shows that the first term on the right-hand side of (4.5) is negligible
compared to the other two terms which indicates that hr,z = 0 correlates with uz = 0.

The radial velocity in the flow is generated near the top lid where the flow is
radially pushed out by the rotating lid or at the bottom stationary lid where the flow
converges towards the axis. For simplicity of the magnitude analysis, without loss of
generality, for an axisymmetric flow, the continuity equation reduces to

1
r
∂

∂r
(rur)+

∂uz

∂z
= 0. (4.6)

The characteristic length scale, δ ∼
√
ν/Ω , represents the viscous diffusion length

scale, which is obtained by balancing the advection and viscous terms in the absence
of Coriolis forces and is valid anywhere in the flow where viscous terms are
significant. In the near vicinity of the axis where the breakdown occurs, r ∼ δ

for determining the order of the gradients in (4.6) as the radial component of velocity
is generated under the action of viscosity. It may be noted that in the absence of
vortex breakdown, ur is 0 at the axis, except at the top- and bottom-wall boundary
layers. Similarly in the bulk, near the vicinity of the breakdown bubble the axial
coordinate z∼H. Applying these scales to (4.6), we get an order for ur in terms of
uz as

ur ∼
uz

H

√
ν

Ω
. (4.7)

Equation (4.7) implies that the order of magnitude of the radial component depends
on the axial component of velocity and the viscous diffusion length. The order of the
azimuthal component of the velocity is then uθ ∼ rΩ =

√
νΩ . The orders of terms of

(4.5) are as follows:

ur
∂uθ
∂z
∼

uz

H

√
ν

Ω

√
νΩ

H
=

1
Γ 2Re

Ωuz, (4.8)

1
r

uzuθ + uz
∂uθ
∂r
∼

√
Ω

ν
uz

√
νΩ =Ωuz. (4.9)

Comparing the orders of (4.8) and (4.9), the contribution of ur∂uθ/∂z is negligible
as 1/(Γ 2Re)� 1, indicating that the vortex breakdown bubble (boundary of uz = 0)
correlates with hr,z = 0.

The 3-D velocity field obtained from the numerical simulation is used to extract
hr,z. Figure 13 shows a comparison of contours of negative planar helicity in the
rz plane with contours of uz = 0 in the vicinity of the axis for different Reynolds
numbers. For the right-hand half of each plot in figure 13, hr,z below 0 are shown
in red and white region shows values above 0. The left-hand half of each plot is the
closed region shown in blue, enveloped by uz = 0. Figure 13(a) shows contours of
hr,z for Γ = 2.5, Re = 2200 compared against both the breakdown bubbles. It can
be seen that the regions of negative hr,z coincide with the regions of the breakdown
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(d) (e) (f) (g)

(a) (b) (c)

FIGURE 13. Comparison of planar helicity in the rz plane with the breakdown bubbles
obtained for uz = 0 for (a) Re = 2200, Γ = 2.5, and (b,c) Re = 3000, Γ = 2.5 at
two different instants. This comparison is shown for Re = 5000, Γ = 2.5 for rz planes
corresponding to (d) θ = 0, (e) θ =π/2, ( f ) θ =π and (g) θ = 3π/2. In each panel, the
left-hand half shows the vortex breakdown bubble contained within the contours of uz= 0
and the right-hand half shows the negative contours of planar helicity in the rz plane in
the vicinity of the axis. To show the comparison side-by-side, the left-hand planes are
rotated about the z axis by an angle of π.

bubbles. This shows the concurrence between vortex breakdown and hr,z in the vicinity
of the axis. Figure 13(b,c) shows a comparison of the breakdown bubble against the
negative contours of hr,z in the rz plane at two different time instants for Γ = 2.5
and Re = 3000. It can be seen that at each instant, the topology of the breakdown
bubble is correlated to the planar helicity in the rz plane, which can be used as an
indicator for vortex breakdown in axisymmetric flows. Hence, it can be concluded that
the topology of the vortex breakdown bubble is determined by the orientation of the
velocity vector in the rz plane and the vorticity vector in the same plane, which, in
turn, is represented by hr,z.

4.2. Reconstruction of 3-D breakdown bubble from hr,z

Correlation between the vortex breakdown bubble and negative values of hr,z exists
even for the cases that are highly non-axisymmetric. For Γ = 2.5 at Re = 5000,
the flow is dominated by rotating azimuthal waves as shown earlier in figure 6(c).
Figure 13(d–g) shows a comparison of the non-axisymmetric vortex breakdown
bubble with hr,z in four different rz planes for the same instant shown in figure 6(c).
In each plane, contours of negative values of hr,z match with the breakdown bubble.
Full non-axisymmetric breakdown bubble can be reconstructed using negative values
of hr,z in the vicinity of the axis. This concurrence of hr,z with the vortex breakdown
bubble exists at each time instant. Figure 14 shows a comparison of the 3-D vortex
breakdown bubble represented by isosurface of uz = 0 at three different instants
with the corresponding 3-D negative isosurfaces of hr,z in the vicinity of the axis
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(a) (b)

(c) (d)

(e) (f)

FIGURE 14. (a,c,e) Breakdown bubbles represented by isosurface of uz = 0 extracted
from 3-D simulation at three different instants and (b,d, f ) corresponding reconstructed
breakdown bubbles from isosurface of negative hr,z for Γ = 2.5 at Re= 5000.
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for Γ = 2.5 at Re = 5000. The isosurfaces of hr,z represent the topology of the
breakdown bubble precisely at each instant. Hence, the breakdown bubble dynamics
can be decoupled from the azimuthal direction (2D3C decomposition) and negative
values of decomposed helicity density in the rz plane completely determine the local
topology of the breakdown bubble.

5. Conclusion
Bubble-type vortex breakdown is investigated numerically inside a circular cylinder

with a rotating top lid. Negative helicity density is generated at the rotating top
wall and is transported to the bulk by axial velocity and gets localized in regions
where the vortex breakdown occurs, indicating that the breakdown bubble is of a
different topology from that of the surrounding flow. The energies associated with the
rz component and out-of-plane component (θ component) of the flow indicate that
the flow field can be decomposed as a 2-D velocity vector and out-of-plane velocity
vector (2D3C). The helicity density of the flow is decomposed as a planar helicity
(hr,z) part and out-of-plane helicity (hθ) part using the two velocity components. It is
found that the rz part of the helicity density (hr,z) completely describes the topology
of the breakdown bubble. The analysis shows that the dynamics of the breakdown
bubble can be decoupled from the azimuthal direction and the local structure of
the flow is dependent on the mutual orientation of the 2-D velocity vector and the
in-plane vorticity vector represented by hr,z. This confirms previous findings (Spall
& Gatski 1990; Yoshizawa et al. 2001) that the axial vorticity plays a central role
in vortex breakdown. A correlation thus exists between the vortex breakdown bubble
and hr,z, which is used to reconstruct the 3-D topology of the breakdown bubble.
Such correlation should exist for other forms of vortex breakdown such as spiral-type
vortex breakdown. Spiral vortex breakdown is also a result of stagnation points on
the axis and diverging streamlines. Planar helicity is instrumental in capturing both
of these aspects of a flow.

Further, this paper has discussed the correlation between the planar helicity and
the vortex breakdown where there is no axial mean flow. While analysing the planar
helicity of the flow, no explicit assumption has been made with respect to the mean
axial flow. Hence, this correlation of planar helicity with vortex breakdown should
exist for flows such as rotating pipe flow, where a non-zero mean axial flow exists.
A situation where this correlation might break down is flow where vortex breakdown
occurs without stagnation points, as in the case for supersonic vortex breakdown.
Nevertheless, helicity density has been used to identify breakdown in such cases
(Hiejima 2018). It is to be noted that helicity density is not a Galilean invariant
quantity and it is worth inspecting the correlation of planar helicity with vortex
breakdown for flows with non-zero axial mean flow as well as breakdowns without
stagnation points.
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